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Abstract—This paper proposes a Volterra kernel identification
procedure for wireless amplifiers with nonlinear memory. The
technique is based on a reduced-order model for wideband
amplifiers (VBW) that is favorably compared with widely used
memory polynomial model in terms of NMSE. The identification
method takes advantage of the particular model structure and
is thoroughly derived with a proper selection of pulse-like
waveforms of known amplitude as probing signals, with special
emphasis on the extraction of the fifth-order kernel. The main
advantage of the method is that it allows exploring the dynamic
range of the amplifier without rising the temperature in the
device or altering the biasing point. For validation purposes, a
commercial amplifier has been characterized and the extracted
kernels have been used to predict the response under WCDMA-
like signals. In addition to the simplicity of the deterministic
approach used in this extraction procedure, the agreement of the
predicted responses with measurements was highly satisfactory
in all cases and permitted the capture of phenomena that are
due to nonlinear memory effects.

Index Terms—System identification, behavioral models, power
amplifiers, nonlinear memory effects.

I. INTRODUCTION

THE establishment of the Third-Generation cellular sys-

tems and the imminent advent of the Fourth-Generation

mobile systems have propelled the study of novel techniques in

wireless communications. Unlike the older GSM technology,

the new wireless systems need highly linear power ampli-

fiers, and the characterization of their nonlinear effects is

increasingly necessary. In the field of amplifier modeling, the

Volterra series approach offers a methodical way to analyze

nonlinear effects appearing in the wireless communications

channel. Under this approximation, the amplifier is entirely

characterized by the Volterra kernels, the multidimensional

impulse responses of the nonlinear system, so that a complete

description of the amplifier is achieved when its kernels are

experimentally determined.

Among the several techniques that can be used to measure

the Volterra kernels of finite order, the one proposed in [1] was

formally presented for a continuous-time second-order system.

The technique relies in a bilinear operator and according

to this procedure, the system output is measured under two

input conditions, with one impulse and with two impulses.

By applying repeatedly this signal with different temporal

separation between the two unit impulses, the corresponding

outputs are used to compute the second-order Volterra kernel.
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Based on the previous continuous-time case, the concept

of bi-impulse response of a quadratic Volterra filter was

introduced in [2] as a formal tool able to describe the cor-

responding discrete-time bilinear operator. In the same work,

sample applications to the design of quadratic filters for image

processing were also presented. Although the procedure can

be extended to higher-order, the method is practically valid

only for second-order filters. For systems with order higher

than two, the excessive cost in measurement complexity makes

necessary the use of other techniques, like the employment of

Wiener functionals together with the application of Gaussian

time functions as sounding signals.

In a wireless communications context, different types of

behavioral models have been thoroughly used to describe

amplifiers, some of them revised in [3] and others published

more recently [4]-[9]. Our interest in this paper is focused on

Volterra baseband models with memory for which, as long

as the nonlinear behavior must be accurately described, at

least the inclusion of the fifth-order terms are necessary. The

complexity of the expression for a fifth-order general Volterra

model makes impractical the use of multiple impulses to

measure the amplifier kernels. Alternate approaches have been

presented: for example, a kernel estimation algorithm which

is optimal in the least mean square error sense was derived for

a bandpass nonlinearity in [10]. However, this is a demanding

procedure as long as it requires computation of input-output

statistics up to sixth order and evaluation of sixteen estimation

formulae.

An immediate form to simplify the extraction process can

be attained with a reduction in the filter structure of the model,

subject to the constraint of accuracy. Of course, the elementary

memoryless model is not an acceptable alternative if the

dynamic behavior of the amplifier has to be taken into account.

An option to maintain a reasonable complexity and at the same

time take into account memory effects was introduced in [11],

in which the structure of the Volterra kernels was truncated

by considering only the diagonal terms. Although the use of

this memory polynomial model has been frequently reported

in the literature, there are no fundamental considerations for

the exclusion of the out-of-diagonal terms in an actual Volterra

model [12]. Other nearly diagonal models with a more general

structure have been proposed [4]-[5], but the reduction of

kernel coefficients that these models present is not sufficient

to make practical the use of pulse-like signals. The knowledge

of the transfer functions behavior in the frequency domain has

been utilized in the demonstration of the Volterra behavioral

model for wideband amplifiers introduced in [6]. For a fifth-

order representation, the primitive five-dimensional problem

is reduced to a quadratic filter in the new Volterra behavioral

model. Based on this order-reduction the authors have explored
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in this work the application of the bi-impulse response and the

bilinear operator concepts to an experimental kernel estimation

procedure for wireless communications amplifiers. Some of

the advantages of the use of pulse-like waveforms as sounding

signals are understood by recalling for example that modern

ultra wideband (UWB) communication systems transmit RF

pulses, and this procedure would extract the model parameters

in experimental conditions resembling the typical amplifier

operation. RF pulses are also especially appropriate when

testing on-wafer devices with no heat-sink, a situation in which

the standard methods could damage the amplifier. Finally,

excitation with pulse-like signals makes possible a direct and

very precise kernel extraction, minimizing the measurement

errors generated in the experimental setup.

The main objective of the present work is to demonstrate

a procedure to identify the parameters of a baseband non-

linear model using RF pulses as probing signals in wide-

band amplifier characterization. This paper is organized as

follows. Section II contains a brief explanation of the Volterra

model for wideband amplifiers, together with some definitions

and related properties, and the justification of the underly-

ing assumptions. Section III documents the detailed exper-

imental procedure for kernel identification and description

of the sounding signals. Section IV evaluates the proposed

approach in two steps: first, the validity of the model itself

is verified by comparing its performance with other widely

used behavioral models, following a standard least-squares

procedure for parameter extraction. Measured results and

relevant comparisons are provided. The proposed experimental

approach is subsequently applied to a commercial amplifier,

and the kernels identified with pulse-like waveforms are used

to predict the amplifier response to digitally-modulated signals.

Finally, some conclusions are outlined in Section V.

II. INITIAL DISCUSSION ON THE AMPLIFIER MODEL

The system we are dealing with is a nonlinear amplifier

of a wireless communications system, for which we consider

biasing conditions and input signals that permit its study as

a stable, time-isotropic and shift-invariant nonlinear system

with finite memory. Let the schematic of Fig. 1 represent the

baseband equivalent of a wideband RF amplifier. In that case,

the output corresponding to the fundamental frequency zone

can be described by a discrete-time Volterra model whose

general expression can be written as

y(k) =
∑

q1

h1(q1)x(k − q1)+

+
∑

q3

h3(q3)x(k − q1)x(k − q2)x
∗(k − q3)+

+
∑

q5

h5(q5)x(k − q1)x(k − q2)x(k − q3)×

× x∗(k − q4)x
∗(k − q5) + · · · . (1)

In this equation, x(k) and y(k) are complex envelope samples

of the input and output RF signals, respectively, hn(qn)
represents the discrete Volterra kernels of order n and qn is an

n-dimensional vector composed of the integer-valued delays

qi (i = 1, · · · , n).
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Fig. 1. Equivalent block diagram of the kernel identification setup.

This general Volterra model needs the realization of n filters

with orders ranging from 1 to n and consequently presents

the inconvenience of a high complexity, derived from the

exorbitant number of coefficients necessary to describe the

output. To overcome this drawback, several approaches for

nonlinear amplifiers with memory have been advanced, many

of them based on a static nonlinearity with input and/or output

filters to incorporate linear memory (Wiener or Hammerstein

models). In particular, Hammerstein-type schemes lead to

kernels with a diagonal structure, a model that has been

frequently reported in the literature [11], [13]. Nevertheless,

the exclusion of the out-of-diagonal terms has not been theo-

retically demonstrated and other models with out-of-diagonal

coefficients have been suggested [12], [5]. Beyond the ability

to conform the empirical data, there are some basic notional

questions not clarified by those proposed models. For example,

the relation between the kernels and the amplifier nonlinear

transfer functions or the invariability of these kernels with

respect to a change in the type of probing signal, its input

level or bandwidth, among others. Therefore, it is desirable

the deduction of a Volterra model starting with the nonlinear

transfer functions behavior at circuit level, in order to give

response to the uncertainty on the kernel structure and to

guarantee the kernels invariability.

A. Volterra Model for a Wideband RF Amplifier

The simplest description to be assumed is the behavioral

memoryless model, based on the amplifier NLTF frequency

independence. Recalling the narrowband condition (B ≪ fc),

it is possible to assume a flat response at all frequency

zones (about dc, the fundamental frequency and the other

harmonics). The memoryless model fails when the signal

bandwidth increases and the NLTFs can no longer be con-

sidered frequency-independent. However, as long as modern

amplifiers have pass bands larger than the corresponding RF

signal band, the wideband condition can be perfectly assumed

for the linear response without important loss of generality.

The extension of this condition is easily acceptable at all har-

monic zones except at dc zone where the (even) NLTFs cannot

be considered flat, because of the load impedance dependence

on baseband frequency [14], [15]. The new Volterra model for

wideband amplifiers (VBW) with nonlinear memory deduced

in [6] is based on these assumptions and yields the following

expression

y(k) =

[

h1 +

∞
∑

m=1

ĥ2m+1

[

|x(k)|2
]

]

x(k), (2)
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where we have used the operators ĥ2m+1[·] defined as

ĥ2m+1

[

|x(k)|2
]

=
∑

qm

h2m+1(qm)

m
∏

p=1

|x(k − qp)|
2. (3)

Notice the important complexity reduction accomplished by

this model, for which the (2m + 1)th-order term is computed

with an mth-order Volterra filter.

The factor in brackets of (2) can be defined as the dynamic

gain, i.e. the gain of the amplifier at instant k. Let g(k) denote

this dynamic gain

g(k) = h1 +

∞
∑

m=1

ĥ2m+1

[

|x(k)|2
]

, (4)

and express the amplifier output in the form of the product of

this gain by the input envelope x(k), or

y(k) = g(k)x(k). (5)

Observe that the dynamic gain contains all the memory of

the model and is described by a Volterra filter whose input

is the real-valued instantaneous power of the input envelope,

w(k) = |x(k)|2. Fig. 2 illustrates the resulting block diagram

of the fifth-order model for a wideband RF amplifier, com-

posed fundamentally by a linear filter and a homogeneous

quadratic filter, which generate the gain according to the

instantaneous input power.

One way to appreciate the accuracy of this model is by

considering the influence of its most evident simplification,

i.e. the frequency independence of the second-order NLTF.

The consequence of this assumption is basically that the

nonlinear memory effects are produced by variations of the

input envelope magnitude, but they do not depend on the

input envelope phase variations. The phase invariance of the

VBW model is consistent with an actual fact: the existence of

AM-AM and AM-PM conversion, but no PM-AM or PM-PM

conversion. This general property has been exploited in mobile

systems transmitting constant-amplitude RF signals with all

the information contained in the phase: FM in analog systems

and GMSK in the European GSM system.

In spite of the important order reduction, the VBW model

is able to explain nonlinear memory effects or other related

characteristics like spectrum asymmetry. This assertion can

be clarified with a comparison with the model presented in

Fig. 5 of [9], considering third-order terms to simplify the

analysis. In that paper, the filter G(ω) plays a role similar

to the linear filter of Fig. 2 with the difference that here the

filter is composed by only one second-harmonic coefficient,

because of the frequency-independence assumption, and it

is incorporated to the corresponding baseband coefficient.

Referring to the same paper, let emphasize that in the second-

harmonic band the filter G(ω) presents a magnitude of ap-

proximately (6 ± 0.1) dB in the relevant band of 4 MHz

(for the 2 MHz bandwidth of the experimental validating

signal), or equivalently one percent of variation. This value is

completely compatible with the assumption of a flat second-

harmonic response. The inclusion of the probably complex-

valued second-harmonic coefficient in the linear filter that

describes the third-order term makes possible that the VBW

Linear
Filter

Homogeneous
Quadratic

Filter

h q
3
( )

h q q
5 1 2
( , )

w k( )

h
1

x k( ) y k( )

g k( )

| . |
2

Fig. 2. Resulting block diagram for a fifth-order model of a wideband RF
amplifier.

model can represent intermodulation distortion asymmetry in

nonlinear amplifiers as was experimentally demonstrated in

[16].

In addition to the previous remarks, we can also observe

that the model is efficient predicting magnitude asymmetry

if at least one of the even-order NLTFs is complex-valued,

notwithstanding they are considered flat [14], [15]. In relation

to this subject, notice that if the characteristic observed in

an spectrum analyzer has (magnitude) asymmetry, then it is

possible to say that the amplifier has memory, but the converse

is not true. Even in the case of a spectrum with symmetric

magnitude, it is possible to observe memory in an amplifier if

its memory were related with phase asymmetry. It is worth to

mention that as long as the utilization of wideband RF ampli-

fiers is very common in wireless communications systems, it

is reasonable to expect an ample application of these results

without loss of precision even though the complexity reduction

has been important.

B. Definitions

In addition to the dynamic gain, let us introduce some

definitions.

1) Dynamic Gain Deviation: In general, the measured gain

suffers deviations with respect to the small-signal gain caused

by nonlinear distortion, measurement errors and noise. If the

measurement errors and noise are negligible the dynamic gain

deviation can be expressed by

d(k) = g(k) − h1 = ĥ3[w(k)] + ĥ5[w(k)]. (6)

Recalling that the input envelope is composed by two signals

in quadrature, xI(k) and xQ(k), then the filter input is given

by w(k) = x2
I(k) + x2

Q(k) = wI(k) + wQ(k). It follows that

the deviation is

d(k) = dI(k) + dQ(k) + dIQ(k). (7)
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The terms

dI(k) =
∑

q1

h3(qm)wI(k − q1)+

+
∑

q2

h5(q2)wI(k − q1)wI(k − q2) (8)

and

dQ(k) =
∑

q1

h3(qm)wQ(k − q1)+

+
∑

q2

h5(q2)wQ(k − q1)wQ(k − q2) (9)

represent the deviations of the gain produced by the in-phase

and quadrature signal components, respectively. The third term

can be interpreted as the gain deviation produced by the

simultaneous existence of in-phase and quadrature components

in the input signal.

2) IQ-Dynamic Gain Deviation: This IQ-dynamic gain

deviation is given by

dIQ(k) = 2
ˆ̂
h5{wI(k), wQ(k)}, (10)

where

ˆ̂
h5{wI(k), wQ(k)} =

Qd/2
∑

q1,q2=−Qd/2

h5(q1, q2)wI(k−q1)wQ(k−q2)

(11)

is a bilinear operator [1], [2]. Without loss of generality, it

has been assumed that Qd is even and there is an index shift

of Qd/2 in the time reference. According to (7) and (10), the

output of the bilinear operator can be expressed in terms of

the acquired system outputs for three different inputs: the in-

phase component xI(k), the quadrature component xQ(k) and

the full complex envelope x(k) = xI(k) + jxQ(k).

C. Properties of the Dynamic Gain Deviation

The dynamic gain deviation (6) presents some useful prop-

erties, summarized as follows:

• The dynamic gain deviation is phase invariant, i.e. it

depends only on the envelope magnitude of the input

signal.

• For any input signal scaled by a real-valued parameter α,

the new envelope instantaneous power is α2w(k) and the

dynamic gain deviation is given by d(k) = α2ĥ3[w(k)]+
α4ĥ5[w(k)].

• According to the previous property, if the input level is

reduced 3 dB, then the new gain deviation is d−3dB(k) =
ĥ3[w(k)]/2+ĥ5[w(k)]/4, and the difference 4d−3dB(k)−
d(k) = ĥ3[w(k)] depends only on the third-order kernel.

• In the same form, the difference d(k) − 2d−3dB(k) =
ĥ5[w(k)]/2 can be used as an indicator of the fifth-order

terms significance.

• For signals satisfying the condition xI(k) = xQ(k), the

dynamic gain deviation is

d(k) = 2dI(k) + dIQ(k). (12)

Considering that dI(k) = d−3dB(k) and the IQ-gain

deviation is dIQ(k) = d(k)− 2d−3dB(k), the importance

of fifth-order terms can be deduced from measurements

at nominal level and at −3 dB.

III. KERNEL ESTIMATION PROCEDURE

The order reduction exhibited by the VBW model allows

to extract third- and fifth-order kernels by applying pulse-like

signals. To identify the kernel elements up to the mth-order fil-

ter by applying a technique based on RF pulses it is necessary

to evaluate the system response to a set of m distinct impulse

waveforms. In the case of the second-order Volterra filter of

the fifth-order VBW reduced model, parameter estimation is

possible by evaluating its bi-impulse response, as demonstrated

in [1] and [2]. The proposed technique can be divided into a

first part in which the sounding signal is an RF pulse and

provides the third-order coefficients, and a second part with

two impulses at different temporal separation to extract the

fifth-order coefficients. The complete procedure utilizes three

sounding signals, designed as SS1 to SS3, which are described

in the next subsections.

A. Third-order Kernel

To identify third-order kernel coefficients, the approach pro-

posed in this paper makes use of the demonstrated properties

of the dynamic gain deviation (6) in order to minimize the

influence of higher-order terms in the extraction procedure. At

this point it is also necessary to bear in mind that the laboratory

setup used in our experiments requires a frequency reference

so that a constant amplitude should be added to a pure “delta-

like” input envelope. Alternatively, the use of phase locked

instrumentation to do the measurements, would relax the need

for a constant signal as a phase reference. In either forms

the acquisition equipment can be synchronized to the nominal

frequency and is able to detect adequately the variation of the

output envelope. Let us consider the first sounding signal, used

to identify the third-order kernel:

1) SS1. One RF pulse: If the input envelope components

are selected as xI(k) = a + bu0(k) and xQ(k) = 0 where

u0(k) is a unit impulse and a, b > 0, assuming a fifth-order

model the difference ∆d(k) = 4d−3dB(k) − d(k) is given by

∆d(k) = d(0) + (2ab + b2)h3(k). (13)

The first term on the right, d(0) = h̄30a
2, can be extracted

from the samples located apart several memory lengths, in

the unmodulated part of the acquired signal. The second term

directly gives the kernel coefficients, which can be estimated

by following the next procedure:

1) Apply the RF pulse and measure the gain deviation at

nominal level and at −3 dB.

2) Determine d(0) with the unmodulated part of the signal,

selected according to the system memory.

3) Knowing a and b, use (13) to estimate the third-order

kernel coefficients h3(k) for k = −Qd/2, · · · , Qd/2.
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B. Fifth-order Kernel

The most important properties of the two sounding signals

employed in the identification process of the fifth-order kernel

are described below. An extended exposition of the complete

procedure is detailed the Appendix.

Identification of fifth-order kernel can be performed with

the following two sounding signals:

2) SS2. One RF pulse with a constant component in

quadrature: If the input envelope components are selected as

xI(k) = a + bu0(k) and xQ(k) = a, it is possible to obtain

the auxiliary variable

∆d(2)(k) = d(2)(k) − d
(2)
I (k) − d

(2)
Q (k) − d

(0)
IQ, (14)

where d
(0)
IQ = 2h̄50a

4 corresponds to the unmodulated part of

the signal, d
(2)
I (k) and d

(2)
Q (k) are obtained with SS1 and the

deviation d(2)(k) is measured directly.

3) SS3. Two RF pulses: If the input envelope components

are selected as xI(k) = a+ bu0(k) and xQ(k) = a+ bu0(k−
k1) then the output of the bilinear operator is given by

d
(3)
IQ(k|k1) = d

(0)
IQ + ∆d(2)(k) + ∆d(2)(k − k1)+

+ 2(2ab + b2)2h5(k, k − k1). (15)

for k = k1 − Qd/2, · · · , k1 + Qd/2. The term d
(3)
IQ(k|k1) de-

notes the IQ-deviation produced by the simultaneous presence

of the two pulses separated k1 samples.

According to (15) the fifth-order kernel coefficients can be

estimated directly by measuring the deviation of two sounding

signals and using the properties of the bilinear operator. The

extraction procedure can be summarized as follows:

1) Apply the second sounding signal SS2, acquire the

output and calculate the auxiliary term ∆d(2)(k).
2) Acquire the output for the two RF pulses without

temporal separation (k1 = 0) at nominal level and with

3 dB reduction. Use a segment of unmodulated samples

to determine d
(0)
IQ and evaluate ∆d(2)(k) from (14).

3) Estimate the diagonal coefficients h5(k, k) by evaluating

(15).

4) Acquire the output for the two RF pulses with variable

separation k1 = −Qd/2, · · · , Qd/2 and compute the

remaining coefficients h5(k, k − k1).

C. The Actual Sounding Signals

The procedure described above shows that for probing the

amplifier it is only necessary the acquisition of Qd+1 versions

of a bi-impulse signal delayed k1 samples. Some practical

simplifications have been possible based on the particular

symmetry of the pulses and also because the experimental

setup used in this work permits acquisition lengths many

times greater than the memory length of the amplifier. The

overall acquisition length can be of 100 µs or approximately

1500 samples, very large compared to the conservative 20

samples of the device memory. Making use of this feature,

the actual probing waveform was defined composed by three

segments including the three types of signals described above.

The normalized parameters for the RF pulses were chosen as

a = 1 and b = 4, which are then scaled according to the input

signal power level.

IV. APPLICATION TO A REAL RF AMPLIFIER

To illustrate the present method, empirical extraction of

kernels of a wireless wideband amplifier was performed. The

experimental setup employed in this work was described in

[16] and the device under test is a MAX2430 device (MAXIM

Integrated Products Inc., Sunnyvale, CA), a silicon medium PA

operating in the frequency range of 800-1000 MHz. A prelimi-

nary characterization with two-tones separated 2 MHz showed

that the PA exhibited an asymmetry in the IMD products of

about 5 dB, a clear indication of nonlinear memory effects.

Power level was adjusted up to −10 dBm to enhance fifth-

order effects. The arbitrary waveform facility of a SMIQ02B

generator was used to define the I and Q components of

the input envelope as a constant value plus unitary impulses

at a sampling frequency of 15 Msa/s. These discrete-time

signals are translated to narrow pulses in the continuous-time

domain and to the corresponding RF pulses. The total length

of the signal was 1500 samples, what allows the complete

acquisition of the signal in an E4407B spectrum analyzer with

the modulation analysis option. In that communication the

authors described the extraction procedure of the third-order

kernel, demonstrating the ability of the model to predict the

amplifier output and its consistence for different experimental

conditions. In this work we have developed the experimental

setup used in the extraction technique incorporating sev-

eral improvements in both the measurement techniques and

processing of the acquisitions following some suggestions

published in [17].

A. On the performance of the VBW model

As a previous step towards the validation of the kernel iden-

tification procedure presented herewith, an evaluation of the

VBW model has been accomplished in order to demonstrate its

good capabilities for the behavioral modeling of RF amplifiers.

The amplifier under test has been driven with a WCDMA-

like signal at −14 and −10 dBm and kernel coefficients have

been identified by using a conventional least-squares tech-

nique. The normalized mean square error (NMSE) between the

measured waveform and the predicted signal corresponding

to maximum delays in the range of 1 to 5 is depicted in

Fig. 3. As a reference, results are compared with the memory

polinomial (MP) model of the same order [11]. It is evident

that VBW shows an improvement over the MP model, and

that the comparison is even better when the amplifier is driven

more nonlinearly.

As a cross-validation, kernels identified in the experiments

of Fig. 3 were applied to predict the response of the amplifier

at −14 dBm under different excitations, including pulse-

like, GMSK-like, and other WCDMA-like signals, obtaining

NMSEs in the range of −28 to −30 dB in all cases. The

performance of VBW was comparable to that of the behavioral

model recently published in [8] even though the number of

coefficients of the VBW is considerably lower.
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Fig. 3. Comparison of the VBW model and a fifth-order memory polinomial
model.

B. Validation of the identification procedure

Based on the previous experience on third-order kernel

extraction with RF pulses and using the concept of the

aforementioned bi-impulse response, we have focused here

on the fifth-order kernel estimation procedure. One important

question to be solved is, given the model order, the range of

power levels for which it is valid. For our test amplifier, it

is possible to observe in Fig. 4 the gain corresponding to the

unmodulated part of the first sounding signal, represented with

down-triangles, as well as the gain measured at the instant

corresponding to the peak, represented with up-triangles. It

is clearly observable the larger compression, or equivalently

the larger gain deviation, suffered by the peak compared to

the unmodulated samples, especially for input signal levels

above −20 dBm. In the same figure it is plotted the output

of the bilinear operator dIQ which is an indication of the

fifth-order terms significance, as can be deduced from (10).

In Fig. 5 a three-dimensional view of h3(q) is plotted as a

function of the delays and the input signal power, in which

the x-axis (depth) represents the input signal level, the y-axis

(width) represents the delays and the z-axis (height) represents

the magnitude of the kernel. The figure clearly shows the

effective length of the memory, no more than six samples,

and the practically constant characteristic of the memoryless

coefficient with respect to the input signal level. This constant

characteristic produces an increment of 3 dB per dB for the

third-order output terms, as it should be. Observe that only at

large signal levels the kernel coefficients are important with

respect to measurement error and the extraction procedure is

manifestly appropriate.

For a reliable extraction of the fifth-order kernel coefficients

it is necessary to apply an adequate signal level in order to

produce nonlinear terms well above other spurious responses

due to noise or experimental errors. Recalling Fig. 4, it

is observed that the output of the bilinear operator dIQ is

significant above −15 dBm, approximately. According to this

result, the extraction of h5(q1, q2) coefficients was performed

for an input level of −12 dBm and has been represented in
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Fig. 5. Three-dimensional graph of the third-order kernel.

the three-dimensional graph of Fig. 6. The structure of the

matrix is more clearly depicted in Fig. 7, in which the bright

zones indicate the loci where the most significant components

are concentrated. It is distinctly observable the more important

central delay and the symmetry of the matrix with respect to

the main diagonal. According to this figure, the diagonal terms

are important near the center, but there are also relevant terms

out of this main diagonal.

The amplifier was finally tested by employing a digitally

modulated signal with a WCDMA format and a 2 Msymb/s

train of symbols using root-raised cosine pulses. The input

signal level was fixed at −12 dBm, for which the amplifier

is markedly in nonlinear operation, and the samples acquired

with the testbed are shown in Fig. 8 with marks. The kernels

of the fifth-order model, obtained following the previous

procedure, were used to predict the output signal and the

results are represented in the same figure with solid lines. The

high coincidence is confirmed by an NMSE of −29.4 dB. The

linear and the third-order models are also plotted in dotted and
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Fig. 6. Three-dimensional graph of the fifth-order kernel with 21 × 21

coefficients.

dash-dotted line, respectively. The figure demonstrates the high

coincidence between the fifth-order model prediction and the

measured data. This can also be observed in Fig. 9, where

the power spectrum of the amplifier output measured with a

standard spectrum analyzer is plotted with dots. The spectrum

of the output calculated with the fifth-order model is repre-

sented in solid line and to give an idea of spectral regrowth,

the spectrum of the linear model is also plotted in dotted line.

The data obtained with the fifth-order VBW model are in

agreement with the experimental data and, in consequence,

reproduce adequately the asymmetry in the spectral content

corresponding to the upper and lower adjacent channels. A

numerical evidence of this assertion is contained in Table I,

which shows the values of the power in the channel together

with first- and second-adjacent channels powers calculated

from the spectra of Fig. 9. It is important to note that these

results were not obtained by following a mathematical curve-

fitting procedure but using the described extraction technique

based on RF bursts for kernels measurement and the ap-

plication of these kernels to the digitally modulated signal.

Although very different types of signals were used, the method

and the model have produced very good estimates.

V. CONCLUSIONS

This paper has reported on the use of the bi-impulse

response to the process of model identification for wireless

amplifiers. The technical procedure is based on the Volterra

behavioral model for wideband amplifiers (VBW), which

presents a significant complexity reduction. The assumptions

in which the theoretical derivation of this behavioral model

are based, have been clarified by obtaining NMSE figures in

the order of −42 dB for the modeled output of a commercial

amplifier excited by a WCDMA-like signal. These values

outperform the results obtained with the widely accepted

memory polynomial model, demonstrating the ability of VBW

model to predict the amplifier output with a high precision.

According to the VBW model structure, a fifth-order am-

plifier model can be reduced to a quadratic filter and this
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TABLE I
CHANNEL POWER AND ACP FOR A WCDMA-LIKE SIGNAL AT 2 MSPS.

Co- 1st Adjacent 2nd Adjacent
Units: dBm channel channel channel

power Lower Upper Lower Upper

Measurements 20.1 −12.6 −8.1 -28.0 -32.6

Memoryless 20.1 −10.4 −10.4 -30.2 -30.2

VBW (5th-order) 20.1 −13.2 −8.2 −32.3 −37.4

reduction has made possible the development of a simple

extraction technique in which the bilinear operator concept

is applied to an experimental kernel estimation procedure.

The use of pulse-like signals is not uncommon in device

characterization, as in transistor dc or large-signal s-parameters

measurements, but to the authors’ knowledge it is the first

time that pulsed waveforms are applied to the identification

of behavioral models. With respect to other methods, using

RF pulses as probing signals permits the exploration of the

dynamic range of the amplifier without altering the dc bias

point and the device temperature, a property that is related

to the possibility of modeling UWB amplifiers with the same

type of signal used in normal operation or on-wafer amplifiers

without heat-sink. Moreover, RF pulses exhibit the valuable

attribute of a flat-wideband spectrum.

The proposed identification procedure has relied on a careful

signal processing aimed at the reduction of errors and the re-

moval of linear filtering effects introduced by the experimental

setup. As a consequence, in the process of model validation

with a real amplifier working in a clear nonlinear operation

and exhibiting memory effects, results show unequivocally the

structure of the nonlinear kernels, obtaining NMSE values in

the order of −24/−29 dB, with signals of different types.

The extracted kernels have been employed with very satis-

factory results in the prediction of the output signal envelope,

spectral regrowth, and ACPR of the amplifier under test

excited by WCDMA-like signals.

The procedure presented in this paper does not put the
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finishing touches to the use of RF pulses. On the contrary,

it is possible to anticipate the use of pulse-like signals with

varying peak-amplitudes or signals with synchronized dc and

RF pulses as an important help in the study of electrothermal

causes for memory effects or, in the case of on-wafer devices

without heat-sink, making possible the extraction of informa-

tion highly correlated with the kernels values found under real

operation.

APPENDIX

Further details follow about the sounding signals used for

the identification of the fifth-order kernel and the extraction

procedure:

1) SS2. One RF pulse with a constant component in

quadrature: Using the bilinear operator, under excitation with

envelope components xI(k) = a+bu0(k) and xQ(k) = a, the

IQ-deviation is given by

d
(2)
IQ(k) = d

(0)
IQ + 2(2ab + b2)a2h̄51(k), (16)

for k = −Qd/2, · · · , Qd/2. We have used the constant IQ-

deviation d
(0)
IQ = 2h̄50a

4 corresponding to the unmodulated

part of the signal, as well as the definitions

h̄50 =

Qd/2
∑

q1,q2=−Qd/2

h5(q1, q2) (17)

and

h̄51(k) =

Qd/2
∑

q2=−Qd/2

h5(k, q2). (18)

The deviation produced by the in-phase component, d
(2)
I (k),

is equal to the deviation of the first signal. The deviation of

the quadrature component d
(2)
Q (k) is equivalent to the overall

deviation measured for the unmodulated segment of the second
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Fig. 9. Measured output spectrum trace of a WCDMA-like signal (marks) at
−12 dBm and predicted with a fifth-order model (solid line). The predicted
spectrum is also represented for the linear model(dotted line). Resolution
bandwidth: 100 kHz.

signal, but with a 3-dB level reduction. If the total deviation

d(2)(k) is measured, then it is possible to express

d(2)(k) − d
(2)
I (k) − d

(2)
Q (k) − d

(0)
IQ = ∆d(2)(k), (19)

where ∆d(2)(k) = 2(2ab + b2)a2h̄51(k).
2) SS3. Two RF pulses: If the input envelope components

are selected as xI(k) = a+ bu0(k) and xQ(k) = a+ bu0(k−

k1), let d
(3)
IQ(k|k1) denote the IQ-deviation produced by the

simultaneous presence of two bursts shifted by k1 samples. In

that case the output of the bilinear operator is given by (15).

We have used the symmetry property h5(q1, q2) = h5(q2, q1).
Note that for k1 = 0, the third signal with a 3-dB level

reduction and the first sounding signal are equivalent, con-

sequently d
(2)
I (k) and d

(2)
Q (k) are equal to d

(3)
−3dB(k|0) near

the peak and in the unmodulated segment, respectively. In

the same form, the deviations of the in-phase and quadrature

components of the third sounding signal at nominal level are

equal to d
(3)
−3dB(k|0).
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