
Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 1

Implementation of Model Predictive Control in
Programmable Logic Controllers

Pablo Krupa, Daniel Limon, Teodoro Alamo

Abstract—In this paper we present an implementation of a
low memory footprint Model Predictive Control (MPC) based
controller in Programmable Logic Controllers (PLC). Automatic
code generation of standardized IEC 61131-3 PLC programming
languages is used to solve the MPC’s optimization problem
online. The implementation is designed for its application in a
realistic industrial environment, including timing considerations
and accounting for the possibility of the PLC not being exclusively
dedicated to the MPC controller. We describe the controller
architecture and algorithm, show the results of its memory
footprint with regards to the problem dimensions and present
the results of its implementation to control a hardware in the
loop multivariable chemical plant.

Index Terms—Model Predictive Control, Embedded systems,
Programmable Logic Controller, Dual optimization, IEC 61131

I. INTRODUCTION

Model Predictive Control (MPC) is an optimization based
control strategy in which the control action is obtained from
the solution of an optimization problem where a system model
is used to predict the future evolution of the plant over a
given prediction horizon. The optimization problem is posed
as a minimization problem in which the cost function reflects
the distance between the desired reference and the predicted
system evolution [1]. One of the main draws of MPC is
its inherent ability to consider and satisfy state and input
constraints in multivariable systems.

The application of MPC has historically been confined
to computationally powerful devices, such as PCs, because
it requires the solution of an optimization problem at each
sample time. This has limited its application in industrial
settings, due to the fact that most control loops are imple-
mented using embedded systems, whose resources are not
suitable for solving the MPC optimization problem in real
time. Specifically, Programmable Logic Controllers (PLCs) are
the most widespread embedded system used in the industry for
implementing low level control loops and automatons, due to
their high reliability and robustness [2].

The implementation of MPC in PLCs is particularly attrac-
tive due to (i) their current prevalence in industrial settings,
and (ii) the fact that they are usually used for implementing

Pablo Krupa, Daniel Limon and Teodoro Alamo are at the Systems Engi-
neering and Automation department, University of Seville. pkrupa@us.es,
dlm@us.es, talamo@us.es
The authors acknowledge MINERCO and FEDER funds for funding project
DPI2016-76493-C3-1-R, and MCIU and FSE for the FPI-2017 grant.
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

control loops at a fairly low level, where the use of MPC could
(potentially) provide a performance improvement [3]. We are
therefore interested in finding a way to efficiently implement
MPC in embedded systems, and particularly interested in its
implementation in PLCs for a realistic environment. Paper [4]
provides a discussion and state-of-the-art on the implementa-
tion in embedded system of reliable MPC controllers in indus-
trial settings and its challenges, including the implementation
of MPC in PLCs.

One possible approach for implementing MPC in embedded
systems is the use of explicit MPC, where the solutions of the
set of MPC optimization problems are computed offline and
the control action is then computed online using a lookup
table [5]. This approach provides good results for small
scale systems, but the computational burden and memory
requirements can become prohibitive for higher order ones.
Examples of explicit MPC being implemented in embedded
systems include [6] and [7].

Another approach is to overcome the computational and
memory limitations of embedded systems with the use of effi-
cient algorithms capable of solving the optimization problem
online. This has become possible due to recent advances in
optimization algorithms for convex optimization problems and
to the development of code generation tools that specifically
tailor embedded systems, such as, to name a few of the more
widespread ones, FiOrdOs [8], CVXGEN [9], FORCES [10]
or qpOASES [11]. Examples of these tools being used to
implement MPC in embedded platforms include [12], [13],
[14] and [15]. Paper [16] provides an overview and comparison
of the aforementioned tools for their use in embedded MPC.

Finally, another approach is implementations which are
tailored to the specific optimization problem that arises from
the MPC formulation, instead of relying on solutions for
generic convex optimization problems such as the aforemen-
tioned tools. Some of these implementations rely on code
generation to further take advantage of the specifics of the
implementations, whereas others implement a hand tailored
algorithm in the embedded system. Some noteworthy examples
are [17], [18] and [19] for PLC implementations; [20], where
the code generation tool µAO-MPC [21] is used, [22], [23] and
[24] for FPGA implementations; [25] for microcontrollers; and
[26], where in spite of the controller not being implemented
in an embedded system, the underlying structure of the MPC’s
optimization problem was exploited.

In this paper we present a code generation tool for the
implementation of MPC based controllers on PLCs where
the optimization problem is solved online using first order
methods that have been specifically tailored to solve the MPCs

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 2

optimization problem efficiently. The tool has been designed to
fulfill the following criteria: (i) high level problem definition,
(ii) automatic code generation, (iii) streamlined implemen-
tation, (iv) code tailored to specific MPC formulation and
system, (v) optimization problem solved online, (vi) practical
considerations specific to PLCs, (vii) the use of the native
standardized IEC 61131-3 PLC programming languages, and
(viii) minimization of the memory footprint and computational
complexity of the optimization algorithm. Additionally, the
proposed control scheme guarantees offset free tracking for
feasible references. This paper extends and improves upon the
preliminary results shown in the conference paper [27].

One of the main advantages of the proposed implementation
is that the memory footprint grows linearly with respect to the
prediction horizon of the MPC due to taking advantage of the
structure of the controller’s optimization problem by means of
a banded Cholesky factorization of one of the ingredients of
the optimization algorithm. This approach can be applied to a
wide range of MPC formulations. This paper focuses on two
of them.

To the best of the author’s knowledge no previous work
collectively addresses all the aforementioned points in order to
deliver an MPC implementation tailored to a realistic industrial
implementation. The objective is to develop a tool that would
allow a streamlined way to implement a state-space model
predictive controller in a PLC. To this end, we present the
results of a hardware-in-the-loop (HIL) implementation of the
proposed controller to control a multivariable chemical plant.

The paper is structured as follows. Section II presents the
architecture of the controller. In Section III, we present the
optimization algorithms that can be implemented. In Section
IV we show how the optimization problems described in
Section II are implemented using a minimal memory footprint,
including how linear memory growth with respect to the
prediction horizon is achieved. Section V describes the overall
controller implementation, including its general algorithm.
Section VI shows the results of a hardware in the loop imple-
mentation of the controller on a chemical plant. Section VII
shows the results of tests studying the memory requirements of
the controller with regards to the problem dimensions. Finally,
Section VIII summarizes the main conclusions.

Additionally, we include the following subsection, which
provides some details about PLCs which are of importance for
contextualizing and illustrating the design decisions described
in the remainder of this paper.

Programmable Logic Controllers
The construction guidelines and requirements of PLCs are

standardized by the international norm IEC 61131, which in-
cludes the description of its standard programming languages.
Some high-end PLCs also offer the possibility of programming
in C/C++. However, all modern PLCs are programmable using
the standard IEC 61131 programming languages. For future
reference, we highlight the following two:
• Structured Text (ST). ST is a high level sequential text-

based programming language which resembles Pascal.
• Function Block Diagram (FBD). FBD is a graphical

language in which functions are represented by blocks

Overhead

Task 1

Task N

Wait

F
ix

e
d
 t

im
e

(a) Periodic mode

Overhead

Task 1

Task N

(b) Cyclic mode

Fig. 1: PLC’s main loop operation modes.

with a series of inputs and outputs connected to those
of other blocks, fixing a layout that determines the
execution order. Each block calls a function, which can be
programmed in any of the five IEC 61131 programming
languages.

The basic operating cycle of a PLC is the following,

1) Perform diagnosis and overhead operations.
2) Digital and analog input signals are sampled and their

values are stored in memory.
3) User defined tasks are executed sequentially in a pre-

specified order.
4) Values from the outputs of the user defined programs are

written to the PLC’s output connections.

This cycle can be run in two different modes: cyclic mode,
where the first point of the operating cycle starts as soon
as the last one has finished; or periodic mode, where the
cycle runs periodically with a fixed time. Figure 1 illustrates
both operating modes. The diagnosis and overhead operations
incur in a computational overhead typically in the order of
milliseconds, which can limit the application of PLCs to
systems with high sampling frequencies.

Notation: Set Z+ is the set of non negative integer numbers.
(x(1), x(2), . . . , x(N)) is a column vector formed by the con-
catenation of column vectors x(1) to x(N). Depending on the
context, xi can either denote the i-th element of vector x, or
the i-th element of a sequence x = {x0, x1, . . . , xN}. Given
a matrix A ∈ IRn×m, Ai,j denotes its element (i, j), A> its
transposed and A−1 its inverse (if A is square). The identity
matrix of dimension n is denoted by In. Given x ∈ IRn,
‖x‖Q is the weighted Euclidean norm ‖x‖Q

.
=
√
x>Qx, and

‖x‖ .
= ‖x‖In is the standard Euclidean norm. 〈x, y〉 is the

inner product of vectors x and y, i.e. 〈x, y〉 = x>y. For a
vector x, x(k|j) denotes the prediction of x at time k based on
the knowledge available at time j. Dn(+) is the set of (strictly)
positive definite diagonal matrices of dimension n. A � 0
denotes that matrix A is strictly positive definite. Given two
vectors x and y, x ≤ (≥) y denotes componentwise inequality.

II. CONTROLLER ARCHITECTURE

This section presents the controller’s architecture, which is
shown in Figure 2 within the dashed line. The blocks in the
figure represent each of the elements included in the controller.

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 3

SSTO MPC System

EstimatorPredictor

Manual Clock ST

Fig. 2: Controller architecture.

We consider a plant with measured output Ym ∈ IRp,
constrained outputs Yc ∈ IRnc and input U ∈ IRm, where
the input U and output Yc are subject to hard constraints,

Y c ≤ Yc ≤ Y c, U ≤ U ≤ U.

It is assumed that the plant is operating around a steady
state U0, Y 0

m, Y 0
c , and that a linearized state-space model of

the system around the operating point is available.
The objective is to develop an MPC based controller to

steer the controlled system output, which is assumed to be the
measured output Ym, to the given reference R ∈ IRp (if it is
a feasible reference) while satisfying the system constraints.
The controller must guarantee offset free tracking for feasible
references and delay compensation.

A. Prediction Model

The prediction model is a discrete linear time invariant
model linearized around the operating point U0, Y 0

m, Y 0
c .

The inputs and outputs are scaled in order to reduce pos-
sible numerical issues by means of the diagonal scaling
matrices Nu, Nm and Nc, resulting in the linearized vari-
ables u(k) = Nu

(
U(k)− U0

)
, ym(k) = Nm

(
Ym(k)− Y 0

m

)
,

yc(k) = Nc
(
Yc(k)− Y 0

c

)
, where k is the sample time counter.

The resulting model can be written as,

x(k + 1) = Ax(k) +Bu(k − d) (1a)
ym(k) = Cx(k), (1b)

where x(k) ∈ IRn is the state at sample time k, and d ∈ Z+

is the system delay, measured in number of sample times.
We consider the following box constraints,

x ≤ x(k) ≤ x (2a)
u ≤ u(k) ≤ u, (2b)

where u = Nu
(
U − U0

)
, u = Nu

(
U − U0

)
.

We note that, in order to enforce the constraints on Yc,
the state x is selected so that the linearized constrained
outputs yc are contained within it, i.e. for each i ∈ {1, . . . , nc}
we have that yc,i ≡ xj for some j ∈ {1, . . . , n}. The con-
straints on yc can then be written as constraints on x by
setting xj = Nc,i(Y c,i − Y 0

c,i) and xj = Nc,i(Y c,i − Y 0
c,i) ac-

cordingly. Note that some elements of x may be unbounded.

B. State and disturbance estimator

We consider the following augmentation of system (1),

x(k + 1) = Ax(k) +Bu(k − d) (3a)
ym(k) = Cx(k) + w(k) (3b)

w(k + 1) = w(k), (3c)

where w(k) is the output disturbance at sample time k,
which is included to account for steady-state offset due to
the mismatch between the linear model and the plant, and we
slightly abuse notation by using the same symbols as in (1).

At each sample time k, the state and disturbance estimator
(henceforth estimator), calculates the predicted system state
x̂(k + 1) ∈ IRn .

= x(k + 1|k) and the predicted disturbance
ŵ(k + 1) ∈ IRp .

= w(k + 1|k), with x given by (3a) and w
by (3c). The predicted state and disturbance are calculated
from,

x̂(k + 1) = Ax̂(k) +Bu(k − d)

+ Lx(ym(k)− Cx̂(k)− ŵ(k)) (4a)
ŵ(k + 1) = ŵ(k) + Lw (ym(k)− Cx̂(k)− ŵ(k)) , (4b)

where ym(k) is the linearized measured system output at
sample time k and matrices Lx and Lw are calculated so that
the estimator is stable and ŵ can be used to achieve offset
free control by following the indications in [28].

C. Steady State Target Optimizer

The Steady State Target Optimizer (SSTO) computes, at
each sample time k, the feasible steady state (xr(k), ur(k))
of prediction model (1) that minimizes the distance between
yr(k)

.
= Cxr(k) + ŵ(k) and the filtered reference rf (k),

rf (k) = ηrrf (k − 1) + (1− ηr)r(k), (5)

where 0 ≤ ηr < 1, r(k) = Nm(R(k)−Y 0
m), and the inclusion

of ŵ from (4b) serves to provide offset-free control under the
conditions described in [28].

Pair (xr(k), ur(k)) is taken as the pair (x∗r , u
∗
r) obtained

from solving the following optimization problem,

(x∗r , u
∗
r , h
∗) = arg min

xr,ur,h
‖h‖2Th + ‖ur‖2Tu (6)

s.t. xr = Axr +Bur (6a)
h = rf (k)− Cxr − ŵ(k) (6b)
x ≤ xr ≤ x (6c)
u ≤ ur ≤ u, (6d)

where Th ∈ Dp+ and Tu ∈ Dm.

Remark 1. If p < m, the system is controllable, and C is full
rank, there are additional degrees of freedom, i.e. there are
infinite inputs ur such that the steady state (xr, ur) satisfies
rf (k) = yr(k). In this case, the term ‖ur‖2Tu is included, with
Tu ∈ Dm+ , so that the optimal set is a singleton. In any other
case, the inclusion of term ‖ur‖2Tu may provide (x∗r , u

∗
r , h
∗)

that does not minimize ‖rf (k)− yr(k)‖. This can be avoided
by taking Tu = 0.

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 4

D. Open loop predictor

The open loop predictor calculates, at each sample time k,
the predicted system state xp(k) = x(k + d|k) ∈ IRn, where
d is the system delay. The predicted state is used in the MPC
controller instead of the current state. The advantage of doing
so is that the prediction model used by the MPC does not
depend on the system delay, as can be seen in the following
section. This results in the MPC’s optimization problem not
depending on the value of d. As such, its structure can be more
easily exploited. The use of the open loop predictor enables
the implementation of memory efficient controllers for systems
with large delays [29].

At each sample time k, the predicted state is calculated as,

xp(k) = Adx̂(k) +
d∑
i=1

Ad−iBu(k − d− 1 + i), (7)

where x̂ is the estimated state (4a). In order to avoid storing
matrices Ad−1 . . . A, xp(k) is calculated recursively using
Algorithm 1. Note that xp(k) = x̂(k) if d = 0.

Algorithm 1: Open loop predictor
Require: x̂(k), [u(k − d), . . . , u(k − 1)]

1 xp(k) = x̂(k)
2 for i = 1 to d do
3 xp(k) = Axp(k) +Bu(k − d− 1 + i)
4 end for

Output: xp(k)

E. Model Predictive Control

We consider two possible MPC formulations, given respec-
tively by the two following optimization problems:

min
x,u

N−1∑
i=0

‖xi − xr(k)‖2Q + ‖ui − ur(k)‖2R (8)

s.t. xi+1 = Axi +Bui, (8a)
u ≤ ui ≤ u, i = 0, . . . , N − 1 (8b)
x ≤ xi ≤ x, i = 1, . . . , N − 1 (8c)
x0 = xp(k) (8d)
AxN−1 +BuN−1 = xr(k), (8e)

and

min
x,u

N−1∑
i=0

‖xi − xr(k)‖2Q + ‖ui − ur(k)‖2R + ‖xN − xr(k)‖2T

(9)
s.t. xi+1 = Axi +Bui, (9a)

u ≤ ui ≤ u, i = 0, . . . , N − 1 (9b)
x ≤ xi ≤ x, i = 1, . . . , N − 1 (9c)
x0 = xp(k), (9d)

where here xi and ui denote the elements of the sequence of
predicted states x = {x0, x1, . . . , xN−1} and system inputs
u = {u0, u1, . . . , uN−1}, respectively. Vectors xr(k) and

ur(k) are the state and input references given by the SSTO
(6), respectively. Vector xp(k) is the predicted state provided
by the predictor (7). Matrices Q ∈ Dn+, R ∈ Dm+ and T ∈ Dn+
are the cost function matrices.

In formulation (8), constraint (8e) is included in order to
guarantee stability [30]. However, the resulting MPC typically
requires long prediction horizons in order for the optimization
problem to be feasible, since the state must be able to reach
the reference in N steps.

For this reason, we also include MPC formulation (9),
which drops the terminal constraint (8e) in favor of a terminal
cost ‖xN − xr(k)‖2T . This formulation will be more suitable
when dealing with systems for which the prediction horizon of
formulation (8) would need to be set prohibitively high. The
stability of (9) can be guaranteed by a proper selection of the
cost function matrix T [31].

The solution of (8) or (9) provides the sequences
x∗ = {x∗0, . . . , x∗N−1} and u∗ = {u∗0, . . . , u∗N−1}. At each
sample time k, the control input u(k) is taken as u∗0.

The optimization problems of the SSTO (6) and MPC (8),
(9) can be posed as QP problems which are solved online using
one of the algorithms described in the following section.

III. DUAL OPTIMIZATION METHODS

This section describes two optimization algorithms for solv-
ing Quadratic Programming (QP) problems using the dual
formulation: FISTA [32] and ADMM [33], [34].

Consider the following QP problem,

min
z

1

2
z>Hz + q>z (10)

s.t. z ∈ Z (10a)
Gz = b, (10b)

where z ∈ IRnz are the decision variables and G ∈ IRmz×nz .

Assumption 1. We assume that,
(i) The Hessian H ∈ Dnz+ .

(ii) Z = {z ∈ IRnz | z ≤ z ≤ z} defines a set of box
constraints.

(iii) nz > mz and rank(G) = mz .
(iv) There exists ẑ ∈ ri(Z) such that Gẑ = b, where ri(·)

stands for relative interior.

Let J(z) = 1
2z
>Hz + q>z and z∗ be the cost function

and optimal solution of problem (10), respectively. We denote
J∗ = J(z∗) the optimal cost.

We note that if the Hessian H is not diagonal, but is positive
definite, then the problem can re recast into a QP that also
satisfies Assumption 1.i by means of an appropriate addition
of decision variables and equality constraints.

A. Fast Iterative Shrinking-Threshold Algorithm

We present a variation on the Fast Iterative Shrinking-
Threshold Algorithm (FISTA) [32], which is an accelerated
gradient method based on Nesterov’s fast gradient method
[35].

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 5

Consider QP problem (10) where Assumption 1 holds. Let
the Lagrange function L : Rnz ×Rmz → R, the dual function
ψ : Rmz → R, and z(λ) be defined as,

L(z, λ) = 1
2z
>Hz + q>z − λ>(Gz − b) (11)

ψ(λ) = inf
z∈Z

L(z, λ) (12)

z(λ) = arg min
z∈Z

L(z, λ), (13)

where λ ∈ IRmz is the dual variable.
Due to Assumption 1, we have that strong duality holds [36,

Proposition 5.3.3], i.e. J∗ = ψ(λ∗) and z∗ = z(λ∗) with,

λ∗ = arg max
λ

ψ(λ). (14)

Definition 1. Given a QP problem (10) with Hessian
H ∈ Dnz+ and equality constraint matrix G ∈ IRmz×nz , we
denote WH as,

WH = GH−1G> ∈ IRmz×mz . (15)

Additionally, given a matrix WH , we denote by “WH -system”
a system of equations of the form WHy = c.

Given Assumption 1 and [37, Lemma 3.1], we have that
ψ(·) is a strongly smooth function, i.e. it is continuously
differentiable with a Lipschitz gradient. Moreover, it can be
shown that the smoothness parameter is matrix WH given by
Definition 1, i.e. ψ(·) satisfies

ψ(λ+∆λ) ≥ ψ(λ)−∆λ>(Gz(λ)−b)− 1

2
∆λ>WH∆λ. (16)

Therefore, given λk, a value of λk+1 = λk + ∆λk such
that ψ(λk+1) ≥ ψ(λk) can be obtained by taking ∆λk as the
solution of,

∆λk = arg max
∆λ
−∆λ>(Gz(λk)− b)− 1

2
∆λ>WH∆λ, (17)

whose solution can be obtained by solving the system of
equations,

WH∆λk = −(Gz(λk)− b). (18)

The optimum ψ(λ∗) is attained when ψ(λk+1) = ψ(λk) =
ψ(λ∗), which occurs when ∆λk = 0, or alternatively when
Gz(λk) − b = 0. Since this condition is impractical, the
suboptimal solution λk that satisfies,

‖Gz(λk)− b‖ ≤ ε, (19)

is taken instead, where ε > 0 is an accuracy parameter and
here ‖ · ‖ can be any norm.

Remark 2. Note that if Assumption 1 holds, the elements of
z(λ), denoted as z(λ)i for i = 1 . . . nz , can be calculated by
solving the following optimization problems, since there is no
coupling between variables z(λ)i,

z(λ)i = arg min
ẑ∈R

1

2
Hi,iẑ

2 +

qi − mz∑
j=1

Gj,iλj

 ẑ (20)

s.t. zi ≤ ẑ ≤ zi, (20a)

which has the explicit solution,

z(λ)i = max

min


−

(
qi −

mz∑
j=1

Gj,iλj

)
Hi,i

, zi

 , zi

 . (21)

Algorithm 2 shows FISTA algorithm. The convergence rate
of this algorithm has been well established [38], [39].

Algorithm 2: FISTA
Require: λ0

1 k = 0, η0 = λ0, t0 = 1
2 repeat
3 k = k + 1
4 Obtain z(λk−1) using (21)
5 Obtain ∆λk−1 by solving WH -system (18)
6 ηk = λk−1 + ∆λk−1

7 tk = 1
2

(
1 +

√
1 + 4t2k−1

)
8 λk = ηk +

tk−1 − 1

tk
(ηk − ηk−1)

9 Compute residual Γ = Gz(λk)− b
10 until ‖Γ‖ ≤ ε

Output: z∗ = z(λk)

B. Alternating Direction Method of Multipliers
We present an implementation of the Alternating Direction

Method of Multipliers (ADMM) algorithm based on Algo-
rithm 1 in [33].

Let Assumption 1 hold and consider the following equiva-
lent formulation of problem (10),

min
z,v

1

2
z>Ĥz +

1

2
v>Ĥv + q>v (22)

s.t. v ∈ Z (22a)
Gz = b (22b)
v − z = 0, (22c)

where Ĥ = H/2.
The Lagrangian function L : Rnz × Rnz × Rnz → R is

L(z, v, λ) =
1

2
z>Ĥz +

1

2
v>Ĥv + 〈q, v〉+ 〈λ, z − v〉. (23)

For some given vk−1 ∈ Z and λk−1, the step of ADMM
applied to (22) is given by,

zk = arg min
z

1

2
z>Ĥz + 〈λk−1, z〉+

β

2
‖z − vk−1‖2 (24a)

s.t. Gz = b

vk = arg min
v

1

2
v>Ĥv + q>v + 〈λk−1,−v〉+

β

2
‖zk − v‖2

s.t. v ∈ Z (24b)
λk = λk−1 + β(zk − vk), (24c)

where β > 0 is the penalty parameter.
Step (24a) can be expressed as,

zk = arg min
z

1

2
z>Ĥβz + q>z,kz (25)

s.t. Gz = b, (25a)

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 6

where Ĥβ = Ĥ + βInz and qz,k = λk−1 − βvk−1.
From [40, Subsection 10.1.1] we have the following propo-

sition, which states the optimality conditions of (25).

Proposition 1. Consider problem (25) for which Assumption 1
holds. Then, zk is optimal if and only if there is a µk ∈ IRmz

such that,

Gzk = b (26)

Ĥβzk + qz,k +G>µk = 0, (27)

which using simple algebra leads to,

WĤβ
µk = −(GĤ−1

β qz,k + b) (28)

zk = −Ĥ−1
β (G>µk + qz,k). (29)

Step (24b) can be expressed as,

vk = arg min
v

1

2
v>Ĥβv + q>v,kv (30)

s.t. v ∈ Z, (30a)

where qv,k = q − λk−1 − βzk.
Note that Remark 2 can also be applied to the elements of

vk, denoted as (vk)i for i = 1 . . . nz , leading to,

(vk)i = max

{
min

{
−(qv,k)i

(Ĥβ)i,i
, zi

}
, zi

}
. (31)

Algorithm 3 shows the ADMM algorithm, which makes use
of (28), (29) and (31). The convergence rate of this algorithm
has been well established, see [33] and [41] - which also
discusses the selection of parameter β.

Algorithm 3: ADMM
Require: v0 ∈ Z , λ0, β > 0

1 k = 0
2 repeat
3 k = k + 1
4 Obtain µk by solving WĤβ

-system (28)
5 zk = −Ĥ−1

β (G>µk + qz,k)

6 Obtain vk using (31)
7 λk = λk−1 + β(zk − vk)
8 Compute residual Γ = zk − vk
9 until ||Γ|| ≤ ε

Output: z∗ = zk

Remark 3. This section describes an implementation of
ADMM algorithm derived from Alg. 1 in [33]. There are
other possible implementations with comparable implementa-
tion complexity, such as Alg. 7 in [33].

Remark 4. Note that both of the above algorithms show
similar complexity with regards to their implementation in an
embedded platform. Step 4 from FISTA algorithm is equivalent
to step 6 from ADMM algorithm. Furthermore, notice the
resemblance between step 5 of FISTA algorithm and step 4 of
ADMM algorithm. Both steps require solving a W -system of
equations with the same matrix G and different matrix H . The
main complication in the implementation of these algorithms

in an embedded system is finding an efficient way to solve
these W -system of equations with a low memory footprint.
This problem is addressed in the next section.

Remark 5. We remark that the convergence rate of these
methods are at most linear. However, for the purposes of the
MPC optimization problems, we find that the control action
returned by the algorithms converges very quickly to a value
very close to the optimal one – which is enough for a practical
setting. This is especially true for MPC formulation (9). As
such, very small exit tolerances are not typically needed,
and the number of iterations of the proposed algorithms
are therefore reasonable. The use of one formulation over
another and the selection of an appropriate exit tolerance will
depend upon the particular system to be controlled. The linear
convergence of FISTA algorithm could be guaranteed by the
inclusion of a restart scheme [42], [43].

IV. EMBEDDED IMPLEMENTATION OF THE OPTIMIZATION
PROBLEMS

This section describes how optimization problems (6), (8)
and (9) are solved using Algorithms 2 or 3 in the PLC.

In order to achieve this, three conditions must be met:
(i) the optimization problem must be strictly feasible, (ii) it
must be expressed as an equivalent QP problem (10) in which
Assumption 1 holds and (iii) a memory efficient way must be
found for solving the W -system of the resulting QP.

A. Implementation of the MPC’s optimization problem

The MPC’s optimization problems (8) and (9) can be ex-
pressed as an equivalent QP problem (10) where Assumption
1 holds if Q ∈ Dn+, R ∈ Dm+ and T ∈ Dn+.

The simplest way to solve a generic W -system would be to
compute W−1 ∈ IR(N+1)n×(N+1)n offline and store it in the
PLC. However, this would result in high memory consumption
for average sized problems due to the quadratic memory
growth with respect to N and n.

We propose using the Cholesky decomposition of W , de-
noted Wc,

W = W>c Wc, (32)

in order to efficiently find the solution of the W -system.
To illustrate this we show the structure of the WH matrix

that results from the QP problem of formulation (8) that
is used in FISTA algorithm (Alg. 2), the structure of the
Cholesky decomposition of WH and how to compute ∆λk.
The following discussion would be very similar if we where
considering MPC formulation (9) instead.

WH =


Q−1 Q−1A> 0 0
AQ−1 δ −Q−1A> 0
.. −AQ−1 δ
..
0 δ −Q−1A>

0 0−AQ−1 δ −Q−1

 , (33)

δ = AQ−1A> +BR−1B> +Q−1. (34)

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 7

The Cholesky decomposition of WH , denoted WH,c,
presents the upper-triangular block-diagonal structure,

WH,c =


β0 α1 0 0
.. β1 α2 0
..
0 βN−1 αN

0 0 βN

 , (35)

where we define the sets of matrices A = {α1, . . . , αN},
αi ∈ IRn×n; and B = {β0, . . . , βN}, βi ∈ IRn×n.

Vector ∆λ can then be computed by solving two consecu-
tive systems of equations,

W>H,c∆λ̂k = −(Gz(λk)− b) (36a)

WH,c∆λk = ∆λ̂k, (36b)

which are easy to solve due to WH,c being an upper-triangular
sparse matrix. Moreover, only matrices αi and βi need to be
stored, eliminating the quadratic memory growth with respect
to N .

Previous works have exploited the band structure of the
MPC’s optimization problem, such as in [26], where LDL>

and Cholesky factorizations are used in order to reduce the
computational complexity of the algorithm.

Remark 6. The same approach can be applied to solve the
WĤβ

-system that arises in the ADMM algorithm when calcu-
lating µk, since WĤβ

is equivalent to (33) (34) substituting
Q for Q̂β = Q/2 + βIn and R for R̂β = R/2 + βIm.

B. Implementation of the SSTO’s optimization problem

Optimization problem (6) cannot be transformed into an
equivalent QP problem (10) in which Assumption 1 holds due
to the decision variable xr not being penalized in the cost
function.

For this reason, we propose solving optimization problem
(6) by using Algorithm 4 instead, which iteratively solves,

(x∗r,j , u
∗
r,j , h

∗
j) = arg min

xr,ur,h
‖h‖2Th + ‖xr − xcj−1‖2Qr (37)

+ ‖ur − ucj−1‖2Rr
s.t. xr = Axr +Bur (37a)

h = rf (k)− Cxr(k)− ŵ(k) (37b)
x ≤ xr ≤ x (37c)
u ≤ ur ≤ u, (37d)

where xcj−1 ∈ IRn and ucj−1 ∈ IRm are the regularizing points
for xr and ur, respectively, at iterate j.

Problem (37) can be expressed as a QP (10) that satisfies
Assumption 1 by taking Qr ∈ Dn+, Rr ∈ Dm+ and Th ∈ Dp+.

Algorithm 4 provides a suboptimal solution of the original
optimization problem (6), where the suboptimality is charac-
terized by the value of the accuracy parameter εr > 0.

If the conditions of Remark 1 hold, term ||ur||2Tu can be
included by taking Rr = Tu and eliminating Step 7, so that
uc,j = 0 ∀j.

Remark 7. Instead of using Algorithm 4 in order to obtain
the solution of (6), the cost function of (6) could have been

Algorithm 4: SSTO
Require: r(k), ŵ(k), xc0, uc0

1 Compute rf (k) from (5)
2 j = 0
3 repeat
4 j = j + 1
5 Obtain x∗r,j and u∗r,j by solving (37)
6 xcj = x∗r,j
7 ucj = u∗r,j
8 until ||xcj − xcj−1|| ≤ εr

Output: xr(k) = x∗r,j , ur(k) = u∗r,j

chosen as ||xr||2Qr + ||ur||2Rr + ||h||2Th , with diagonal positive
definite cost function matrices. Using this cost function, the
problem can be transformed into an equivalent QP problem
(10) in which Assumption 1 holds. However, the solution of this
problem would not minimize the distance ‖rf (k)− yr(k)‖ due
to the penalization of xr.

Due to the size and structure of optimization problem (37),
the use of the Chollesky decomposition of W provides no
memory benefits. Therefore, the inverse of W is used to
solve the W-system in one step. Additionally, the SSTO has
a warmstart procedure in which the unconstrained version is
solved, which is an easier problem. The SSTO in only called
if the result of the unconstrained problem violates constraints.

V. CONTROLLER IMPLEMENTATION IN THE PLC

Previous sections have described the individual ingredients
of the MPC based controller. This section addresses the
implementation of the overall controller in the PLC. The
following discussion considers the use of FISTA algorithm
(Alg. 2) and MPC formulation (8). The results would be very
similar for any other combination of gradient method (GM)
and MPC formulation.

A. Controller generation and implementation

In order to provide an efficient and low memory footprint
program, an automatic code generating tool, that particularizes
the code for the given system, has been developed in Matlab.
The tool generates code in the programming languages defined
in the IEC 61131-3 standard. Specifically, the controller is
programmed as an FBD block that contains the controller’s
algorithm written in Structured Text.

The tool receives the model matrices, the system bounds
and the controller’s parameters, such as the cost function
matrices or the accuracy parameters, and generates the code
of the controller and the variable declaration, both of which
are packaged into a file that can be directly imported into the
PLC’s IDE software. Currently, controllers can be generated
for Schneider Electric PLCs, which use software Unity Pro
XL, and for the PLC programming software CODESYS.

Figure 3 shows the FBD block of the controller that appears
once imported, where U is the control action, Y is the
measured system output, R is the reference, Um is the manual
control action, Manual is the operation mode boolean, NewST

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 8

is a boolean that signals the arrival of a new sample time and
Clock is the elapsed time since the start of the sample time.

Fig. 3: Controller FBD block in Unity Pro XL.

B. Controller algorithm

This section describes the controller’s general algorithm,
which is shown in Algorithm 5.

The control objective of the controller is to steer the system
output Ym ∈ IRp to the desired reference R ∈ IRp. Both
of these signals, as well as signal Um, are expressed in
engineering units.

The controller can work in one of two operating modes:
manual mode, where the control action applied to the system is
provided by signal Um; and automatic mode, where the control
action is obtained by solving the MPC optimization problem.
The controller’s input boolean signal Manual determines the
mode of operation. Henceforth, we assume the controller to
be in automatic mode unless specified otherwise.

We assume that the controller may be implemented along-
side other tasks which may also be time sensitive (e.g. monitor-
ing or security tasks). For this reason, the number of successive
iterations of the Gradient Method (GM) used to solve the
MPC’s QP problem are limited to a given number NGM within
each call to the controller FBD block. If NGM iterations are
performed and the GM algorithm has not converged, then the
algorithm is paused and the controller FBD block exits, freeing
the PLC’s processor for the next task. The GM algorithm will
continue from where it stopped the next time the controller
block is called within the current sample time. This process
will continue until either the GM algorithm converges, or a
maximum allowed time Tmax to converge is exceeded – at
which point an auxiliary control law is applied. As such,
the controller may be called on multiple occasions within a
single sample time before returning the value of u(k), and will
then be called multiple other times before a new sample time
arrives.

In order for this setup to work it is assumed that the PLC’s
main task is working cyclically (See Figure 1b) and that the
other tasks have low execution times compared to the sample
time. The estimator and predictor are run once the current
sample time’s control action u(k) has been computed, whether
it be the one obtained from solving the MPC’s QP problem,
the auxiliary controller or the manual control action Um.

The auxiliary control law takes the following steps:
1) Take the current candidate solution provided by the GM

algorithm, i.e. either z(λk) for FISTA algorithm, or zk
for the ADMM algorithm.

2) Compute the cost of the candidate solution.

Algorithm 5: Controller
Require: Ym, R, Um, Manual, NewST , Clock

1 Compute ym and r from Ym and R
2 if Manual = True then // Manual mode
3 U = Um
4 if NewST then
5 Update u record
6 Run Estimator
7 Run Open loop predictor(1)

8 end if
9 else // Automatic mode

10 if NewST then
11 GM converged = False
12 Reset GM variables
13 Run SSTO
14 end if
15 if Not GM converged then
16 Perform NGM iterations of the GM algorithm
17 Compute GM residual Γ(2)

18 if ||Γ|| < ε then
19 U = N−1

u u(k) + U0

20 GM converged = True
21 else if Clock > Tmax then
22 U = Auxiliary control law
23 GM converged = True
24 end if
25 else
26 if Estimator not done this Sample Time then
27 Update u record
28 Run Estimator
29 Run Open loop predictor(1)

30 end if
31 end if
32 end if

Output: U
(1) The open loop predictor is only included if d > 0.
(2) Γ is either step 9 of FISTA algorithm or step 8 of ADMM algorithm.

3) If this cost is lower than the cost of the solution of the
previous sample time, apply the control action provided
by the candidate solution.

4) Otherwise, apply the control action provided by an LQR
control law.

We remark that this auxiliary control law is the one currently
implemented, but there are other possible control laws which
could be applied. The application of the current candidate
solution if it is feasible and provides a lower cost than the
one of the previous sample time provides stability of the closed
loop system [44].

Algorithm 5 is the general outline of the controller’s al-
gorithm, where some minor details have been omitted due
to space considerations. Boolean flag variables are used to
determine if different elements of the controller have been
executed in the current sample time, e.g. GM converged
indicates whether the GM algorithm has been completed in
the current sample time or not. A record of the last d control
actions is needed in systems with delay d ≥ 0 in order to

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 9

compute xp(k) (Section II-D). We note that the open loop
predictor’s code and variables are only generated if d > 0. If
d = 0, x̂(k) is used instead of xp(k) as the initial condition
(8d) or (9d) of the MPC.

Remark 8. The implementation of the GM algorithm for
solving the SSTO’s QP problem does not use a maximum
number of iterations per execution of the FBD block because
it is assumed that it is a much simpler problem to solve than
the MPC’s QP problem.

C. Memory requirements

This section describes the memory requirements for a
controller that uses FISTA algorithm (Alg. 2) and MPC formu-
lation (8). The following results would be very similar for any
other combination of gradient method and MPC formulation.

Table I shows the variables that are stored in memory. As
can be observed, only the basic data is stored, i.e. the complete
matrices of the QP problems are not stored, but rather, only
the inner matrices that form them. All diagonal matrices are
stored as vectors.

TABLE I: Stored variables for FISTA algorithm

Category Variables

Inputs Ym, R, Um, Manual, NewST, Clock
Outputs U

System A, B, C, U0, Y 0
m, Nu, N−1

u , Nm, x, x, u, u
MPC Q, Q−1, R, R−1, ε, NGM, A(1), B̂, zMPC, λMPC, ηMPC,

η+MPC, ΓMPC, ||Γ||, tMPC, t+MPC, Tmax

SSTO Qr , Q−1
r , Rr , R−1

r , Th, T−1
h , εr , ηr , rf , xr , ur , xc, uc,

zSSTO, λSSTO, ηSSTO, η+SSTO, ΓSSTO, tSSTO, t+SSTO, W−1
SSTO

Estimator x̂, x̂+, ŵ, ŵ+, Auxw , Lx, Ld

Predictor(2)Hu
(3), xp, x+p

Others Various Boolean variables and counters
(1) Recall that A and B store the αi and βi matrices (See (35)).
(2) xp and x+p are only included if d > 0.
(3) Vector Hu contains u(k) . . . u(k − d).

We note that, in order to avoid performing divisions, we
store the inverse of Nu, Q, R, Qr, Rr and Th, as well as
B̂ = {β̂0, . . . , β̂N}, where (β̂i)j,k = (βi)j,k if j 6= k, and
(β̂i)j,k = 1/(βi)j,k if j = k.

The code of the algorithms of two different MPC imple-
mentations only differ in some sporadic numbers that appear
throughout the code, due to all the operations being made us-
ing conditional loops. As such, the amount of memory required
to store the code of the algorithm should be approximately
equal regardless of the problem dimensions. The exception is
between having a value of d = 0 or d > 0, since the open
loop predictor and certain variables are not declared if d = 0.

The memory required to store the problem data is given by,

Mem = θ
[
(2N + 3)n2 + (5N + 19 +m+ 4p)n+

(N + 14)m+ 2p2 + 15p+ 11
]

+ 6τ + 6ψ+

δd>0

[
θ ((d+ 1)m+ 2n) + ψ

]
,

where θ, τ and ψ are the memory required to store a real
number, integer and boolean, respectively; and δd>0 = 1 if
d > 0 and 0 otherwise. Note that the memory grows linearly
with N , m and d, and quadratically with n and p.

VI. CASE STUDY

A. Double reactor and separator system

The plant under consideration is a 12 state, 4 input and
4 output double reactor and separator system inspired from
[45] and depicted in Figure 4. Reactant A is converted into
reactant B by a first-order reaction. Similarly, reactant B is
converted into reactant C by a first-order reaction. Reactions
occur in reactors 1 and 2, which are fed by flows Ff1 and
Ff2, respectively. The reactants are distilled in the separator
and the distillate is redirected to reactor 1 through flow FR.
Heat can be added to the reactors and separator (Q1, Q2, Q3).

The non-linear model of the plant is,

dH1

dt
=

1

ρA1
(Ff1 + FR − F1)

dxA1

dt
=

1

ρA1H1
(Ff1(xA0 − xA1) + FR(xAR − xA1))− kA1xA1

dxB1

dt
=

1

ρA1H1
(Ff1(xB0 − xB1) + FR(xBR − xB1))

− kB1xB1 + kA1xA1

dT1

dt
=

1

ρA1H1
(Ff1(T0 − T1) + FR(TR − T1)) +

Q1

ρA1H1Cp

− 1

Cp
(kA1xA1∆HA + kB1xB1∆HB)

dH2

dt
=

1

ρA2
(Ff2 + F1 − F2)

dxA2

dt
=

1

ρA2H2
(Ff2(xA0 − xA2) + F1(xA1 − xA2))− kA2xA2

dxB2

dt
=

1

ρA2H2
(Ff2(xB0 − xB2) + F1(xB1 − xB2))

− kB2xB2 + kA2xA2

dT2

dt
=

1

ρA2H2
(Ff2(T0 − T2) + F1(T1 − T2)) +

Q2

ρA2H2Cp

− 1

Cp
(kA2xA2∆HA + kB2xB2∆HB)

dH3

dt
=

1

ρA3
(F2 − FD − FR − F3)

dxA3

dt
=

1

ρA3H3
(F2(xA2 − xA3)− (FD + FR)(xAR − xA3))

dxB3

dt
=

1

ρA3H3
(F2(xB2 − xB3)− (FD + FR)(xBR − xB3))

dT3

dt
=

1

ρA3H3
F2(T2 − T3) +

Q3

ρA3H3Cp

where, denoting Euler’s number by e and for i ∈ {1, 2, 3}, we
have that,

Fi = kviHi kAi = kAe
− EA
RTi kBi = kBe

− EB
RTi

FD = αDFR xAR =
αAxA3

x3
xBR =

αBxB3

x3

x3 = αAxA3 + αBxB3 + αCxC3 xC3 = 1− xA3 − xB3

The states X , inputs U and outputs Ym of the system are,

X = (H1, xA1, xB1, T1, H2, xA2, xB2, T2, H3, xA3, xB3, T3)

U = (Q1, Q2, Ff2, FR) Ym = (T1, T2, T3, xB3).

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 10

Fig. 4: Double reactor and separator system.

B. Hardware in the loop framework Setup

The PLC used is a Modicon M340 with processor mod-
ule BMXP3420302, from Schneider Electric. The PLC is
equipped with an input module AMI0410, which offers 4
analog input channels, and two output modules AMO0210,
each of which offer 2 analog output channels. The processor
module has 256Kb of internal memory for data and 3840Kb
for user defined programs, constants, system and symbols. This
PLC has an overhead of around 6 to 9ms at each cycle.

The non-linear system is simulated in real time using
software QUARC [46] in Simulink. A discrete linear time-
invariant state space model (1) of the system is obtained for the
steady state and parameters defined in Table II and a sample
time of 3s. The resulting linear model has no delay, i.e. d = 0.
Additionally, the system is subject to the constraints shown in
Table III.

Using the code generation tool, an MPC controller is
generated using the linear model and the parameters described
in Table IV. Both the MPC and the SSTO are solved using
FISTA algorithm (Alg. 2).

The connection between the PC and the PLC is done using
National Instrument acquisition card USB-6211. The input and
output voltage signals are converted to and from engineering
units by linear interpolation using FBD blocks.

A project that only contains the generated MPC controller,
an internal timer that generates signals NewST and Clock, and
the voltage conversion FBD blocks, is loaded into the PLC.
This project, which contains an 80 decision variable MPC and
a 20 decision variable SSTO, consumes 274.08Kb of out of the
3840Kb (7.14%) dedicated to programs and 36.47Kb out of
the 256Kb (14.25%) dedicated to data, both of which include
the memory consumed by the PLC by default (which can be
seen in Figure 8).

C. Results

This section shows the results of two tests. In both tests the
system is started at the operating point with the controller
engaged in manual mode. The controller is then switched
to automatic mode and the reference is changed after a few
sample times.

TABLE II: Parameters and Operating Point

Parameter Value Units Parameter Value Units

H0
1 0.7 m A1 1 m2

x0A1 0.4155 wt(%) A2 1 m2

x0B1 0.5480 wt(%) A3 1 m2

T 0
1 329 K ρ 1100 kg/m3

H0
2 0.9 m Cp 4 kJ/kg K

x0A2 0.2581 wt(%) kv1 50 kg/m s
x0B2 0.6755 wt(%) kv2 50 kg/m s
T 0
2 333 K kv3 30 kg/m s
H0

3 1.3332 m T0 313 K
x0A3 0.2282 wt(%) kA 10−5 1/s
x0B3 0.7 wt(%) kB 5 · 10−6 1/s
T 0
3 333 K EA/R -2840 K
Q0

1 0 kJ/s EB /R -2077 K
Q0

2 0 kJ/s ∆HA -100 kJ/kg
F 0
f2 10 kg/s ∆HB -39 kJ/kg

F 0
R 5 kg/s αA 3.5 -
Ff1 30 kg/s αB 1.1 -
Q3 0 kJ/s αC 0.5 -
xA0 1 wt(%) αD 0.001 -
xB0 0 wt(%)

TABLE III: Constraints

Input U U Output Y c Y c

Q1 1000 -1000 T1 373 0
Q2 1000 -1000 T2 373 0
Ff2 30 0 T3 373 0
FR 20 0 xB3 1 0.4

We show the evolution of the systems inputs and outputs, as
well as the number of iterations of FISTA algorithm and the
total computation time of the controller at each sample time.

Test A. No active constraints. The reference for xB3 was
changed from x0

B3 to 0.75. The reference for the temperatures
remained unchanged. Figure 5 shows the results for this test.
As can be seen, no constraints are active during this test. As
such, the number of FISTA iterations of the SSTO algorithm
is 0, due to its warmstarting procedure, and the number of
iterations requires by the MPC is very low. The maximum
iteration time of this test if 47ms.

Test B. Active constraints. The reference for xB3 was
changed from x0

B3 to 0.6. The reference for the temperatures
remained unchanged. Figure 6 shows the results for this test.
In this case, the reference is not admissible. Therefore, the
SSTO is engaged, providing an admissible reference. Since
Th has a higher penalty on the diagonal term corresponding to
xB3 (see Table IV), the SSTO returns an admissible reference
which steers the system close to the reference for xB3 at the
expense of the reference for the temperatures. Even though this
test requires more iterations than Test A due to the presence of
active constraints, the computational time is still reasonable.
The maximum iteration time of this test is 129ms.

The results show that each iteration of FISTA algorithm
takes ∼20ms for the MPC, whose QP problem has 80 decision
variables, and ∼3.3ms for the SSTO, whose QP problem

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 11

0 2 4 6 8 10

Time (min)

0.7

0.72

0.74

0.76

C
o

n
c
e

n
tr

a
ti
o

n
 w

t(
%

)

 x
B3

 Ref

(a) System output: xB3.

0 2 4 6 8 10

Time (min)

328

330

332

334

T
e

m
p

e
ra

tu
re

 (
K

)

 T
1

 T
2

 T
3

 Ref

(b) System output: Temperatures Ti.

0 2 4 6 8 10

Time (min)

-300

-200

-100

0

H
e

a
t

(k
J
/s

)

 Q
1

 Q
2

(c) System input: Heats Qi

0 2 4 6 8 10

Time (min)

0

2

4

6

8

10

F
lo

w
 (

k
g

/s
)

 F
f2

 F
R

(d) System input: Flows Fi (e) Iterations of FISTA algorithm (f) Computation time

Fig. 5: Results of Test A.

0 2 4 6 8 10 12 14

Time (min)

0.6

0.62

0.64

0.66

0.68

0.7

C
o

n
c
e

n
tr

a
ti
o

n
 w

t(
%

)

 x
B3

 Ref

(a) System output: xB3.

0 2 4 6 8 10 12 14

Time (min)

328

330

332

334

T
e

m
p

e
ra

tu
re

 (
K

)

 T
1

 T
2

 T
1

 Ref

(b) System output: Temperatures Ti.

0 2 4 6 8 10 12 14

Time (min)

0

200

400

600

800

H
e

a
t

(k
J
/s

)

 Q
1

 Q
2

(c) System input: Heats Qi

0 2 4 6 8 10 12 14

Time (min)

0

10

20

30

F
lo

w
 (

k
g

/s
)

 F
f2

 F
R

(d) System input: Flows Fi (e) Iterations of FISTA algorithm (f) Computation time

Fig. 6: Results of Test B.

TABLE IV: Parameters of MPC controller

Parameter Value Parameter Value

Q 20I12 Qr 0.1I12
R 10I4 Rr 0.1I4
T 40I12 Th diag(50, 50, 50, 500)

N 5 ηr 0.912

ε 0.001 εr 0.001

NGDM 5 Nu diag(0.001, 0.001, 0.1, 0.1)

Tmax 0.3 Ny diag(0.033, 0.033, 0.033, 10)

Um U0

diag indicates a diagonal matrix

has 20 decision variables. The auxiliary control law was not
applied in any of the two tests due to the algorithm converging
before the allowed Tmax = 300ms at every sample time.

VII. MEMORY STUDY

This section presents the results of memory tests performed
for the proposed controller using FISTA algorithm (Alg. 2)
and for the MPC formulation (8). The results are very similar
for any other combination of gradient method and MPC
formulation.

Controllers are generated for random systems with different
values of the prediction horizon N , the system delay d, and the
dimensions of the state n, control input m and system output p.
The controller is programmed on the PLC described in Section
VI-B. Memory measurements are obtained using the built in
tool of Unity Pro XL depicted in Figure 8, which is showing
the memory consumption of an empty project, i.e. with no
user-declared variables nor user-declared tasks. The fields
whose value changes when an MPC controller is implemented
are Declared Data, Executable code, Upload information and
System. The memory consumption results shown here are

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 12

5 10 15 20

N

1

2

3

4

5

6
M

e
m

o
ry

 (
K

b
)

(a) Declared data with respect to N .

2 4 6 8 10 12

n

0

2

4

6

8

10

M
e
m

o
ry

 (
K

b
)

(b) Declared data with respect to n.

2 4 6 8 10 12

m

1

1.5

2

2.5

3

M
e
m

o
ry

 (
K

b
)

(c) Declared data with respect to m.

2 4 6 8 10 12

p

1

2

3

4

5

M
e

m
o

ry
 (

K
b

)

(d) Declared data with respect to p.

0 10 20 30 40 50

d

1

1.5

2

2.5

3

M
e
m

o
ry

 (
K

b
)

(e) Declared data with respect to d.

2 4 6 8 10 12

n

76

76.5

77

77.5

78

M
e
m

o
ry

 (
K

b
)

(f) Executable code with respect to n.

Fig. 7: MPC memory requirements in Modicom M340 PLC. Results shown are increments with respect to an empty project.

calculated as the difference between the memory consumption
of an empty project (See Figure 8) and a project that only
contains the MPC controller.

Figures 7a to 7e show the increment of Declared Data in
kilobytes (1 Kb = 1024 bytes) of MPC controllers with in-
creasing values of each one of the aforementioned parameters.
In each figure, the remaining parameters are set to N = 5,
n = 4, m = 2, p = 2 and d = 0. Note that the memory grows
linearly with N , m and d, and quadratically with n and p.

Fields Executable code, Upload information and System
show a slight increasing trend. However, there is no clear
relation between the value of these fields and the value of
the parameters, as illustrated in Figure 7f, which shows the
increment of the value of field Executable code for the MPC
controllers whose Declared Data is shown in figure 7b. In spite
of this, the sum of the three fields is monotone increasing in
all the tests that have been conducted. The Executable code
field increases by about 7.75Kb if d > 0 with respect to d = 0,
due to the inclusion of the open loop predictor.

VIII. CONCLUSIONS

This paper presents an implementation of an MPC based
controller in PLCs using an automatic code generation tool,
showing that it it possible to implement predictive controllers
in low-end PLCs alongside other tasks. The implementation is
performed using a code generation tool that allows the MPC’s
optimization problem to be solved online using a low memory
footprint gradient method, allowing for the possibility of
controlling medium sized systems, as shown by the hardware-
in-the-loop results.

Fig. 8: Memory consumption of an empty project.

One of the main results of the proposed controller is its
linear memory growth with respect to the prediction hori-
zon, which is achieved by exploiting the structure of the
proposed MPC formulation’s QP problem by means of a
banded Cholesky factorization of the main memory intensive
ingredient of the optimization method.

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Accepted version of the article published in IEEE Transactions on Control Systems Technology. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCST.2020.2992959 13

REFERENCES

[1] E. F. Camacho and C. B. Alba, Model Predictive Control. Springer
Science & Business Media, 2013.

[2] E. R. Alphonsus and M. O. Abdullah, “A review on the applications
of programmable logic controllers (PLCs),” Renewable and Sustainable
Energy Reviews, vol. 60, pp. 1185–1205, 2016.

[3] G. Pannocchia, N. Laachi, and J. B. Rawlings, “A candidate to replace
PID control: SISO-constrained LQ control,” AIChE Journal, vol. 51,
no. 4, pp. 1178–1189, 2005.

[4] T. A. Johansen, “Toward dependable embedded model predictive con-
trol,” IEEE Systems Journal, vol. 11, no. 2, pp. 1208–1219, 2014.

[5] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MPC solutions,”
Automatica, vol. 39, no. 3, pp. 489–497, 2003.

[6] G. Valencia-Palomo and J. Rossiter, “Novel programmable logic con-
troller implementation of a predictive controller based on Laguerre func-
tions and multiparametric solutions,” IET control theory & applications,
vol. 6, no. 8, pp. 1003–1014, 2012.

[7] J. Velagić and B. Šabić, “Design, implementation and experimental
validation of explicit MPC in programmable logic controller,” in 2014
IEEE 23rd International Symposium on Industrial Electronics (ISIE).
IEEE, 2014, pp. 93–98.

[8] F. Ullmann, “FiOrdOs: A Matlab toolbox for C-code generation for first
order methods,” MS thesis, 2011.

[9] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp.
1–27, 2012.

[10] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient interior point methods for multistage problems arising
in receding horizon control,” in 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC). IEEE, 2012, pp. 668–674.

[11] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[12] B. Huyck, L. Callebaut, F. Logist, H. J. Ferreau, M. Diehl, J. De Bra-
banter, J. Van Impe, and B. De Moor, “Implementation and experimental
validation of classic MPC on programmable logic controllers,” in 2012
20th Mediterranean Conference on Control & Automation (MED).
IEEE, 2012, pp. 679–684.

[13] B. Binder, D. K. M. Kufoalor, and T. A. Johansen, “Scalability of
QP solvers for embedded model predictive control applied to a subsea
petroleum production system,” in 2015 IEEE Conference on Control
Applications (CCA). IEEE, 2015, pp. 1173–1178.

[14] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control using an FPGA with
application to aircraft control,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 3, pp. 1006–1017, 2014.

[15] D. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, M. Morari, and
G. O. Eikrem, “Embedded model predictive control on a PLC using a
primal-dual first-order method for a subsea separation process,” in 22nd
Mediterranean Conference on Control and Automation. IEEE, 2014,
pp. 368–373.

[16] D. Kouzoupis, A. Zanelli, H. Peyrl, and H. J. Ferreau, “Towards proper
assessment of QP algorithms for embedded model predictive control,”
in 2015 European Control Conference (ECC). IEEE, 2015, pp. 2609–
2616.

[17] I. Necoara and D. Clipici, “Efficient parallel coordinate descent al-
gorithm for convex optimization problems with separable constraints:
Application to distributed MPC,” Journal of Process Control, vol. 23,
no. 3, pp. 243–253, 2013.

[18] M. Pereira, D. Limon, D. Muñoz de la Peña, and T. Alamo, “MPC
implementation in a PLC based on Nesterov’s fast gradient method,”
in 2015 23rd Mediterranean Conference on Control and Automation
(MED). IEEE, 2015, pp. 371–376.

[19] R. M. Levenson, Z. E. Nelson, and A. A. Adegbege, “Programmable
logic controller for embedded implementation of input-constrained sys-
tems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 412–14 417, 2017.

[20] S. Lucia, D. Navarro, Ó. Lucı́a, P. Zometa, and R. Findeisen, “Optimized
FPGA implementation of model predictive control for embedded sys-
tems using high-level synthesis tool,” IEEE transactions on industrial
informatics, vol. 14, no. 1, pp. 137–145, 2018.

[21] P. Zometa, M. Kögel, and R. Findeisen, “µAO-MPC: a free code
generation tool for embedded real-time linear model predictive control,”
in American Control Conference (ACC), 2013. IEEE, 2013, pp. 5320–
5325.

[22] J. R. Sabo and A. A. Adegbege, “A primal-dual architecture for
embedded implementation of linear model predictive control,” in 2018
IEEE Conference on Decision and Control (CDC). IEEE, 2018, pp.
1827–1832.

[23] H. A. Shukla, B. Khusainov, E. C. Kerrigan, and C. N. Jones, “Software
and hardware code generation for predictive control using splitting
methods,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 386–14 391, 2017.

[24] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive
control at megahertz rates,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3238–3251, 2014.

[25] J. Currie, A. Prince-Pike, and D. I. Wilson, “Auto-code generation for
fast embedded model predictive controllers,” in Mechatronics and Ma-
chine Vision in Practice (M2VIP), 2012 19th International Conference.
IEEE, 2012, pp. 116–122.

[26] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on control systems technology, vol. 18,
no. 2, p. 267, 2010.

[27] P. Krupa, D. Limon, and T. Alamo, “Implementation of model predic-
tive controllers in programmable logic controllers using IEC 61131-3
standard,” in European Control Conference (ECC). IEEE, 2018, pp.
288–293.

[28] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free model
predictive control,” Automatica, vol. 45, no. 10, pp. 2214 – 2222, 2009.

[29] T. L. Santos, D. Limon, J. E. Normey-Rico, and G. V. Raffo, “Dead-time
compensation of constrained linear systems with bounded disturbances:
output feedback case,” IET Control Theory & Applications, vol. 7, no. 1,
pp. 52–59, 2013.

[30] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design, 2nd ed. Nob Hill Publishing, 2017.

[31] D. Limon, T. Alamo, F. Salas, and E. F. Camacho, “On the stability
of constrained MPC without terminal constraint,” IEEE transactions on
automatic control, vol. 51, no. 5, pp. 832–836, 2006.

[32] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[33] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternat-
ing direction optimization methods,” SIAM Journal on Imaging Sciences,
vol. 7, no. 3, pp. 1588–1623, 2014.

[34] M. Garstka, M. Cannon, and P. Goulart, “COSMO: A conic operator
splitting method for large convex problems,” in 2019 18th European
Control Conference (ECC). IEEE, 2019, pp. 1951–1956.

[35] Y. Nesterov, Introductory Lectures on Convex Optimization: A basic
course. Springer Science & Business Media, 2013, vol. 87.

[36] D. P. Bertsekas, Convex Optimization Theory. Athena Scientific
Belmont, 2009.

[37] A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for
convex minimization and applications,” Operations Research Letters,
vol. 42, no. 1, pp. 1–6, 2014.

[38] I. Necoara, “Computational complexity certification for dual gradient
method: Application to embedded MPC,” Systems & Control Letters,
vol. 81, pp. 49–56, 2015.

[39] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time MPC with input constraints based on the fast
gradient method,” IEEE Transactions on Automatic Control, vol. 57,
no. 6, pp. 1391–1403, 2011.

[40] S. Boyd, Convex Optimization, 7th ed. Cambridge University Press,
2009.

[41] P. Giselsson and S. Boyd, “Linear convergence and metric selection
for Douglas-Rachford splitting and ADMM,” IEEE Transactions on
Automatic Control, vol. 62, no. 2, pp. 532–544, 2017.

[42] T. Alamo, P. Krupa, and D. Limon, “Restart FISTA with global linear
convergence,” in Proceedings of the European Control Conference
(ECC). IEEE, 2019, pp. 1969–1974.

[43] ——, “Gradient based restart FISTA,” in Conference on Decision and
Control (CDC). IEEE, 2019, pp. 3936–3941.

[44] P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model
predictive control (feasibility implies stability),” IEEE Transactions on
Automatic Control, vol. 44, no. 3, pp. 648–654, 1999.

[45] P. D. Christofides, J. Liu, and D. Muñoz de la Peña, Networked and
distributed predictive control: Methods and nonlinear process network
applications. Springer Science & Business Media, 2011.

[46] “QUARC,” https://www.quanser.com/products/quarc-real-time-control-
software/, accessed: 2020-05-03.

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

