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Abstract

In this paper, we study two stochastic problems for time-fractional Rayleigh-
Stokes equation including the initial value problem and the terminal value problem.
Here, two problems are perturbed by Wiener process, the fractional derivative are
taken in the sense of Riemann-Liouville, the source function and the time-spatial
noise are nonlinear and satisfy the globally Lipschitz conditions. We attempt to
give some existence results and regularity properties for the mild solution of each
problem.

1 Introduction

Stochastic partial differential equations (SPDEs) play an important role in the mod-
eling of many phenomena in various fields, such as fluid mechanics, physics, astrophysics,
hydrodynamics, biology, etc. [8 201 22l 35l B6]. In addition, fractional differential
equations (FDEs) have received much attention recently with successful applications
in various sciences such as engineering, physics, biology, etc. [12, 2], 23]. For some
impressive works in recent time on stochastic fractional differential equations (SFDEs),
the readers can refer to [9] (13| 141 [19] 251 [3T], 32] 331 [34].

Let X ¢ RY,N > 1, be a bounded domain (with sufficiently smooth boundary
0X for N > 2). In this paper, we study two following problems for an SFDE named
Rayleigh-Stokes equation (RSE).

e The initial value problem: Consider the following time-fractional Rayleigh-Stokes
stochastic equation

0 0“ .
(Ot —A— %W‘A> u=F(t,u)+o(t,u)W(t), on JxX, (1)

where J = (0,T'), » is a positive constant and 0 < o < 1, A is the Laplacian operator.
This equation is subjected to the Dirichlet boundary condition

u(t,z) =0, (t,z) e JxIX, (2)
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and the initial value condition
u(0,2) = ¥(2), @€ X. (3)
Here, 0“/0t“ stands for the Riemann-Liouville fractional derivative

aa(t)-—-a/t ($)olt — 5,2)d (5):
5t =5 ; pi—a(s)v s, x)ds, pa(s) ==

|
V)]

b

)

(8>0), (4)

whereupon I' is the Gamma function, see [21]. {W(t,.)},.7 represents a standard Wiener

process (see Subsection, the generalized derivative W(t) = %W(t) describes a white
noise, the nonlinear term F' and the time-spatial-noise o will be specified later. The
problem of finding u satisfying ,, is called an initial value problem.

e The terminal value problem: Let the initial condition be replaced by the final

value condition
u(T,x) = p(a), @ €X. (5)

Then, the problem of finding u satisfying ,, is called a final value problem.

The Rayleigh-Stokes problem arises in modeling the behavior of some non-Newtonian
fluids. The Riemann-Liouville derivative in this model has been found to be flexible in
describing viscoelastic behaviors of the flow [I} [7, 24]. Let us propose some details on
the history of two problems we are interested in and some related studies. We begin
with the deterministic model of the initial value problem (when the term o (¢, u)W(t)
disappears). For the homogeneous problem, the Sobolev regularities for both smooth
and nonsmooth initial data was established in [I]. For the linear case, Shen [24] used
fractional Laplace transform to contribute the exact solution. In [30], the exact solutions
was constructed by using the eigenfunction expansion on a rectangular domain. The
readers can refer to some other studies on the exact solutions for the Rayleigh-Stokes
problem in [I0],[27]. In [29], Zaky extended and developed Legendre-tau algorithms for
solving one-dimensional and two-dimensional fractional Rayleigh—Stokes problem for a
heated generalized second grade fluid. Some other works [4, [5, [6l [15] used different nu-
merical methods to study the Rayleigh-Stokes problem with a heated generalized second
grade fluid. In contract to the initial value problem, the study of the terminal value
problem is still limited. We can list here some papers concerned with the deterministic
model of this kind of problem [17, 18] [26].

To the best of our knowledge, both the initial value problem and terminal value
problem for the stochastic Rayleigh-Stokes equation driven by Wiener process have not
been investigated in the literature. This motivated us to study the existence, unique-
ness and regularity of each of two stochastic problems. It is the fact that the analysis
technique used in the deterministic case cannot be applied in the stochastic case. The
problems of finding suitable spaces for the solutions in the stochastic case is our chal-
lenges since the solutions are more complex and it is required to cleverly improve the
estimates for the solution operators.

The main contributions of this paper are as follows. In Section [2| we provide some
preliminary results including some solution spaces, fractional calculus and stochastic
analysis techniques. The existence, uniqueness result and some regularity properties
of the mild solution to the initial value problem 7, is investigated in Section
In Section [4 we continue to study the existence, uniqueness, regularity of the mild
solution to the terminal value problem ,,.
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2 Preliminaries

2.1 Hilbert scale spaces

For convenience, we denote by L := L*>(0,T), LY := LP(0,T), p > 1. By L :=
L"(x) (r > 1), HS = H&(X) (¢ > 0), we denote the Lebesgue and the Sobolev-
Slobodeckij spaces respectively, and H&x the closure of C°(X) in H!. Suppose that
the operator A = —A is defined on the domain D(A) = H&x N H2. Since X is a
bounded domain with sufficiently smooth boundary and A is self-adjoint on L2, it
is well-known there exists a sequence of eigenfunctions ¢; € D(A) and a sequence
of corresponding eigenvalues \; such that A¢;(x) = A\j¢;(x) on X. Additionally, the
sequence {A;}j—12 . is positive, non-decreasing, and tends to infinity as j — oo, {¢;};>1
forms an orthonormal basis of L2.

Next, we introduce the Hilbert scale spaces which will be defined by basing on
{¢;}j>1. For a non-negative number &, we define by HS the space of all functions
v € L2 such that

1

ol := (DN lwsep)?) * < o,

Jj=1

where (.,.) is the usual inner product of L2. If £ = 0, one can see HO = Lg Let H¢
be the dual space of H¢. The fractional operator (see [3]) A¢ : H/? — H¢/2 can be
defined as

Aby = ZAE(U,eﬂej, ve HS?,
Jj=1

2.2 Stochastic processes on the Hilbert scale spaces

Let (Q, F,P, {]:t}te?) be a filtered complete probability space, which satisfies that the
filtration {F;},.7 is a right continuous increasing family and that Fo contains all P-
null sets of F. Throughout this paper, for each £ > 0, notation {W(t,.)},.5 de-

scribes a Hg—valued Wiener process which is defined on (Q, F,P, {ft}tej) with a finite
trace covariance operator Q¢ on Hg Let us denote {5](-5)}2021 the spectrum of O, i.e.
Q5¢§.§) = B§£)¢§.§), then the finite trace of Q¢ is Tr(Q¢) = Z;’il B](-g) < 00. According to
the above setting, {We(t,.)},.7 can be expanded in the form

whereupon {195.5) (t)}72, is a sequence of mutually independent one-dimension standard
Wiener processes.

Let us recall the definition of the expectation. For a random variable y : Q —

HS and a real number ¢ > 2, we note that EHXH(;# = / Hx(w)H‘}{SdP(w). Notation
x Q x

LZH% = LI( Hg) denotes the space of all Hg—valued random variables endowed with
the norm HU||‘23JH§ = E”UH?{ﬁ < oo, for all v € LLHS. Let us define by L2(HS, H)
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1, s g 1
the space of all linear bounded operators ¥ from Qg Hg% to H§ such that \I»'QE2 is a
Hillbert-Schmidt operator from HS to Hﬁ' where its norm is given by

o0

. el L=
vt i) = | 2o

j=1

2
1 . gt
.5/

x

In the case £ = £, we will write L%(Hg) in stead of L%(Hi, H;E'), and just L2 if £ = 0.

The following lemma is useful to estimate the stochastic integrals, and is a straight-
forward consequence of the Burkholder-Davis-Gundy inequality proved in Da Prato and
Zabczyk [2, Lemma 7.2, page 182].

Lemma 2.1 (Burkholder-Davis-Gundy-type inequality). Given q > 2, t1,ts € J, and

. !

let {®(t)};, <<, be a L%(Hg, HE )-valued predictable stochastic process satisfying

to 9 q/2
([ 100625 5)

t1

to 9 q/2
([ 1oy )|

t1

) (q—2)/2.

E

< 0.

Then, it holds that

. 12
where the constant C(q) is equal to (%) (q%

q

E /2 B(s)dWe (s, .

t1

< C(gE

H

2.3 Solution spaces and assumptions on nonlinearities

Let £ >0 and ¢ > 2. By LfoLgHg = L*>(0,T; Lq(Q,HE)), we denote the space of all
Fi-adapted measurable processes w from J to LY HS such that

Wl oo pa e = esssup [w(t)]] 4 ze < 0.
t witz teJ LHz
For p > 0, we introduce the following space

L%LgHﬁ = {w e L°LIHS - HwHL?O pagge = supe P w(t, )| a e < c>o}7
P w x tej* w x
where J, = J \ {0}.
We define by C,LYHS .= C (J; LZHg) the space of all continuous Fi-adapted mea-
surable processes w from J to Lff,Hg such that

lwll g, pa s = sup [w(®)] g ¢ < 00
(S

Similarly, the notation Cty*ngﬂ‘g .= CO(J,; LLHYE), presents the set of all continuous
Fi-adapted measurable processes w from J, to L&Hﬁ. By Ct?*LLIJHg =Y (j*; L‘LHS),
we introduce the following Holder continuous space of exponent 6

Hw(r, ) - ’LU(t, )HLZHg < OO} '

SUB

[wll o pape =
i Lot rted.

txHw

ClLIHS = {w € Cr LIHS : |
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By Z&LgHg = 29(7*;L3,H§), we denote the space of all processes w in the space

C’t,*Lng'Iﬁ such that lim tR ||jw(t, )||‘£q ¢ exists finitely and
t—0t wilz

1
0 0 q
wll 5, g s = sup ¢ (e, g s = (5P 2 ()7, e )" < oo
ted. ted.
Next, let us introduce the following definitions for the nonlinearity and the time-
spatial noise.

Definition 2.1 (Globally Lipschitz nonlinearity). Let ¢ > 2 and £ > 0. The nonlinearity
F is said to be globally Lipschitz and written by F' € LglO(Lgﬂg) i F: IxXxLOHS —
LgHi and there exists a positive function Ky := K;(t) on J such that

q

E HF(t./ Swl(t, ) — Bt wht, -))] ; < Ki(t) E HwT(t, ) — wht, .)]

"’

for all w', wt in LYHS and t € .

Definition 2.2 (Globally Lipschitz time-spatial-noise). Let ¢ > 2 and £ > 0. The time-
spatial-noise o is said to be globally Lipschitz and written by o € Egl,)(Lgﬂﬁ; L%(H;i))
if o+ J x LLHS — Lé(Hi) and there exists a positive function Ky := Ks(t) on J
satisfying

E HU(t, wh) — a(t,'wi)’ !

<ot -,

x

L3(H3)

for all wT, wt in L&Hﬁ and t € J.

3 Existence, regularity of the solution of the initial value
problem

3.1 Mild solution for initial value problem

In this subsection, we give the definition of mild solution to Problem -. To do
this, let us first consider the following deterministic problem

(2 —A—%%A)UZF(LU), (t,x) e J x X,

u?;,x) =0, (t,z) € J x 0X, (6)
u(0,z) = ¢¥(x), T € X,

We now express u(t, .) in the form u(t,z) = > 77, u; (t)qﬁgg) (x), where we denote u;(t) :=

j=1
(u(t,.), ¢§'€)>H§‘ Due to the arguments in [I], the coefficients u;(t) have the following
expression
t
u;(t) = Ra,j(t); —i—/o Ra,j(t — s)Fj(s,.,u(s,.))ds, (7)
)
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whereupon

ij(t):/o e_St/CaJ(s)ds

xA;s%sinam
Ko j(s) = / : (8)

T (=5 4 2)\js® cos am + Aj)? 4 7 (3Aj5% sin amr)?

For fixed s, Fj(s,.,u(s,.)) denotes by the j-th coefficient of x — F(s,z,u(s,z)) in HS.
For the sake of convenience, for t € J, we define

=306 ) s Ra (D65, (9)
j=1
Then, we have the following representation for the solution to Problem @

u(t, z) = G (1)(2) + /0 Gu(t — $)F (5,2, uls, ))ds. (10)

Motivated by , we state the definitions of mild solution to the initial value
problem — as follows:
Definition 3.1. An F-adapted process {u(t,.)},.7 in Ct?*LEJH:E with some 6 € (0,1),
q>2,&>0,is called a mild solution of Problem if there holds that
t
u(t,z) = Go(t)(x) + / Ga(t — s)F(s,x,u(s,x))ds
0

_|_/0 Ga(t — s)o(s,u(s,x))dWe(s, z). (11)

for almost all w for fixed ¢.

3.2 Properties of solution operators

We begin with the following lemma which shows basic bounds for the functions R ;,
Jj= 1
Lemma 3.1. Given a € (0,1), § € [0,2], € >0 and j € Z*. Then

a) Kaj(s) < cml)\j_ls*a, for all s > 0. Furthermore, there exists so > 0 such that
Kaj(s) < Cag X5, for all 5 > s, (12)

where Cq 1, a1 are two positive constants.

b) Raj(0) =1 and 0 < R ;(t) < %, for t € J., where ca 2 is a positive

constant.

¢) The classical derivative of Ra,;(t) finitely exists for t € J. and is bounded as
follows

qa

dt

where cq 3 is a positive constant.

Raj(t) < cas(A; !+ N1 Greota) e ] (13)
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Proof. a) Consider K, ;(s) as defined in (§)). Then,

(=5 4 KAjs® cosam + A;)? + (kAjs sin ar)?
=352+ /{2)\32-820‘ (Cos2 o + sin? om) + )\jz —2)\js — 2,‘{)\j5a+1 cos am + 2/{)\350‘ cos am
= s>+ )\]2 + /\?nsa(msa — 2cosam) 4+ 2)js(ks® cosam — 1),
which show that there exists sy > 0 such that
(—s 4 KAjs® cosam + Aj)? + (kAjs® sinam)® > 82 + )\?, for all s > sg.

We now estimate s? + /\JZ by applying the Young inequality. For § € (0,2), we set
p = p(d) = %, q == q(0) = % Since %—{—% = 1, the Young inequality yields
sP

2\
» + ?f > s\j. It follows that there exists a positive constant Cy such that

$2+ A7 > Cos’ N0, for 6 € (0,2). (14)

On the other hand, it is clear that holds for § = 0 or § = 2. Hence, there exists a
positive constant C,,1 such that

nA;s%sin anr
Kai(s) < ZH2 22 "2 <0 X719, for all s > sg, 6 €[0,2]. 15
047]( )— 7T(82+)\?) = La,l 7 = 20 [ ] ( )

2

In addition, since (—s 4 kAjs® cosam + A;)? + (KAjs® sinam)® > (kA5 sin am)?, there

exists cq,1 > 0 such that

#\;s%sinam

Kaj(s) < — < oAy s, forall s > 0. (16)

(seXjs¥sinam)? —

b) The proof of part b) can be found in [16].
c) For t,r € J, such that r > ¢, we will estimate |Rq;(r) — Ra,;(t)]. We have

S0 00
|Ra,j(r) — Ra,;(t)] < /0 le™" — e_St\ICaJ(s)dS +/ le™®" — e_St|lCa,j(s)ds

S0

=11 + I». (17)
Noting that [e™*" —e™*!| = [e %! (1 — e75("=t)) | < se~**(r —t). For T, one can see from
that
S0 S0
7 < / se” 5 (r — t)Ka,j(s)ds < con(r — t))\j_l/ e Ststmds. (18)
0 0
For Z,, it follows from that
o0 o0

Ty < Can se St (r — t))\?flsa_éds < Con(r— t))\?l/ ettt e0ds. §e0,2].

S0 S0

Noting that there always exists Co2 > 0 such that e < Ca,g(st)*(”a*‘”e), for all
€ > 0, then

(oo}
Ty < Co1Cop(r — t))\g_I/ t~(@Fta—dte) g—l—egg
50

o
< Ca1Ca(r — t)A) 1~ FHa09) / s~ ¢ds. (19)

S0
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From —, we deduce that there exists co,3 > 0 such that
Raj(r) = Rai(t)] < caa(r —1) (A;l + A?*lt—@m—“ﬁ)) .

This implies that the classical derivative of R, ;(t) finitely exists for ¢t € J, and is
bounded as

4
dt

Ra,.](t) < Cas ()\]—1 + )\?_lt_(2+a_5+€)), te J*

This completes the proof. O

The following lemma gives the appropriate estimates for the solution operators.
From now on, if an operator G : LLHE — LLHE, for £, & > 0, satisfies

IG0ll g e < Cllvllpajge s v € LLHT, (20)
we will write [|G|| za jer, pa e for short.

Lemma 3.2. Givent € J, £ >0 and q > 2. Then, there holds
19l g g < Coz

Proof. Let v € LLHS and vj = (v,¢;) . By applying Lemma and the fact that
1+ )\jtlf‘l > 1, it is obvious that Rq j(t) < cq,2, for t € J. It follows that

- 2 2§, 2 q/2 1/q
19000l 55 = |B( L R2,0N2 )| < coalolg s
j=1
This completes the proof. O

Lemma 3.3. Consider £ > 0 and q > 2. Let €1, €2 be two positive constants satisfying
a+e€ <1 and e <min{a+e€1,1 — (a+e€1)}. There exists cqa,cas > 0 such that, for
t,r € Jy satisfying 0 < r —1t < 1, it holds

Hga(r) - ga(t)“LZ,H§+1—>LH,H§ < Ca,4(r - t)l—(oz-‘,—sl), (21)

1Ga(r) = Ga@ll g s pg s < caslr —pytlrares. (22)

Proof. Let v € LLHS and Poj(t) == %Ra,j(t). Applying Part ¢ of Lemma implies
that

0 q/271/q
160 (710 = Go0l 5 = [E( X 1R~ Rl 503) |
j=1

0 r 2 q/211/q
< [E(Z / Pa,j(s)ds A?%f) ]
j=1 171
< Ca3 [E(Z / ()\;1 + )\‘?_157(2+a75+6)) ds
t

j=1

2 q/211/q
26 2

where ¢ € [0,2] and € > 0.
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e Firstly, we prove that holds. By choosing § = 2 and € = €1, one arrives at

[Ga(r)v = Galt HL‘IH‘E
2

© pl=(ater) _ fl1—(ate1) 9 a/291/q
< Ca,3 |:E< )\-_1(7’ —t) + A )\51)2> :|

j; J J 1-— (Oé + 61) 7

2

o 1—(ater) _ gl—(ater) q/271/q
< Cos|E A2 — 1) + - A2(E+D,2 .
_0’3[ (g lr=aE 1—(a+e) i Y

It follows that there exists c, 4 > 0 such that

1) a/2711/q
Hga( U—g‘)‘ HLqHE <Ca4(T—t —(o+e1) |: (Z/\ (6+1) 2> :|

< Caa(r = OO o] o e
e Next, we prove that holds. By choosing § =1, € = €1, one also have

Hga( ga HLqu

- oo r 2 q/271/q
< ca3 E<Z / ()\;1 + s_(1+a+61)) ds )\551}32) }
L j=1 t
2
- o0 t—(a+51) _ ,,,,—(OH—El) Q/2 l/q
-1 26 2
< caa B S -0+ S )
L j=1
r 00 oater a+ter 2 a/211/q
1 T — t 2§ 2
S Ca,3 -E(Z A1 (T - t) + (O[ 4 el)to‘+ﬁlra+€1 )\] UJ) :| :

=1
Since r®te > (r — t)*TC17€2¢2 one can see

rater _ pate (r —t)ote " t)@tf(a+61+62)_

tateipater T taterter (7“ — t)a+e1—62 - (
By two latter estimates, we deduce that there exists ¢, 5 > 0 such that

Hga( — Galt HLq HS < Ca 5(7" - t)62t7(a+€1+€2) HUHLE,H§ ’

The proof is completed. ]

3.3 The existence and uniqueness of mild solution to Problem ,,

In this part, we state the main results for Problem ,,. The first theorem
states the existence and uniqueness of the solution to Problem - in the space
L LLH;. §. The second theorem investigates the regularity of the solution on the space

Cg L Hg, for any positive constant v satisfying v < min{1 — a, ;

Theorem 3.1. Let £ > 0 and g > 2. Assume that) € L?UH;E, Fe LglO(LZ,HE),F(-, 5 0) =
0, and 0 € ﬁglo(Lgﬂg;Lg(Hg)),a(-,O) = 0. Assume further that K1, Ko € L{°. Then,
there exists p > 0 such that Problem — has a unique solution u € L%Lgﬂg.
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Proof. Let p be a positive constant and @ : L,?}‘;LgHg — Lf;’)LgJHQE be defined as follows

Ddw(t,z) = Go(t)Y(2) +/0 Go(t — 8)F (s, z,w(s,x))ds
+/0 Ga(t = s)o(s,w(s,x))dWe(s, ).

The proof is divided into two steps. In the first step, we show that ® is well-defined on
L;;%Lf,ﬂﬂg . In the second step, we apply Banach fixed point theorem to show that there

exists p > 0 such that Problem — has a unique solution u € L%LZH% .

Step 1. Firstly, it is required to show that ® is well-defined on LtooLff,H § . The first term
Go(t)(z) can be estimated by using Lemma as ||Ga(t)
t € J. This leads to

e ||ga(t)w”LgH§ < Ca,Qe_pt ||¢||L3)H§ < Cay2 W”LgHg )

which implies that [|Ga (t)¥[| ;o ;a ¢ < Ca2 9]l 1q ¢ For the second term, by applying
t,pwitx wilty
Lemma@7 F(-,-,0)=0,and F € Lglo(LZ{,H}g), one can see

t
/ Golt — 8)F(s,-,w(s,-))
0

/ [Galt = $)F (s, (s, )l e ds
LqH§
< (o4 E F ’7
c,2/0(||< w(s, L) ds
t . 1
<coalills [ (Bluts )" ds (29

where we have used E || F(s, -, w(s, ))H?qg < HKlHqL?o E ||w(s, )||‘;{§ It follows that

t t
/ Golt = $)F (s, w(s, )ds|| < can | K / e [lw(s, )| o s ds.
0 0 wie

L9 HS

Using the fact that fg e Pt=5)ds = p~1(1 — e ") = p~ !, we deduce that

< caa 1Kl o7 0l -

/0 Ga(t — 8)F(s,-,w(s,-))ds

Ly, L, HE

We continue to estimate the last term by considering two following cases.
o If ¢ = 2, the It6 isometry yields

H /ot Ga(t —s)a(s, w(s,))dWe(s, )

L&Hﬁl
= ([ 160t~ ot Dl e )
g(/o 1Ga(t = % e E (s, w5, Dl e ) (24)

10
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Lemma ¥(-,0) =0, and ¢ € £glo(LgH§; L%(Hg)) allow that

—pt

/g (t = s)or(s, w(s, ))dWe (s, )

LLHS

1
t q
< coae [ KHOE wls. )l ds)

t q
< coallRalle ([ e s, ] s

1
t q
< cap 1Kol ge 0l 1o s ( / e—w—sus)

1

1 1
< Ca2 ”KQHLfo ”wHL;"pLE,Iié q 1p 1. (25)

D% ey < K (s, )4

o If ¢ > 2, the consequence of Burkholder-Davis-Gundy’s inequality yields

where we have used the fact that E ||o(s, w(s,

H /ot Ga(t = s)o(s, w(s,))dWe(s, )

LY HS
1

< C(q) (/ 1Ga(t — s)o (s, w(s, )HLaHs)dS)g]q

< C(g) (/ Gt = )5 s o (s, s, >>‘L2H5>ds)]

(/ (s, ws, DI e ds)g] ;. (26)

From the Hoélder inequality we deduce

<CQQC

/gat—s (5,05, NaWe(s, )|
L1 HS

carCl) ([ tds)(q_wq) ( [ Elots.wts. i, Hg)ds)l/q

42 t 1/q
cadClOT (Kol ([ Eluto,es) 1)

IN

IN

where we recall that o(-,0) =0, 0 € EQZO(LZHQE; L%(Hﬁ)) Hence, we derive the estimate

e Pt

/g (t = $)o (s, w(s, -))AWe s, )

LLHS

IN

42 t 1/q
cadClO)TS Kol [ e (o, ) )

q=2 _1 _
CaCOT Kol 0] e g s a 7077

IA
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By the above arguments, one can see

H(I)w”L?OPLZ)Hf« < Ca2 WHngg

1

_ 9=2 _1
+ (canT 1K e 7+ azC@T 5 [Kallye g 5970 0l 1 s

which implies that ® is well-defined on Ltof;)LgJHg.
Step 2. Next, we will apply Banach’s fixed point theorem to show that ® has a unique
fixed point. For w € L?;Lgﬂg , we define

o w(t,z) = /0 Go(t — s)F(s,z,w(s,x))ds,
Dow(t, ) := /0 Ga(t = s)o(s,w(s,x))dWe(s, ).

For w', wt € L%L&Hg, by a similar way as in , it is obvious that

e | @ruf(t, ) — @rwi(r, )

L HE
t
—pt _ Cwl(s. ) — wi(s. -
<o /0 [Gatt = 5) (Pl () = Flsmwt (D) |, o s
t 1
< Ca,2/ e Plims)eps (EHU’T(S, ) = wi(s’ )H;j{s) " ds
0
< Ca2 ||K1||Lg° HwT - w:EHLgprgHﬁpil' (29)

We continue with the second operator @, in the two following cases.

o If ¢ = 2, similarly to —, one arrives at

e | @aul(t, ) — 2wt )

_1 _1
pape < caz 1Kellge [[wf = ] oo o pea™ o7 (30)

o If ¢ > 2, by a similar way as in —, one arrives at

a=2 1 I 1 1
< CapC@TT Ko e [0l = o s

—pt T ) — LT
e H@gw (t,-) — Paw*(t, )’ LgprgHﬁq

LLHE
(31)

Combining , , , we deduce that
H(I)wT(tv ) = duwi(t, ')HLgprng

< @t e, )~ @it )

+ |[@2ul(t, ) — Pawt(t, )

L Ld HE L L HE

_ g=2 211
< (CanT Kl o p7 + ca2C@T ™ Kol e a 197 7) |0l = w| o py e (32)
By choosing p = p with p is large enough such that
a2 _1__1
ca2T | Kill e 7' + ca2C(@)T5 |[Kall g 5575 < 1,

the estimate shows that ® is a contraction on Lg%L&HE. Hence, we conclude that
Problem — has a unique solution u € L;%LZ,H% O
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Remark 3.1. In Theorem[3.1], the function o is defined by Definition[2.3 Here, we can
find a constant C, such that C, — 0 as p — 0o, and e ?!||dwl(t, ) — owt(t, M pa e
is bounded by C,|jw' — wIHLfopLgHﬁ (see @)— ). Therewith, the global existence has
been obtained consequently. However, we note that the above result does not hold true if

o is locally Lipschitz continuous. For example, let us consider q = 2 for simplicity and
assume that o satisfies the following locally Lipschitz continuity

lor(t,wh) = ot wh) o ey < (10l g s + 0¥l o ) o =l g e (33)

Let Up be the closed ball of center at zero and radius R in ng;LﬁﬁHé For wt, w taken
in this ball, the following chain can be obtained by making uses of Lemma[3.9 and the
condition
t

; Ga(t —s)o(s,w(s,-))dWe(s, )

e Pt

L2 HS

1/2

t 2
s@ﬁw(éow%»m%gww@»mﬁgnwﬁa—waumﬁw)

t 9 1/2
< cpoe </ 4R2ePs (e*pusT(s, ) — wh(s, M2 Hﬁ) ds) :
0 W

By taking the essential supremum of e~ P*||wi(s, ) — wh(s ¢ on (0,7), we imply

) ) HLEJHI
from the above chain that

/gat—s (5, w0(s, -))dWe (s, )

L2 HS
1/2

t
< 2Rca72 (/ 64p52ptds> HwT — wi”Lf‘;L&Hg'
0 ’

A direct computation shows that e=2 fot etPsds equals (e2Pt—e=2P1) /(4p), and so it tends
to positive infinity as p approaches positive infinity. Therefore, we cannot derive the
contraction of the mapping ® analogously Proof of Theorem|5.1].

It is well-known that, constructing global existence of problems that including locally
Lipschitz continuous nonlinearity and noise is not an easy task. In the future, we will
study global existence of RSE with more a general assumption than .

Now, we study the regularity of the solution in the space L?LZ,IL% . From now on,
we use a S b to describe that there exists a positive constant C such that a < Cb.

Theorem 3.2. Consider £ > 0 and q > 2. Assume that o, F, o satisfy the conditions
of Theorem |(3.1. Then, the following reqularity estimate holds

Hu”L?oLg)Hg 5 !W!ngg :

Proof. We aim to estimate [lu(t,-)||;q e firstly by using some materials which have
been proved in the proof of Theorem Recall that |G (t)9| Lo e < Ca2 19| L ¢ for

13
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t € J. From , we have

t t
[ Gult= )Gt s < caa Kl [ o) s
0 0

L9 HS
1

q
<Ca2HK1HLoqu (/ [[u(s, ||LqH§) ds.

1
3 q
- <eon ([ KIOE Juts. 17 05)
L3 HS 0
q
< coa el ([ Iutos 7y yeds) " 0

/QN—SSU(WMW()

o If ¢ = 2, estimate leads to

/gat—s (s,u(s,-))dWe(s,-)

=

o If ¢ > 2, estimate implies

L3 HS

< coaClQT' [Kall ([ Totos 1 )" (35

By the above arguments, one can see there exists My o1, Mg a2(T) > 0 such that

0 a + Maaa(T /w I, e s

By applying the Gronwall inequality (see [2§]),

lut, )2, g < Mot 117, e 50 (EMoa2(T)) < Myan 6]

[[u(t, )HLqu Mg

Lq Hf eXp (TM(LQ:Z (T)) )

which implies that Hu”LgOLZHﬁ S W”ngﬁ' O

Next, we prove a regularity result for the solution in the space C,fiLZ,Hg. For
be (0,1) and g > 1, we define

Kg’f = {f : sup /t(t —5)"P|f(s)|9ds < oo} : (36)
teJ. 70

Theorem 3.3. Consider £ > 0 and €1,€e2 > 0 such that a4+ €1 < 1 and €2 < min{a +
€1,1 — (v +€1)}. Let q be a positive constant satisfying q(a + €1 + €2) < 1. Assume
that v € L{, H£+1 F, o satisfy conditions in Theorem . Assume further that K1 €
Ki’f“ﬁq and K2 e KPS T2, Then, u € Cf”iL‘%Hé and satisfies

lutry ) =t Mg e S (=02 (16l et + Nl oga e )+ Jortor € Toe (37)

Corollary 3.1. Consider the case & = 0. If all assumptions in Theorem[3.3 are satis-
fied, then u belongs to € Cf’iLng and satisfies

Ju(r, ) — ul(t, ‘)HLZ,Lg_ S (=12 (Hﬂ’”LgH; + HuHL‘tX’LgL%) , fort,r e J..

14
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Corollary 3.2. If K1, Ky are two positive constants (independent of t), then K; €
Ktl”fﬂﬁ@ and Ky € KF2H9T2. Hence, the result holds in this case.

Proof. From the integral equation , it is obvious that

JuaCr, ) = ult, )| o g < 1(Gar) = Galt)) ¥l e + H/t Go(r — $)F (s, u(s,-))ds

L3 s
+ /’@dr—ﬁ Ga(t — 5))F(s, u(s,))ds|
LY HE
all — 8 S m W
| (5 DIVl )|
- /0 (Ga(r —s) — Galt — s))o (s, u(s, ) dWe(s, ) e
=: E1(r,t) + Ea(r,t) + E3(r,t) + Ea(r,t) + E5(r, ). (38)

By Lemma we directly obtain an upper bound for & (r,t)

E1(1,8) < [|Ga(r) = G| g s razs 0] pg et S (r = 17D oll g s . (39)
For &(r,t), we can bound it by using Lemma and the condition F' € Lglo(LgJH;f),
F(-,-,0) =0 as

(r,t) / |Ga(r — s)F (s, 7“(37'))”nggds
5[(Mmmn@)dwqw4nwwm%.

For &;3(r, t), we can bound it by using Lemma and the condition F' € Lglo(L‘ZJHS),
F(-,-,0) =0 as

Es(r,t) < /0 1(Ga(r = 8) — Galt = 5)) F(s, -, u(s, )|l o e ds

t
S = [ (=97 P s, ) g
0 w

1

S0 [ =0 R () (B Juts, ) ds.

It follows that

t
Es(r,t) S (r—1t) (sup /0 (t— 5)—(a+e1+62)K1 (5)d8> Hu||L§°LZH§

teJ .
< (= 1) [0l o g ¢ - (40)

We continue with the last two terms E4(r,t), E5(r,t) by considering them in two cases
of q.
o If ¢ = 2, we can bound &4(r,t) by using a similar way as in —

0= (2 [ 1600 = hotss s, DIty e ) < ([ REE Il g, 0 )

15
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It follows that

1
Ea(r1) S (r = )% Jull o g s - (41)

For &s(r,t), the It6 isometry and Lemma allow that

£5(r:) = (& [ 160 =) — Gult = ) oo Dl )

< (2 [ 1600 =9 Gult = ey oot DI g )

S(r—0Q<EA%p_QWHq%QHdSU( »M%m) >q

Since o(-,0) =0, 0 € CQZO(LZH;& L%(Hg)), we deduce that

1
q

; 1
55(7”, t) 5 (T B t)ez (/0 (t _ S)—Q(oc+e1+€2)K2q(S)E ||u(3, )H;{CE dS) ’

q

t
€ —q(a+tei+e
S(r—ﬂ2<pr(V%0“ ' ﬂKﬂ@“>|mM?%Hg

teJ .
S (= [l o o s - (42)
e If ¢ > 2, we can bound &4(r,t) by using a similar way as in (26)-(28)
P
2 q
exlrnt) < Cla) [ ([ 10a(r a5, s, Dl sy ) ]
P\ @2)/20 14
d E
< ( / y ( / o5, Dl 5,5
1/q
<(r—t </ KI(s)E||u(s, )Hq ds) :
This leads to
Ea(r,t) S (r =) [[ull o g - (43)

For &;(r,t), the consequence of Burkholder-Davis-Gundy’s inequality and Lemma
yield

Q=

&(r,t) < C(q)

([ 160t =) = Gt = ) ol Dl gy

Q=

]

t
B ([ 100 = 9) = Gult = 5)e_ gl s, ||L2(H§)ds)

Q=

t 2
< (r—t) []E (/0 (t — 8)—2(a+e1+62 llo(s,u(s, ))HLQ(Hg)dS) ]

16

30 Jun 2020 00:17:17 PDT
200526-Tran Version 2 - Submitted to Discrete Contin. Dyn. Syst. Ser. B



Applying the Holder inequality,

¢ (q—2)/(2q) t Ya
E5(r,t) < (r — 1) </0 d8> (/0 (t — 8)*‘](0&+61+€2)E o (s, u(s, ‘))H%?)(Hﬁ) dS)

t
<(r—t)e <sup 2@ [ - s>-q<a+ﬂ+€2>K§<s>ds> T
0 t wilx

Q=

teJ.
< (=) ull e g e - (44)

Now, combining -, we conclude that u € C’;ingHﬁ and satisfies

lur,.) = ult, M g s < 00— 02 (1] g e + 0l g gg) - For 7€ T,
where we recall that e3 < 1 — (o + €1). This completes the proof. O

Remark 3.2. Now, let us explain the reason why we need the estimate in part a) of
Lemma 3. 1) instead of the overestimate

Ka,i(s) < ca,l)\j_ls*a, for all s > 0, (45)

which was used in [16]. Recall that the estimate in part a) of Lemma helps us to
obtain the result u € C’;Q*L?uﬂg. In contrast to this, by using the overestimate , we
could not obtain u € C’g*LZ{,Hg, with some 6 > 0. We can explain the reason as follows.
Look at the terms fg(t — s)~letate) ) (s)ds in and fg(t — s)"dlotate) ) (s)ds
in ([44). If the overestimate is used instead of the estimate in part a) of Lemma
there would be a trouble because the two terms we have mentioned would be changed
by fg(t — 5)" =YK (s)ds and fg(t — 5) 712Ky (s)ds respectively. Since two latter
integrals are mot convergent, we could not obtain u € Cg*LgHg, with some 6 > 0.
Hence, it is required to improve the overestimate by a new one as in part a) of

Lemma 31

4 Existence, regularity of the solution of the terminal value
problem

4.1 Mild solution for terminal value problem

Consider the following deterministic problem

(%—A—%%A)U:F(t,u), (t,z) € J x X,
u(t,x) =0, (t,z) € J x 0X, (46)
(T,l‘) = (P(x)a TeEX,

From equation ([7]), by substituting ¢ = T, we have

T
uj(0) = R 5 (T)p; — /0 Roi(T)Ra (T — s)Fj(s, . u(s,.))ds, (47)
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where ¢; := (¢ and qb( >H§, Ra,j is given by (§). Combining and (47)), we obtain
uj(t) =R, ( Ra,i(t)e; + / Ra,j(t — 8)Fj(s,.,u(s,.))ds

— /0 R 5T Raj (R j (T = ) Fj(s, ., u(s, .))ds.
Defining the operator Gu(t) as in (9) and

Gan(t) =G (1)Ga(t), Gas(tir) = Ga1(t)Ga(r) = Go ' (T)Ga(t)Gal(r),

we have the following representation for the solution to Problem (46)
u(t,z) = Go () /Qat—s) (s,z,u(s,x))ds
/ GLo(t, T — s)F(s,x,u(s, ))ds. (48)

Motivated by , we give the definitions of mild solution to the terminal value

problem ,, as follows:

Definition 4.1. An F-adapted process {u(t,.)},.7 in Zt?*Lg,Hg with some 6 € (0, 1),
q>2,£&>0,is called a mild solution of Problem if there holds that

u(t,z) = gg;l(t)cp(x) + / Ga(t — s)F(s,z,u(s,x))ds
/ g (t, T — s)F(s,xz,u(s,z))ds
+/0 Ga(t — s)o(s,u(s,x))dWe(s,x)

T
—/0 ggg(t,T—s)a(s,u(s,x))dWAs,:v), (49)

for almost all w for fixed ¢.

4.2 Properties of solution operators
Lemma 4.1. Givent, r in J,, ¢ > 2 and € > 0. Then

%t—(l—a).

Hgg;l(t) HLZH;%%LZHPE = Ca,l

Proof. Let v € LEHS. By using Lemma and the fact that R, ;(T) > cayl)\j_l (see

[16]), we deduce that 0 < “J_J((;)) < o2 f # < EO‘ a24=(1=a) Tt follows that

q/271/q
197 1010 o s = 19 (T)Ga(t)0 o s = [( < - ) 35%) ]
1 b}

Jj=

Ca2,—(1-a) &

IN

I ms

a,l
This completes the proof. O
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Lemma 4.2. Let t,r,7 € J, such that r > t. For any real number £, there holds

<2, (50)
LOFS Lo S

o0

d
+ |t

LY HE—LLHS

Proof. Since Kq j(s) S )\;18_0‘, thanks to the fundamental theorem of calculus, one
deduces

Ry () = Rewy(8)] = /0 6™ — =K s (5)ds

00 |6—s7‘_e—st| T—tF(Q—Ot)
< ds < . 1
N/O )\jSa 5= >\j 12—« (5 )

Hence, the classical derivative of R, ;(t) finitely exists for ¢ € J", and is bounded as

follows
d

dt
Let v € LLHS. Applying the latter estimate,

o a/271/q
|Ga(r)v — Galt) HLqH§|: <Z’Ra,j(7°)—Ra,j(t)\%‘?g”az) ]

Bl )]

) q/271/q
S (r—tt® “)[ (ZA“) } S =t ]| e

Paj(t) = 7 Raj(t) S A 2-a),

J

where we have used )\j_l < )\1_1. Similarly, we have
T T 2,26 2 i
1600 ~ G205 = 2 (ZRM ) Ras) ~ Ry OF X502)
% o q/271/q
g{nz(z:nw '/ Paj(s)ds )\j uj) }
j=1

a/271/q
<= e ) | 5 =0 o

=1

From two latter estimates, we conclude that holds. O

4.3 The existence and uniqueness of mild solution to Problem ([]),(2), (5]

For ¢ > 2, we denote K, (L}) := {f (L) € Lg}. This subsection is aimed to

contribute the existence and uniqueness of mild solution to Problem ,,. To this
end, we prepare some useful estimates for the terms appearing in equation . Firstly,
the following lemma shows upper bounds for two first terms in Ztl,;“quHg.

Lemma 4.3. Given ¢ > 2 and w € Z;;“Lgﬂg with € > 0.
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a) Assume that ¢ € LLHS. Then, Gl e Zt{;aLEJHﬁ and

T Ca,2
19a1 O]l 30 g s < Mol g

b) Assume that F is continuous in time, F(-,-,0) = 0, F € Lglo(Lgﬂg) such that
t
K1 € Ko (L}), then / Go(t — 8)F(s,z,w(s,z))ds € Ztl’;aLZHg, and
0

o < cagKigzallwll 1o g e,

/0 Gu(t — $)F (5, w(s,-))ds

LLHS

_ t
where K g>9 := sup tlo‘/ s*(lfa)Kl(s)ds.
teJ. 0

d .
Proof. a) By Lemma we can see that igg;l(t)g) finitely exists in ngHg, and so
that gaj”l(t)go belongs to Ct,*L3JH§. In addition, by Lemma one can see that

1/ . 1/
07 (E[l5:0plle) " < =2 (Blelle)

which shows G2 | (t)¢ € Z;*_O‘L‘%Hg.
b) According to Lemma Lemma and noting that F' is continuous with respect to
t
the first variable, it is obvious that the quantity / Go(t — s)F(s,xz,w(s,x))ds belongs
0

to the space C’L*LZ,H% Since F € LglO(Lg,Hg) and F(-,-,0) = 0, we have the following
estimate

BIIF (s, w(s, ) |%e < KB w(s, )l

Therefore,

/0 Guo(t — 8)F(s,-,w(s,-))ds

t
= [ 19t = (s, Dl g s ds
L9 HS 0
t 1/q
< Cq, /K s) (E||w(s,)||% ds,
2 [ Es) (Elhwls )

1/q .
which associates with (E l|lw(s, )”25) < 87(1ia)||w”21—an ¢ (sincew € ZE*_O‘L?UH;%)
x t,* w x )

to obtain that

tl—a

AQﬁ—ﬁﬂ&wwdﬂs

L s

t
< a2 (Sup tl_o‘/ s_(l_a)lﬁ(s)ds) ||wHZt1_an é-
0 J* wily

ted.
t .
This implies that / Go(t — s)F(s,z,w(s,z))ds € Zt{;angHg. O
0
Next, the following lemma states an upper bound for the forth term in Zt{;aLc(f,Hg%.
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Lemma 4.4. Consider q > 2 satisfying ¢(1 — a) < 1 and w € Zt{;aLgHﬁ with € > 0.
Assume that o is continuous in time, o(-,0) = 0, o € Eglo(Lgﬂg;L%(Hg)) such that
Ky € Ko(LY).

a) If g =2, then/ Ga(t = s)o(s,w(s,-))dWe(s,z) € Zt{;aLZ,Hg, and

< CCY2K2q 2||U)H21 ard fré

/Qat—s (5, w(s,-))AWe (s, -

LLHS
b) If ¢ > 2, then/ Ga(t — s)o(s,w(s,-))dWe(s,x) € Zt{;aLgHg, and

/gat—s (5w (s, -))dAWe (s, )

~1
< Ca,2C(Q)K2,/qq:2Hw”zg;aLgHi‘

LLHS

_ t
Here, Kj4—9 := sup t(la)q/ sTU=9 K (5)ds, K g2 = =supt 2 E) / Ki(s)s~ (=24,
te. 0 ted.

Proof. Lemma [3.2] Lemma [£.2] combined with the continuity of o with respect to the
¢

first variable allow that the integral / Ga(t—s)o(s,w(s,-))dWe(s,z) € Cy.LLHS. Now,

0
let us consider the two following cases for q.
o If ¢ = 2, then the It6 isometry yields that

]EH/Otga(t—s)a(s,w(s,-))dW§(

—E/ 1Gat = o, w(s, DL, e, d
< / [Ga(t = )% e Ellosswls, DIy e ds
<t [ Blotosuls DIt e
Since o € Ly, (LEHS; L2(HS)) and o(-,0) = 0, we immediately deduce that
E lo(s,w(s, D%, e, < KI()E (s, e

Furthermore, it follows from w € 2}, “L{, HE that E |Jw(s, )||q < s~ (1=2)|qy||2
Henceforth,

z} oL, HE

q t
<y [ OIS0l e

/gat—s (5, w(s, -))dWe(s, )

HE

which consequently implies

(1 — s)o (s, w(s, ))dWe(s, )

LS

1/q

¢

< a2 (sup t(l_o‘)q/ s_(l_a)qu(s)ds> Hw||zt17an é-
0 o wily

teJ
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o If ¢ > 2, then using again the consequence of the Burkholder-Davis-Gundy inequality
and the same techniques as the previous case,

(t—s)o(s,w(s,-))dWe(s,-)

HS
< 0 |( [ 16a(t — o, us. >>HL2(H5)ds)q/2]
< ottt | [ lots.uts I, Hs)ds>qm].

Applying the Holder inequality,

q 1/(]
¢ (q—2)/(2q) ¢ 1/q
< cosClo) [ a5) ([ Elotsvwts Dl s, )
a2 t 1/q
< cosClE ([ KYGIE ool s
0 xT

where we recall that o(-,0) =0, 0 € Eglo(Lff,Hé; Lg(Hg)) Multiplying both sides of the
latter estimates with ¢!~

/gats (s, w(s, -))AWe s, )

(t—s)o(s,w(s,-))dWe(s,-)

LL IS

1/q
< ¢a,2C(q) (supt 2 / Kf(s)s™ ™ a”ds) [l g1 pa e
ted. e

This completes the proof. O

Using two previous lemmas, we now aim to establish the existence and uniqueness
of the mild solution of the terminal value problem ,,. We denote the constants

C ~ ~
I := cay2 (1 + Ol’2T°‘_1> (Kl,q22 + Kgl/qq:2> ;
Ca,l ’
C, _
I3 := cap (1 + %Ta 1) (Kl ¢>2 +C(q) 21/qq>2> :
a,
Theorem 4.1. Assume that @, F, K1 satisfy hypothese in Lemma and o, Ko

satisfy the ones in Lemma [4.4. If the condition 11— + Ialyso < 1 holds, then
Problem ,, possesses a unique solution

ue Z{ T LLH;, (52)
Furthermore, there holds that
Hu(tf)”LgHg Sta_l, te J,. (53)
22
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Corollary 4.1. Consider the case & = 0. If all assumptions in Theorem [{.1] are satis-
fied, then u belongs to € Zﬁ‘;ngL?E.

Corollary 4.2. If Ky, Ky are two positive constants (independent of t), then conditions
Ky € Ko(L}) and Ky € Ko(LY) hold. Hence, the results (52))-(53) hold in this case.

Proof. Let us first consider the case ¢ = 2 and II; < 1. To prove the existence of the
mild solution in Z&;O‘LZ,H ,%, we will use the Banach contraction principle. After proving
this mapping is well-defined, we will prove it has a unique fixed point in a ball of this
space. For the sake of convenience, we naturally divide the proof into the following
steps.

Step 1. Constructing a well-defined mapping on Z&;O‘Lgﬂg. Let us denote

Sw(t,z) = GL 1) /gat—s) (s,z,w(s,x))ds
/ g (t, T — s)F(s,z,w(s,x) ds+/gat—s) (s,w(s,-))dWe(s, x)

/ GTo(t, T — s)o(s,w(s, ) dAWe (s, ).

By applying Lemma [£.3] and Lemma [.4] we deduce that the two first and forth terms
of the right-hand-side belong to Ztl* T4 HS. Let us consider the third and last terms.
Recall that we have proved in Part b of Lemma [£.3] and to Part a of Lemma [£.4] that

@ /Qa(t—s)F(s,-,w(s,~))ds

e < CapKigz2llwl 2o g g (54)
w xT

/gat—s (5, w(s,-))AWe (s, -

1/q
14t < 60172K2,q:2”wHZtl’:aLEJHE- (55)
w x

for each ¢ € J,. This together with Part a of Lemma implies that

/Q (t,T — s)F(s,z,w(s, ds-Q /ga —$)F(s,z,w(s,x))ds  (56)

/ GT (8, — s)o(s, w(s, -))dWe(s, z) = G ( / Go (T — 8)0 (s, (s, -))AWe (s, )
(57)
which belong to the space Zt{*_O‘LL]JH § Thus, we conclude that Sw belongs to Z&;%&Hﬁ.

Step 2. Finding a ball B(0; R) C Ztl’;aLff,Hg of center 0 and radius R such that S is
a contraction mapping on. By taking supremum on t € J,, two inequalities yield that

< Cazj%Lq22H1UH2§;“LiH§'

/ ga(t - S)F(S, ) w(s, ))ds

2} L HS

~1/q
. S Ca72K2,q:2’
2} L HS

(t — $)o(s, w(s, ))dWe s, ) ol] g1-a g -
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By combining Part a and Part b of Lemma one can obtain the following estimate

H/ GTo(t, T — 5)F (s, w(s, ))ds

z} oL HE

c
< Co2 / Go(T = 5)F (s, w(s, -))ds
Cal L& HE
1
< TJTQ K17qZ2HwHZtl;°‘L3,H§'

Similarly, combining Part a of Lemma and Part a of Lemma [4.4] implies

a2(t, T = s)o (s, w(s,-))dWe(s, )

Z L HS

/ Ga(T — 5)o (5, w(s,-))dWe(s, )

| /\

Coz?
Ca,1

LLHS

1
< iTO‘ 1K2,/qq:2||w||zt1;aL$H§' (58)
(0% s

)

In the above arguments, we have used the estimates for the four last term of Sw.
Meanwhile, since ¢ is defined by Lemma the first term of Sw is estimated by
ca,gc;,ll ¢l a ze- All these estimates can be taken together to allow that

st|’5t1:aLZH§ < COtaQC;,llH(p”LgHg + Hl”wHZtl;angHg-

Since II; < 1, there always exists a positive number R which satisfies the equation
CQQC;llHSOHLq ¢ + IR = R. Therefore, for all w € B(0; R), we have ||[Sw|| ;1-a;q ¢ <
) wily t,% witr

R, i.e., Sw belongs to Zt{;aLEJHgE. Moreover, the above arguments show that

HSwT — Sw

Zl ard gE = Cle - wiHZtl;aLg}Hgv
where we recall that F' € LglO(LfﬂHg) and o € EglO(Lff,Hg; L2(HY)).

Finally, the existence and uniqueness of a mild solution u in Z;*_QLEJHS is obtained
by the Banach contraction principle. For the case ¢ > 2, II3 < 1, we note that the proof

can be similarly based on Part a where it is necessary to estimate the Ito integral
in the case ¢ > 2 (instead of ¢ = 2) by using Part b of Lemma O

5 Conclusion

In this study, we consider the initial value problem and the terminal value problem
for a stochastic time-fractional Rayleigh-Stokes equation, where the source function and
the time-spatial noise are nonlinear. By using some useful stochastic analysis techniques
and fractional calculus, we obtain the existence, uniqueness of the mild solution of
each problem. Furthermore, some regularity properties and continuity results for the
solutions are also proposed.
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