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Abstract
In this paper, the well-posedness of stochastic time fractional 2D-Stokes equations of order
α ∈ (0, 1) containig finite or infinite delay with multiplicative noise is established, respec-
tively, in the spaces C([−h, 0]; L2(Ω; L2

σ )) and C((−∞, 0]; L2(Ω; L2
σ )). The existence

and uniqueness of mild solution to such kind of equations are proved by using a fixed-point
argument. Also the continuity with respect to initial data is shown. Finally, we conclude
with several comments on future research concerning the challenging model: time fractional
stochastic delay 2D-Navier–Stokes equations with multiplicative noise. Hence, this paper
can be regarded as a first step to study this challenging topic.
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1 Introduction

Thewell-posedness of flowproblems in a viscous fluid is crucial formany areas of science and
engineering, for example, the automotive and aerospace industries, aswell as nanotechnology.
In the latter case of microfluidic structures, we often encounter flow problems at moderate
viscosities which arise, in the study of the modeling of various devices for the separation
and manipulation of particles in microfluids systems [18], in the study of tumor tissue as
a porous medium described by Darcy’s law [11–13], etc. In applications such as these, the
Stokes equations provide a first approximation of the more general Navier–Stokes equations
in situations where the flow is nearly steady and slow, and has small velocity gradients, so
the inertial effects can be ignored.

The classical integer order (α = 1) primitive partial differential equations, which describe
heat/wave propagation in a homogeneousmedium, have been previously studied in [3,14–16,
22,24,25,27], whereas, it is mostly observed the heat/wave propagation exhibits subdiffusive
behavior due to the complex inhomogeneity of themedium. In fact, there is a diversity of real-
world systems which exhibit this type of phenomenon, from the mathematical point of view,
the fractional derivative plays the role of characterizing the power-law behavior [19,20,28].
Hence, in recent decades, scientists have developed many new models that naturally involve
fractional differential equations, which demonstrate the anomalous diffusion phenomenon
appearing in the real-world successfully, see e.g., [1,6,8,9,17,19,20,23] and references therein.

Moreover, the problem we consider here uses the Caputo time fractional derivative,
whose advantage is that the Caputo derivative of constant functions is zero. Thus, time-
independent solutions are also solutions of the time-dependent problem [2]. Also, compared
with Riemann–Liouville derivative [23], Caputo derivatives remove singularities at the origin
and share many similarities with the classical derivatives so that they are suitable for initial
value problems. P.M. Carvalho-Neto and G. Planas analyzed in [7] the following Navier–
Stokes model with Caputo fractional derivative,

⎧
⎪⎨

⎪⎩

∂α
t u − κΔu + u · ∇u + ∇ p = f in R

N , t ≥ 0,

∇ · u = 0 in R
N , t ≥ 0,

u(0, x) = u0 in R
N ,

(1)

where ∂α
t is the Caputo fractional derivative of order α ∈ (0, 1) with respect to t (see

Definition 1), u is the velocity field of the fluid, κ > 0 is the kinematic viscosity, p is the
associated pressure, f is the external force and u0 is an appropriate initial value, and N ≥ 2.
The authors in [7] analyzed the well-posedness of the problem, the existence and eventual
uniqueness of mild solutions as well as their regularity in time.

However, in order to have a much better description of our model, it is sensible to consider
some other features in the formulation of the equations. On the one hand, it is well known
and accepted nowadays that, in physical systems of the real world, the different stochastic
perturbations that originate from many natural sources are ubiquitous, most often, cannot be
ignored. This leads us to consider some randomness in the model which can be described
by some kind of white or colored noise or some other type of stochastic terms. On the other
hand, it is also obvious that the future evolution of a system does not only depend on its
current state, its past history does determine its future behavior too. Also, on those problems
in which we intend to apply some control, it is very convenient to consider some delays or
memory terms in the formulation [4,5].

Motivated by the previous considerations, our model can be more realistic if we intro-
duce both features in the formulation. Needless to say, there are many choices in the type
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of noise, such as, Brownian motion/Wiener process, fractional Brownian motion, Lévy or
Poisson ones, etc. In order to perform our analysis clearly and show how it works, we prefer
to consider the classical and standard Brownian motion, because the problem can be eas-
ily handled mathematically, and serves as guide for more complicated expressions. Based
on these advantages, there has been a growing interest in stochastic time fractional partial
differential equations with delays. For instance, in more recent decades, the stochastic clas-
sical/time fractional partial differential equations have been extensively studied theoretically
[10,19,20,26,30,31]. However, there appear to be fewer studies in the literatures related to
the theoretical analysis of stochastic Stokes/Navier–Stokes equations driven by multiplica-
tive noise with time fractional derivative, and as far as we know, no one dealt with delays.
This is why we are strongly interested in the following problem

⎧
⎪⎨

⎪⎩

∂α
t u − κΔu + u · ∇u + ∇ p = f (t, ut ) + g(t, ut )

dW (t)
dt in R

N , t ≥ 0,

∇ · u = 0 in R
N , t ≥ 0,

u(t, x) = ϕ(t, x) in R
N , t ∈ [−h, 0],

(2)

where now f and g are external forcing terms containing some hereditary or delay character-
istics, and ϕ is the initial datum in the interval of time t ∈ [−h, 0], where h is a fixed positive
number, and W (t) is a standard scalar Brownian motion/ Wiener process on an underlying
complete filtered probability space {Ω,F, {Ft }t≥0,P}.

Although our final and challenging goal is to analyze the well-posedness of mild solutions
and asymptotic behavior of time fractional stochastic Navier–Stokes model with delay (2),
there are some difficulties/troubles which suggest us to start by analyzing first a linearized
version before we can tackle the complete problem. It is well known that when we deal with
the integer time stochastic Navier–Stokes equations in the phase space L2(Ω;C([0, T ]; X)),
with the help of Itô’s isometry and Burkholder–Davis–Gundy’s inequality, a priori estimates
can be handled smoothly. However, for time fractional stochastic Navier–Stokes equations,
if the same phase space were adopted, we would face essential troubles: (a) Itô’s isometry
only holds true for the integer time derivative rather than time fractional derivative; (b)
Burkholder–Davis–Gundy’s inequality cannot be used since the integral is not a martingale
(the main reason is the singular kernel appearing in the stochastic integral).

For this reason, in this first approachwewill analyze the following time fractional stochas-
tic delay incompressible flow problem, i.e., the non-stationary 2D-Stokes equations,

⎧
⎪⎨

⎪⎩

∂α
t u − κΔu + ∇ p = f (t, ut ) + g(t, ut )

dW (t)
dt in R

2, t ≥ 0,

∇ · u = 0 in R
2, t ≥ 0,

u(t, x) = ϕ(t, x) in R
2, t ∈ [−h, 0].

(3)

In the deterministic case, the concept of weak (or variational) solution to the Navier–Stokes
problem without delay was also analyzed [33]. However, the proof of this deterministic
problem relies on direct estimates involving the time fractional derivative as well as the
Fourier transform, while the stochastic case cannot be analyzed by similar techniques since
the term containing noise only makes sense in integral form. For this reason, we carry out
a program based on a fixed-point theorem which is different also from the one used in the
papers [7,32].We highlight that it might be possible to perform the technique in [33] to handle
those cases containing a much simpler noise term in which the stochastic integral does not
appear, for instance, when the noise has a special additive form. It is our objective to analyze
these problems in future works.

We have structured our paper as follows. In the next section we briefly recall some relevant
preliminaries. Section 3 is firstly devoted to the existence of local mild solutions of (3) in the
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case of bounded/finite delay. Next the continuous dependence on the initial data as well as the
uniqueness of local mild solution is also proved. Futhermore, the existence and uniqueness of
global mild solution are obtained in the Banach space X2. In Sect. 4, we investigate problem
(3) with unbounded delay. Although the technique to prove the well-posedness of mild
solution to such model is similar to the one used in Sect. 3, there are substantial differences
in this unbounded delay case which justify a detailed study. Eventually, some conclusions
and comments are included in Sect. 5.

2 Preliminaries

In this section we present basic notations related to stochastic theory, collect useful facts on
Mittag-Leffler functions and establish the definition of the mild solution to problem (3). For
more details, we refer to [6,7,21,23] and references therein.

2.1 Stochastic Theory and Notations

To begin we fix a stochastic basis, that is,

S := (Ω,F, {Ft }t≥0,P,W ),

where P is a probability measure on Ω and F is a σ -algebra. In order to avoid unnecessary
complications below, we may assume that {Ft }t≥0 is a right-continuous filtration on (Ω,F)

such that F0 contains all the P-negligible subsets and W (t) = W (ω, t), ω ∈ Ω is a standard
1-D Brownian motion defined on (Ω,F,P, {Ft }t≥0).

To set our problem (3) in the abstract framework, we consider the standard notation L2
σ

to describe the subspace of the divergence-free vector fields in L2:

L2
σ = {u ∈ L2 : ∇ · u = 0 in R

2}
with norm ‖ · ‖L2 , where L2 denotes the vector-valued Lebesgue space and for u ∈ L2,

‖u‖2L2 =
2∑

j=1

∫

R2
|u j (x)|2dx .

Besides, let S ⊂ R and let X be a Banach space.We denote the space of continuous functions
from S to X by C(S; X) (equipped with its usual norm). L2(S; X) denotes the Banach space
of L2 integrable functions u : S → X . H1(S; X) = W 1,2(S; X) is the subspace of L2(S; X)

consisting of functions such that the weak derivative ∂u
∂t belongs to L2(S; X). Both spaces

L2(S; X) and W 1,2(S; X) are endowed with their standard norms. Moreover, we denote
a ∧ b = min{a, b}.

Consider a fixed T > 0, given u : [−h, T ] → L2
σ , for each t ∈ [0, T ], we denote by ut

the function on [−h, 0] via the relation
ut (s) = u(t + s), s ∈ [−h, 0],

where h > 0 denotes the delay, when h = ∞, it denotes infinite or unbounded delay.
Furthermore, let L2(Ω; X) be the Hilbert space of X -valued random variable with norm
‖u(·)‖2

L2 = E‖u(·)‖2, where the expectation E is defined by Eu = ∫

Ω
u(·)dP.
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2.2 Fractional Setting andMittag-Leffler Operators

We now recall some facts about the fractional calculus.
For α > 0, define the function gα : R → R by

gα(t) :=
{

1
Γ (α)

tα−1, t > 0,

0, t ≤ 0,

where Γ (α) is Euler’s Gamma function. Assume that T > 0, for a function u ∈
L1([0, T ]; X), the Riemann–Liouville fractional integral of order α of u is given by

Jα
t u(t) := gα ∗ u(t) = 1

Γ (α)

∫ t

0
(t − s)α−1u(s)ds, t ∈ [0, T ].

Thus, based on the definition ofRiemann–Liouville fractional integral operator,we present
the Caputo fractional differential operator. For more details, we refer to the references [7,17,
23].

Definition 1 ([7, Definition 1]) Let α ∈ (0, 1) and T > 0. Consider u ∈ C([0, T ]; X) such
that the convolution g1−α ∗ u ∈ W 1,1([0, T ]; X). The expression

Dα
t u(t) := d

dt

{

J 1−α
t [u(t) − u(0)]

}

= d

dt

{
1

Γ (1 − α)

∫ t

0
(t − s)−α[u(s) − u(0)]ds

}

is called the Caputo fractional derivative of order α of the function u.

In what follows, we present some properties of Mainardi function [6], denoted by Mα .
This function is a particular case of the Wright type function introduced by Mainardi in [21].
More precisely, for α ∈ (0, 1), the entire function Mα : C → C is given by

Mα(z) :=
∞∑

n=0

(−z)n

n!Γ (1 − α(1 + n))
.

Some basic properties of the Mainardi function will be used further in this paper to obtain
most of the estimates.

Proposition 1 ([7, Proposition 2]) For α ∈ (0, 1) and −1 < r < ∞, when we restrict Mα to
the positive real line, it holds that

Mα(t) ≥ 0 for all t ≥ 0, and
∫ ∞

0
tr Mα(t)dt = Γ (r + 1)

Γ (αr + 1)
.

The next results are classical computations done in the literatures related to the Mittag-
Leffler operators, for instance [7]. To do this, let X be a Banach space and −A : D(A) ⊂
X → X be the infinitesimal generator of an analytic semigroup {T (t) : t ≥ 0}. Then, for each
α ∈ (0, 1), we define the Mittag-Leffler families {Eα(−tαA) : t ≥ 0} and {Eα,α(−tαA) :
t ≥ 0} by

Eα(−tαA) =
∫ ∞

0
Mα(s)T (stα)ds,

and

Eα,α(−tαA) =
∫ ∞

0
αsMα(s)T (stα)ds.
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It is interesting to notice that the Mainardi functions act as a bridge between the fractional
and the classical abstract theories. This relation is based on the inversion of certain Laplace
transform in order to obtain the fundamental solutions of the fractional diffusion-wave equa-
tion. Let us mention e.g., [6,7,19] and references therein.

The following lemma compiles the main assertions of the abstract theory of fractional
calculus.

Lemma 1 ([7, Theorem 3]) The operatorsEα(−tαA) andEα,α(−tαA) are well defined from
X to X. Moreover, for x ∈ X it holds,

(i) Eα(−tαA)x |t=0 = x;
(ii) the vectorial functions t → Eα(−tαA)x and t → Eα,α(−tαA)x are analytic from

[0,∞) to X.

Let us rewrite the time fractional stochastic 2D-Stokes delay differential equations (3) in
an abstract form

{
Dα
t u = −Au + F(t, ut ) + G(t, ut )

dW (t)
dt , t > 0,

u(t) = ϕ(t), t ∈ [−h, 0], (4)

where A = −PΔ = −ΔP , F(t, ut ) = P f (t, ut ) and G(t, ut ) = Pg(t, ut ). Here, P :
L2 → L2

σ is the Helmholtz–Leray projector and A : D(A) ⊂ L2
σ → L2

σ is the Stokes
operator.

We end this section by recapitulating the properties of both families of Mittag-Leffler
operators, which furnish the essential tools used throughout the whole article, see [7,15] for
more details. Notice that the following lemmas hold true when the dimension is N ≥ 2.

Lemma 2 ([7, Lemma 6]) Consider α ∈ (0, 1), and r1, r2 real numbers satisfying

1 < r1 ≤ r2 < ∞ and r2N/(2r2 + N ) < r1.

Then, for any v ∈ Lr1
σ , there exists a constant C = C(r1, r2, N , α) > 0 such that

(i) ‖Eα(−tαAr1)v‖Lr2 ≤ Ct−α(N/r1−N/r2)/2‖v‖Lr1 , t > 0

and

(ii) ‖Eα,α(−tαAr1)v‖Lr2 ≤ Ct−α(N/r1−N/r2)/2‖v‖Lr1 , t > 0.

Remark 1 For simplicity we will consider the case N = 2 in our analysis, but the results hold
true for N ≥ 2 (see Remark 6 at the end of Sect. 4).

2.3 Definition of Mild Solution

Inspired by the arguments in [28] and references therein, we now make precise the notation
of mild solution to problem (4), which is given by a fractional variation of constants formula
involving the Mittag-Leffler families.

Definition 2 (Mild solution) Let S = (Ω,F,P, {F}t≥0) be a fixed stochastic basis generated
by a standard Brownian motion W , and T > 0. Consider α ∈ (0, 1) and an initial function
ϕ, such that ϕ(t, ·) is a F0-measurable random variable for all t ≤ 0 (relative to S). A
mild solution to problem (4) on [−h, T ] is a stochastic process u such that u(t) = ϕ(t), for
t ∈ [−h, 0], fulfilling
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u(t) = Eα(−tαA)ϕ(0) +
∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

+
∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s), P a.s., for every t ∈ [0, T ]. (5)

Remark 2 Notice that, the Stokes operator −A is the infinitesimal generator of an analytic
semigroup {e−t A : t ≥ 0}. Hence, both Mittag-Leffler families Eα(−tαA) and Eα,α(−tαA)

are well defined.

Remark 3 It is worth mentioning that the analysis in this paper can be easily extended to the
case in which system (3) is driven by Hilbert valued Brownian motions/Wiener processes in
infinite dimensions, however we prefer to consider this simpler formulation for the sake of
clarity to the reader.

3 Well-Posedness of Mild Solution to Problem (4) with Bounded Delay

In this section, the crucial well-posedness of fractional stochastic 2D-Stokes equation with
bounded delay

{
Dα
t u = −Au + F(t, ut ) + G(t, ut )

dW (t)
dt , t > 0,

u(t) = ϕ(t), t ∈ [−h, 0], (6)

will be justified, where h is a positive fixed constant (finite delay).
In order to apply the previous lemmas successfully, it is necessary to introduce suitable

Banach spaces, which aim to capture the essence of the problem.
For any α ∈ (0, 1) and fixed T > 0, consider the Banach space X2 which is the set of

continuous function u : [−h, T ] × Ω → L2(Ω; L2
σ ) equipped with its natural norm

‖u‖X2 =
(

sup
t∈[−h,T ]

E‖u(t)‖2L2

) 1
2

,

here we omit T in X2 but no confusion is possible.
Let us now state the hypotheses imposed on the external forcing terms in our problem.

(H1) There exists a constant L f > 0 such that the function F : [0,∞) × C([−h, 0]; L2

(Ω; L2
σ )) → L2(Ω; L2

σ ) satisfies
∫ t

0
E‖F(s, us) − F(s, vs)‖2L2ds ≤ L f

∫ t

−h
E‖u(s) − v(s)‖2L2ds,

for all u, v ∈ C([−h, T ]; L2(Ω; L2
σ )).

(H2) There exists a constant Lg > 0 such that the function G : [0,∞) × C([−h, 0];
L2(Ω; L2

σ )) → L2(Ω; L2
σ ) satisfies

∫ t

0
E‖G(s, us) − G(s, vs)‖2L2ds ≤ Lg

∫ t

−h
E‖u(s) − v(s)‖2L2ds,

for all u, v ∈ C([−h, T ]; L2(Ω; L2
σ )).

Initially, we establish the local existence and uniqueness of mild solution to problem (6)
by a fixed-point argument.
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Theorem 1 Let α ∈ (0, 1). Assume that conditions (H1)–(H2) hold, and initial function
ϕ ∈ C([−h, 0]; L2(Ω; L2

σ )), such that ϕ(t, ·) is a F0-measurable random variable for all
−h ≤ t ≤ 0. Then there exists T > 0 (small enough) such that problem (6) admits a unique
mild solution u in the sense of Definition 2 on [−h, T ].
Proof To start off, we pick up an initial function ϕ(t) ∈ C([−h, 0]; L2(Ω; L2

σ )) such that
‖ϕ‖C([−h,0];L2(Ω;L2

σ )) is small enough compared with R, precisely, we choose R such that

(3(C + 1) + 2ChLg)‖ϕ‖2C([−h,0];L2(Ω;L2
σ ))

≤ R2

2
.

Define the following space Bϕ
R with α ∈ (0, 1) and R > 0, for every t ∈ [0, T ]:

Bϕ
R =

{

u ∈ C([−h, T ]; L2(Ω; L2
σ )) : u(t) = ϕ(t) ∀t ∈ [−h, 0], ‖u‖X2 ≤ R

}

.

As a preparation for our main result, with the choice of an initial value ϕ ∈
C([−h, 0]; L2(Ω; L2

σ )), let us define the operator L on Bϕ
R as follows,

(Lu)(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ(t), t ∈ [−h, 0],
Eα(−tαA)ϕ(0) +

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

+
∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s), t ∈ [0, T ], P-a.s.

(7)

Assertion 1: Lu ∈ C([−h, T ]; L2(Ω; L2
σ )), for each u ∈ C([−h, 0]; L2(Ω; L2

σ )).
Notice that (Lu)(t) = ϕ(t) if t ∈ [−h, 0], and ϕ ∈ C([−h, 0]; L2(Ω; L2

σ )). Therefore,
we only need to check the continuity of Lu on [0, T ]. For any t1, t2 ∈ [0, T ], δ > 0 small
enough with 0 < |t2 − t1| < δ, by slightly modifying the proof of [7, Lemma 11], with the
help of the analytical property of the Mittag-Leffler operators in time (see Lemma 1(ii)), the
result holds true immediately.
Assertion 2: ‖Lu‖X2 ≤ R, for sufficiently small T .

To this end, we have to prove that, for any u ∈ Bϕ
R ,

‖Lu‖X2 =
(

sup
t∈[−h,T ]

E‖(Lu)(t)‖2L2

) 1
2 ≤ R. (8)

For t ∈ [−h, 0], we have
E‖(Lu)(t)‖2L2 = E‖ϕ(t)‖2L2 ≤ sup

t∈[−h,0]
E‖ϕ(t)‖2L2 . (9)

If t ∈ (0, T ], it follows
E‖(Lu)(t)‖2L2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

∥
∥
∥
∥

2

L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s)

∥
∥
∥
∥

2

L2

:= I1 + I2 + I3.

(10)

We now estimate each term on the right hand side of (10).
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For I1, by Lemma 2(i), it is obvious that

I1 = 3E‖Eα(−tαA)ϕ(0)‖2L2 ≤ 3CE‖ϕ(0)‖2L2 ≤ 3C sup
t∈[−h,0]

E‖ϕ(t)‖2L2 . (11)

For I2, by Lemma 2(i), (H1), the Cauchy–Schwarz inequality and Fubini’s theorem, we
obtain

I2 = 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

∥
∥
∥
∥

2

L2

≤ 3CE

(∫ t

0
‖Eα,α(−(t − s)αA)F(s, us)‖L2ds

)2

≤ 6Ct

(∫ t

0
E‖F(s, us) − F(s, 0)‖2L2ds +

∫ t

0
E‖F(s, 0)‖2L2ds

)

≤ 6CL f t
∫ t

−h
E‖u(s)‖2L2ds + 6Ct

∫ t

0
E‖F(s, 0)‖2L2ds

≤ 6ChL f t sup
t∈[−h,0]

E‖ϕ(t)‖2L2 + 6CL f t
∫ t

0
E‖u(s)‖2L2ds

+ 6Ct2 sup
s∈[0,t]

E‖F(s, 0)‖2L2

≤ 6ChL f t sup
t∈[−h,0]

E‖ϕ(t)‖2L2

+ 6Ct2
(

L f R
2 + sup

s∈[0,t]
E‖F(s, 0)‖2L2

)

.

(12)

For I3, by Lemma 2(i), Itô’s isometry and (H2),

I3 = 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s)

∥
∥
∥
∥

2

L2

≤ 3C
∫ t

0
E‖G(s, us)‖2L2ds

≤ 6C
∫ t

0
E‖G(s, us) − G(s, 0)‖2L2ds + 6C

∫ t

0
E‖G(s, 0)‖2L2ds

≤ 6CLg

(∫ 0

−h
E‖ϕ(s)‖2L2ds +

∫ t

0
E‖u(s)‖2L2ds

)

+ 6C
∫ t

0
E‖G(s, 0)‖2L2ds

≤ 6ChLg sup
t∈[−h,0]

E‖ϕ(t)‖2L2 + 6Ct

(

LgR
2 + sup

s∈[0,t]
E‖G(s, 0)‖2L2

)

.

(13)

Substituting (11)–(13) into (10), combining with (9), it is obvious that

E‖(Lu)(t)‖2L2 ≤ 3
(
(C + 1) + 2ChL f t + 2ChLg

)
sup

s∈[−h,0]
E‖ϕ(s)‖2L2

+ 6Ct2
(

L f R
2 + sup

s∈[0,t]
E‖F(s, 0)‖2L2

)
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+ 6Ct

(

Lg R
2 + sup

s∈[0,t]
E‖G(s, 0)‖2L2

)

.

Consequently, thanks to the choice of R, we can choose T small enough such that

‖Lu‖X2 =
(

sup
t∈[−h,T ]

E‖(Lu)(t)‖2L2

) 1
2

≤
(

3((C + 1) + 2ChL f T + 2ChLg) sup
t∈[−h,0]

E‖ϕ(t)‖2L2

+ 6CT 2
(

L f R
2 + sup

t∈[0,T ]
E‖F(t, 0)‖2L2

)

+ 6CT

(

Lg R
2 + sup

t∈[0,T ]
E‖G(t, 0)‖2L2

)) 1
2

≤ R.

(14)

Assertion 3: Operator L : Bϕ
R → Bϕ

R is a contraction.
To this end, for any u, v ∈ Bϕ

R , it follows that

‖Lu − Lv‖X2 :=
(

sup
t∈[−h,T ]

E‖(Lu)(t) − (Lv)(t)‖2L2

) 1
2

. (15)

For t ∈ [−h, 0], one has (Lu)(t) = (Lv)(t) = ϕ(t). Thus, it is sufficient to consider the
case t ∈ [0, T ]. Observe that

E ‖(Lu)(t) − (Lv)(t)‖2L2

≤ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))ds

∥
∥
∥
∥

2

L2

+ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))dW (s)

∥
∥
∥
∥

2

L2

:= J1 + J2. (16)

For J1, by Lemma 2(i), (H2), the Cauchy–Schwarz inequality and Fubini’s theorem, we
obtain

J1 = 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))ds

∥
∥
∥
∥

2

L2

≤ 2CE

(∫ t

0
‖Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))‖L2ds

)2

≤ 2CL f t
∫ t

−h
E‖u(s) − v(s)‖2L2ds

= 2CL f t
∫ t

0
E‖u(s) − v(s)‖2L2ds

≤ 2CL f t
2 sup
s∈[0,t]

E‖u(s) − v(s)‖2L2 .

(17)
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For J2, by Lemma 2(i), (H2) and Itô’s isometry, one has

J2 = 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))dW (s)

∥
∥
∥
∥

2

L2

≤ 2CLg

∫ t

−h
E‖u(s) − v(s)‖2L2ds

= 2CLg

∫ t

0
E‖u(s) − v(s)‖2L2ds

≤ 2CLgt sup
s∈[0,t]

E‖u(s) − v(s)‖2L2 .

(18)

Hence, substituting (17)–(18) into (16), it follows that

‖Lu − Lv‖X2 ≤
(

2CT (L f T + Lg) sup
t∈[0,T ]

E‖u(t) − v(t)‖2L2

) 1
2

:= M‖u(t) − v(t)‖X2 ,

(19)

where

M2 = 2CT (L f T + Lg).

Therefore, we can choose T small enough such that 0 < M < 1, in other words, we can
choose T small enough such that operator L maps Bϕ

R into itself, and it is a contraction as
well. The Banach fixed-point theory yields that operator L possesses a fixed-point in Bϕ

R .
Namely, problem (6) has a unique local mild solution on [−h, T ], the proof of this theorem
is completed. 
�
Proposition 2 Under the assumptions of Theorem 1, the mild solution to (6) is continuous
with respect to the initial data ϕ ∈ C([−h, 0]; L2(Ω; L2

σ )). In particular, if u(t), w(t) are
the corresponding mild solutions on the interval [−h, T ], to the initial data φ and ψ , then
the following estimate holds

‖u − w‖X2 ≤ 3‖φ − ψ‖C([−h,0];L2(Ω;L2
σ )) exp(3C(L f t + Lg)t), ∀t ∈ [0, T ].

Proof The result of this proposition is proved by similar arguments to those concerning the
uniqueness of next theorem, so we omit the details here. 
�

In the following lines, a theorem will be considered to prove the global existence and
uniqueness of mild solution to problem (6).

Theorem 2 Assume the hypotheses of Theorem 1 hold. Then for every initial value ϕ ∈
C([−h, 0]; L2(Ω; L2

σ )), the initial value problem (6) has a unique mild solution defined
globally in the sense of Definition 2.

Proof Initially, we assume that there exist two solutions, u and v on [0, T1] and [0, T2],
respectively to problem (6). Next let us prove that u = v on [−h, T1 ∧ T2]. It is clear
that u(t) = v(t) = ϕ(t) on [−h, 0], so we only need to prove that u(t) = v(t) for any
t ∈ [0, T1 ∧ T2]. Notice that

‖u − v‖2X2
:= sup

t∈[−h,T1∧T2]
E‖u(t) − v(t)‖2L2 . (20)

123



594 Journal of Dynamics and Differential Equations (2022) 34:583–603

Then one has

E‖u(t) − v(t)‖2L2

≤ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))ds

∥
∥
∥
∥

2

L2
(21)

+ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))dW (s)

∥
∥
∥
∥

2

L2

:= I1 + I2.

For I1, by Lemma 2(i), (H1) and the Cauchy–Schwarz inequality, it follows that

I1 ≤ 2CE

(∫ t

0
‖Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))‖L2ds

)2

≤ 2CE

(∫ t

0
‖F(s, us) − F(s, vs)‖L2ds

)2

≤ 2CL f t
∫ t

0
E‖u(s) − v(s)‖2L2ds

≤ 2CL f t
∫ t

0
sup

σ∈[0,s]
E‖u(σ ) − v(σ )‖2L2ds.

(22)

For I2, by Lemma 2(i), (H2) and Itô’s isometry, we derive

I2 ≤ 2
∫ t

0
E‖Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))‖2L2ds

≤ 2CLg

∫ t

0
E‖u(s) − v(s)‖2L2ds

≤ 2CLg

∫ t

0
sup

σ∈[0,s]
E‖u(σ ) − v(σ )‖2L2ds.

(23)

Substituting (22)–(23) into (21),

E‖u(t) − v(t)‖2L2 ≤ 2C
(
L f t + Lg

)
∫ t

0
sup

σ∈[0,s]
E‖u(σ ) − v(σ )‖2L2ds.

Denote by M1 = 2C(L f (T1 ∧ T2) + Lg), then

sup
t∈[−h,T1∧T2]

E‖u(t) − v(t)‖2L2 ≤ M1

∫ T1∧T2

0

(

sup
σ∈[−h,t]

‖u(σ ) − v(σ )‖2L2

)

dt,

whence the Gronwall Lemma implies that

‖u − v‖X2 = 0.

Therefore, u = v on [−h, T1 ∧ T2] for every initial function ϕ(t).
Nowweprove that for each given T > 0, themild solutionu to problem (6) is boundedwith

X2 norm. Taking into account Lemma 2(i), (H1)–(H2), Itô’s isometry, the Cauchy–Schwarz
inequality and Fubini’s theorem, we have
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E‖u(t)‖2L2 ≤ 3E
∥
∥Eα(−tαA)ϕ(0)

∥
∥2
L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

∥
∥
∥
∥

2

L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s)

∥
∥
∥
∥

2

L2

≤ 3C sup
t∈[−h,0]

E‖ϕ(t)‖2L2

+ 6CtE

(

L f

∫ t

−h
‖u(s)‖2L2ds +

∫ t

0
‖F(s, 0)‖2L2ds

)

+ 6CE

(

Lg

∫ t

−h
‖u(s)‖2L2ds +

∫ t

0
‖G(s, 0)‖2L2ds

)

≤ 6C(1 + L f th + Lgh) sup
t∈[−h,0]

E‖ϕ(t)‖2L2

+ 6Ct2 sup
s∈[0,t]

E‖F(s, 0)‖2L2 + 6Ct sup
s∈[0,t]

E‖G(s, 0)‖2L2

+ 6C(L f t + Lg)

∫ t

0
sup

σ∈[0,s]
E‖u(σ )‖2L2ds.

Therefore,

sup
t∈[−h,T ]

E‖u(t)‖2L2 ≤ 6((C + 1) + CL f T h + CLgh) sup
t∈[−h,0]

E‖ϕ(t)‖2L2

+ 6CT 2 sup
t∈[0,T ]

E‖F(t, 0)‖2L2

+ 6CT sup
t∈[0,T ]

E‖G(t, 0)‖2L2

+ 6C(L f T + Lg)

∫ T

0
sup

σ∈[0,t]
E‖u(σ )‖2L2dt

:= A(ϕ, T , F,G) + M2

∫ T

0
sup

σ∈[−h,t]
E‖u(σ )‖2L2dt,

where we have used the notation

A(ϕ, T , F,G) : = 6((C + 1) + CL f T h + CLgh) sup
t∈[−h,0]

E‖ϕ(t)‖2L2

+ 6CT 2 sup
t∈[0,T ]

E‖F(t, 0)‖2L2 + 6CT sup
t∈[0,T ]

E‖G(t, 0)‖2L2 ,

and

M2 := 6C(L f T + Lg).

Applying the Gronwall lemma, for any fixed T > 0 and all t ∈ [0, T ], we obtain
‖u‖2X2

≤ A(ϕ, T , F,G) exp(M2T ).

Because of the arbitrariness of T , together with the conclusion of uniqueness of u on [−h, T ],
it is straightforward that the mild solution u to problem (6) is defined globally. The proof of
this theorem is complete. 
�
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4 Well-Posedness of Mild Solution to Problem (4) with Unbounded
Delay

In this section, let us consider the well-posedness of mild solution to the following stochastic
time fractional 2D-Stokes equation with unbounded delay:

{
Dα
t u = −Au + F(t, ut ) + G(t, ut )

dW (t)
dt , t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0]. (24)

Before going a step further to prove the main results, we first introduce a suitable space
motivated by our unbounded delay. LetH be a separable Hilbert space, then the space CX on
H is defined as

CX (H) = {ϕ ∈ C((−∞, 0];H) : lim
θ→−∞ ϕ(θ) exists in H},

which is a Banach space equipped with the norm

‖ϕ‖CX = sup
θ∈(−∞,0]

‖ϕ(θ)‖H.

Let us denote R+ = [0,∞) and enumerate now the assumptions on the delay terms F and
G. Assume that F , G : [0,∞) × CX (L2(Ω; L2

σ )) → L2(Ω; L2
σ ), then

(H3) For any ξ ∈ CX (L2(Ω; L2
σ )), the mappings [0,∞) � t → F(t, ξ) ∈ L2(Ω; L2

σ ) and
[0,∞) � t → G(t, ξ) ∈ L2(Ω; L2

σ ) are measurable.
(H4) F(·, 0) = 0, G(·, 0) = 0 (for simplicity).
(H5) There exist two constants L ′

f and L ′
g , such that for all t ∈ [0,∞), and for all ξ ,

η ∈ CX (L2(Ω; L2
σ )),

‖F(t, ξ) − F(t, η)‖L2(Ω;L2
σ ) ≤ L ′

f ‖ξ − η‖CX (L2(Ω;L2
σ )),

‖G(t, ξ) − G(t, η)‖L2(Ω;L2
σ ) ≤ L ′

g‖ξ − η‖CX (L2(Ω;L2
σ )).

At this point, some remarks are in order.

Remark 4 (i) Notice that in this unbounded delay case, assumptions (H4) and (H5) imposed
on the delay terms are simply Lipschitz continuity while in the bounded delay case we need to
impose (H1) and (H2) which are some kind of integral Lipschitz condition. The main reason
is that in the current situation, we can use the estimate supθ≤0 ‖ut (θ)‖H ≤ supθ≤0 ‖us(θ)‖H,
if s > t , while in the bounded delay case this is not true. This will make our computations
different in both cases. Also, this is why we will include the complete details in this section.

(ii) It is quite usual when dealing with unbounded delay differential equations, to adopt a
different space for the initial data [29], namely,

Cγ (H) = {ϕ ∈ C((−∞, 0];H) : sup
θ∈(−∞,0]

eγ θ‖ϕ(θ)‖H < +∞}.

However, if we consider this space, then hypotheses (H4) and (H5) are not fulfilled when the
delay in F or G is a variable delay one. For instance, F(t, ut ) = F0(u(t −ρ(t))), where ρ is
a measurable function taking nonnegative values and F0 : R2 → R

2 is a Lipschitz function.
Therefore, this new space, although it is a bit more restrictive than the usual one, allows us
to consider more general delay terms in the functional formulation.

We can now prove our main results on well-posedness of mild solution to problem (24).
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Theorem 3 Let α ∈ (0, 1), F and G satisfy assumptions (H3)–(H5). Then, for each initial
function ϕ ∈ C((−∞, 0]; (L2(Ω; L2

σ ))), such that ϕ(t, ·) is a F0-measurable random vari-
able for all t ≤ 0, problem (24) admits a unique mild solution u in the sense of Definition 2
on (−∞, T ], for T > 0 small enough.

Proof To start off, let us pick an initial function ϕ(t) ∈ C((−∞, 0]; L2(Ω; L2
σ )) such that

‖ϕ‖CX (L2(Ω;L2
σ )) is small enough compared with R, namely, we choose R such that

3(C + 1)‖ϕ‖2CX (L2(Ω;L2
σ ))

≤ R2

3
.

Define the following space Vϕ
R with α ∈ (0, 1), R > 0

Vϕ
R =

{

u ∈ C((−∞, T ]; L2(Ω; L2
σ )) : u(t) = ϕ(t) for t ∈ (−∞, 0],

and ut ∈ CX (L2(Ω; L2
σ )) for t ≥ 0, satisfying ‖ut‖CX ≤ R.

}

As a preparation for handling the main result, with the choice of an initial value ϕ(t) ∈
C((−∞, 0]; L2(Ω; L2

σ )), let us define the operator K on Vϕ
R as follows,

(Ku)(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ(t), t ∈ (−∞, 0],
Eα(−tαA)ϕ(0) +

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

+
∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s), t ∈ [0, T ], P-a.s.

(25)

Assertion 1: Ku ∈ C((−∞, T ]; L2(Ω; L2
σ )), for all u ∈ C((−∞, T ]; L2(Ω; L2

σ )).
Observe that, if t ∈ (−∞, 0], then (Ku)(t) = ϕ(t). Therefore, we only need to check the

continuity ofKu on [0, T ]. For any t1, t2 ∈ [0, T ], δ > 0 small enoughwith 0 < |t2−t1| < δ,
by slightly modifying the proof in [7, Lemma 11], with the help of the analyticity of Mittag-
Leffler operators in time [see Lemma 1 (ii)], the result holds true immediately.

Assertion 2: ‖(Ku)t‖CX (L2(Ω;L2
σ )) ≤ R, for all t ∈ [0, T ] with sufficiently small T .

For every u ∈ Vϕ
R , we have to show that

‖(Ku)t‖CX (L2(Ω;L2
σ )) :=

(

sup
θ∈(−∞,0]

E‖(Ku)(t + θ)‖2L2

) 1
2 ≤ R.

For t ∈ (−∞, 0], we have
E‖(Ku)(t)‖2L2 = E‖ϕ(t)‖2L2 ≤ sup

t∈(−∞,0]
E‖ϕ(t)‖2L2 . (26)

If t + θ ∈ (0, T ], then it follows that

E‖(Ku)(t)‖2L2 ≤ 3E‖Eα(−tαA)ϕ(0)‖2L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

∥
∥
∥
∥

2

L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s)

∥
∥
∥
∥

2

L2

:= I1 + I2 + I3.

(27)
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We now estimate Ii (i = 1, 2, 3). For I1, by Lemma 2(i), it is obvious that

I1 = 3E‖Eα(−tαA)ϕ(0)‖2L2 ≤ 3CE‖ϕ(0)‖2L2 ≤ 3C sup
t∈(−∞,0]

E‖ϕ(t)‖2L2 . (28)

For I2, by Lemma 2(i), (H1), the Cauchy–Schwarz inequality and Fubini’s theorem, we
obtain

I2 = 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

∥
∥
∥
∥

2

L2

≤ 3E

(∫ t

0
‖Eα,α(−(t − s)αA)F(s, us)‖L2ds

)2

≤ 3Ct
∫ t

0
E‖F(s, us) − F(s, 0)‖2L2ds

≤ 3CL ′
f t

∫ t

0
‖us‖2CX (L2(Ω,L2

σ ))
ds

≤ 3CL ′
f t

2R2.

(29)

For I3, by Lemma 2(i), Itô’s isometry and (H2),

I3 = 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s)

∥
∥
∥
∥

2

L2

≤ 3C
∫ t

0
E‖G(s, us) − G(s, 0)‖2L2ds

≤ 3CL ′
g

∫ t

0
‖us‖2CX (L2(Ω;L2

σ ))
ds

≤ 3CL ′
gt R

2.

(30)

Replacing (28)–(30) into (27), combining with (26), it is obvious that

E‖(Ku)t‖2L2 ≤ 3

(

(C + 1) sup
t∈(−∞,0]

E‖ϕ(t)‖2L2 + Ct2L ′
f R

2 + CtL ′
g R

2
)

.

Consequently, due to the choice of R, we can choose T small enough such that

‖(Ku)t‖CX (L2(Ω;L2
σ )) =

(

sup
θ∈(−∞,0]

E‖(Ku)(t + θ)‖2L2

) 1
2

≤ 3

(

(C + 1)‖ϕ‖CX (L2(Ω;L2
σ )) + CT 2L ′

f R
2 + CT L ′

g R
2
) 1

2 ≤ R.

Assertion 3: Operator K : Vϕ
R → Vϕ

R is a contraction.
To this end, for any u, v ∈ Vϕ

R , it follows that

‖(Ku)t − (Kv)t‖CX (L2(Ω;L2
σ )) :=

(

sup
θ∈(−∞,0]

E‖(Ku)(t + θ) − (Kv)(t + θ)‖2L2

) 1
2

. (31)

For t ∈ (−∞, 0], one has (Ku)(t) = (Kv)(t) = ϕ(t). Thus, it is only needed to consider
the case t ∈ [0, T ]. Observe that

E ‖(Ku)(t) − (Kv)(t)‖2L2
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≤ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))ds

∥
∥
∥
∥

2

L2
(32)

+2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))dW (s)

∥
∥
∥
∥

2

L2

:= J 1 + J 2.

For J 1, by Lemma 2(i), (H2), the Cauchy–Schwarz inequality and Fubini’s theorem, we
obtain

J 1 = 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))ds

∥
∥
∥
∥

2

L2

≤ 2E

(∫ t

0
‖Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))‖L2ds

)2

≤ 2CL ′
f t

∫ t

0
‖us − vs‖2CX (L2(Ω;L2

σ ))
ds

≤ 2CL ′
f t

2‖ut − vt‖2CX (L2(Ω;L2
σ ))

.

(33)

For J 2, by Lemma 2(i), (H2) and Itô’s isometry, one has

J 2 = 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))dW (s)

∥
∥
∥
∥

2

L2

≤ 2CL ′
g

∫ t

0
‖us − vs‖2CX (L2(Ω;L2

σ ))
ds

≤ 2CL ′
gt‖ut − vt‖2CX (L2(Ω;L2

σ ))
.

(34)

Hence, substituting (32)–(34) into (31), it follows that

‖(Ku)t − (Kv)t‖CX (L2(Ω;L2
σ )) ≤

(

2C(L ′
f T

2 + L ′
gT )‖ut − vt‖2CX (L2(Ω;L2

σ ))

) 1
2

:= W‖u(t) − v(t)‖CX (L2(Ω;L2
σ )),

where

W2 = 2C(L ′
f T

2 + L ′
gT ).

Therefore, we can choose T small enough such that 0 < W < 1, which means that, the
operator K maps Vϕ

R into itself, also it is a contraction. The Banach fixed-point theorem
yields that the operator K has a fixed-point in Vϕ

R . Namely, the problem (24) has a unique
local mild solution on (−∞, T ]. The proof of this theorem is completed. 
�
Proposition 3 Under the assumptions of Theorem 3, the mild solution to (24) is continuous
with respect to the initial data ϕ ∈ C((−∞, 0]; L2(Ω; L2

σ )). In particular, if u(t), w(t) are
the corresponding mild solutions, on the interval (−∞, T ], to the initial data φ and ψ , then
the following estimate holds

‖ut − wt‖CX (L2
(
Ω;L2

σ ))
≤ 3C‖φ − ψ‖CX

(
L2(Ω;L2

σ ))
exp(3C(L ′

f t + L ′
g)t), ∀t ∈ [0, T ].

Proof This theorem can be proved by similar arguments to those concerning the uniqueness
of next theorem, so we omit the details. 
�
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The following result is concerned with the existence and uniqueness of the global mild
solution to problem (24).

Theorem 4 Assume the hypotheses of Theorem 3 hold. Then for every initial value ϕ ∈
C((−∞, 0]; L2(Ω; L2

σ )), the initial value problem (24) has a unique mild solution defined
globally in the sense of Definition 2.

Proof Although the proof of this theorem follows the same lines as the case of bounded delay
in Sect. 3, but with differences in the estimates, we prefer to include it here because the proof
of Proposition 3 is similar to the uniqueness below.

Assume that there exist two solutions, u and v on [0, T1] and [0, T2], respectively to
problem (24). Next let us prove that u = v on (−∞, T1∧T2]. It is notable that u(t) = v(t) =
ϕ(t) on (−∞, 0], so we only need to prove that u(t) = v(t) for any t ∈ [0, T1 ∧T2]. Observe
that

‖u − v‖2CX (L2(Ω;L2
σ ))

:= sup
t∈(−∞,T1∧T2]

E‖u(t) − v(t)‖2L2 . (35)

On the one hand, it holds

E‖u(t) − v(t)‖2L2

≤ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))ds

∥
∥
∥
∥

2

L2
(36)

+ 2E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))dW (s)

∥
∥
∥
∥

2

L2

:= I 1 + I 2.

For I 1, by Lemma 2(i), (H1) and the Cauchy–Schwarz inequality, it follows that

I 1 ≤ 2E

(∫ t

0
‖Eα,α(−(t − s)αA)(F(s, us) − F(s, vs))‖L2ds

)2

≤ 2CE

(∫ t

0
‖F(s, us) − F(s, vs)‖L2ds

)2

≤ 2CL ′
f t

∫ t

0
‖us − vs‖2CX (L2(Ω;L2

σ ))
ds.

(37)

For I 2, by Lemma 2(i), (H2) and Itô’s isometry, we derive

I 2 ≤ 2
∫ t

0
E‖Eα,α(−(t − s)αA)(G(s, us) − G(s, vs))‖2L2ds

≤ 2CL ′
g

∫ t

0
‖us − vs‖2CX (L2(Ω;L2

σ ))
ds.

(38)

Substituting (37)–(38) into (36), it yields

E‖u(t) − v(t)‖2L2 ≤ 2C
(
L ′

f t + L ′
g

) ∫ t

0
‖us − vs‖2CX (L2(Ω;L2

σ ))
ds.

Denote by W1 = 2C(L ′
f (T1 ∧ T2) + L ′

g), we have

‖u − v‖2CX (L2(Ω;L2
σ ))

≤ W1

∫ T1∧T2

0
‖us − vs‖2CX (L2(Ω;L2

σ ))
dt .
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The Gronwall Lemma implies that

‖u − v‖CX (L2(Ω;L2
σ )) = 0.

Therefore, u = v on (−∞, T1 ∧ T2] for every initial function ϕ(t).
Now we prove that for each given T > 0, the mild solution u to problem (24) is bounded

with CX (L2(Ω; L2
σ )) norm. Taking into account Lemma 2(i), (H1)–(H2), Itô’s isometry, the

Cauchy–Schwarz inequality and Fubini’s theorem, we have

E‖u(t)‖2L2 ≤ 3E
∥
∥Eα(−tαA)ϕ(0)

∥
∥2
L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)F(s, us)ds

∥
∥
∥
∥

2

L2

+ 3E

∥
∥
∥
∥

∫ t

0
Eα,α(−(t − s)αA)G(s, us)dW (s)

∥
∥
∥
∥

2

L2

≤ 3C‖ϕ‖2CX (L2(Ω;L2
σ ))

+ 3CL ′
f t

∫ t

0
‖us‖2CX (L2(Ω;L2

σ ))
ds

+ 3CL ′
g

∫ t

0
‖us‖2CX (L2(Ω;L2

σ ))
ds

≤ 3C‖ϕ‖2CX (L2(Ω;L2
σ ))

+ 3C(L ′
f t + L ′

g)

∫ t

0
‖us‖2CX (L2(Ω;L2

σ ))
ds.

Applying the Gronwall lemma, for any fixed T > 0 and all t ∈ [0, T ],
‖ut‖2CX (L2(Ω;L2

σ ))
≤ (3C + 1)‖ϕ‖2CX (L2(Ω;L2

σ ))
exp(3C(L ′

f T + L ′
g)T ).

Because of the arbitrariness ofT , togetherwith the conclusionof uniqueness ofu on (−∞, T ],
it is straightforward that the mild solution u to problem (24) is defined globally. This finishes
the proof. 
�
Remark 5 The well-posedness results to problems (6) and (24) can be modified to the case
that the driven process is an additive fractional Brownian motion, which is L2

σ -value. Of
course we need to redefine G(t, ·) and impose certain assumptions similar to (H2)–(H5), see
[29], for example.

Remark 6 Although we have performed our analysis for the stochastic time fractional 2D-
Stokes delay differential equations, the results of sections 3 and 4 still hold truewhen the phase
spaces are extended to C([−h, 0]; L2(Ω, LN

σ )) and C((−∞, 0]; L2(Ω, LN
σ )) respectively,

where N > 2 [7].

5 Conclusions and Final Remarks

In this paper we have considered a quite general time fractional stochastic Stokes model with
finite and infinite delay and multiplicative Brownian motion. As we said, this is only a first
approach to our goal concerning the case of stochastic time fractional delay Navier–Stokes
with multiplicative noise. But, to that end, a new technique has to be designed because the
fixed-point theorem used in our proofs is not appropriate to handle the nonlinear term: the
appearance of expectation in the norm does not allow us to bound that term in an appropriate
way as it is done in the deterministic case, specially for the contraction property. Therefore,
this is a challenging problem to be analyzed shortly. However, it is not surprising that the
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problem cannot be analyzed with this technique since, to the best of our knowledge, even
the integer time derivative system has not been solved for the multiplicative noise case, but
only for the additive one. We plan to work on this first case and combine the ideas of both
techniques to achieve our goal for the time fractional stochastic Navier–Stokes with delays.
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