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Abstract. In this paper, we study two terminal value problems (TVPs) for stochastic bi-parabolic equations perturbed by
standard Brownian motion and fractional Brownian motion with Hurst parameter 7 € (%, 1) separately. For each problem, we
provide a representation for the mild solution and find the space where the existence of the solution is guaranteed. Additionally,
we show clearly that the solution of each problem is not stable, which leads to the ill-posedness of each problem. Finally, we
propose two regularization results for both considered problems by using the filter regularization method.
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1. Introduction

Let 7 := (0, T), where T > 0 is the final time of observation. Let O C R”", n > 1, be a bounded
domain with a smooth boundary in the case n > 1, and let H := L*(O). In this paper, we study the
following terminal value problems (TVPs) for two stochastic bi-parabolic equations driven by standard
and fractional Brownian motion (fBm) respectively.

o TVP for a bi-parabolic equation perturbed by standard Brownian motion. Our first problem is
aimed to determine u(t) = u(¢, ), t € J, := J \ {0}, satisfying

E+ DU =FO+GOW@E), tel,
u(®)lso =0, reJ, (1)
u(®)]i=r =0, u(T)=uy,

whereupon {W(2)},.7 is an H-valued Q-Wiener process defined on a filtered complete probability
space (2, F, P, {F1};c7)- The term W(t) = % is used to describe a white noise.
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e TVP for a bi-parabolic equation driven by fractional Brownian motion. Our purpose in the
second problem is to determine u(¢) = u(t, ), t € J, satisfying

E+Du=FO)+GOW"), teT hel ),
u(®)lso =0, teJ, (2)
Zu®)=r =0, u(T) =uy,

whereupon {W” (1)};c7 1s an H-valued Q-fractional Brownian motion, with Hurst parameter
h e (%, 1), defined on the filtered complete probability space (2, F, P, {#;},.7). Here, the term

. h . .
Wht) = w stands for a fractional noise.

In the previous two problems, the operator A = —A is the negative Laplacian defined on Hj (O) N
H?(O) and noting that (% + AD%u() = ;—;u(t) + ZA%u(t) + A%u(1), usp: Q — H is called the
terminal value, F : 7 x Q@ — H is a linear source function and G is a mapping coming from 7 x  to
the space L2(H) defined latter.

Let us now introduce the connection between the bi-parabolic equation and the classical parabolic
equation and the importance of TVP (or called backward) models. For the classical parabolic equation,
the literature is traditional and pretty huge due to its theoretical interest. We can list here some works
concerned with terminal value problems for classical parabolic equations [12,24,32]. It is the fact that
those classical equations cannot describe accurately the procedure of heat conduction [15,20]. Therefore,
some more flexible models including bi-parabolic equations have appeared to describe this phenomenon
better [1,2,11,30,33]. For more details about successful applications of bi-parabolic equations, the read-
ers can refer to [16]. As regards TVP’s perspective, this model plays a significant role in some practical
areas, where we only have the final status u(7T') instead of the initial one #(0) and need to recover the
previous distribution u(¢), for ¢ € [0, T'). For example, in several engineering problems, it is undeniable
that determining the previous data of the physical field from its present state is an essential problem.

Recently, there are many works concerned with terminal value problems for bi-parabolic equations
in the deterministic case, where u s, F are deterministic functions and there is no appearance of the
stochastic term G(I)W(t) (res. G(t)Wh (t)) as in the first equations of (1), (2). For the homogeneous
case (when F = 0), Lakhdari [22] showed that the such problem is ill-posed and proposed a regulariz-
ing strategy based on the Kozlov-Mazya iteration method to approximate the solution. Zhang, in [39],
established a conditional stability of Holder type and used a modified regularization method to overcome
the ill-posedness in this case. For the non-homogeneous problem, the very last paper [27] investigated
the deterministic TVP with two cases of source function including linear and nonlinear sources.

Although there have been many studies on TVPs for bi-parabolic equations in the deterministic case,
to the best of our knowledge, TVPs for stochastic bi-parabolic equations driven by Wiener process and
fractional Brownian motion have not been investigated in the literature, which are contained in the topic
of inverse problems for stochastic partial differential equations (SPDEs). This is the motivation leading
to our study here. In what follows, we will list some works on inverse problems for SPDEs in recent
years. Ibragimov, in [18], considered the problem of estimating coefficients for SPDEs driven by Wiener
process. Q. Lii, in [25], studied two different inverse problems for stochastic parabolic equations driven
by standard Brownian motion by establishing a global Carleman estimate. In [26], Q. Lii continued to
consider the well-posedness of some linear and semilinear TVP for SPDEs with general filtration, with-
out using the Martingale Representation Theorem. In 2017, Yuan and co-authors [37,38] solved some
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inverse source problems and TVPs for stochastic wave and parabolic equations. More recently, Xiaoli
Feng [14] and Pingping Niu [28] investigated inverse problems for two stochastic fractional diffusion
equations driven by standard and fractional Brownian motion separately.

The main contributions and difficulties of this paper are as follows. Due to the appearances of the
stochastic integrals in the representations of the solutions to (1) and (2), the considered stochastic prob-
lems become more difficult than the deterministic cases and it is required to use stochastic analysis
techniques to deal with. After stating the existence of the solution in C (T, LX(LQ, H 7)) for each of two
problems, we show clearly the instability of the solution by the strategy as follows. We provide con-
crete spaces (34)—(36) and prove that, if the approximation for the exact data of each problem belongs
to those spaces, then it can lead to a large error in the solution. This is one of our new results in the
present paper. Furthermore, since the considered stochastic problems are not well-posed, we apply the
filter regularization method to construct regularized approximate solutions. Under strong conditions for
the solutions of two problems (see Theorem 4.1 and Theorem 4.2), which require a quick decay in the
Fourier coefficients of the final datum u ¢, the regularized solutions we constructed are convergent to the
sought solutions. We also show some concrete examples to illustrate our regularization results.

The rest of the present paper is organized as follows. We prepare some notations and preliminaries
in Section 2. In Section 3, we state the existence of the solution of each TVP and then prove that it is
instable, which is the reason making the ill-posedness. The regularized solutions for both considered
problems are proposed in Section 4 by using the filter method. Furthermore, convergence rates of those
approximate solutions are proved. Finally, some materials including the definitions of fBm, Wiener
integral with respect to fBm, properties of the solution operators, etc., are recalled in Appendix A and
Appendix B.

2. Preliminaries

Let o be a non-negative number. By H° we denote the space of H-valued function 6 such that
||0||2.U =) e )»,%" (0, ex)? < oo, where (-, -) is the usual inner product in H, e; and A; are taken
from the orthonormal basis {e; },cz+ of H and the Dirichlet eigenvalues {)A;};cz+ which form an infinite
sequence tending to infinity

0<)¥1<)\2<"‘<)\-k<)\k+1<“‘, 11mkk:oo

k— 00

Let us denote by H~? the dual space of H°. Then, the fractional operator A° = (—A)? : HZ — H~%
can be defined as (see [13,21])

A°Q =) 270, e0er, 0 € H”.
keZ*

It is observed that H* = H and ||0]| ;50 = [.A°6] 4.

Let (2, F, P, {F:},.7) be afilter probability space with a normal filtration {F;}, 7 satisfying standard
assumptions (the filtration is right continuous, all P-null sets belong to Fy). For p > 1, we introduce
LP($2, H°) the space of all H° -valued random variables X’ such that

1
X 2o oy = (BIXII, )" < oo
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By L(H) we denote the space of all bounded linear operators from H to H. Let @ € L(H) be a
non-negative self-adjoint operator defined by Qe; = Are; with finite trace tr(Q) = ZkeZ* Ay < 00,
where Ay > 0, n € Z*. The standard Brownian motion {W(#)}, .7 (res. fractional Brownian motion
{Wh(t)}tej) with covariance Q (see [10,19,40]) can be defined as

W) =Wo) =Y QPe&) =) A e&i (o), (3)
keZ* keZ*

Wity = Wht) =Y Qe () = Y ACedl @), )
keZ* keZ*

whereupon & (¢) (res. é,ﬂl (t)) are independent one—dimen_sional Brownian motions (res. independent one-
dimensional fractional Brownian motions). Let L(z)(H , H?) be the space of all linear bounded operators
R : H — H° such that RQ'/? is a Hillbert-Schmidt operator from H to H° with the norm

1/2
) /
o < 00.

For short, we denote L2(H) := L2(H, H) = L2(H, H®). For more details about the fractional Brow-
nian motions and the Wiener integral with respect to the fractional Brownian motions, one can see
Appendix A.

Next, we present the definitions of mild solutions to TVP (1), TVP (2). The readers can find in Ap-
pendix B the way we construct them. Furthermore, the definitions of well-posed and ill-posed problems
are proposed.

IR L2050, 1oy = (ZH Q'?Rey|

keZ*

Definition 2.1 (Mild solution of TVP (1)). An H-valued process {u(t)},.7 satisfying the following
equation almost surely

T T
u) =81, Tus+ f Sy (t, s)F(s)ds + / S, (t, s)G(s) dW (s), 5
t 1
is called a mild solution of TVP (1), where (see Appendix B)

S, Ty =Y (1= (T =On)e" ™ eder,  Sat.s) =D (s — e (-, eney.

keZ* keZ*

Definition 2.2 (Mild solution of TVP (2)). An H-valued process {u(t)},.7 satisfying the following
equation almost surely

T
u(t) =81, Tuys + / Sy(t, s)F(s)ds

T t
+ f Sy(t, )G (s) dW"(s) — / Sy(t, )G (s) dW"(s), (6)
0 0

is called a mild solution of TVP (2), where S, (¢, T), S>(¢, s) are defined in Definition 2.1.



N.H. Tuan et al. / On terminal value problems for bi-parabolic equations 339

Definition 2.3 (Well-posed and ill-posed problems). According to Jacques Hadamard [17], a problem is
said to be well-posed if it satisfies the following conditions

1) it has a solution,
ii) the solution is unique,
iii) the solution is stable, i.e. it depends continuously on data.

Problems that are not well-posed in the sense of Hadamard are termed ill-posed.

In the next section, we will show that the existence of the solutions of problems (1), (2) is guaranteed
on C (7; L (R, H 7)), with o > 0, under strict assumptions for the data (s, F', G). However, it is un-
fortunate that those solutions are not stable on C(7; L*(S2, H 7)), which makes the considered problems
be ill-posed. For clarity, let us explain the instability of the solution of Problem (1). For Problem (2), this
property can be understood similarly. Assume that (u ¢, F, G) is noised by observed data (ﬁ*}, F?,G?%
which contains small errors as

Hﬁi‘ - ”f” e S & HFE - FHLP(J;L2(Q,H)) <6, Hag - GH L9(T; L2, L3 (H))) <6,

where ¢, p, g are some pgsitive constants such that ¢ > 0, p > 1, ¢ > 2. Let u* be the solution of (1)
with respect to (ﬁ?, F¢, G*). Then, th.e error bet\?veen u® and u, namely ||u® — ulle 7. 12, o> would
not tend to zero as ¢ — 0. For short, it can be said that the solution u does not depend continuously on
the data (u ¢, F, G). One can see clearly this property of the solution in Theorem 3.3 in Section 3.2.

3. The ill-posedness of two problems on C(7; L*(S, H°))
3.1. The existence of the solution of each TVP

In this subsection, we attempt to find the spaces where we obtain the existence of solutions to both
TVPs. For two non-negative numbers a, b, let us introduce a pair of spaces

Vb= {9 € Hst |03 =Y 220, e)” < oo},
keZ*

which is known as the Gevrey-type space [7], and

WP = {R e L3(H) s.t. ||R||§V2 = Z||Q1/2Rek ||§,Z < oo}.
keZ*

Ifa=b=0,thenV,;, and W, ; turn to be H and L%(H ) respectively. Let o be a non-negative number.
To obtain the existence of the solution to each of two TVPs (1) and (2), we need the following strong
assumptions for the data (u s, F, G).

(H1) up e LX(Q, VI ),
(H2) F € LP(J; L*(2, VL, ))), for some p > 1,
(H3) G € LY(TJ; L*(Q, WL ))), for some g > 2,

(H4) G € L'(J; L*(, W), for some r > ;27
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Before establishing the existence of solution to both TVPs, we prepare some necessary lemmas. The
following ones will provide some needed properties for all terms in the right-hand sides of equations (5),

(6).

Lemma 3.1. Let us consider o > 0 and t,s € J. Assume that u 1> F satisfy Assumptions (HI), (H2).
Then, there hold

HSI (t, Tuy HLZ(Q’[_'I{T) <G ||uf||L2(Q,Vg+l), (7

T
/ Sy(t, s)F(s)ds

—1pQ2p—1
o <A T@r )/p||F||Lp(j;L2(§z,V£+]))’ ®)
L2(Q,H°)

where C; is defined in Lemma B.1. Furthermore, if 5 > 0 is small enough, then

[(S1G+8.T) =81, D)us| 2 oy < TSllusll 2@ ©)

a+l)’
T

-1
< C3 " VPIF g2ty (10)

T
Syt +8,5)F(s)ds —/ Sy(t,s)F(s)ds
t L2(Q,H%)

48
where Cy := Cr(A, T) = T%(Zkfl + 7).

Lemma 3.2. Leto >0andt,s € J. Assume that G satisfies Assumption (H3). Then, there holds

S GliGllog2@wr, ) (b

o

T
/ Sy(t,8)G(s)dW(s)

L2(Q2,HO)

Furthermore, if § > 0 is small enough, then

T T
Syt +8,5)G(s)dW(s) — / Sy(t, )G (s)dW (s)
1+8 t L2(Q,H)
q=2
< Cyé ||G||Lq(j;L2(Q,W£+I))» (12)

where Cs := C3(A, T, q) = A]'TU™2/CD, Cy:= C4y(A, T, q) = A'T + O + T)TU=2/C,
1 1 1

Lemma 3.3. Giveno > 0andt,s € J. Assume that G satisfies Assumption (H4). Then, there exists a
positive constant Cs = Cs(A, T, h, r) such that

@A) < C5||G||Lr(j;L2(Q,W£+I))- (13)

T
/ S,(t, $)G(s) dW"(s)
0

Furthermore, if § > 0 is small enough, then there exists a positive constant Co = C¢(A, T, h, r) such
that

T
f (S2(t +8,5) — Sa(t, $))G(s) dW"(s)
0

S CBlGlgir@m, (14
L“(Q2,H?)
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Lemma 3.4. Letroc > Oandt,s € J. Assume that G satisfies Assumption (H4). If 6 > 0 is small
enough, then there exists a positive constant C; = C7(A, T, h, r) such that

t+38 t
/ St +8,5)G(s) dW"(s) —/ S,(t,5)G(s) dW" (s)
0

L2(Q,H)
min{1—h, L (h—3+1=2 )}

< C 5 2 2 ”G”Lr(j LZ(Q WT-H)) (15)

Proof of Lemma 3.1. We begin with the proof for (7) and (8). Since u; satisfies Assumption (H1),

Lemma B.1 yields [|S1(z, Tuy|l 2. p0) < Ci ”Mf”Lz(Q’VTJrl). The estimate (9) can be prove easily by

applying the property (78) of Lemma B.1. For the second term, by Assumption (H2) and Lemma B.1,

one has

T T
/Sz(t,s)F(s)ds </ |S2(t, ) F(9) | 120 o) D5

L2(Q,H°)
T
< ,\l—lf s =t FO) | g ds-
t o

By applying the Holder inequality, one arrives at

, ;
. gkll(/ IS—f|",‘dS) (/ HF(S)HLZ(QVT ) >I
LZ(Q,H") t

-1 2p—1
<A TP )/p||F||LP(J;L2(Q,V§+1))'

T
/ Sy(t, s)F(s)ds

We next prove the two latter estimates (9) and (10). Firstly, it is obvious that

T T
Sy(t+8,5)F(s)ds —/ Sy (t,s)F(s)ds
148 ' LX(Q,H%)
T 143
< (Salt +68,5) — Sa(t, ) F(s)ds + f Sy(t,s)F(s)ds
148 L2(Q,H°) t L2X(Q,H%)

T t+38
< / [(Sat + 8, 5) — Satt, s))F(s)||L2(Q!HU) ds + / |S> (2, s)F(s)||L2(Q’H<,) ds
t+8 t

=)+ D).

By applying property (10) of Lemma B.1 and the Holder inequality, we deduce that

T
<5 [ 05 FO g, 4
s o+1

-+
<5(/ ()‘ +T)L1 ) </ ”F(S)HL2(QVT )ds)
< 6T

p—1
7 DIF g2t



342 N.H. Tuan et al. / On terminal value problems for bi-parabolic equations

Similarly, for the second term,

1

NG o, L ntts ) s
In < i |s — t]7-T ds [F &) agr s
t t 7

(p—1 -1
< 8PPy TIF o 7:2@07 )

Hence, for 6 > 0 small enough, we conclude that

T T
/ 82(t+8,s)F(s)ds—/ S (t,8)F(s)ds

+3

L2(Q,H%)

<8PTPT (A7 + T)IF Loz, 20.97, -
This completes the proof. [

Proof of Lemma 3.2. We begin with the proof of (11). By using the It6 isometry,
T ) 1/2
= (/, E[A7S:(t. )G ®)| 24, ds)

T ) 1/2
:(/ ZIEHQVzSz(t,s)G(s)ekHHUds) .

keZ*

T
/ S>(t, )G (s)dW (s)

L2(Q,H)

One can estimate the above term by using Assumption (H2), Lemma B.1 and the Holder inequality as
follows

T 1/2
<'([ Telercwal,, o)

L2(Q,H") keZ*

' T 5 1/2
=A </ ”G(S)HLZ(Q,WZH)CZS>
t

T (q—2)/(2q) T l/q
< (o) ([ 160 aug, a)
t t o

—1(g—2)/(2
<A 7=/ q)”G”LCI(j;LZ(Q,WZH))' (16)

T
/ Sy (t, )G (s)dW (s)

Next, we will show that (12) holds. By the triangle inequality and the Itd isometry, one can see

T T
/ 82(t+8,s)G(s)dW(s)—/ Sy (t, )G (s) dW (s)

+3

LX(Q,H?)

t+6
< ‘ / S:(t, )G (s) dW(s)

T
/ (S2(I +6,5) — S (¢, s))G(s) dW(s)

+4

d
)

L2(Q,HC L2(Q,H°)
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T 1/2
= (/t+ | A% (Sat + 8, 5) — Satt, s))G(s)Hig(H) ds>

+<f A% S, s)G(s)”Lz(H) >

=: (Il + (IV).

1/2

The previous two terms can be estimated thanks to Lemma B.1 and a similar technique to the one for
(16)

T 172
(Il = (/ Z E” QI/Z(Sz(t +6,s5) — S(t, s))G(s)ek’ i-](, ds)
T kezr

1/2
<s(r! +T(/ ZE”QI/ZG(s)ekHVT ds)

keZ*

—1 —2)/(2
<8O+ T)T2 NG g2 @t )

and

1/2
(V) < Ay T</ ZEHQl/ZG(s)ekHVT ds)

keZ*

1 15\ @-2/Cq) ; s . 1
<A T(/ ds) <./ |G ”Lz(Q,WTH) ds)
t t 7

-1 —2)/(2
<A T§@=2/( q)”G”L‘i(J;LZ(Q,WL,))'

From all above arguments, we conclude that

T T
St +68,5)G(s)dW(s) —/ So(t, )G (s)dW(s)

t+38 L2(Q,H°)

< 3<q72)/(2q)()»1_1T + ()‘1_1 + T)T(q%)/(zq))”G”Lq(J;LZ(Q,WTH))-
This completes the proof. [

Proof of Lemma 3.3. e Step I. This step is aimed to prove estimate (13). By the representation (75),
we have

2

/ S(t, s)G(s)dWh(s)

Z/ K} (S, )G()Q”zek)(S)dSk(S)

keZ*

—Z/ E| K7 1 (Sa(t, )G () Q) s) |

keZ*

L2(Q2,HO)

amn

i 48,
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where we have used the Ito isometry. We now find an upper bound for E|Q'? x
K, (81, )G (-)er)(s) %, . From the observations (72), (73), we can see

B[ K} 7 (82,96 ()Q'Pe) ) .
! 1/2 8th 2
=E / (S:(t, )G () QY ek)(u)m(,u,s)dp, _
N Ho

N (T W\ 2 LR

= ¢ (h - 5) E / Sa(t, M)G(M)Ql/zek(;> (w—s)""2dp|
s o

1\’ r | s 2

<6 (h - 5) S”hEU W= )" Syt G () Qe 4 du} . (18)

Applying the Holder inequality, we arrive at

2 T
2 1 - - _3
o <Ci(h_5) Sl 2/1(/Y MZh I(M—S)h 2dﬂ>

T
x(/ (M—S)h_fE}\Sz(t,M)G(M)Qmekﬂi,qdu)- (19)

E| K} 7 (S:(t, )G () Qe (s))|

On the other hand,
/T 2h—1( _s)h—%d < /T 2h—1( _S)h—% di = T3(h_%)F(2h)F(h —1/2) (20)
G ws |t I FGh—1/2)
Setting M := M, (h, T) = cp(h — %)T%(h*%)(%)‘/z, we obtain
E|K; 1 (S:(t, )G () Q2e) ()| o
T
_ _3 2
< wtts ([ = 5Bl 0G0 0 e} dn
T
_ _ _3 2
<APTMES! 2h< / (n =" FE[Gw Qe 3 du), 1)

where we have used the property (77). From (17), (21), we deduce that

2

T
H/ S(t, $)G(s) dW"(s)
0

L2(Q,H)

T T
g,\]—ZTZMf/O s””/ (/L—S)"*%E||G(ﬂ)||§>\v§+1 duds. )
N
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To bound the right-hand side of the above inequality, we will use the following estimate obtained by
applying the Holder inequality

T T ) = T ;
/(M—SY’3E||G(u)||§v;+ldﬂ<</ (“_s)r'z(hg)d’o </ ”G(“)||Zz<sz,w§+l>d“>

( T (h=3)+1 >'",2 ,
<\—— NGNS 7 20w 3y (23)
r 3 LT (T L2(Q,W
E(h_i)_Fl ( ( ot1)
Now, combining (22), (23) and noting that fOT =2 gs = g, we conclude that
T 2
f Sx(t,$)G(s) dW"(s)
0 LX(Q,H°)
4-2h L=+l N\ 5
< )“1_2 T M12( rT i 32 ) ||G”ir(JL2(Q WT )) (24)
2—2h —h—3)+1 TGS o

e Step 2. Now we prove (14). Here, we note that property (79) is used instead of (77). Firstly, we have a
similar formula as in (17)

2

T
/ (S2(t +8,5) — Sa(t, $))G(s) dW" (s)
0

L2(S2,H)

2
Ho ds.

T
- Z/O E| K} 1 ((Sat +5. ) — S:(t. )G () Q) (5)]

keZ*

By using a similar way as in (18)—(21), one can easily check that

2
HU

E| K} ((S2(t + 8, 5) — Sa(t,9)) G () Qe ) (s)]|

T
< Mis' ( f (1= )" E[(S:(t +8,9) — S2(t,9)) G () Qe |

2
T
< (7 + )82 Mds' 2 ( / (n =" E| G Qe 5 du>. (25)

By the observations (22), (24), we deduce that

T 2
/ (S2(t +8,5) — Sa(t, $))G(s) dW" (s5)
0 LX(Q,H?)
2-2h Lo (h—3)+1 =2
-1 20 T of Tr272 g 2
< ()\1 + T) ) o M1 (Lz(h — %) + 1) ||G||L"(J;L2(Q,W£H))‘ (26)

We now complete the proof. [
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Proof of Lemma 3.4. In what follows we prove (15). From the representation (76), we can see
t+6 t
/ Syt +8,5)G(s) dW"(s) — / Sa(t, 5)G(s) dW"(s)
0

-3 / K 1o (Sot +8,9G() Q2 (5) d&e (s)

keZ*

-y / F (S + 5,960 (5) — K, (Sa(t, 1G()Q2e,)(5)) dEw(s)

keZ*
=: (V) + (VI). 27

To show (15) holds, we now turn our attention to estimate (V') and (VI). It is obvious that

H(V)||L2(Q H) — Z / E| K 11s(S2(t +8,)G(- )Ql/zek)(s)”m ds.

keZ*

By using a similar argument as in (18)—(21), one arrives at

E||K 1s(Sa(t +8, )G () Q')

HO‘
1\? 1+ 5
< c,zl<h _ 5) S1—2h(/ 2h l(l/« s)h—~7 d,u)x

t+4 5
x (/ (= )" E|Sy(r + 8. WG (1) Qe du)

t+6 N
< APTA M1 (f (n =" E[Gw Qe d“)'

48 2(1=h) _;2(1—-h) 2(1—h)
+ §1=20 g < (t+3) —t )

) < 5o since h e

By a similar way as in (22)—(24) and noting that f

2, 1), one obtains

1+8 1+8
H(V)Hiz(gﬁ(,) < )‘1_2T2M12/ sl—Zh/ (1 — S)h_%E”G(M)HK%WTH dpds
t s 7

r=2

§2(1-h) Trah=-H+1 \ 5
ATEM} T 28)
] 20=h riz (h — ‘) +1 LT LA (2. W)

We now continue with an estimate for the second term (VI). By the observation

VD 0y = 3 [ BN (826045, 06 0" )0

keZ*

— K} (S:(1, )G ()Q2e) ()| (29)

Ho ds,
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it is necessary to estimate the expectation under the integral sign. From the observations (73), (72), we
have

E|K} s (S2(t +8,)G() Q%) () — K, (S22, )G ()Q2er) () | o

t+6 12 aKh
- / (8:0+5.960Q" ) 40 5 L 1. 5) di
t K 2
- / (824, 9GOQ ) ()% . 5) dp
s 124 Ho
t+48 aKh 2
< ZE‘/ (S2(t 48,96 ()Q e () ——= (. $)diy
t n e
t 12 aKh 2
H2B| | (82489 = 8:(1.9)GOQPe) (s )|
s Ho

One can estimate the term & by a similar argument as in (18)—(21). In this way, one arrives at

48
& < M%s‘—z”( / (1t = " IE[So(t + 8, WG (1) Qe | du)
t
272 p g2 12k o h—3 172, |12
<ATPMis' (/ (=" E[GQ eryr du)- 3D
t o
The last term &, can be estimated as in (25)
t
& < (A +T) 8 Mps' = < f (n =) E|GwQ ey du)- (32)

From (29)—(32), we deduce that

t t+48
0Dy <2778 [ 572 [y LR Gy dunds
0 t 7
1 t
+2(" +T)252M$/ sl-zh/ (=) 2E[GG) 3y dpds.
0 s o+

On the other hand, a similar argument as (23) yields

r=2

1+8 L (h=3)+1 ;
= E|Gw A du< (- ) 6P
e o, S5 L= +1 LA (T LA Q. We, )
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where we have used the fact that (7 + 8 — 5) 72D+ _ (1 — )=+ < 575 G-+ gince L (h —
%) + 1 € (0, 1). Similarly, one can check that

r=2

T,i—z(h—%)-i-l >, )
G|

t
h—3 2
\/S' (/’L —S) 2E||G(/’L)||WZ+1 d/’L g (rrj(h _ %) + 1 Lr(J;LZ(Q’WZJrl))'

. 2-2 . .
By the above arguments and recalling that fot s172hds < QW, we deduce that there exists a positive
constant My, = My(A, h, T, r)
2 2052 | ch—3412 2
[ VD] 2o ey < Mz (8% + 8" )G, 712wt - (33)

Now, combining (27), (28), (33), we conclude that there exists a positive constant C; = C7(A, h, T, r)
such that (15) holds. [

From the four above lemmas, we can state the existences of the solutions to TVPs (1) and (2) in the
following theorems.

Theorem 3.1. Let o > 0. Assume that uy, F, G satisfy Assumptions (HI), (H2), (H3). Then, TVP (1)
has a solution u € C"' (J; L*(R2, H")) satisfying

v
Hu(t +48) — u(l)||L2(Q,HU) < Gyl l(””f”y(g,\vgﬂ) + ”F”Lp(j;LZ(Q,VZH)) + ||G||Lq(;7;L2(Q,W§H))),

q—2

5 }. Furthermore, the following regularity property holds

where v = min{"’T?1

sup[u(®) 2.0, < Cro(lusll2@ur )+ IF 2@ty + G azi2@wr, )
teJ

Here, Co = Co(A, T, q), C1o = C1o(A, T, q) are two positive constants.

Theorem 3.2. Let o > 0. Assume that uy, F, G satisfy Assumptions (HI), (H2), (H4). Then, TVP (2)
has a solutionw € C*2(J; L*(2, H”)) satisfying

Hﬁ(t +8) —u@) HLZ(Q,H“)

< Cll(SUZ(||uf||L2(Q,V§+l) W o 722wy + ||G||L’(J;L2(Q,W§+l)))’

where vy = min{pT_l, 1—nh, %(h — % + rr;z)}. Furthermore, the following regularity property holds

sup|[a() | 1o g gy < Crzllugllz@yr,) + IF 2@t + IG L gi2@mt -

teJ

Here, C;; = C11(A, T, h,r), Ci, = Ci2(A, T, h, r) are two positive constants.
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Proof of Theorem 3.1. For § > 0 small enough, we have from (5) that

Hu(t + (S) - I/l(t) HLZ(Q,I:IU)
<[[(Si+6.T) = Si. D)ur| 1210 o,

T T
+ / Sy(t+8,5)F(s)ds —f So(t, s)F(s)ds
148 t L2(Q,H°)
T T
+ Sy(t+8,5)G(s)dW(s) — / So(t, $)G(s)dW (s) ,
148 t LX(Q,H?)
and that
T
HM(I) ” LZ(QJ_'IQ) g HSI (tv T)I/lf ” LZ(QJ_'IH) + H/; 82(t, S)F(S) ds Lz(Q HU)

T
+ / Sy(t,8)G(s)dW(s)

L2(2,H)
Applying Lemma 3.1 and Lemma 3.2, one can easily prove the two results of Theorem 3.1. [J

Proof of Theorem 3.2. Using a similar way as in the proof of Theorem 3.1 and applying Lemma 3.1,
Lemma 3.3, Lemma 3.4, one can easily obtain the two results of Theorem 3.2. [J

3.2. The instability of the solution of each TVP

The following pair of theorems will show that both TVPs we are studying are ill-posed on
C(J; L*(R, H?)), 0 > 0, in the sense of Hadamard. For k € Z*, p > 2, we define some necessary
spaces as follows

Uk = {M(fk) = akek,ok}, (34)
Fe:={FY:[0,T1 x @ > H, F® (1) = Brec& (1)}, (35)
Gi:={GY : [0, T] x @ — L}(H), GP1)0 = yi(ex(0, ex)ox. 0 € H} (36)

where oy, Bi, ¥, are taken from sequences {& }rez+, {Bi}kezr> {Vi}kez+ satisfying
1) limk_mo oy = 0, limk_mo Olk)»zu — T)\.k|€T)"k = 0oQ,
ll) llmk_)oo IBk)"io--’_leT)‘k = O,
1
i) limg oo 227 ([ pd(s)ds)t =0

Here, py, o) are random variables with standard normal distribution and &, (¢) are Wiener noises.

Theorem 3.3. Leto > 0, g > 2, k € Z*. Assume that (uif), F® G®Y) e Uy x Fy x Gy. Then, there
holds

Jim

= lim |F?|,, = lim 0. 37)

HLZ(Q,H) k00 (J:L2(Q.H)) k_)OOHG(k)”L‘i(J;Lz(Q,L(Z)(H)))=
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However, the solution u® of TVP (1) with respect to the data (ugf‘), F® GW®) satisfies

Jim 497 120 ey = 0 (38)

Theorem 34. Leto > 0, r > ﬁ, k € ZT. Assume that (ug{), F® G®Y e Uy x Fy x Gy. Then,
there holds
; (k) — i (k) — T (k) _
klinoloH“f HLZ(Q,H) = klggo”F “LP(J;LZ(Q,H)) = klingo |G L (T L2(Q,L3(HY) 0. 39

However, the solution u'® of TVP (2) with respect to the data (u}l.‘), F® GW®) satisfies

lim || 0. (40)
k—o00

© HC(jH(Q,HG)) =

Remark 3.1. We can give here an example for (ugf‘), F® G®Y e U; x Fy x Gy as follows

usf) = apexpr,  Withag = A",

FO@) = Brei(t),  with g = A 7o Th

GP(1)0 = (e (B, e)or, 0 € H, with y, (1) = A 2T e T (1),

where 71, 7o, 73 > 0, and @ : J — R™ is a continuous function.

Remark 3.2. From Theorem 3.3 (res. Theorem 3.4), it is clear that the solution of TVP (1) (res. TVP (2))
does not depend continuously on the data. In other words, the solutions of two problems are unstable,
which leads to their ill-posedness.

Proof of Theorem 3.3. We begin with the proof of (37). Since (u}’, F®, G®) € Uy x Fy x Gy, it is
obvious that

142 120y = celleln (B[pf])* = o — 0, ask — oo,

and

1 1

T - T
i | gy = Jim ([ @1F00 ) as) " = i ([ @leto)” as)
; s 0 k—00 0

k—o00 k— 00

Tq/2+l é
= 1i =0, 41
kir?o<q/2+1> Pr @1
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where we have used the properties that ||ex ||z = 1, E[p,?] =1, and E[£, ()& ()] = O, for k £ [. We also
have

1
. 4 q
kli)n;OHG © ”Lq(j;LZ(Q,Lg(H))) = kgf&(/ (EHG(k)(S)”LZ(H))z ds)
1
= im ([ (ZEl0ichoel; ) ) 2)

leZ*

Since ) 5+ Ell Q%G(k) $)er|3, = )/kz(S)EQ]% = ykz(s), we deduce that

T i
; (k) — T —
lim HG H LT 2@ L3 = khrgo (/0 v (s) ds) =0. (43)

k—o00 —

Next, we aim to prove (38). From the equation (5), we have the following representation for u®

T T
u® (1) = S (¢, T)u(k) / Sz(t,s)F(k)(s)ds—i—/ S(t, 5)G® (s) dW (s).

t t
For the first term on the right-hand side,

1

|Si¢. Tyuy’ le.2@.imy SUP(ZE M(fk), e) )Lzz”(l —(T — I)A) AT ”*1)2
leZ*

= oy A] sup|1 —(T — t))\k|e(T_’)’\"
tedJ

> A 11— Thele™,

which implies that limy_,  [|S (-, T)u(;‘) leF. 120 o)y = ©°- By a similar way as in (41), one can check
that

: r RN
3 1F g, = i ([ @100, ) as)

. T2+ e 2041 T
= lim B’ ettt =0.
k— 00 q/2 +1

This associated with estimate (8) allow that

T E,
C(T;LX(Q,H))

(TL2QVT,) — 0, ask— oo.

T
[ So(t,s)FP (s)ds

By a similar way as in (42)—(43),

T q
2041 Ty
lim |G® “L‘i(J @wl, ) = hm 27 e (/ y,f(S)ds> =0.
0

k—o00
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This associated with the estimate (11) imply

T
/ So(t, )GP (s) dW (s)

<cifc

e 0, ask — oo.
C(T;L2(Q,H)) +

Y H L4(T;L2(Q,WT

By all above arguments and noting that

T
14 ez c20.m0n = 1916 DUP | 712050, = H/ S, ) FO(s)ds| .
' C(T:12(@,H))

9

C(T:LX(Q,H?))

T
/ So(t, $)G® () dW (s)

we conclude that limy_, ||u(")||c(7;L2(Q goy =00. O

Proof of Theorem 3.4. The estimate (40) can be proved easily by using a similar way as in the proof of
(38). We note that the strategy here is to use (13) instead of (11). [

4. Regularization for each TVP

Physically, in most situations of reality, we cannot obtain exactly the data (u s, F', G). From the obser-
vations, we can only have the contaminated data (denote by (Zijc, F¢, G?)) which contain small errors.

Assume that (Zii‘-, F i 58) satisfies the model
|5 _”fHL2(Q,H) Sé |7~ FHLP(J;LZ(Q,H) S & |G~ G”L‘I(J;Lz(Q,LS(H))) Sé (44

where ¢ > 0 is the noisy level and p, ¢ will be specified latter.
Since TVP (1) is ill-posedness, it is required to establish an approximate solution (called regularized
solution), denoted by U/“€, such that ||L{*€ — u|| C(T:L2(Q.H7Y) tends to zero as ¢ — 0. Similarly, we also

construct a regularized solution for TVP (2), denoted by ﬁa’g, such that ||UO[’€ — ﬁ”c(j 12(9.H)) tends
to zero as ¢ — 0T,

4.1. Regularization for TVP (1)

We now use a regularization method, named filter method (see [36]), to establish a regularized solution
for TVP (1). From Section 3, we remark that the reason makes our problem be ill-posed is that both
operators S; (¢, T), S(t, s) are not bounded in £(L*(, H°), L2, H°)). Hence, our strategy here is
to replace those operators by new approximate ones, which are bounded in £(L?(£2, H o), L*(R2, H 7).

Leto > 0 and o = a(¢) be a positive number. Precisely, in this subsection, we construct a regularized
solution as follows

T T
U (1) :Sa,l(z,T)a';Jr/ sa,Q(z,s)ﬁs(s)derf Sua(t,5)GE (s) dW (s).
t t
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Here, operators ga, 1@, ), ga,z(t, s) are defined by

Sut(t, TY0 1= >0, ex)Cui (1 — (T — x)e" ey, (45)
keZ*

Sa2(t, )0 := ) (0, e)iurl(s —)e“ e, 6 eH,t,5€T, (46)
keZ*

where the kernels ¢, (called filter kernels), with k € Z*, will be specified later. The following lemma
states the convergence rate of the regularized solution.

Theorem 4.1. Let o > 0, « = «a(e) > 0. Suppose that (44) holds for some p > 1, g > 2, and there
exists E > 0 such that sup, 7 u(t) |2 gony < E, for some n > 0. Assume that the filter kernels Gy i

satisfy

(S1) both |§a,k|kg+le”k and Ly |AS eT* are bounded by some 1,1 > 0 independent of k,
(S2) [Lax — 1] < Ha,zkz, where I, 5 is some positive constant independent of k.

Assume further that 1, 1, Iy satisfy limg_ o+ (I, 1) = limg_ o+ 1,2 = 0. Then, the following error
estimate holds

o€ 22l =2
s S(Cr+T 7 +T %7 )y e+ Mo E. 47)

—u HC(7;L2(Q,H"))

Consequently, im0+ [|U** — ull ¢ 7.12(q.foy) = 0.

Remark 4.1 (Example 1 for the filter kernels ¢y ). Let o > O and a(e) = T log~'(¢7"), with some
v < g+r2 Suppose that (44) holds for some p > 1, g > 2, and there exists £ > 0 such that
sup, .7 lu(®)l 12, fo+n < E, for some n > 0. If we choose the filter kernels ¢, x as follows

Cox=1, ifr<a’l, Cax =0, ifig>al,

then ¢, satisfies conditions (S1), (S2) with I, ; = max{l, )Ll_l}of("“)e“‘_l and M,, = o". Fur-
thermore, it is clear that lim,_, o+ (I, 1€) = lim,_, ¢+ [1,2 = 0. As a consequence of Theorem 4.1, we
obtain lime_o+ [|U** — ullc7.120.5oy) = 0. Here the condition ¢ < —L_ is proposed to guarantee

o+2
11m5—>0+(na,18) = lim, o+ [y =

Remark 4.2 (Example 2 for the filter kernels £, ;). Let 0 > 0 and @ = a(e) = &Y, for some
0 < ¢ < 1. Suppose that (44) holds for some p > 1, g > 2, and there exists £ > 0 such that
sup, 7 lu@®ll 2@ gm < E, forn = o + 1. If we choose the filter kernels ¢, x as follows

o+1 -0\ —1
Cak = (1 —{—akZHe)‘k [14+T4; ]) ,

[14T27°]/a
log([1+T27% /)
,for0 < ¢; < ecy, A > 0, we have

14+T2,°

then ¢, 4 satisfies conditions (S1), (S2) with I1,,; = e AT/
1

log(c1/c2)
ci/ea

and I[1,, = . Indeed, by

using the inequality e™“"* + ¢\ >

|Cak|)nz+lenk < |§ak|ex;§+1[1+ml‘“] — (e—x;“[wm;”] +Ol?»Z+l)_1 < [1+TA %]/« ’
’ ’ log([1+TA{%]/a)
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and

14+ Tx°

1 2 gt e T gt e -
[Cak — 1] 7 ) “ log([1 + TA[%1/a)

Furthermore, it is clear that lim,_, o+ (I1y,16) = lim,_o+ [152 = 0. As a consequence of Theorem 4.1,
we obtain lim,_, o+ ||[U/*¢ — “”c(?;LZ(Q,Hv)) =0.

Remark 4.3. The strong assumption sup, 7 [[u(?) ;2 go+ny < E implies a very quick decay of the

Fourier coefficients of the final datum u ; (one can see clearly from the equation (74)). Now, let us turn

our attention to u(f) constructed in (34). It can be seen that there is a reverse trend here, where we do not

observe a significant decrease in the corresponding Fourier coefficients, which makes the instability of
the solution.

Proof. Step 1. In this step, our goal is to prove that if conditions (S1), (S2) hold, then we have
Hgot,l(ta T)||L2(Q‘H)_)L2(Q’HG') g Clna,l’ ||§a’2(t’s)”LZ(Q,H)—)LZ(Q,HU) g TI—IOl,la (48)
forevery t,s € J.Forf e L*(Q,H),t e T, itis easy to see that

E|Sui(t. )05, = D E@. e0)?23782, (1 — (T — 1)) 2T
keZ*

<Y EO. )20 (14 (T — )*a3) =04
keZ*

< (AT =07) Y RO, e 2 2 e
keZ*
< (AW +THI, Y E@. e’
keZ*

which implies that ||§a,1(t, )02 fey < Cilla 1101 L2, #y- Similarly, for 7, s € T,

182t )02 0, = B[ Sua(t. 90| 3y = D E(O, e)*AF762 (s — )22~

keZ*

<TG, Y EO, e,
keZ*

which shows that ||§a,2(t, )0 2.0y < T 1101 120, 1y- We finish Step 1 here.
Step 2. In this step we prove the error estimate (47). Firstly, it is clear that

USE() —u(t) =V ) + V551, (49)
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where we set V"*(¢) and V5* (1) as follows
~ T ~ ~
V(1) = Saa(t, T) (0 — uy) +/ Sun(t, ) (F*(s) — F(s))ds
T
+ f 8oat, $)(G*(s) — G(5)) dW (), (50)
T
VSE(t) = (Sua (0. T) = S1(t, T))uy +/ (San(t,s) — So(t, 8))F(s)ds
T
- / (Sun(t, s) — Sa(t,$))G(s) dW (s). (51)

Now, we use the properties in (48) to estimate the first term V{"* (¢). It follows from (50) that

T
VO i < 150 DT = ) g + | [ Soatte1(F0) = F0)as
t

L2(Q,HO)
T ~ ~
[ St (E ) - G awes)
' L2(Q,H°)
=L+ L+
By using the first property in (48), we obtain
LIS Hgﬂt’l(t’ T)”L2(Q,H)—>L2(Q,HU) ﬁ? - ”fHLZ(Q,H) S Cillae. (52)
The second property in (48) allows that
T ~ ~
12 g f ||Sot,2(t’ S)(Fg(s) - F(s))”l}(g’[.']a) ds
t
T ~ ~
g/t Hsavz(t’S)HLZ(Q,H)—>L2(SZ,H(’) Fo(s) — F(S)HLZ(Q,H) ds
T ~
< Tna,lf | F(s) = F&) 12y 45
t
Applying the Holder inequality,
T LT 3
L < Tna,1</ ds) (/ | FG) = F& | aqm ds)
t t
2p—1 ~ 2p—1
g T P HO{,IHF - F‘ L"(J;Lz(Q,H)) < T P Ha,lg- (53)
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For the last term, we can estimate by using the Itd isometry and the second property in (48)

T
I} = / E|A%Sy (1, $)(G(s) — G(S))Hig(y) ds

t

f Y E[A7E, 21, 5)(8 () — G(5)) Qe |, ds

keZ*

T
arm, [ E)E 6 - Go)etal ds

keZ*
T
< Tzni,lf E|G*(s) = G(5)] 34 ds- (54)
t

The Holder inequality once more implies

T % T ~ q q
13<Tna,1</ ds) (/ (EHGS(ﬂ—G<S>||ig<m)2d3)

392
<T7% My, |G - Gl s 2. Bany S <T% Mye, forg > 2. (55)
In the case of ¢ = 2, we have from (54) that
I3 < THaJHGs G”Lq(j LAQLAH))) T B H“ L€.

From (52), (53), (55), we deduce that

HVM(I)HLZ(Q oy S < (G +T g +T & )Ha,lg'

Since the right-hand side of the above inequality does not depend on the variable 7, we see that

2p—1

|vee <(C 4T +T% ), e. (56)

HC(J L2(Q,HO)) X

Next, we estimate the last term V" (t). From (51) and the formulas of the operators Sa 1@, T),
az(t 5), S1(t, T), S(t, s), we observe that

VEED = 3 (1= (T = h)e T (o — Dlus, epe

keZ*

+> (/ (s — e“ M (F(s), ex) ds) (ak — Dex

keZ*

N Z( 1/2/ (s — DS G(s) dE (s) —A,IC/Z/ (s —t)e(‘_”“G(S)dSk(S))
0

keZ*
X (Gak — Dex. (57)
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This together with (74) gives V5 (1) = D vezs W), ) (Cax — 1ex, which follows that
o 2 o 2 o
V5O ooimy = D ME@@®), €) |gak — 1P <TG, > B(u), er) 277"
keZ* keZ*

2
=11 ZHM(I)”LZ(Q Ho+my
Since [|u(?) || ;2. fo+ny < E, the last inequality implies

s < I, 0E. (58)

HC(?;LZ(Q,H”)) =

Combining (49), (56), (58) and using the triangle inequality, we deduce that

s — u”c(jLz(QH,,))\(Cl—i-T T Zq) w18 + Ty E.

By the conditions lim,_, g+ (I, 1&) = lim,_ o+ 1,2 = 0, we conclude that ||L/*° — M||C(7; L2(Q.H7)) tends
tozeroase — 0F. O

4.2. Regularization for TVP (2)

Let us construct a regularized solution for TVP (2) as follows
o, 3 T~ ~
0 (1) = S (1. THT + / Boalt, ) (s) ds
t
T _ - r -
+ f Son(t, )G (5) AW () / 8oalt, )G (5) W' (s).
0 0

where the operators ga,l (t, T), gagz(t, s) are of the forms (45), (46) respectively. The following lemma
investigates the convergence rate of this regularized solution.

Theorem 4.2. Leto > 0, « = a(e) > 0. Suppose that (44) holds for some p > 1, ¢ =1 > 3 21/2,
and there exists E > 0 such that sup, 7 U@ 12, gotny < E, for some 7 > 0. Assume that the filter
kernels ¢o i satisfy

(S1) both |g,, kl)x"Jrl T™ and |L,, klAge T* are bounded by some ﬁa 1 > 0 independent of k,

(82) [Gar — 1] < TgoA T where Ha 2 s some positive constant independent of k.

Assume further that I"[o,,l, Ha,z satisfy lim,_, o+ (Ha,le) = lim,_, o+ I"[a,z = 0. Then, there exists a positive
constant My independent of «, € such that the following error estimate holds

-

M”C(j L2(Q, HU)) MOI_IO[ 1€ + not 2E (59)

. —,E —
Consequently, lim,_,o+ | U =~ — u”C(?;U(Q,H“)) = 0.
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Remark 4.4.

1) Notice that the result in Theorem 4.2 needs a more strict assumption for the data than the result
in Theorem 4.1. The first result only needs (44) holds for ¢ > 2 while the second result needs it

holds forg =r > ﬁ, which is greater than 2.

ii) One can easily give some similar examples for the filter kernels ¢, x, k € Z7, as in Remark 4.1 and
Remark 4.2.

Remark 4.5. The strong assumption sup, 7 [[u(t) [l ;2(q go+1) < E implies a very quick decay of the

Fourier coefficients of the final datum u r. By contract, in the case u(f{‘) is constructed in (34), we do not

see a significant decrease in the corresponding Fourier coefficients, which makes the instability of the
solution.

Proof. Let us split U‘”(z) — u(t) into two terms as follows
U@ —u@)y=V"(t)+V, @, (60)
where V‘f’s (¢) and V;’E(t) are defined by

T
VIT(6) = San (0, T (5 — uy) +/ Sun(t, )(F°(s) — F(s))ds

T
+ / 82t )(G*(5) — G(s)) dW"(s)
0

=:J1(0)

—/ Sua(t,9)(G*(s) — G(5)) dW" (s), (61)
0

=:2(1)

~ T ~
Vy(0) = (St (6, T) — Sit, T))uy +f (Sun(t, s) — Salt, s))F(s) ds
T
+ / (Boalt. 5) — Sa(t. )G (s) dW' (s)
0
—/ (Suat,$) = a1, $))G(s) AW (s). (62)
0

By similar estimates to those in (52) and (53), we have the following ones for two first terms in the
right-hand side of (61)

|Sar (. Y@ = up)| 20 siey < CiTlaié, (63)

<T» ﬁa,ls. (64)
L2($2,HO)

T
/ San(t, $)(F(s) — F(s)) ds
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Now, we estimate the third term J;(¢). It can be seen that

T 2
11O 20 0, =E[ Y /0 Ky (a2, )(G°() — G()) Q' %ex) (s) d&x(s) |
keZ* He
T
-y fo E| K7 1 (Soa(t, (G () — G())Q2e) ()| ds. (65)

keZ*

The expectation under the integral sign can be estimated as follows

E| K 1 (82t (G () = G)Q7e) )]

T ~ dK), 2
=E / (Sa2(t,)(G*() = G(IQ ) (W) ——= (1, ) diy
s M o
1\2 T _ - " h—1 , 2
=c; (h - 5) E‘ / Sun(t, (G () — G(M))Q”q(;) (w—s)""2dp|
s H°
1\* o e ~ :
< <h - 5) s“hE[ / 12 (= "2 [ St W (GE () = G(w) Qe du} :
Applying the Holder inequality and using properties (20), (48), we obtain
E| K 1 (Suat, ) (G () — G()) Q") (5) | o
2 1\’ 1-2h ! 2h—1 h—3
< ¢, h_i s wr (=) du
! h=3m) & e 12, 112
x / (1 — )" 2B | Sen(t, ) (G (1) — G(w) Q" ex |y din
2
<e(n 1 sl_th3(h_%)F(2h)F(h — 1/2)X
2 I'(Gh —1/2)
T
X T2ﬁ§,1 (/ (n — 2)”‘%]EH (G*(w) — G(M))Ql/zekHiI du)-
Setting M3 := cj,(h — %)T%“%(%W)”z, we see that
E| K (So2t. ) (G () — G()) Q") (5) |3
T
—2 _ _é ~5
< MG, s ( / (n = 2" E[(G*(w) — G(w) Q" e, du)- (66)

From (65) and (66),

T T
| 1@ 72 ey < MITL, / 5! f (= )" ZE|G* (1) = G |5,y it ds.
0 K
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On the other hand, by a similar technique as in (23),

T =3+ \ 5
R (w) — G, du < () |G — G
: (n—s) H (w) =G H 2 S\ 1 ” = Y@, L3y

From two last inequalities, we obtain

o T1-h T 7 (h=3)+1 2
11O e o) < MsTI m(%m—gm) 8 ©7)

Next, we estimate the last term in the right-hand side of (61). It is obvious that

! 2
2 . ~.
120 e =) X [ Kia(Suatt, 2(E°0) = G0)Qe)5)das)|
keZ* 0 Heo
t
* (S ~e 2
= Z/ E| K (Sa2(t, (G () = G()) Q) ()| 5, ds. (68)
kezx V0
Proceeding as for J;(¢), we can bound the term J,(¢) as
— Pl o=+ =2
Dot o < M3, ¢
120l < M5 ’1m($<h — )+ 1)
— T Tah-H+1 N 5
< M3TL,, . 6
’ '1¢2—2h(,%2<h—§>+1) 69

Combining (61), (63), (64), (67), (69), we deduce that there exists a positive constant M, independent
of a, € such that

HW’SHC(j;LZ(Q’HJ)) < MOHC{JS. (70)

For the last term Vg’g(t), from (62) and the formulas of the operators §a,1(t, T), gag(l‘, s), S1(, T),
S, (t, s) and using a similar argument as in (57), we deduce

Vi) =Y (i), ex) Gak — Dex

keZ*

which follows that

IV O agriey = D MTE@®, €) Nk — 17 < Ty D E(@(), e) 37,
keZ* keZ*
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which leads to

Hvt;g HCJ;LZ(Q,HG)) < ﬁ‘ﬂ SuEHﬁ(t)H L2(2, HO+7) < ﬁ“’zf' (71)
teT

Combining (60), (70), (71) and using the triangle inequality, we deduce that

Hﬂa’s < M()ﬁa’IS + ﬁa’zf.

- ﬁ”c@;Lz(Q,Hﬂ))

By the conditions lim,_, o+ (TTy1€) = lim,_ o+ T,» = 0, we conclude that |1/ — Ull ¢ 7. L2 (2. fivy tends
to zero as ¢ — 0. The proof is completed. []

Acknowledgement

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant
number B2020-18-03.

Appendix A

In this appendix, we recall the definition of a one-dimensional fractional Brownian motion and then
introduce the Wiener integral with respect to an fBm.

A one-dimensional fBm {£"(t)},>0, with & € (0, 1), is a continuous and centered Gaussian process
with covariance function Ry (¢, 1) = %(tlzh +t22h — |t —12]*"). One can see that, if h = %, then {&" ®)}i=o0
becomes the standard Brownian motion.

By & and &, we define the space of step functions ¥ on 7 and the closure of £ endowed with the
product (x[0,,1, X[0.n,1)g = Rn(t1, 12) respectively. Let B(-, -) be the Beta function [31]. For % <h<l1,
we introduce the following kernel, which will be used to present the relation between the fBm and the
standard Brownian motion latter.

h—1
B 1 i 2 _ h(2h — 1)
K(t1.12) —Ch/tz (k=) (t) A n = \/,3(2—2h,h —172)

We refer to [4] the following derivative of K, (#1, t,) with respect to the first variable #,

1
IK) 1\ /n\"? 3
—(H, ) = h—=]— H—t z, 72
o (t1, 1) Ch( 2>(t2> (H — 1) (72)

It is known from [4,10,29] that the fBm £”(¢) has the following relation with the standard Brownian
motion &(¢)

EN(r) = / Knt, s) d&(s).
0
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Constructing the operator K} ; : € — L*(J), with 3 < h < 1, as follows

. T K},
(Ki70) (1) = / V605 e, ) d, (73)

then K ; is an isometry from £ to LA(J) [4,10,29]. From [4,10,29], it is known that

T T
/0 V(s) dE" (s) = /0 K 1 (s) dEs).

Consider the fBm {W"(t)},c.7 defined as in (4). We can define the Wiener integral of ¢ : J - L(2)(H )
with respect to W"(¢) [4,10,29] as

T
/ P dW"(s) =D ¢()Qex dEl'(s) = D Ky 1(¢Q' i) (s) d&i(s).
0

keZ* keZ*

For some other works concerned with the stochastic above integral, the readers can refer to [5,6,8,9,23,
34,35].
Appendix B

In this appendix we propose representations for the solutions to TVP (1), TVP (2), and some useful
estimates for the solution operators.

We now find a representation for the solution of TVP (1) in the form u(¢) = ), ;. (u(t), ex)ex. From
the first equation of (1) and Ae, = Arey, we have

32 3
ﬁ(u(t), er) + 2xka(u(z), er) + 22 (u(0), e) = (F(1), &) + GO)A*6.(1).

Setting u, (t) := (u(t), ex), it can be seen that the above equation is a second order differential equation
in the form

W (1) + 20 (1) + 23ux (1) = (F(0), ex) + GOA &),
By using the method of variation of constants and noting that u; (T) = 0, we arrive at
T
up(®) = (1= (T = ) e ™ u(T) + / (s — )" M(F(s), ex) ds
t

T t
+ A, /O (s = D" G(s) dEi(s) — A /0 (s = D)e" MG s) dEi(s).
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Now, noting that uy(T) = (u(T), ex) = (uy, ex) since u(T) = u s, we obtain
T
ue@®) = (1= (T = Ore)eT ™ (uy, er) + / (s — D)eCM(F(s), ex) ds
t

T t
n A}iﬂ/{) (s — 1)~ G (s) d (s) — Ai/2/0 (s — 1)e“ MG (s) d&(s). (74)

Notice that the two last terms in the right-hand side of (74) can be combined as
T t
AP / (s — 1)eC MG (s) d&(s) — A, / (s — "G (s) dE(s)
0 0

T
= A, f (s — 1)eC MG (s5) d& (s).

t
For t,s € J, we define the following operators

S, Ty =Y (1= (T =On)e" ™ eder,  Sat,s) =) (s — e (-, epey.

keZ* keZ*

Then, a representation for the solution of TVP (1) is obtained as

T T
u) =81, Tuy +/ Sy(t, s)F(s)ds +/ S>(t, )G (s)dW (s).

By a similar way as above, a representation for the solution of TVP (2) can be found as
T
ut) =8it, Tuys + / Sy(t, $)F(s)ds
t

T t
+ / St $)G(s) AW (s) - f Sa(t, )G (s) dW" (s),
0 0

where we note that the two last terms have two different explicit representations as

T T
/ S(t, $)G(s) dW"(s) = Y / Sy(t,$)G(5)Q" e d&] (s)
0 0

keZ*

T
-y /0 K} 1 (Sa(t, )G ()0 e) (5) dEi(s), (75)

keZ*

f S:(t,$)G(s)dW"(s) = ) / Sy(t,5)G(5)Q"er d&] (s)
0 0

keZ*

=3 /O K} (Sa(t, )G ()Qe) (s) dEils). (76)

keZ*
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Next, the following lemma presents upper bounds for the solution operators Sy (¢, T') and S,(t, s), for

t,s € J.
Lemma B.1. Given o > 0. Then, fort,s € T, there holds

HSl @, T)||L2(Q,V;+l)—>L2(Q,H”) <G ”SZ(t’ S)||L2(Q,V§+l)—>L2(Q,H0) S )‘l_lls — 1l a7

where we set C1 .= C{(A, T) = ,/kl_z + T?2. Furthermore, if § > 0 is small enough, then

< T8, (78)

St +8,T) =8, T) Hym,vgﬂ)»ma,m) S

|82t +8,5) — St 9)| B@VT, o 2@ty < (' +T)s. (79)
Proof. We begin with the first result (77). For § € L?*(2, H N, teJ,itis easy to see that

B1S1, 6 = X E@ e (1 — (T = h) 0
keZ*

<A+ T =07 Y K@, @) ™
keZ*

-2 2 2
< (72 + T)EN6I
which implies that |5 (z, T)0|| 2q. gy < Ci HQHLz(QsVTH)‘ Similarly, for ¢, s € J, one has

1822901206 ey, = B2t )0 0 = Y BB, €0)*237 (s — 1)

keZ*
<A =DM0N g 1
We next prove the second result (78). For ¢ € J and § small enough, one can see

E|(Si¢t+68,T) =8, 7))

=Y E@©. )27 [(1 = (T — (¢ + 8))ae) e H0H — (1 — (T - £)he)eT 02

keZ*
1436 d 2
=Y K. ek)z)?” L((1 = (T = i) e ™) dz
kez* dz
2
ZE(Q 2)\2(04»1) s (T—2)Ak
e (T —2)dz
keZ* t

Since eT=9*(T — z) < Tel™, it is clear that

E|(Sit+68,T) =81, 7))

< T262 Z E(Q, ek)Z)L]%(U+1)eZT)Lk — T282]E||6||§/T
keZ* ’
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Then (78) holds. Similarly, for ¢, s € J and 8 small enough,

E|(Sa(t + 8, 5) — S22, 5))0 50

_ Z E(0, ek)z)»ia (S —(r+ 3))e(s7(z+a)>xk — (s — t)e(sft))»k |2
keZ*
t+36 d 2
= Z E(@©, ek)z)\%’ f —((s — z)e(s_m") dz
kez* ! dz

1+3 )
< Z E(@®, ex)*12° / (14 (s — Z))e(s—t)kk dz
t

keZ*

Since (1 + Ax(s — 2))e™% < (A" + T)rre™™, one deduces that

E (S +8.5) = S:(0.9)0 [ < (7" + T SEIONr .

This leads to (79). We now complete the proof. [J
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