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Abstract This paper is concerned with the asymptotic behavior of solutions to nonlocal
stochastic partial differential equations with multiplicative and additive noise driven by a
standard Brownian motion, respectively. First of all, the stochastic nonlocal differential equa-
tions are transformed into their associated conjugated random differential equations, we then
construct the dynamical systems to the original problems via the properties of conjugation.
Next, in the case of multiplicative noise, we establish the existence of the random attractor
when it absorbs every bounded deterministic set. Particularly, it is shown the pullback ran-
dom attractor, which is also forward attracting, becomes a singleton when the external forcing
term vanishes at zero. Eventually, in the case of additive noise, two approaches are applied
to prove the existence of pullback random attractors with the help of energy estimations.
Actually, these two attractors turn out to be the same one.

1 Introduction

The study of nonlocal problems modeled by partial differential equations has been receiving
much attention recently, as the published literature confirm (see, for instance, [1,5,6,13,16–
18,26,27,29,30] and the references cited therein). Just to explain the interest of this type of
models, let us describe two situations in which nonlocal equations are fully justified: one is
related to population dynamics and the other to physical problems involving heat transfer. On
the one hand, a migrating population in some habitat (domain for our mathematical model),
and a problem of heat transfer in a conductor, on the other hand. Then, it is sensible to assume
that the velocity at which the motions (or the heat transfer) take place is in accordance with
the Fourier Law

v(x, t) = −a∇u(x, t),
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where u(x, t) denotes the density of population at time t in the point x ∈ O of the domain
(or the temperature of the conductor at time t in the point x ∈ O), and the constant a
depends on the type of phenomenon. However, considering that a is constant is a simplistic
approximation of the complex biology (or physics) which is behind the scene. When we
consider the migration of bacteria in a container, it is clear that the environment is of crucial
importance, and one can easily realize that it is sensible to assume that the constant a can be
of the form

a = a

(∫
O′

u(x, t) dx

)
,

where O′ ⊂ O is a subdomain. For instance, if the bacteria population tends to leave crowded
areas, it is natural to assume that a is an increasing function, or if the population is attracted
by that population growing in O′, then a may be supposed to decrease.

In the case of heat transfer, it is clear that the measurements are not made pointwise, in
general, but via some local average. Taking these comments into account, both problems
could be modeled by a reaction-diffusion problem with initial value and some appropriate
boundary conditions, of the form:⎧⎪⎨

⎪⎩
∂u
∂t − a(l(u))Δu = f (u),

u(x, t) = 0,

u(x, 0) = u0(x),

in O × R
+,

on ∂O × R
+,

in O,

(1)

where l is an appropriate linear mapping (more general than the one described above for
our examples) and f represents some kind of external force or action on the system (for
instance, related to control problems pursuing that some goals can be achieved in our real
phenomenon).

However, a very important and determining fact for every real-world happening is the effect
that some randomness or stochasticity may produce on our problem. Reality is subjected to
randomness and uncertainties, what suggests that our model can be more realistic if we
consider some kind of noise in the mathematical formulation. There are many possibilities to
introduce these noisy terms in our model, and each one yields to a different model which may
need different techniques to handle it. For instance, the noise can appear as another source
of external force acting on the system, which implies that we could analyze the following
model, ⎧⎪⎨

⎪⎩
∂u
∂t − a(l(u))Δu = f (u) + g(u)

dW (t)
dt ,

u(x, t) = 0,

u(x, 0) = u0(x),

in O × R
+,

on ∂O × R
+,

in O,

(2)

where, for simplicity, W (t) is a standard Brownian motion (other kinds of noise are also
considered in the literature).

Another possibility is that we have a deterministic equation as in (1) but the initial values
are random, since measurements of these are always subjected to random errors. A third
one is to consider that some of the parameters (or functions) in the model are affected by a
random parameter ω in a probability space (Ω,F, P). In this case, the mathematical system
becomes ⎧⎪⎨

⎪⎩
∂u
∂t − a(ω, l(u))Δu = f (ω, u),

u(x, t) = 0,

u(x, 0) = u0(x),

in O × R
+,

on ∂O × R
+,

in O.

(3)

123



Eur. Phys. J. Plus         (2021) 136:849 Page 3 of 33   849 

This kind of problem in the local framework has been analyzed by J. C. Cortés and his
collaborators (see [7,8,15]) obtaining relevant results for the moments of solutions as well
as the probability density functions (PDFs).

Nowadays, the theory of random dynamical systems has very well developed (see, e.g.,
[2–4,9,10,12,19,21,25,31,38,39] and the references cited therein). Therefore, our interest in
this paper is to exploit the well-posedness and long-time behavior of some nonlocal stochastic
problems, which includes, in particular, the motivating examples described above. Applying
the theory of random dynamical systems to equation (2) requires that the noise must have a
special structure. Recall that in a finite-dimensional situation of stochastic ordinary equations,
(2) generates a random dynamical system provided g is locally Lipschitz (and f satisfies
similar assumptions), while in the case of partial differential equations, this has not been
proved in general, but only in the cases that g(u) is linear (multiplicative noise) or constant
(additive noise). In fact, these will be the cases we consider in our analysis.

The main idea to deal with random dynamical systems is to transform the original stochas-
tic problems into random differential equations, which generate random dynamical systems,
via a conjugation. The advantages of the transformed random systems are that they can be
studied by using the tools of the deterministic theory of partial differential equations and
exploiting the ergodic properties of an auxiliary process used for the transformation, the so-
called Ornstein-Uhlenbeck process. Once the random problem has been proved to possess
well-posedness and that generates a random dynamical system, we can transfer the same
properties to the original stochastic problem.

Therefore, this paper is devoted to study the long-time behavior of the following two
stochastic nonlocal partial differential equations with multiplicative and additive noise,
respectively, ⎧⎪⎨

⎪⎩
∂u
∂t − a(l(u))Δu = f (u) + σu ◦ dW (t)

dt ,

u(x, t) = 0,

u(s) = u0,

in O × (s,∞),

on ∂O × (s,∞),

in O,

(4)

and ⎧⎪⎨
⎪⎩

∂u
∂t − a(l(u))Δu = f (u) + φ

dW (t)
dt ,

u(x, t) = 0,

u(s) = u0,

in O × (s,∞),

on ∂O × (s,∞),

in O,

(5)

where, as we mentioned, W (t) is a standard Brownian motion, and ◦ denotes the Stratonovich
sense in the stochastic term.

In this manuscript, we assume O ⊂ R
N is a bounded open set, l ∈ L(L2(O);R), a ∈

C(R;R+) and there exists a positive constant m, such that

0 < m ≤ a(k), ∀k ∈ R. (6)

In addition, we suppose a is locally Lipschitz, i.e., for every R > 0 there exits a constant LR

such that

|a(k) − a(r)| ≤ LR |k − r |, ∀k, r ∈ R, |k|, |r | ≤ R. (7)

Also, f ∈ C(R) and there exist constants η > 0 and C f > 0 such that,

| f (k)| ≤ C f (1 + |k|), ∀k ∈ R, (8)

( f (k) − f (r))(k − r) ≤ η(k − r)2, ∀k, r ∈ R. (9)

123



  849 Page 4 of 33 Eur. Phys. J. Plus         (2021) 136:849 

Moreover, we denote by |·| and (·, ·) the norm and the inner product of L2(O), ‖·‖ and ((·, ·))
the norm and the inner product of H1

0 (O), separately. Recall that for every v ∈ H1
0 (O), the

Poincaré inequality

λ1(O)|v|2 ≤ ‖v‖2

holds (see [33]), where λ1(O) is related to domain O and is the first eigenvalue of −Δ with
zero Dirichlet boundary condition. In the sequel, unless otherwise specified, we write λ1

instead of λ1(O).
The content of this paper is as follows. In Sect. 2, we recall some preliminaries needed for

our analysis. First, we recall the basic concepts from the theory of random dynamical sys-
tems: random sets, absorption, attraction, asymptotic compactness, conjugation of random
dynamical systems and random attractors. Next, we include some ergodic properties of the
Ornstein–Uhlenbeck process. In Sect. 3, we analyze the case of multiplicative noise, by per-
forming a conjugation and obtain a random dynamical system generated by the transformed
random partial differential equations. Then we prove the existence of absorbing random com-
pact sets ensuring the existence of random attractors. Also, we show it is possible to obtain
additional information about the structure of this random attractor. In fact, when it becomes
a singleton and this is exponentially stable as solution of our initial problem. Moreover, the
case in which the noise is interpreted in the Itô sense is also considered, showing that the
random attractor exists always provided the noise is large enough (i.e., without imposing any
restriction on the smallness of f ). Finally, in Sect. 4, we analyze the additive noise case. On
this occasion, we first describe a more detailed proof of the well-posedness of the solutions,
since there appears a new nonlocal term in the right-hand side of the transformed equation.
Then we use two techniques to prove the existence of random attractors, one proves that there
exists a compact random set absorbing the deterministic bounded sets of the phase space,
while the other approach is applied to obtain the existence of a random tempered set which
absorbs the tempered sets that are not only the bounded deterministic ones.

2 Preliminaries

We recall some basic concepts related to random dynamical systems and properties of
Ornstein–Uhlenbeck processes which will be used throughout this paper. Although the con-
tent of this section can be found in several published works, we prefer to include them in our
paper to make it more readable and as much self-contained as possible.

2.1 Random dynamical systems

In this section, we will introduce some basic concepts related to random dynamical systems
and the concept of random attractor, for more details, see [2,3,21,23] and references therein.

Let (X, ‖·‖X)be a Banach space with Borelσ -algebraB(X), and (Ω,F,P)be a probability
space.

Definition 1 (Ω,F,P, (θt )t∈R) is called a metric dynamical system, if θ : R × Ω → Ω

is (B(R) × F,F)-measurable, θ0 is the identity on Ω , θs+t = θs ◦ θt for all s, t ∈ R, and
θtP = P for all t ∈ R.

Definition 2 A continuous random dynamical system (RDS) on X over a metric dynamical
system (Ω,F,P, (θt )t∈R) is a mapping

ϕ : R+ × Ω × X → X, (t, ω, x) → ϕ(t, ω, x),
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which is (B(R+) × F × B(X),B(X))-measurable and satisfies, for almost all (a.a.) ω ∈ Ω ,

(i) ϕ(0, ω, ·) is the identity on X;
(ii) ϕ(t + s, ω, ·) = ϕ(t, θsω, ·) ◦ ϕ(s, ω, ·), for all t , s ∈ R

+;
(iii) ϕ(t, ω, ·) : X → X is continuous for all t ∈ R

+.

When a random dynamical system is generated by a stochastic differential equation in
the Itô sense, and driven by an m-dimensional two-sided Wiener process Wt , the probability
space can be identified with the canonical space of continuous mappings Ω = C0(R;Rm),

i.e., every event ω ∈ Ω is a continuous functions ω : R → R
m , such that ω(0) = 0. Define

the time shift by

θtω(·) = ω(t + ·) − ω(t), t ∈ R. (10)

Moreover, we can identify Wt (ω) = ω(t) for every ω ∈ Ω .
It is well-known that finite-dimensional stochastic differential equations generate random

dynamical systems (cf. [28]), but this is not true in general for infinite-dimensional equations.
However, for the particular kind of noise, as will be in our case, we can apply the following
lemma to obtain a random dynamical system [10].

Lemma 1 Let ψ be a random dynamical system. Suppose that the mapping T : Ω × X →
X possesses the following properties: for every fixed ω ∈ Ω , the mapping T (ω, ·) is a
homeomorphism on X, and for fixed x ∈ X, mappings T (·, x), T−1(·, x) are measurable.
Then the mapping

(t, ω, x) → ϕ(t, ω, x) := T−1(θtω,ψ(t, ω, T (ω, x)))

is a (conjugated) random dynamical system.

Notice that, the measurability of ϕ follows from the properties of T in Lemma 1. Later on,
we will transform our stochastic evolution equation containing a noise term into an evolution
equation without noise but random coefficients.

Before stating the definition of random attractors, we first give the definition of random
sets via the following lemma.

Definition 3 Let (Ω,F,P) be a probability space. A random set C on X is a measurable
subset of X × Ω with respect to the product σ -algebra of the Borel σ -algebra of X and F .

A random set, satisfying some measurability properties, can be regarded as a family of sets
parameterized by the random parameter ω. More precisely, a random set C can be identified
with the family of its ω-fibers C(ω), defined by

C(ω) = {x ∈ X : (x, ω) ∈ C}, ω ∈ Ω.

When a random set C ⊂ X× Ω has closed fibers, it is said to be a closed random set, if and
only if for every x ∈ X, the mapping

ω ∈ Ω → d(x,C(ω)) ∈ [0,+∞)

is measurable. Similarly, when the fibers of C are compact, C is said to be a compact random
set. For more details, see [14,22].

Definition 4 A random bounded set B(ω) ⊂ X is called tempered with respect to (θt )t∈R,
if for a.a. ω ∈ Ω ,

lim
t→+∞ e−βt d(B(θ−tω)) = 0, ∀β > 0, (11)

where d(B) = supx∈B ‖x‖X.
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Definition 5 Let D be a universe, i.e., a collection of random sets in X, and let {K (ω)}ω∈Ω

be another random set (not necessarily in D). It is said that {K (ω)}ω∈Ω is an absorbing set
for ϕ with respect to D, if for all B ∈ D and a.a. ω ∈ Ω , there exists tB(ω) > 0, such that

ϕ(t, θ−tω, B(θ−tω)) ⊂ K (ω), for all t ≥ tB(ω).

Definition 6 Let D be a universe in X. Then, a random set {A(ω)}ω∈Ω of X is called a global
random D–attractor (pullback D–attractor) for ϕ, if, for a.a. ω ∈ Ω , the following conditions
are satisfied:

(i) A(ω) is a compact set;
(ii) A(ω) is strictly invariant, i.e.,

ϕ(t, ω,A(ω)) = A(θtω), for all t ≥ 0;
(iii) A(ω) attracts all sets in D, i.e., for all B = {B(ω)}ω∈Ω ∈ D, we have

lim
t→+∞ d(ϕ(t, θ−tω, B(θ−tω)),A(ω)) = 0,

where

d(A, B) = sup
x∈A

inf
y∈B ‖x − y‖X

is the Hausdorff semi-metric (here, A, B ⊂ X).

The following existence result of random attractors to a continuous random dynamical
system is a slight generalization of Theorem 3.5 in [24].

Theorem 1 Let K ∈ D be a closed random absorbing set for the continuous random dynam-
ical system (ϕ(t))t≥0, which satisfies the following asymptotic compactness condition: for
a.a. ω ∈ Ω , each sequence xn ∈ ϕ(tn, θ−tn , K (θ−tnω)) with tn → +∞ has a convergent
subsequence in X. Then the RDS ϕ has a unique global random attractor

A(ω) =
⋂

τ≥tK (ω)

⋃
t≥τ

ϕ(t, θ−tω, K (θ−tω)).

Note that Theorem 1 is valid for every universe D, in particular when it is formed by
random tempered sets. In this respect, sometimes it is sufficient to consider a smaller universe
to obtain the same random attractor provided by the tempered universe (or others). Indeed,
it is sufficient to state another theorem taking into account the bounded deterministic sets,
which provides the same attractor based on the work developed by Crauel and Flandoli [20,
Theorem 3.11].

Theorem 2 Suppose there exists a random compact set D(ω) which absorbs every bounded
deterministic set B ⊂ X. Then, the set

A(ω) =
⋃
B⊂X

ΛB(ω)

is a random attractor for ϕ, where the union is taken over all B ⊂ X bounded, and ΛB(ω)

is the omega-limit set of B given by

ΛB(ω) =
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω, B).
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Moreover (cf. [19]), this random attractor is unique and, under the ergodicity assumption
on θt , there exists a compact set K ⊂ X, such that the random attractor is the omega-limit
set of K , that is,

A(ω) =
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω, K ), for a.a. ω ∈ Ω.

2.2 Ornstein–Uhlenbeck process

Let us consider the following initial value problem for a one-dimensional stochastic differ-
ential equation,

{
dz = −zdt + dWt , t ≥ t0,

z(t0) = z0.
(12)

The solution of problem (12) has the following form,

z(t; t0, z0) = e−(t−t0)z0 +
∫ t

t0
e−(t−s)dWs

= e−(t−t0)z0 + Wt − e−(t−t0)Wt0 −
∫ t

t0
e−(t−s)Wsds.

It is well-known, Eq.(12) has a random fixed point in the sense of random dynamical system
generating a stationary solution, namely, the stationary Ornstein–Uhlenbeck process (see
[10] for more details).

Now, let us take t0 → −∞ in the above equality,

lim
t0→−∞ z(t; t0, z0) = Wt −

∫ t

−∞
e−(t−s)Ws(ω)ds := z∗(θtω),

where z∗(ω) = − ∫ 0
−∞ esWs(ω)ds. Therefore, it is straightforward to prove that z(t, ω) :=

z∗(θtω) is a stationary solution of the Langevin equation in (12). In addition, the random
variable z∗ satisfies the following properties for all ω ∈ Ω̄ , where Ω̄ ⊂ Ω and P(Ω̄) = 1:

lim
t→±∞

|z∗(θtω)|
|t | = 0,

lim
t→±∞

1

t

∫ t

0
z∗(θτω)dτ = 0,

lim
t→±∞

1

t

∫ t

0
|z∗(θτω)|dτ = E|z∗| < ∞.

(13)

Remark 1 Consider θ defined in (10) on Ω̄ instead of Ω , although we keep using the notation
Ω instead of Ω̄ . This mapping possesses the same properties as the original one, if we choose
for F the trace σ -algebra with respect to Ω̄ denoted also by F .
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3 Nonlocal partial differential equations on a bounded domain with multiplicative
noise

In this section, we consider the following nonlocal partial differential equation with multi-
plicative noise in the sense of Stratonovich,

∂u

∂t
− a(l(u))Δu = f (u) + σu ◦ dW (t)

dt
, (x, t) ∈ O × (s,∞), (14)

with the boundary and initial value conditions,

u(x, t) = 0, (x, t) ∈ ∂O × (s,∞), and u(s) = u0, x ∈ O, (15)

respectively. Here,O is a bounded open set inRN , σ is a constant, W (t) is a two-side standard
Brownian motion, and ◦ denotes the Stratonovich sense in the stochastic term.

To prove the well-posedness of problem (14)–(15), we will perform a conjugation given
by a transformation involving Ornstein–Uhlenbeck process, that allows us to obtain a random
partial differential equation. Observe that, it is easy to prove the well-posedness of the latter
case, thanks to the conjugation, so does the original problem.

To start off, we denote by u(·) := u(t; s, ω, u0) the solution to problem (14)–(15). Now,
we do the change of variable v(t) = u(t)e−σ z∗(θtω). By formal computations (which can be
justified rigorously by the Itô formula applied to the equivalent Itô equation to problem (14)),
it follows the process v(·) := v(·; s, ω, v0) with initial value v(s) := v0 = u0e−σ z∗(θsω)

satisfying,

dv(t) = [(a(l(u))Δu + f (u))dt + σu ◦ dWt ]e−σ z∗(θtω)

+ uσ z∗(θtω)dt − e−σ z∗(θtω)uσ ◦ dWt

= [a(l(u))Δu + f (u)]dte−σ z∗(θtω) + uσ z∗(θtω)e−σ z∗(θtω)dt

= a(eσ z∗(θtω)(l(v)))Δvdt + e−σ z∗(θtω) f (eσ z∗(θtω)v)dt + vσ z∗(θtω)dt.

The above transformation can be written as the following abstract form,

⎧⎪⎨
⎪⎩

∂v
∂t − â(θtω, l(v))Δv = F(θtω, v),

v(x, t) = 0,

v(s) = v0,

in O × (s,∞),

on ∂O × (s,∞),

in O,

(16)

where

â(ω, k) = a(eσ z∗(ω)k), k ∈ R, and F(ω, v) = e−σ z∗(ω) f (eσ z∗(ω)v) + vσ z∗(ω).

Proposition 1 Based on assumptions (6)–(9), the following conditions hold true to problem
(16). For almost all ω ∈ Ω , function â(ω, ·) ∈ C(R;R+) satisfies (6)–(7) while slightly
modifying LR in (7) by eσ z∗(ω)LR. Furthermore, there exist a constant CF := CF (ω, σ,C f ),
and η, which is the same as (9), such that,

|F(ω, s)| ≤ CF (1 + |s|) and (F(ω, s) − F(ω, r))(s − r) ≤ η|s − r |2.
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Proof For almost all ω ∈ Ω and for all s ∈ R, by (8), we have

|F(ω, s)| ≤ |e−σ z∗(ω) f (eσ z∗(ω)s)| + |σ z∗(ω)s|
≤ e−σ z∗(ω)C f (1 + |eσ z∗(ω)s|) + |σ z∗(ω)||s|
≤ C f e

−σ z∗(ω) + (C f + |σ z∗(ω)|)|s|
≤ CF (1 + |s|),

(17)

where CF = max{C f e−σ z∗(ω),C f + |σ z∗(ω)|}. Besides, for almost all ω ∈ Ω , for all s,
r ∈ R, by (9) we obtain,

(F(ω, s) − F(ω, r))(s − r)

= e−2σ z∗(ω)| f (eσ z∗(ω)s) − f (eσ z∗(ω)r)||eσ z∗(ω)s − eσ z∗(ω)r |
≤ ηe−2σ z∗(ω)

(
eσ z∗(ω)s − eσ z∗(ω)r

)2

≤ η|s − r |2.

(18)

The proof is finished. ��
3.1 Well-posedness of problem (14)–(15)

We will prove the existence and uniqueness of solution to problem (16) in the following
sense.

Definition 7 Let the initial value v0 ∈ L2(O). A weak solution to problem (16) is a function
v(·) = v(·; s, ω, v0), which belongs to L2([s, T ]; H1

0 (O)) ∩ L∞([s, T ]; L2(O)) for almost
all ω ∈ Ω , such that for all T ≥ s,

d

dt
(v(t), ϑ) + â(θtω, l(v))((v, ϑ)) = (F(θtω, v), ϑ), ∀ϑ ∈ H1

0 (O), (19)

where equation (19) must be understood in the sense of D′(s,∞).

Theorem 3 Suppose that function a ∈ C(R;R+) fulfills (6)–(7), function f ∈ C(R) satisfies
(8)–(9) and l ∈ L2(O). Then, for each initial datum v0 ∈ L2(O), for almost all ω ∈ Ω , there
exists a unique weak solution to problem (16). In addition, this solution behaves continuously
in L2(O) with respect to the initial data.

Proof The existence of at least one solution to the random nonlocal partial differential equa-
tion (16) with initial value v0 follows straightforwardly from [13] by adapting the Galerkin
method and energy estimations for each ω fixed. Indeed, thanks to Proposition 1, i.e., the
facts that â(ω, ·) fulfils (6) and function F(ω, ·) satisfies (17), together with l ∈ L2(O),
we can apply the result in [13] to prove that equation (16) possesses a unique solution
v(·; s, ω, v0) ∈ C([s, T ]; L2(O)) ∩ L2([s, T ]; H1

0 (O)) with v(s; s, ω, v0) = v0, for every
T > s. In addition, since â(ω, ·) is locally Lipschitz with Lipschitz constant Laeσ z∗(ω),
and F(ω, ·) fulfills (18), by a standard reasoning, the uniqueness of weak solution and the
continuity with respect to the initial data can be proved analogously. ��

At this point, thanks to the transformation v(t) = u(t)e−σ z∗(θtω), the following result
holds.

Theorem 4 Assume the conditions of Theorem 3 hold. Then, for each initial datum u0 ∈
L2(O) and for almost all ω ∈ Ω , there exists a unique weak solution to problem (14)–(15).
In addition, this solution behaves continuously in L2(O) with respect to the initial data.
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3.2 Existence of random attractors to problem (14)–(15)

In this subsection, we will prove the hypotheses in Theorem 2 hold with the purpose of proving
the existence of a random attractor A(ω) associated with problem (14)–(15). To this end, we
transform the stochastic equation with multiplicative noise into the deterministic equation
with a random parameter. To show problem (14)–(15) generates a random dynamical system,
define the mapping T (ω) : L2(O) → L2(O) by T (ω)u0 = eσ z∗(ω)u0, which is, obviously,
a homeomorphism. Thus, by means of the following change of variable,

v(t) = T−1(θtω)u(t) = u(t)e−σ z∗(θtω),

where u is the solution of problem (14)–(15), it follows,

∂v

∂t
− a(eσ z∗(θtω)l(v))Δv = e−σ z∗(θtω) f (eσ z∗(θtω)v) + vσ z∗(θtω), (20)

which is exactly (16). Since T (ω) is a homeomorphism, if equation (16) generates a random
dynamical system, so does (14)–(15). This property will be presented below.

Lemma 2 Equation (16) generates a continuous random dynamical system (ψ(t))t≥0 over
(Ω,F0,P, (θt )t∈R), where

ψ(t, ω, v0) = v(t; 0, ω, v0), ∀v0 ∈ L2(O), ∀t ≥ 0, P-a.e.

Moreover, if we define Π by

Π(t, ω, v0) = T (θtω)ψ(t, ω, T−1(ω)v0),

then, Π is another random dynamical system for the process,

(t, ω, v0) → Π(t, ω, v0),

which solves (14)–(15) for any initial value v0 ∈ L2(O) at the initial time s = 0.

Proof Note that, when we have a random differential equation

dv(t)

dt
= G(θtω, v(t)), (21)

withG regular enough to ensure well-posedness of this problem. If we denote by v(t; s, ω, v0)

the solution of (21) with initial value v(s) = v0, then it is straightforward to check that

v(t, s, ω, v0) = v(t − s, 0, θsω, v0), ∀t ≥ s.

Defining

ϕ(t, ω, v0) = v(t; 0, ω, v0),

it follows that ϕ is a random dynamical system. Indeed, ϕ(0, ω, v0) = v(0; 0, ω, v0) = v0

holds obviously. As for the cocycle property, i.e.,

ϕ(t, θrω, ϕ(r, ω, ·)) = ϕ(t + r, ω, ·), r, t ≥ 0,

observe that,

ϕ(t, θrω, ϕ(r, ω, v0)) = ϕ(t, θrω, v(r, 0, ω, v0)) = v(t, 0, θrω, v(r, 0, ω, v0)) = v1(t),

while

ϕ(t + r, ω, v0) = v(t + r, 0, ω, v0) = v2(t).
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Now, it is easy to check that v1 and v2 are both solutions of the following initial value problem
(IVP), {

dv
dt = G(θtω, v),

v(s) = v0.

Then v1 ≡ v2 holds by the uniqueness of the above IVP, which implies the cocycle property
holds true. As (20) satisfies the abstract form (21), the first statement follows.

Besides, thanks to Lemma 1, the process Π is a conjugation RDS since T (ω) is a home-
omorphism. ��

In the following lines, we will focus on the existence of random attractors for the dynamical
system Π related to the stochastic nonlocal partial differential equation (14)–(15).

Theorem 5 Assume that function a ∈ C(R;R+) fulfills (6)–(7), function f ∈ C(R) satisfies
(8)–(9) and l ∈ L2(O). In addition, let mλ1 > 3C f . Then there exists a unique random
attractor A(ω) for the dynamical system Π(t, ω, u0) associated to equation (14)–(15).

Proof In order to prove this result by using Theorem 2, it is necessary to find a random
compact absorbing set K (ω) (which will be given by the ball of center 0 and radius r2(ω)

in H1
0 (O)) absorbing every bounded non-random set D ⊂ L2(O). In this way, the natural

compact embedding H1
0 (O) ↪→ L2(O) is essential.

We first derive the boundedness of v(·) = v(·; t0, ω, v0) in L2(O) for all t ∈ [t0,−1] with
t0 ≤ −1, where v0 = e−σ z∗(θt0 ω)u0 and u0 ∈ D. Multiply (20) by v(t) in L2(O), thanks to
(8) and the Young inequality, we obtain

1

2

d

dt
|v(t)|2 + a(eσ z∗(θtω)l(v))‖v(t)‖2

= e−σ z∗(θtω)( f (eσ z∗(θtω)v), v) + σ z∗(θtω)|v(t)|2

≤ e−σ z∗(θtω)C f

∫
O

|v(t)|dx + C f |v(t)|2 + σ z∗(θtω)|v(t)|2

≤ 1

2
e−2σ z∗(θtω)C f |O| +

(
3C f

2
+ σ z∗(θtω)

)
|v(t)|2,

thanks to the Poincaré inequality and (6), we have

d

dt
|v(t)|2 + m‖v(t)‖2 ≤ (−mλ1 + 3C f + 2σ z∗(θtω))|v(t)|2 + e−2σ z∗(θtω)C f |O|. (22)

Integrating (22) between t0 and −1, it follows

|v(−1)|2 ≤ e
∫ −1
t0

(−mλ1+3C f +2σ z∗(θsω))ds

×
(∫ −1

t0
C f |O|e−2σ z∗(θsω)e

∫ s
t0

(mλ1−3C f −2σ z∗(θτ ω))dτ
ds + |v(t0)|2

)

≤ e
−(mλ1−3C f )(−1−t0)+∫ −1

t0
2σ z∗(θsω)ds |v(t0)|2

+ C f |O|
∫ −1

t0
e−2σ z∗(θsω)e−(mλ1−3C f )(−1−s)+∫ −1

s 2σ z∗(θτ ω)dτds

≤ e(mλ1−3C f )

[
e
(mλ1−3C f )t0+∫ −1

t0
2σ z∗(θsω)ds |v(t0)|2

+ C f |O|
∫ −1

t0
e−2σ z∗(θsω)e(mλ1−3C f )s+

∫ −1
s 2σ z∗(θτ ω)dτds

]
.
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Consequently, for a given deterministic bounded set D ⊂ L2(O), there exist a constant ρ > 0
and T (ω, ρ) ≤ −1, P-a.e., such that, for any u0 ∈ D ⊂ B(0, ρ), for all t0 ≤ T (ω, ρ), we
have

|v(−1; t0, ω, e−σ z∗(θt0 ω)u0)|2 ≤ r2
1 (ω),

with

r2
1 (ω) = e(mλ1−3C f )

(
1 + C f |O|

∫ −1

−∞
e−2σ z∗(θsω)+(mλ1−3C f )s+

∫ −1
s 2σ z∗(θτ ω)dτds

)
.

Indeed, by means of the properties of Ornstein–Uhlenbeck process (13) and assumption
mλ1 > 3C f , it is possible to choose t0 ≤ T (ω, ρ), such that

e
(mλ1−3C f )t0+∫ −1

t0
2σ z∗(θsω)ds |e−σ z∗(θt0 ω)u0|2

≤ e
(mλ1−3C f )t0+∫ −1

t0
2σ z∗(θsω)ds+2σ z∗(θt0 ω)|ρ|2

≤ e
t0

[
(mλ1−3C f )+2σ 1

t0

∫ 0
t0
z∗(θsω)ds−2σ

z∗(θt0 ω)

t0

]
|ρ|2

≤ 1.

Secondly, we will prove v ∈ L∞([−1, t]; L2(O))∩L2([−1, t]; H1
0 (O)) with t ∈ [−1, 0]

by energy estimations. From (22), we know

d

dt
|v(t)|2 + m‖v(t)‖2 ≤ (−mλ1 + 3C f + 2σ z∗(θtω))|v(t)|2 + C f |O|e−2σ z∗(θtω),

integrating the above inequality from −1 to t with t ∈ [−1, 0], we obtain

|v(t)|2 ≤ e
∫ t
−1(−mλ1+3C f +2σ z∗(θsω))ds

(∫ t

−1

(
C f |O|e−2σ z∗(θsω) − m‖v(s)‖2

)

× e
∫ s
−1(mλ1−3C f −2σ z∗(θτ ω))dτds + |v(−1)|2

)

≤ e−(mλ1−3C f )(t+1)+∫ t−1 2σ z∗(θsω)ds |v(−1)|2

+ C f |O|
∫ t

−1
e−2σ z∗(θsω)+(3C f −mλ1)(t−s)+∫ ts 2σ z∗(θτ ω)dτds

− m
∫ t

−1
e(3C f −mλ1)(t−s)+∫ ts 2σ z∗(θτ ω)dτ‖v(s)‖2ds.

(23)

Therefore, from (23), we obtain

|v(t)|2 ≤ e−(mλ1−3C f )(t+1)+∫ t−1 2σ z∗(θsω)ds |v(−1)|2

+ C f |O|
∫ t

−1
e−2σ z∗(θsω)+(3C f −mλ1)(t−s)+∫ ts 2σ z∗(θτ ω)dτds,

and∫ 0

−1
e(mλ1−3C f )s+

∫ 0
s 2σ z∗(θrω)dr‖v(s)‖2ds ≤ 1

m
e−(mλ1−3C f )+

∫ 0
−1 2σ z∗(θsω)ds |v(−1)|2

+ C f |O|
m

∫ 0

−1
e−2σ z∗(θsω)+(mλ1−3C f )s+

∫ 0
s 2σ z∗(θτ ω)dτds.
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Thus, by the similar arguments, we conclude that for a given deterministic subset D ⊂
B(0, ρ) ⊂ L2(O), there exists T (ω, ρ) ≤ −1, P-a.e., such that for all t0 ≤ T (ω, ρ), for all
u0 ∈ D, we have

|v(t)|2 ≤ e−(mλ1−3C f )(t+1)+∫ t−1 2σ z∗(θsω)dsr2
1 (ω)

+ C f |O|
∫ t

−1
e−2σ z∗(θsω)+(3C f −mλ1)(t−s)+∫ ts 2σ z∗(θτ ω)dτds,

and ∫ 0

−1
e(mλ1−3C f )s+

∫ 0
s 2σ z∗(θτ ω)dτ‖v(s)‖2ds ≤ 1

m
e−(mλ1−3C f )+

∫ 0
−1 2σ z∗(θsω)dsr2

1 (ω)

+ C f |O|
m

∫ 0

−1
e−2σ z∗(θsω)+(mλ1−3C f )s+

∫ 0
s 2σ z∗(θτ ω)dτds.

(24)

Thirdly, the boundedness of v(·) in H1
0 (O) for all t ∈ [−1, 0] and compact embedding

H1
0 (O) ↪→ L2(O) ensure us to prove the existence of a compact absorbing ball in L2(O).

To obtain a bound in H1
0 (O), multiply (20) by −Δv(t), with the help of (9) and the Young

inequality, we derive

1

2

d

dt
‖v(t)‖2 + a(eσ z∗(θtω)l(v))| − Δv(t)|2

= e−σ z∗(θtω)( f (eσ z∗(θtω)v),−Δv) + σ z∗(θtω)(v,−Δv)

≤ 1

m
e−2σ z∗(θtω)C2

f |O| + C2
f

m
|v(t)|2 + m

2
|Δv(t)|2 + σ z∗(θtω)‖v(t)‖2.

(25)

Using the Poincaré inequality, (25) can be bounded by

d

dt
‖v(t)‖2 ≤ −m|Δv(t)|2 + 2

m
C2

f |O|e−2σ z∗(θtω) + 2C2
f

m
|v(t)|2 + 2σ z∗(θtω)‖v(t)‖2

≤
(

−mλ1 + 2C2
f

mλ1
+ 2σ z∗(θtω)

)
‖v(t)‖2 + 2

m
C2

f |O|e−2σ z∗(θtω).

(26)

Integrating (26) between s and 0 with s ∈ [−1, 0], we obtain

‖v(0)‖2 ≤ e
∫ 0
s (2C2

f /mλ1−mλ1+2σ z∗(θτ ω))dτ

×
(∫ 0

s

2

m
C2

f |O|e−2σ z∗(θτ ω)e
∫ τ
s (mλ1−2C2

f /mλ1−2σ z∗(θtω))dt dτ + ‖v(s)‖2
)

≤ e(mλ1−2C2
f /mλ1)s+

∫ 0
s 2σ z∗(θτ ω)dτ‖v(s)‖2

+ 2

m
C2

f |O|
∫ 0

s
e−2σ z∗(θτ ω)+(mλ1−2C2

f /mλ1)τ+∫ 0
τ 2σ z∗(θtω)dt dτ.

Integrating the above inequality again in [−1, 0], we have

‖v(0)‖2 ≤
∫ 0

−1
e(mλ1−2C2

f /mλ1)s+
∫ 0
s 2σ z∗(θτ ω)dτ‖v(s)‖2ds

+ 2

m
C2

f |O|
∫ 0

−1
e−2σ z∗(θsω)+(mλ1−2C2

f /mλ1)s+
∫ 0
s 2σ z∗(θrω)dr ds.
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Thanks to the assumption 3C f < mλ1, it is easy to checkmλ1 −3C f < mλ1 − 2C2
f

mλ1
, together

with (24), we have

‖v(0)‖2 ≤
∫ 0

−1
e(mλ1−3C f )s+

∫ 0
−1 2σ z∗(θτ ω)dτ‖v(s)‖2ds

+ 2

m
C2

f |O|
∫ 0

−1
e−2σ z∗(θsω)+(mλ1−3C f )s+

∫ 0
s 2σ z∗(θrω)dr ds

≤ 1

m
e−(mλ1−3C f )+

∫ 0
−1 2σ z∗(θsω)dsr2

1 (ω)

+
(

1

m
C f |O| + 2

m
C2

f |O|
)∫ 0

−1
e−2σ z∗(θsω)+(mλ1−3C f )s+

∫ 0
s 2σ z∗(θrω)dr ds.

Therefore, it is straightforward that

‖u(0)‖2 = ‖v(0)eσ z∗(ω)‖2

≤ 1

m
e−(mλ1−3C f )+2σ z∗(ω)+∫ 0

−1 2σ z∗(θsω)dsr2
1 (ω)

+
(

1

m
C f |O| + 2

m
C2

f |O|
)∫ 0

−1
e−2σ z∗(θsω)+2σ z∗(ω)+(mλ1−3C f )s+

∫ 0
s 2σ z∗(θrω)dr ds.

Consequently, there exists r2(ω) such that for a given ρ > 0, there exists T̃ (ω, ρ) ≤ −1
satisfying, for all t0 ≤ T̃ (ω, ρ) and u0 ∈ L2(O) with |u0| ≤ ρ,

‖u(0; t0, ω, u0)‖2 ≤ r2
2 (ω),

where

r2
2 (ω) = 1

m
e
∫ 0−1 2σ z∗(θsω)ds+2σ z∗(ω)

(
1 + C f |O|

∫ −1

−∞
e−2σ z∗(θsω)+(mλ1−3C f )s+

∫−1
s 2σ z∗(θτ ω)dτ ds

)

+
(

1

m
C f |O| + 2

m
C2

f |O|
)∫ 0

−1
e−2σ z∗(θsω)+(mλ1−3C f )s+2σ z∗(ω)+∫ 0

s 2σ z∗(θrω)dr ds,

which is well-defined. Thus, we conclude from Theorem 2 that there exists a unique random
attractor A(ω) to problem (14)–(15). ��

It is interesting now to provide more information about the structure of the attractor. We
will start with a particular case in which this becomes just a singleton {0}. In future, we can
discuss other options, singleton but not zero, finite dimensionality, etc.

In what follows, we return to equation (20) assuming the external forcing term satisfies
f (0) = 0. At this point, we are in a position to prove the random attractor to problem
(14)–(15) becomes a singleton {0}.

Theorem 6 In addition to assumptions of Theorem 5, suppose that mλ1 > η and f(0)=0.
Then the random attractor of problem (14)–(15) becomes {0}. In fact, it is an exponentially
stable solution. Moreover, the random attractor is also forward attracting.
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Proof (i) Exponential stability.Multiply (20) withv(t), by (6), (8) and the Poincaré inequality,
we have

1

2

d

dt
|v(t)|2 + mλ1|v(t)|2

≤ e−2σ z∗(θtω)( f (eσ z∗(θtω)v(t)), eσ z∗(θtω)v(t)) + σ z∗(θtω)|v(t)|2
≤ (η + σ z∗(θtω))|v(t)|2.

Consequently,

|v(t)|2 ≤ e
∫ t

0 2(−mλ1+η+σ z∗(θsω))ds |v(0)|2,
by conjugation of operator T (ω) defined in Lemma 2, we know

|u(t; 0, ω, u0)|2 = |eσ z∗(θtω)v(t; 0, ω, e−σ z∗(ω)u0)|2

≤ e2σ z∗(θtω)−2σ z∗(ω)+2(−mλ1+η)t+∫ t0 2σ z∗(θsω)ds)|u0|2

≤ e
t
(

2|σ z∗(θtω)|+2|σ z∗(ω)|
t +2(−mλ1+η)+ 1

t

∫ t
0 2σ z∗(θsω)ds

)
|u0|2.

(27)

(13) allows us to conclude that

lim
t→±∞

2|σ z∗(θtω)| + 2|σ z∗(ω)|
t

= 0 and lim
t→±∞

1

t

∫ t

0
2σ z∗(θsω)ds = 0,

with the help of assumption mλ1 > η, we deduce there exists T (ω) > 0, such that for all
t ≥ T (ω),

2|σ z∗(θtω)| + 2|σ z∗(ω)|
t

+ 1

t

∫ t

0
2σ z∗(θsω)ds + 2(−mλ1 + η) < 0.

It implies the exponential asymptotic stability of u ≡ 0 to problem (20).
(ii) Random attractor is singleton. By replacing ω by θ−tω in (27), for all t ≥ 0, we have

|u(t; 0, θ−tω, u0)|2 = |eσ z∗(ω)v(t; 0, θ−tω, e−σ z∗(θ−tω)u0)|2

≤ e2σ z∗(ω)−2σ z∗(θ−tω)+2(−mλ1+η)t+∫ t0 2σ z∗(θs−tω)ds |u0|2

≤ e
t
(

2|σ z∗(ω)|+2|σ z∗(θ−tω)|
t +2(−mλ1+η)+ 1

t

∫ 0
−t 2σ z∗(θsω)ds

)
|u0|2,

which shows that

dist (Π(t, θ−tω, u0), {0}) → 0 as t → +∞.

(iii) Singleton random attractor is also forward attracting. From (27), it follows that

dist (Π(t, ω, u0), {0}) → 0 as t → +∞.

Therefore, the random attractor {0} is also forward attracting. The proof of this theorem
is complete. ��
3.3 A comment on nonlocal stochastic partial differential equations with Itô noise

We are now interested in studying the following nonlocal stochastic partial differential equa-
tion,

∂u

∂t
− a(l(u))Δu = f (u) + σu · dW (t)

dt
, (x, t) ∈ O × (s,∞) (28)

123



  849 Page 16 of 33 Eur. Phys. J. Plus         (2021) 136:849 

with the boundary and initial value conditions,

u(x, t) = 0, (x, t) ∈ ∂O × (s,∞), and u(s) = u0, x ∈ O, (29)

respectively. Here, we denote by · the Itô sense of the stochastic term. It is well-known (28)
is equivalent to

∂u

∂t
− a(l(u))Δu + σ 2

2
u = f (u) + σu ◦ dW (t)

dt
. (30)

Observe that once the equivalence between equations (28) and (30) is presented, along with
the results we have proved in previous sections for (14)–(15) about Stratonovich integral,
the well-posedness of equation (28) follows in the same way as in the proof of Theorem 4.
As for the conclusions about random attractors, we can proceed likewise as in the proofs of
theorems 5 and 6 without imposing mλ1 > 3C f and mλ1 > η, respectively. Instead, we
assume large Itô noise in problem (28) (i.e., σ is large enough). This can be done by simple
energy estimations.

4 Nonlocal partial differential equations on a bounded domain with additive noise

In this section, we will investigate well-posedness and asymptotic behavior of solutions to
the following stochastic nonlocal partial differential equation with additive noise,

⎧⎪⎨
⎪⎩

∂u
∂t − a(l(u))Δu = f (u) + φ

dW (t)
dt ,

u(x, t) = 0,

u(s) = u0,

in O × (s,∞),

on ∂O × (s,∞),

in O,

(31)

where φ ∈ H1
0 (O) ∩ H2(O). Function f satisfies the same assumptions as in Sect. 3 (cf.

(8)–(9)) and l ∈ L2(O). Moreover, let a ∈ C(R;R+) be locally Lipschitz (cf. (7)), and there
exist two positive constants m and M , such that

0 < m ≤ a(k) ≤ M, ∀k ∈ R. (32)

Let us denote by u(·) := u(·; s, ω, u0) the solution of equation (31). By similar arguments
as in the multiplicative case, but using now a different conjugation operator S(ω) : L2(O) →
L2(O) given by S(ω)u0 = u0 − φz∗(ω). On account of the change of variable as below,

v(t) = S(θtω)u(t) = u(t) − φz∗(θtω),

It follows, for almost all ω ∈ Ω , v(·) := v(·; s, ω, v0) satisfies,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂v
∂t = a(l(v) + z∗(θtω)l(φ))Δv(t) + f (v + φz∗(θtω))

+ φz∗(θtω) + a(l(v) + z∗(θtω)l(φ))z∗(θtω)Δφ,

v(x, t) = 0,

v(s) = u0 − φz∗(θsω) := v0,

in O × R
+,

on ∂O × R
+,

in O.

(33)

We begin with the definitions of weak and strong solutions to problem (33).

Definition 8 Letφ ∈ H1
0 (O)∩H2(O) and the initial valuev0 ∈ L2(O). Then a weak solution

to equation (33) is a function v(·) := v(·; s, ω, v0), that belongs to L2([s, T ]; H1
0 (O)) ∩
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L∞([s, T ]; L2(O)) for almost all ω ∈ Ω , such that for all T ≥ s,

d

dt
(v(t), ϑ) + a(l(v) + z∗(θtω)l(φ))((v, ϑ)) + a(l(v) + z∗(θtω)l(φ))z∗(θtω)((φ, ϑ))

= ( f (v + φz∗(θtω)), ϑ) + z∗(θtω)(φ, ϑ), ∀ϑ ∈ H1
0 (O),

(34)

where equation (33) must be understood in the sense of D′(s,∞).

Definition 9 A strong solution to (33) is a weak solution v that also satisfies that v ∈
L2([s, T ]; H1

0 (O) ∩ H2(O)) ∩ L∞([s, T ]; H1
0 (O)) for all T ≥ s.

4.1 Well-posedness of problem (31)

The existence and uniqueness of problem (31) can be proved by Galerkin method similarly to
problem (14)–(15). The random nonlocal equation (33) is more complicated since there is an
extra nonlocal term a(l(v)+ z∗(θtω)l(φ))z∗(θtω)Δφ. Therefore, we prefer to include rough
details of the proof of the well-posedness of solutions to make our paper more readable. We
emphasize that the upper bound M on nonlocal operator a (cf. (32)) is imposed to handle
this extra term.

Using spectral theory, there exits a sequence {wi }i≥1 which is a Hilbert basis of L2(O)

composed by the eigenfunction of −Δ in H1
0 (O). Firstly, we consider the function vn(t) :=

vn(t; s, ω, v0) =∑n
j=1 ϕnj (t)w j for all n ≥ 1, the unique local solution to

⎧⎪⎨
⎪⎩

d
dt (vn(t), w j ) + a(l(vn) + z∗(θtω)l(φ))((vn, w j )) + a(l(vn) + z∗(θtω)l(φ))z∗(θtω)((φ,w j ))

= ( f (vn + φz∗(θtω)),w j ) + z∗(θtω)(φ,w j ),

(vn(s), w j ) = (v0, w j ), j = 1, 2, · · · , n.

Notice that the above equation is a Cauchy problem for the following ordinary differential
system in R

n ,

ϕ′
nj (t) + λ j a(l(vn) + z∗(θtω)l(φ))ϕnj (t) + a(l(vn) + z∗(θtω)l(φ))z∗(θtω)((φ,w j ))

= ( f (vn + φz∗(θtω)),w j ) + z∗(θtω)(φ,w j ), j = 1, 2, · · · , n,
(35)

where t ≥ s, λ j is the eigenvalue associated to the eigenfunction w j , the vector
(ϕn1, ϕn2, · · · , ϕnn) is unknown.

Proposition 2 Suppose a ∈ C(R;R+) fulfills (32), f ∈ C(R) verifies (8), φ ∈ H1
0 (O) ∩

H2(O) and l ∈ L2(O). Then, there exists at least a local solution (ϕn1, ϕn2, · · · , ϕnn) to the
ordinary differential system (35) defined on some interval [s, tn), for almost all fixed ω ∈ Ω ,
and for each initial value v0 ∈ L2(O). Moreover, if a is locally Lipschitz (cf.(6)) and f
satisfies (9), the uniqueness of local solution is ensured.

Proof The proof follows the lines of the proof of Proposition 2.3 in [27] by using a general-
ization of Peano’s Theorem. We omit the details here. ��

Theorem 7 Suppose that a is locally Lipschitz (cf.(6)) and fulfills (32), f ∈ C(R) satisfies
(8)–(9), φ ∈ H1

0 (O) ∩ H2(O) and l ∈ L2(O). Then, there exists a unique weak solution to
problem (33), for almost all ω ∈ Ω and initial datum v0 ∈ L2(O). In addition, this solution
behaves continuously in L2(O) with respect to the initial data.

123



  849 Page 18 of 33 Eur. Phys. J. Plus         (2021) 136:849 

Proof The existence of weak solution to problem (33). Multiplying by ϕnj in (35), summing
from j = 1 to n and using (32), we obtain

1

2

d

dt
|vn(t)|2 + m‖vn(t)‖2 + a(l(vn) + z∗(θtω)l(φ))z∗(θtω)((φ, vn(t)))

≤ ( f (vn + φz∗(θtω)), vn(t)) + z∗(θtω)(φ, vn(t)), a.e. t ∈ [0, tn),

where [0, tn) is the interval of existence of maximal solution. By (8), the Poincaré and Young
inequalities, we derive

d

dt
|vn(t)|2 + 2m‖vn(t)‖2 ≤ 4C2

f |O|
mλ1

+ mλ1

4
|vn(t)|2 + 2C f |vn(t)|2 + 4C2

f |z∗(θtω)|2
mλ1

|φ|2

+ mλ1

4
|vn(t)|2 + 2|z∗(θtω)|√

λ1
|φ|‖vn(t)‖

−2a(l(vn) + z∗(θtω)l(φ))z∗(θtω)((φ, vn(t)))

≤ 4C2
f |O|

mλ1
+ mλ1

4
|vn(t)|2 + 2C f |vn(t)|2 + 4C2

f |z∗(θtω)|2
mλ2

1

‖φ‖2

+ mλ1

4
|vn(t)|2 + 4|z∗(θtω)|2

λ2
1m

‖φ‖2 + m

4
‖vn(t)‖2

+4M2

m
|z∗(θtω)|2‖φ‖2 + m

4
‖vn(t)‖2,

it implies

d

dt
|vn(t)|2 + m‖vn(t)‖2 ≤ 2C f |vn(t)|2 + 4C2

f |O|
mλ1

+
[

(4C2
f + 4)

mλ2
1

+ 4M2

m

]
|z∗(θtω)|2‖φ‖2. (36)

Integrating (36) between s and t with s ≤ t < tn , we have

|vn(t)|2 + m
∫ t

s
‖vn(r)‖2dr ≤ |vn(s)|2 + 4C2

f |O|(T − s)

mλ1

+
[

(4C2
f + 4)

mλ2
1

+ 4M2

m

]
‖φ‖2

∫ t

s
|z∗(θrω)|2dr

+ 2C f

∫ t

s
|vn(r)|2dr.

Therefore, {vn(·)}∞n=1 is well defined on (s, tn) thanks to the Gronwall lemma. Actually, for
all T > s and for almost all ω ∈ Ω , it is bounded in L∞([s, T ]; L2(O))∩L2([s, T ]; H1

0 (O)).
Additionally, by assumption (32), it is obvious that

a(l(vn) + z∗(θtω)l(φ)) ≤ M, ∀t ∈ [s, T ], ∀n ≥ 1.

Therefore, there exists a positive constant C such that∫ T

s
|a(l(vn) + z∗(θtω)l(φ))|‖ − Δvn(t)‖2

H−1(O)
dt ≤ C

∫ T

s
‖vn(t)‖2dt, (37)

and ∫ T

s
|a(l(vn) + z∗(θtω)l(φ))|‖ − Δφ‖2

H−1(O)
dt ≤ C‖φ‖2|T − s|. (38)
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Taking into account {vn}∞n=1 is bounded in L2([s, T ]; H1
0 (O)) and φ ∈ H1

0 (O)∩ H2(O), we
deduce that the sequences {−a(l(vn)+z∗(θtω)l(φ))Δvn} and {−a(l(vn)+z∗(θtω)l(φ))Δφ}
are bounded in L2([s, T ]; H−1(O)).

On the other hand, using (8), we have

∫ T

s

∫
O

| f (vn(t) + z∗(θtω)φ)|2dxdt ≤ 2C2
f

∫ T

s

∫
O

(1 + |vn(t) + z∗(θtω)φ|2)dxdt

≤ 2C2
f (T − s)|O| + 4C2

f

∫ T

s
|vn(t)|2dt

+ 4C2
f |φ|2

∫ T

s
|z∗(θtω)|2dt.

(39)

Since {vn}∞n=1 is bounded in L∞([s, T ]; L2(O)), z∗(θ·ω) is continuous in [s, T ] and φ ∈
H1

0 (O) ∩ H2(O), we have { f (vn(t) + z∗(θtω)φ)} is bounded in L2([s, T ]; L2(O)).
To prove the sequence {v′

n})∞n=1 is bounded in L2([s, T ]; H−1(O)), we define the projector
Pn : H−1(O) → H−1(O) (cf. [27, Theorem 2.4]). Then by (37)-(39), we derive

∫ T

s
‖v′

n(t)‖2
H−1(O)

dt ≤
∫ T

s
‖a(l(vn(t)) + z∗(θtω)l(φ))(Δvn(t) + Δφ)

+ Pn f (vn(t) + z∗(θtω)φ) + z∗(θtω)φ‖2
H−1(O)

dt

≤
(

4C + 16C2
f

λ2
1

)∫ T

s
‖vn(t)‖2dt + 8C2

f (T − s)|O|
λ1

+ 4C‖φ‖2(T − s) +
(

4

λ2
1

+ 16C2
f

λ2
1

)
‖φ‖2

∫ T

s
|z∗(θtω)|2dt.

Therefore, by means of compactness arguments and the Aubin–Lions lemma, there
exists a subsequence of {vn}∞n=1 (relabeled the same) and v ∈ L∞([s, T ]; L2(O)) ∩
L2([s, T ]; H1

0 (O)) with {v′
n}∞n=1 ∈ L2([s, T ]; H−1(O)). It is easy to check v is the weak

solution to problem (32) owing the same reason as [27, Theorem 2.4].
The uniqueness and continuity with respect to initial data. Assume that there exist two

weak solutions, v1(·; s, ω, v1
0) and v2(·; s, ω, v2

0) to equation (32). For short, we will denote
vi (·) = vi (·; s, ω, vi0) for i = 1, 2. From the energy equality, we obtain

1

2

d

dt
|v1(t) − v2(t)|2 + a(l(v1(t)) + z∗(θtω)l(φ))‖v1(t) − v2(t)‖2

= [a(l(v2(t)) + z∗(θtω)l(φ)) − a(l(v1(t)) + z∗(θtω)l(φ))]((v2(t), v1(t) − v2(t)))

+ ( f (v1(t) + φz∗(θtω)) − f (v2(t) + φz∗(θtω)), v1(t) − v2(t)),

a.e. t ∈ [s, T ].
Since vi ∈ C([s, T ]; L2(O)), there exists a bounded set S ∈ L2(O) such that

{vi (t)}t∈[s,T ] ⊂ S. Besides, taking into account that l ∈ L2(O), φ ∈ H1
0 (O) ∩ H2(O)

and z∗(θtω) is continuous with respect to t , there exists a constant R > 0, such that
{l(vi (t) + z∗(θtω)l(φ))}t∈[s,T ] ⊂ [−R, R]. Then, by means of (32), (7) and (9), we obtain

1

2

d

dt
|v1(t) − v2(t)|2 + m‖v1(t) − v2(t)‖2

≤ La(R)|l||v1(t) − v2(t)|‖v2(t)‖‖v1(t) − v2(t)‖ + η|v1(t) − v2(t)|2.
(40)
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Applying the Poincaré inequality to (40), we have

d

dt
|v1(t) − v2(t)|2 ≤ C(t)|v1(t) − v2(t)|2, a.e. t ∈ [s, T ], P-a.e.,

where

C(t) = L2
a(R)|l|2‖v2(t)‖2 + 4mη

2m
.

Thus, both results, the uniqueness of solution and the continuity with respect to the initial
data to problem (32), follow immediately by the Gronwall lemma. ��
Theorem 8 Under the assumptions of Theorem 7, for every ε > 0 and T > s + ε, the weak
solution v belongs toC((s, T ]; H1

0 (O))∩L2([s+ε, T ]; H1
0 (O)∩H2(O)). In fact, if the initial

datum v0 ∈ H1
0 (O), then the function v ∈ C([s, T ]; H1

0 (O)) ∩ L2([s, T ]; H1
0 (O) ∩ H2(O))

for every T > s.

Proof Since we are working on a deterministic problem with random parameters, the proof
of this theorem follows the standard energy estimations, see [13, Theorem 2.5, Chapter 2],
we omit the details here. ��
4.2 Existence of random attractors to (31): the first approach

As in the multiplicative case (cf. Sect. 3), the solution v(·; 0, ω, v0) of (33) generates a random
dynamical system Ξ : L2(O) → L2(O), defined by

Ξ(t, ω, v0) = v(t; 0, ω, v0), ∀v0 ∈ L2(O), ∀ω ∈ Ω.

Thanks to the conjugation and Theorem 7, there is a mapping � : L2(O) → L2(O) such
that

�(t, ω, u0) = u(t; 0, ω, u0) =v(t; 0, ω, u0−φz∗(ω))+φz∗(θtω), ∀v0 ∈ L2(O),∀ω∈Ω,

which exactly is the random dynamical system generated by (31).

Theorem 9 In addition to hypotheses of Theorem 7, let mλ1 > 4C f . Then, there exists
a random DF -attractor AF (ω) (where DF is the universe of fixed bounded sets) for the
dynamical system �(t, ω, u0) associated to equation (31).

Proof The idea to prove the existence of random DF -attractor to (31) is the same as Theorem
5 by using Theorem 2. Namely, looking for a random compact absorbing set K (ω) (which
will be given by the ball of center 0 and radius r4(ω) in H1

0 (O)) absorbing every bounded
deterministic set D ⊂ L2(O), together with the fact compact embedding H1

0 (O) ↪→ L2(O),
we achieve the goal. Firstly, multiplying (33) by v(t) := v(t; s, ω, v0) in L2(O), by (32), we
obtain

d

dt
|v(t)|2 +2m‖v(t)‖2 ≤ 2( f (v(t) + φz∗(θtω)), v(t))

+2z∗(θtω)(φ, v(t)) + 2M‖φ‖‖v(t)‖,
with the help of (8), the Young and Poincaré inequalities, we have

d

dt
|v(t)|2 + m‖v(t)‖2 ≤ (−mλ1 + 2C f (α1 + 1) + α2)|v(t)|2 + C f |O|

α1

+
(

C f

α1λ1
+ 1

α2λ1

)
|z∗(θtω)|2‖φ‖2 + M2

α3
‖φ‖2 + α3‖v(t)‖2.

(41)
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Choosing α1 = 1
2 , α2 = C f and α3 = m

2 in (41), we derive,

d

dt
|v(t)|2 ≤ −(mλ1 − 4C f )|v(t)|2 + 2C f |O|

+
( |z∗(θtω)|2

λ1C f
+ 2C f |z∗(θtω)|2

λ1
+ 2M2

m

)
‖φ‖2 − m

2
‖v(t)‖2.

(42)

Ignoring the last term of (42), integrating in [t0,−1] with t0 ≤ −1, we have

|v(−1)|2 ≤ e−(mλ1−4C f )(−1−t0)

[ ∫ −1

t0

(
2C f |O| +

( |z∗(θtω)|2
λ1C f

+ 2C f |z∗(θtω)|2
λ1

+ 2M2

m

)
‖φ‖2

)

× e(mλ1−4C f )(t−t0)dt + |v(t0)|2
]

≤ e−(mλ1−4C f )(−1−t0)|v(t0)|2

+
∫ −1

t0
e−(mλ1−4C f )(−t−1)

(
2C f |O| +

( |z∗(θtω)|2
λ1C f

+ 2C f |z∗(θtω)|2
λ1

+ 2M2

m

)
‖φ‖2

)
dt

≤ e(mλ1−4C f )

[
e(mλ1−4C f )t0 |v(t0)|2

+
∫ −1

t0
e(mλ1−4C f )t

(
2C f |O| +

( |z∗(θtω)|2
λ1C f

+ 2C f |z∗(θtω)|2
λ1

+ 2M2

m

)
‖φ‖2

)
dt

]
.

Consequently, for a given B(0, ρ) ⊂ L2(O), there exists T (ω, ρ) ≤ −1, such that for all
t0 ≤ T (ω, ρ) and for all u0 ∈ B(0, ρ),

|v(−1; t0, ω, u(t0) − φz∗(θt0ω))|2 ≤ r2
3 (ω),

with

r2
3 (ω) = 1 + 2C f |O|

mλ1 − 4C f

+
∫ −1

−∞
e(mλ1−4C f )(t+1)

( |z∗(θtω)|2
λ1C f

+ 2C f |z∗(θtω)|2
λ1

+ 2M2

m

)
‖φ‖2dt,

which is well defined. Indeed, it is enough to choose T (ω, ρ) such that, for any t0 ≤ T (ω, ρ),
we have

e(mλ1−4C f )(t0+1)|v(t0)|2 = e(mλ1−4C f )(t0+1)|u(t0) − φz∗(θt0ω)|2
≤ 2e(mλ1−4C f )(t0+1)(ρ2 + |φ|2|z∗(θt0ω)|2)
≤ 1.

From (42), for t ∈ [−1, 0], we have

|v(t)|2 ≤ e−(mλ1−4C f )(t+1)

[ ∫ t

−1

(
2C f |O| +

( |z∗(θsω)|2
λ1C f

+ 2C f |z∗(θsω)|2
λ1

+ 2M2

m

)
‖φ‖2

− m

2
‖v(s)‖2

)
e(mλ1−4C f )(s+1)ds + |v(−1)|2

]
.

Therefore,

|v(t)|2 ≤ e−(mλ1−4C f )(t+1)|v(−1)|2 + 2C f |O|
mλ1 − 4C f

+
∫ t

−1
e−(mλ1−4C f )(t−s)

( |z∗(θsω)|2
λ1C f

+ 2C f |z∗(θsω)|2
λ1

+ 2M2

m

)
‖φ‖2ds,
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and ∫ 0

−1
e(mλ1−4C f )s‖v(s)‖2ds ≤ 2

m
e−(mλ1−4C f )|v(−1)|2 + 4C f |O|

m(mλ1 − 4C f )

+ 2

m

∫ 0

−1
e(mλ1−4C f )s

( |z∗(θsω)|2
λ1C f

+ 2C f |z∗(θsω)|2
λ1

+ 2M2

m

)
‖φ‖2ds.

(43)

Thus, we conclude for a given B(0, ρ) ⊂ L2(O), there exists T (ω, ρ) ≤ −1, such that for
all t0 ≤ T (ω, ρ) and for all u0 ∈ B(0, ρ),

|v(t)|2 ≤ e−(mλ1−4C f )(t+1)r2
3 (ω) + 2C f |O|

mλ1 − 4C f

+
∫ t

−1
e−(mλ1−4C f )(t−s)

( |z∗(θsω)|2
λ1C f

+ 2C f |z∗(θsω)|2
λ1

+ 2M2

m

)
‖φ‖2ds,

and ∫ 0

−1
e(mλ1−4C f )s‖v(s)‖2ds ≤ 2

m
e−(mλ1−4C f )r2

3 (ω) + 4C f |O|
m(mλ1 − 4C f )

+ 2

m

∫ 0

−1
e(mλ1−4C f )s

( |z∗(θsω)|2
λ1C f

+ 2C f |z∗(θsω)|2
λ1

+ 2M2

m

)
‖φ‖2ds.

(44)

To obtain a bounded absorbing set in H1
0 (O), multiplying (33) by −Δv(t), making use

of (8), (32), the Poincaré and Young inequalities, we have

d

dt
‖v(t)‖2 ≤ −(mλ1 − 4C f )‖v(t)‖2 + λ1C f |O| + λ1C f |v(t)|2

+
(
C f λ1 + λ1

C f

)
|z∗(θtω)|2|φ|2 + M2

m
|Δφ|2.

Integrating the above inequality between s and 0, where s ∈ [−1, 0], we have

‖v(0)‖2 ≤ e(mλ1−4C f )s‖v(s)‖2 +
∫ 0

s

(
λ1C f |O| + λ1C f |v(t)|2

+ (C f λ1 + λ1C
−1
f )|z∗(θtω)|2|φ|2 + M2

m
|Δφ|2

)
e(mλ1−4C f )t dt.

Integrating again the above inequality in [−1, 0], together with (44), it follows

‖v(0)‖2 ≤ 2

m
e−(mλ1−4C f )r2

3 (ω) + 4C f |O|
m(mλ1 − 4C f )

+ 2

m

∫ 0

−1
e(mλ1−4C f )s

×
( |z∗(θsω)|2

λ1C f
+ 2C f |z∗(θsω)|2

λ1
+ 2M2

m

)
‖φ‖2ds +

∫ 0

−1
e(mλ1−4C f )t

×
(

λ1C f |O| + λ1C f |v(t)|2 + (C f λ1 + λ1C
−1
f )|z∗(θtω)|2|φ|2 + M2

m
|Δφ|2

)
dt.

Consequently, there exists r4(ω) satisfying for a given ρ > 0, there exists T (ω, ρ) ≤ −1,
such that for all t0 ≤ T (ω, ρ) and |u0| ≤ ρ,

‖u(0; t0, ω, u0)‖2 := ‖v(0; t0, ω, u0 − φz∗(θt0ω)) + φz∗(ω)‖2 ≤ r2
4 (ω),
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where

r2
4 (ω) = 2‖φ‖2|z∗(ω)|2 + (4m−1 + 2λ1C f

)
r2

3 (ω) + 8C f |O|
m(mλ1 − 4C f )

+ 4λ1C2
f |O|

(mλ1 − 4C f )2

+ (4m−1 + 2λ1C f
) ∫ 0

−1
e(mλ1−4C f )s

( |z∗(θsω)|2
λ1C f

+ 2C f |z∗(θsω)|2
λ1

+ 2M2

m

)
‖φ‖2ds

+ 2
∫ 0

−1
e(mλ1−4C f )t

(
λ1C f |O| + (C f λ1 + λ1C

−1
f )|z∗(θtω)|2|φ|2 + M2

m
|Δφ|2

)
dt.

Thus, we conclude from Theorem 2 that there exists a unique random attractor AF (ω) to
equation (31) with respect to deterministic bounded sets. ��
Remark 2 Notice that even if the restriction involving mλ1 and 4C f in Theorem 9 could be
weakened to

mλ1 > 2C f ,

this gap does not affect the results we have proved. Since we only need to pick up sufficiently
small α1 and α2 in (41), such that −mλ1 + 2C f (1 + α1) + α2 keeps being negative.

4.3 Existence of attractors to (31): the second approach

In this section, we establish the basic result about the existence of a (pullback) random
attractor A(ω) of problem (31), for the case where the attracted universe is not composed of
fixed bounded sets but of families of sets depending on ω. However, in the end we will show
both attractors derived from the two approaches, AF (ω) and A(ω), are the same.

From now on, we assume that function f satisfies

| f (s)| ≤ C f (1 + |s|), ∀s ∈ R, (45)

where C f ∈ [0,mλ1/4). The next lemma shows estimations of weak solution v of equation
(33).

Lemma 3 Suppose a satisfies (32) and (7), f ∈ C(R) fulfills (45), φ ∈ H1
0 (O) ∩ H2(O),

l ∈ L2(O) and v0 ∈ L2(O). Then the solution v(t) := v(t; s, ω, v0) to problem (33) satisfies

|v(t)|2 ≤ 2C f |O|
mλ1 − 4C f

+ e−(mλ1−4C f )(t−s)|v0|2

+ e−(mλ1−4C f )t
∫ t

s
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ.

Proof From energy equality, by (32), (45), the Poincaré and Young inequalities, we have

d

dt
|v(t)|2 + mλ1|v(t)|2 + m‖v(t)‖2 ≤ (2C f (1 + β1) + β2)|v(t)|2 + C f |O|

β1

+
(
C f

β1
+ 1

β2

)
|z∗(θtω)|2|φ|2 + β3‖v(t)‖2 + M2

β3
‖φ‖2|z∗(θtω)|2.

Picking up β1 = 1
2 , β2 = C f and β3 = m, which implies

d

dt
|v(t)|2 ≤ (−mλ1 + 4C f )|v(t)|2 + 2C f |O| +

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θtω)|2‖φ‖2.
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Finally, multiplying by e(mλ1−4C f )t and integrating between s and t to above inequality, the
result of this lemma holds. ��
Remark 3 Analogously, let β1 and β2 in the proof of Lemma 3 are small enough as Remark
2. We can release the assumption of Lemma 3 to mλ1 > 2C f .

Thanks to Lemma 3, now we are able to use the universe of tempered sets, denoted by
D, to show the existence of a (pullback) random D-attractor to equation (31) by Theorem 1.
The next lemma presents that � and Ξ have random absorbing sets, respectively.

Lemma 4 Suppose the conditions of Lemma 3 hold. Then there exist {K�(ω)}ω∈Ω and
{KΞ(ω)}ω∈Ω that both belong to D, such that {K�(ω)}ω∈Ω and {KΞ(ω)}ω∈Ω are random
absorbing sets for � and Ξ in D, respectively. Namely, for any B̂ = {B(ω)}ω∈Ω ∈ D, there
exist T (B̂) > 0 and T̃ (B̂) > 0, such that

�(t, θ−tω, B(θ−tω)) ⊂ K�(ω), for all t ≥ T (B̂),

and

Ξ(t, θ−tω, B(θ−tω)) ⊂ KΞ(ω), for all t ≥ T̃ (B̂),

are true, separately.

Proof Existence of random absorbing set K�(ω). From Lemma 3, we have for v(t) =
v(t; 0, ω, v0)

|v(t)|2 ≤ 2C f |O|
mλ1 − 4C f

+ e−(mλ1−4C f )t |v0|2

+ e−(mλ1−4C f )t
∫ t

0
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ.

Substituting ω by θ−tω and v0 by u0 −φz∗(ω) in the expression of Ξ , respectively, we obtain

|Ξ(t, θ−tω, u0 − φz∗(θ−tω))|2

≤ 2C f |O|
mλ1 − 4C f

+ e−(mλ1−4C f )t |u0 − φz∗(θ−tω)|2

+
∫ t

0
e−(mλ1−4C f )(t−τ)

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτ−tω)|2‖φ‖2dτ

≤ 2C f |O|
mλ1 − 4C f

+ 2e−(mλ1−4C f )t |u0|2 + 2e−(mλ1−4C f )t |z∗(θ−tω)|2|φ|2

+
∫ 0

−t
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ

≤ 2C f |O|
mλ1 − 4C f

+ 2e−(mλ1−4C f )t |u0|2 + 2e−(mλ1−4C f )t |z∗(θ−tω)|2|φ|2

+
∫ 0

−∞
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ.

Notice that, thanks to the properties of Ornstein–Uhlenbeck process z∗ (cf. (13)), it follows
that ∫ 0

−∞
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ < ∞,
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and

lim
t→+∞ e−(mλ1−4C f )t |z∗(θ−tω)|2|φ|2= 0.

Taking into account for any u0 ∈ B(θ−tω),

�(t, θ−tω, u0) = Ξ(t, θ−tω, u0 − φz∗(θ−tω)) + φz∗(ω),

it arrives,

|�(t, θ−tω, u0)|2 ≤ 2|Ξ(t, θ−tω, u0 − φz∗(θ−tω))|2 + 2|z∗(ω)|2|φ|2

≤ 4C f |O|
mλ1 − 4C f

+ 4e−(mλ1−4C f )t |d(B(θ−tω))|2 + 4e−(mλ1−4C f )t |z∗(θ−tω)|2|φ|2

+ 2
∫ 0

−∞
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ + 2|z∗(ω)|2|φ|2.

Denoting, for all ω ∈ Ω ,

R2
�(ω) = 4C f |O|

mλ1 − 4C f
+ 2|z∗(ω)|2|φ|2

+ 2
∫ 0

−∞
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ + 1.

(46)

Accordingly,

R2
Ξ(ω) = 2C f |O|

mλ1 − 4C f

+ 2
∫ 0

−∞
e(mλ1−4C f )τ

(
(2C f + 1/C f )|z∗(θτω)|2

λ1
+ M2

m

)
‖φ‖2dτ + 1.

(47)

Similarly, by means of the properties of Ornstein–Uhlenbeck process z∗, we derive

lim
t→∞ e−(mλ1−4C f )t |d(B(θ−tω))|2 = 0, lim

t→∞ e−(mλ1−4C f )t |φ|2|z∗(θ−tω)|2 = 0.

Consequently,

K�(ω) = BL2(O)(0, R�(ω)) and KΞ(ω) = BL2(O)(0, RΞ(ω)), (48)

are absorbing closed random sets for � and Ξ , respectively.
Check K�(ω) ∈ D. For this purpose, we only need to show

lim
t→∞ e−βt R�(θ−tω) = 0, ∀β > 0.
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To verify it goes to zero when t is sufficiently large, just observe for any β > 0,

e−βt R2
�(θ−tω) = e−βt 4C f |O|

mλ1 − 4C f
+ 2e−βt |z∗(θ−tω)|2|φ|2 + e−βt

+ 2e−βt
∫ 0

−∞
e(mλ1−4C f )τ

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτ−tω)|‖φ‖2dτ

= e−βt 2C f |O|
mλ1 − 4C f

+ 2e−βt |z∗(θ−tω)|2|φ|2 + e−βt

︸ ︷︷ ︸
−→0 as t→∞

+ 2 e−βt
∫ −t

−∞
e(mλ1−4C f )(r+t)

(
(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θrω)|‖φ‖2dr.

︸ ︷︷ ︸
−→0 as t→∞

The results for the other random dynamical system Ξ are proved by similar arguments. We
omit the details. ��

Our objective now is to prove the existence of (pullback) random D-attractor of (31)
in L2(O) by using Theorem 1. To this end, it is sufficient to prove that each sequence
un ∈ �(tn, θ−tn (ω), K�(θ−tnω)) with tn → +∞ has a convergent subsequence in L2(O).
Initially, we establish some estimations for random dynamical system Ξ by energy equality
(see also [34–36]).

Lemma 5 Under assumptions of Lemma 3, for any t ∈ R, there exists T (KΞ(ω), t) < t−2,
such that for all s ≤ T (KΞ(ω), t) and v0 ∈ KΞ(θsω), it fulfills⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|v(r; s, θsω, v0)|2 ≤ ρ1(ω, t), ∀r ∈ [t − 2, t],∫ r

r−1
‖v(τ ; s, θsω, v0)‖2dτ ≤ ρ2(ω, t), ∀r ∈ [t − 1, t],∫ r

r−1
‖v′(τ ; s, θsω, v0)‖2

H−1(O)
dτ ≤ ρ3(ω, t), ∀r ∈ [t − 1, t],

(49)

where KΞ(ω) is given in (48), and

ρ1(ω, t) = 1 + 2C f |O|
mλ1 − 4C f

+ e−(mλ1−4C f )(t−2)

∫ t

−∞
e(mλ1−4C f )τ

×
(

(2C f + 1/C f )

λ1
+ M2

m

)
|z∗(θτω)|2‖φ‖2dτ ;

ρ2(ω, t) = λ1

mλ1 − 4C f

(
ρ2

1 (t, ω) + 2C f |O| + M2

m
‖φ‖2

+ (2C f + 1/C f )|φ|2 max
r∈[t−1,t]

∫ r

r−1
|z∗(θsω)|2ds

)
;

ρ3(ω, t) = 4M2Cρ2(ω, t) + 8C f

λ1
(1 + 2ρ1(ω, t))

+
(

4 + 16C f

λ2
1

+ 4CM2

)
‖φ‖2 max

r∈[t−1,t]

∫ r

r−1
|z∗(θsω)|2ds.

Proof Let T (KΞ(ω), t) < t − 2, such that

e−(mλ1−4C f )(t−2)e(mλ1−4C f )s |v0|2 ≤ 1, ∀v0 ∈ KΞ(θsω), ∀s ≤ T (KΞ(ω), t).
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Then the first statement in (49) follows directly from Lemma 3, using the increasing
character of the exponential.

In the following lines, we obtain similar estimations for the other two inequalities in
(49) by means the Galerkin approximations. In the sequel, with the help of compactness
arguments, we will obtain the same ones for the solutions. Observe that the first estimation
in (49) holds true due to the Galerkin approximations.

From the energy equality for the Galerkin approximation, by (32), it follows

d

dt
|vn(t)|2 +2m‖vn(t)‖2 ≤ 2( f (vn + σ z∗(θtω)), vn(t)) + 2|z∗(θtω)|(φ, vn(t))

+2M‖φ‖‖vn(t)‖.
Applying the Poincaré and Young inequalities, using (45), we deduce

d

dt
|vn(t)|2 +(m − 4C f /λ1)‖vn(t)‖2 ≤ 2C f |O| + M2

m
‖φ‖2

+(2C f + 1/C f )|z∗(θtω)|2|φ|2. (50)

Integrating (50) between r − 1 and r , where r ∈ [t − 1, t], we have for all n ∈ N,∫ r

r−1
‖vn(s)‖2ds ≤ λ1

mλ1 − 4C f

(
|vn(r − 1)|2 + 2C f |O| + M2

m
‖φ‖2

+ (2C f + 1/C f )|φ|2
∫ r

r−1
|z∗(θsω)|2ds

)
≤ ρ2(t, ω),

(51)

where ρ2(ω, t) is given in the statement, thanks to the first inequality in (49) for vn . Tak-
ing inferior limit in (51) and using the well-known fact that vn(·; s, θsω, v0) converges to
v(·; s, θsω, v0) weakly in L2([r − 1, r ]; H1

0 (O)) for all r ∈ [t − 1, t], the second inequality
in (49) holds.

Finally, by (33), we derive

‖v′
n(t)‖2

H−1(O)
≤ 4|a(l(vn) + z∗(θtω)l(φ))|2‖Δvn‖2

H−1(O)
+ 4

λ1
| f (vn + φz∗(θtω))|2

+ 4|z∗(θtω)|2
λ1

|φ|2 + 4|a(l(vn) + z∗(θtω)l(φ))|2|z∗(θtω)|2‖Δφ‖2
H−1(O)

,

a.e. t > s. By assumption (32), we have

|a(l(vn(t)) + z∗(θtω)l(φ))|2 ≤ M2.

Together with the facts that f satisfies (45), −Δ is the isometric isomorphism from H1
0 (O)

into H−1(O), and the two estimations we have proved already for vn in (49), we obtain that∫ r

r−1
‖v′

n(τ )‖2
H−1(O)

dτ ≤ ρ3(ω, t), ∀r ∈ [t − 1, t], ∀n ∈ N, (52)

where ρ3(ω, t) is the expression given in the statement. Now, taking inferior limit in (52)
and bearing in mind that v′

n(·; s, θsω, v0) converges to v′(·; s, θsω, v0) weakly in L2([r −
1, r ]; H−1(O)) for all r ∈ [t − 1, t], the third estimate in (49) holds. ��

This section is concluded with the following proposition showing the random dynamical
system Ξ is pullback asymptotically compact. Taking into account the relationship between
� and Ξ below,

�(t, θ−tω, u0) = Ξ(t, θ−tω, u0 − φz∗(θ−tω)) + φz∗(ω), (53)
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we will end up to proving the random dynamical system � is also pullback asymptotically
compact. For this purpose, we apply an energy method with continuous functions.

Proposition 3 Suppose the conditions of Lemma 5 are true, then the random dynamical
system Ξ is D-pullback asymptotically compact. That is, each sequence

v(0;−tn, ω, v0) ∈ Ξ(tn, θ−tnω, KΞ(θ−tnω))

with tn → +∞ has a convergent subsequence in L2(O), where KΞ(ω) is given in (48).

Proof Consider {tn}n∈N with tn → +∞ as n → ∞. Let {vn0 }∞n=1 ∈ KΞ(θ−tnω), our aim is
to prove the sequence v(0;−tn, ω, vn0 ) = Ξ(tn, θ−tnω, vn0 ) is relatively compact in L2(O).
For short, we will denote vn(·) := v(·; −tn, ω, vn0 ).

By means of Lemma 5, the continuity of functions a and z∗(θtω), l ∈ L2(O) and
φ ∈ H1

0 (O) ∩ H2(O), we know there exist T (KΞ(ω), t) < t − 2 and n1 ≥ 1, such that
−tn ≤ T (KΞ(ω), t) for all n ≥ n1, {vn}n≥n1 is bounded in L∞([t −2, t]; L2(O))∩ L2([t −
2, t]; H1

0 (O)), { f (vn + φz∗(θ·ω))}n≥n1 is bounded in L2([t − 2, t]; L2(O)), the sequences
{−a(l(vn) + φz∗(θ·ω))Δvn} and {(vn)′}n≥n1 are bounded in L2([t − 2, t]; H−1(O)).
Then using the Aubin–Lions Lemma, there exists v ∈ L∞([t − 2, t]; L2(O)) ∩ L2([t −
2, t]; H1

0 (O)) with v′ ∈ L2([t − 2, t]; H−1(O)), such that for a subsequence (relabeled the
same), it holds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn → v weak-star in L∞([t − 2, t]; L2(O));
vn → v weakly in L2([t − 2, t]; H1

0 (O));
(vn)′ → v′ weakly in L2([t − 2, t]; H−1(O));
vn → v strongly in L2([t − 2, t]; L2(O));
vn(x, τ ) → v(x, τ ) a.e. (x, τ ) ∈ O × [t − 2, t];
vn(τ ) → v(τ) strongly in L2(O), a.e. τ ∈ [t − 2, t],

(54)

f (vn + φz∗(θ·ω)) → f (v + φz∗(θ·ω)) weakly in L2([t − 2, t]; L2(O)), (55)

and

−a(l(vn + φz∗(θ·ω)))Δvn → −a(l(v + φz∗(θ·ω)))Δv weakly in L2([t − 2, t]; H−1(O)).

(56)

Furthermore, v ∈ C([t−2, t]; L2(O)) and using the convergence, it is not difficult to prove
that v is a weak solution of (32). Since {(vn)′}n≥n1 is bounded in L2([t − 2, t]; H−1(O)),
we have that {vn}n≥n1 is equicontinuous in H−1(O) on [t − 2, t]. Namely, for fixed ε > 0
and for each fixed ω ∈ Ω , P-a.e., consider τ1, τ2 ∈ [t − 2, t] with |τ1 − τ2| < δε , then

‖vn(τ2) − vn(τ1)‖2
H−1(O)

≤
⎛
⎝ sup

v∈H1
0 (O)/‖v‖=1

∣∣∣∣<
∫ τ2

τ1

(vn(r)′dr, v >

∣∣∣∣
⎞
⎠

2

≤
(∫ τ2

τ1

‖(vn(r))′‖H−1(O)dr

)2

≤ ρ3(ω, t)|τ1 − τ2|.
The result is true by simply taking δε = min{ε2/ρ3(t, ω), 1}. In addition, as {vn}n≥n1 is
bounded in C([t − 2, t]; L2(O)), combined with the embedding L2(O) ⊂ H−1(O), the
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Arzelà-Ascoli theorem yields (for another subsequence, relabeled again the same),

vn → v strongly in C([t − 2, t]; H−1(O)). (57)

Now, consider a sequence {τn} ⊂ [t − 2, t] which converges to τ∗. Since {vn}n≥n1 is
bounded in C([t − 2, t]; L2(O)), there exists a subsequence of {vn(τn)}n≥n1 (relabeled the
same) and ζ ∈ L2(O), such that

vn(τn) → ζ weakly in L2(O). (58)

Let us prove that ζ = v(τ∗). For any fixed ε > 0, from (57) we deduce that there exists
nε ∈ N such that,

‖vn(τ ) − v(τ)‖H−1(O) ≤ ε

2
, ∀n ≥ nε(ω), ∀τ ∈ [t − 2, t].

From this and the fact v ∈ C([t − 2, t]; H−1(O)), we deduce

vn(τn) → v(τ∗) strongly in H−1(O). (59)

Observe (58)–(59), by the uniqueness of limit we obtain,

vn(τn) → v(τ∗) weakly in L2(O). (60)

Notice, if we prove

vn → v strongly in C([t − 2, t]; L2(O)), (61)

in particular the sequence {v(t;−tn, ω, un0 − φz∗(θ−tnω))} will be relatively compact in
L2(O). We establish (61) by contradiction, suppose that there exists ε > 0, a sequence
{t̃n} ⊂ [t − 2, t], without loss of generality converging to some t∗ with

|vn(t̃n) − v(t∗)| ≥ ε, ∀n ≥ 1. (62)

On the other hand, making use of the energy equality (6) and (45), the Poincaré and Young
inequalities, the estimation

|g(τ )|2 ≤ |g(r)|2 + 2C f |O||τ − r | + M2

m
‖φ‖2|τ − r |

+ (2C f + 1/C f
) |φ|2

∫ τ

r
|z∗(θsω)|2ds.

holds with g replaced by v or any vn .
Now we define the functions,

Jn(τ ) = |vn(τ, ω)|2 − 2C f |O|τ − M2

m
‖φ‖2τ − (2C f + 1/C f )|φ|2

∫ τ

t−2
|z∗(θsω)|2ds,

J (τ ) = |v(τ, ω)|2 − 2C f |O|τ − M2

m
‖φ‖2τ − (2C f + 1/C f )|φ|2

∫ τ

t−2
|z∗(θsω)|2ds.

From the regularity of v and vn , together with the above equalities, it makes sure the functions
J and Jn are continuous and non-increasing on [t − 2, t]. In addition, we have

Jn(τ ) → J (τ ), τ ∈ [t − 2, t].
Hence, there exists a sequence {t̃k} ⊂ (t − 2, τ∗), such that t̃k → τ∗ as k → +∞ and

lim
n→∞ Jn(t̃k) = J (t̃k), ∀k ≥ 1.
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For any fixed arbitrary ε > 0, from the continuity of J on [t − 2, t], there exists k(ε) > 1
such that

|J (t̃k) − J (t∗)| ≤ ε

2
, ∀k ≥ k(ε).

Now consider n(ε) ≥ 1, such that t̃n ≥ t̃k(ε) and

|Jn(t̃k(ε)) − J (t̃k(ε))| ≤ ε

2
, ∀n ≥ n(ε).

Since all Jn are non-increasing functions, we deduce for all n ≥ n(ε),

Jn(t̃n) − J (tk) ≤ Jn(t̃k(ε)) − J (tk) ≤ |Jn(t̃k(ε)) − J (tk)|
≤ |Jn(t̃k(ε)) − J (t̃k(ε))| + |J (t̃k(ε)) − J (t∗)|
≤ ε.

As ε > 0 is arbitrary, from above we deduce,

lim sup
n→+∞

Jn(t̃n) ≤ J (t∗).

Thus,

lim sup
n→+∞

|vn(t̃n)| ≤ |v(t∗)|.

From this, (60) applied to the sequence {t̃n}, it satisfies that the sequence {vn(t̃n)} converges
to v(t∗) strongly in L2(O), which is contradictory with (62). Therefore, (61) is proved.

Particularly, we take t = 0 in the above analyses. The conclusion that sequence
vn(0;−tn, ω, vn0 ) = Ξ(tn, θ−tn , v

n
0 ), where vn0 ∈ KΞ(θ−tnω), is relatively compact in L2(O)

holds immediately. ��
Theorem 10 Suppose the assumptions of Lemma 5 hold. Then the random dynamical system
� has a D-random attractor in L2(O).

Proof As a consequence of the results of Proposition 3, from Theorem 1, we obtain the
existence of the D-random attractor for the cocycle Ξ in L2(O). At last, based on the
relationship between � and Ξ (cf. (53)), φz∗(ω) is a constant in L2(O), the existence of a
D-random attractor for � is proved. ��
4.4 A comment on attractors AF (ω) and A(ω).

This section is concluded with one comment concerning the relationship between two differ-
ent attractors AF (ω) and A(ω) obtained in Sects. 4.2 and 4.3, separately. Let us first recall
the following result which can be found in [22].

Theorem 11 Suppose that (θ, ϕ) is an RDS on a Polish space X, such that there exists a
compact attracting set for the family of all compacts deterministic subsets of X. Then there
exists a random pullback attractor A, and this attractor is unique in the sense that whenever
A′ is a random pullback attractor for every compact deterministic set then A = A′, P-a.s.
Furthermore, if B is an arbitrary collection of random sets with a random pullback attractor
AB, then AB ⊂ A, P-a.e. Additionally, if B contains every compact deterministic set, then
AB = A, P-a.s.
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The following result gives us a relation of the two derived random attractors.

Theorem 12 The random attractorsAF (ω) obtained in Sect. 4.2 andA(ω) derived in Sect.
4.3 for problem (31) are the same.

Proof It is worth mentioning the existence of random attractor AF (ω) proved in Sect. 4.2
is a compact attracting set of the family of all compacts deterministic subsets of L2(O) (cf.
B(0, ρ)). While the random attractor A(ω) derived in Sect. sec:4.3 is a compact attracting set
of the family of all tempered sets. Theorem 11 ensures that A(ω) ⊂ AF (ω). Furthermore, it
is clear that tempered sets contains compact deterministic set, then A(ω) = AF (ω). ��

Conclusions and final remarks

We have successfully analyzed the asymptotic behavior of solutions to nonlocal stochastic
partial differential equations with multiplicative and additive noise, driven by a standard
Brownian motion, by means of an appropriate change of variable which is the standard way
to proceed in the frameworks of random dynamical systems and random attractors.

Recently, B. X. Wang and his collaborators (see, e.g., [37] and the references therein)
have been studying some stochastic PDE models driven by colored noise thanks to the
Wong–Zakai approximations. Motived by their work, it is reasonable to study the dynamics
of stochastic nonlocal differential equations driven by colored noise to obtain similar but
interesting results to the ones in this paper and which can be helpful to analyze stochastic
equations with nonlinear noise.

Also, notice that the methods provided in this manuscript to handle stochastic nonlocal
partial differential equations are only valid for those which are equivalent to random ones,
i.e., linear multiplicative and additive noise. When the nonlocal partial differential equation
is driven by a nonlinear stochastic term, such as

∂u

∂t
− a(l(u))Δu = f (u) + g(t, u)

dW (t)

dt
,

we need to adopt a different method to solve this problem. This will be the objective of our
forthcoming work.
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