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Abstract—The objective of this paper is to present an approach
to behavioral modeling that can be applied to predict the
nonlinear response of power amplifiers with memory. Starting
with the discrete-time, complex-baseband full Volterra model,
we define a novel methodology that retains only radial branches
that can be implemented with one-dimensional finite impulse
response filters. This model is subsequently simplified by selecting
a subset of directions using an ad-hoc procedure. Both models
are evaluated in terms of accuracy in the time and frequency
domains and complexity, and are compared with other models
described in the literature. The evaluation is conducted using a
low-voltage silicon RF driver amplifier and a 5-W PA, which are
characterized at different levels with diverse modulation formats,
including wideband code-division multiple access (WCDMA) and
orthogonal frequency-division multiplexed (OFDM) signals. In
all cases, comparison of the measured and simulated responses
confirms the effectiveness of the proposed approach.

Index Terms—Dynamic behavioral models, memory polyno-
mials, nonlinear identification, power amplifiers, Volterra series.

I. INTRODUCTION

MODERN wireless communication systems are designed
to operate with signals that have large bandwidth and

high peak-to-average ratio (PAR). Important nonlinear effects
are generated in the power amplifier (PA) by the envelope
variations of these signals, spectral regrowth being one of the
most significant. For that reason, special efforts have been
invested in order to attain a deeper knowledge of the nonlinear
behavior of these systems.

One of the most successful techniques devoted to the study
of PAs is the Volterra series, involving kernels that contain all
the information for a nonlinear system with fading memory.
The domain of an nth–order Volterra kernel can be visualized
as a discrete grid forming an n–dimensional (n–D) hypercube.
The use of these kernels implies a computationally expensive
multidimensional filtering of the input envelope, which can
be pruned by realizing a lower number of one-dimensional
(1–D) filters. Different criteria have been proposed in several
published papers to obtain this reduction, as discussed below.
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For example, the parallel Hammerstein or memory polyno-
mial (MP) model [1] uses only one branch for each order
with 1–D filters (one-dimensional convolutions) involving
the coefficients lying along the main diagonal of each n–D
hypercube.

In [2], a pruning approach was presented in which the
structure accepts nearly diagonal terms, and those coefficients
that are far away from the main diagonal are removed. In
that technique, an index is introduced to adjust the complexity
reduction according to the needed accuracy. Reported results
show a low normalized mean-square error (NMSE) for a fifth-
order model identified with a parameter called the “near-
diagonality” coefficient by the authors of [2]. Related to
this method are other efficient model-pruning approaches to
Volterra structures [3].

A review of the most advanced models was presented in [4],
which also introduced a new structure formed with the MP
structure combined with cross terms between the signal and
lagging and/or leading exponentiated envelope terms, which
is referred to as the generalized memory polynomial (GMP)
model.

Other discrete-time complex envelope models based on a
priori knowledge of the PA circuit model have been recently
presented [5], [6], [7]. In [5], the authors propose a model for
wideband amplifiers deduced under the assumption of transfer
functions with a flat response in all harmonic zones except
at dc where the (even) nonlinear transfer functions cannot be
considered flat, because of low-frequency dispersive effects
and load impedance dependence on baseband frequency. This
Volterra behavioral model for wideband amplifiers (VBW),
presents a distinct “off-diagonal” structure. In [6], a behavioral
power amplifier model is also derived starting from previous
knowledge about the amplifier, and the authors claim an
NMSE substantially lower than for the well-known and widely
used MP model. The two models, VBW and [6], present
a similarity in the fact that filtering involves samples of
the instantaneous power. Although in the case of the VBW
no filtering is applied to the complex-envelope samples, the
fidelity of this model is remarkably better than the MP. This
property is also realized in the envelope-memory polynomial
model [8], which can be easily derived from the VBW as
a particular case. This structure has also been valued as
advantageous for the design of digital predistorters.

An extended version of the VBW model and its efficiency
are analyzed in [9], where an equivalent discrete-time base-
band PA model considering memory effects and bandpass
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nonlinearity is formulated by joining the MP and VBW
approaches. The accuracy of the so-called extended VBW
(EVBW) model is reflected in significantly lower NMSE than
for the MP model and similar to [6], which contains a larger
number of coefficients.

The structural proposals shown in the present work are
based on an underlying general Volterra model of the PA.
The introduced perspective relies on a novel pruning approach
involving 1–D filters, by following selected radial directions
that emanate from the origin of the hypercubes. As a conse-
quence of this radial pruning, the resulting structures exhibit
good prediction performance, notwithstanding the reduction
of model coefficients compared not only to the full Volterra
(FV) model, but also to the most efficient models published
recently.

The paper is organized as follows. After this introduction,
we first present general remarks about Volterra models in
order to introduce the notation that will be used. Section II
also contains a detailed description of the proposed pruning
methodology, starting with third-order kernels in Section II-
A and generalizing the approach to the nth-order kernel in
Section II-B. The complete representation will be referred to
as the radially pruned Volterra (RPV) model. Section II-C
discusses a further reduction of this structure and introduces
the simplified RPV (SRPV) model. Finally, Section II-D
comments on the underlying radial structure corresponding to
the VBW and EVBW models. In Section III, the computational
complexity of the aforementioned models is examined and is
compared to other widely used approaches. Sections IV and V
compare the performance of the radially pruned models with
other efficient models, employing measurement data from two
real amplifiers driven with wideband code-division multiple
access (WCDMA) and orthogonal frequency-division multi-
plexed (OFDM) signals, respectively. Finally, some concluding
remarks are outlined in Section VI.

II. RADIALLY PRUNED MODELS

Let x(k) denote complex-envelope samples of the RF input
signal driving a nonlinear amplifier of a wireless communi-
cations system. The amplifier can be described by a discrete-
time finite-memory complex baseband Volterra model, whose
output complex envelope y(k) can be written as

y(k) =
N∑

n=1
n−odd

Qn∑
qn=0

hn(qn)x(k − q1)×

×
(n−1)/2∏

m=1

x(k − q2m)x∗(k − q2m+1), (1)

where the first summation is restricted to odd values of n,
hn(qn) represents the discrete-time Volterra kernels of order
n and qn is an n–dimensional vector composed of the integer-
valued delays, qi = 0, · · · , Qn for all i. Here we consider
decaying memory with the same finite length Qn = Q, for all
odd orders n = 1, 3, · · · , N . In the following, we will denote
the set of nth-order Volterra regressors as Πn{x(k),qn} (n

odd), defined as Π1{x(k), q1} = x(k − q1) and

Πn{x(k),qn} = x(k− q1)
(n−1)/2∏

m=1

x(k− q2m)x∗(k− q2m+1),

(2)
for n ≥ 3. It is opportune to view the Volterra model (1) as a
special case of a linear regression model [10].

The full Volterra model (1) is equivalent to a filter bank that
involves a huge number of coefficients, growing exponentially
with the filter order n and the maximum delay Q. Several
approaches discussed in the introduction allow us to devise
each nth-order term as the contribution of a limited number of
1–D finite-impulse response (FIR) filters, with the total number
of coefficients increasing linearly with Q, a desirable feature.
However, all these approximations to the FV model are of
limited accuracy. That is the case of the MP model, which is
arranged with coefficients laid along the main diagonal of the
corresponding kernel. The same basic idea can be applied to
sort out definite directions in the delay space, each requiring
a 1–D FIR filter, but selecting these directions with a different
criterion in order to build a pruned model with higher accuracy.
Since a finite fading-in-time memory has been assumed, the
importance of the coefficients will diminish as their temporal
position moves away from the origin. In that case, it seems
reasonable to selectively retain only the most relevant terms,
i.e., those in the neighborhood of the memoryless term hn(0)
in each radial direction. Using set notation, we will refer to
the following subset of Volterra regressors:

Πn,r,s{x(k), q} =
{

Πn{x(k),qn}
∣∣∣∣ qi define the radial

direction s of type r

}
, (3)

where r indicates the type of radial direction and s is the
particular branch belonging to r. Note that the MP and the
VBW models are consistent with this property, because the
main diagonal and the filtering of the VBW involve radial
directions. For example, the set of regressors for the third-
order kernel of the MP model can be defined as:

Π3,3,1{x(k), q} =
{

Π3{x(k),q3}
∣∣∣∣ qi = q , ∀ i = 1, 2, 3

}
.

(4)
In this case, there is only one branch (s = 1) belonging to the
main diagonal direction (r = 3). Similarly, in the case of the
VBW model, the set of regressors for the third-order kernel
can be expressed with the set notation as:

Π3,2,2{x(k), q} =
{

Π3{x(k),q3}
∣∣∣∣ qi = 0 , i = 1, 2, 3, and

qj = q , ∀ j 6= i

}
. (5)

Here, the radial direction is labeled r = 2 with two branches
belonging to this direction. This notation is discussed in more
detail in the next subsections.
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Fig. 1. Lattice of the third-order kernel domain.

A. Third-Order Kernel

To illustrate the idea concerning this radial pruning, let us
begin by analyzing the simple case of a third-order kernel.
Consider a PA with the unit-delay (Q = 1) third-order kernel
h3(q3), represented in Fig. 1. We designate the types of radial
directions as: r = 1 for the 3–D Cartesian axis, r = 2 for
the diagonals of each cube face, emerging from the origin,
and r = 3 for the main diagonal. Let S3,r be the number
of radial directions of type r. Therefore, any radial direction
can be denoted by Π3,r,s, where s = 1, · · ·S3,r. Symmetry
reasons restrict S3,r = 2 for r = 1, 2 (Cartesian axis and face
diagonals, respectively), and S3,3 = 1 (main diagonal). The
regressors associated with the radial directions are:
• The Cartesian axis directions: The direction of the ith

axis (i = 1, 2, 3) is defined by qi = q and qj = 0 for
all j 6= i. Then, each one of the two types of regressors
(S3,1 = 2) is given by

Π3,1,1{x(k), q} = x2(k)x∗(k − q)

and
Π3,1,2{x(k), q} = |x(k)|2x(k − q).

• Diagonals of the cube faces: The ith face (i = 1, 2, 3)
containing the origin of the cube is mathematically de-
fined in the delay space by qi = 0, and the direction of
its diagonal by qj = q (j 6= i). In this case, there are also
two types of regressors (S3,2 = 2) with expressions

Π3,2,1{x(k), q} = x2(k − q)x∗(k)

and
Π3,2,2{x(k), q} = |x(k − q)|2x(k).

• Main diagonal, qi = q for i = 1, 2, 3: Only one diagonal
direction is possible (S3,3 = 1) and its regressors are

Π3,3,1{x(k), q} = |x(k − q)|2x(k − q).

Note that all these regressors depend on a single, scalar delay
(q), as they are associated to 1–D filters. It is worthwhile to
note that Π3,3,1{x(k), q} and Π3,2,2{x(k), q} are regressors of
the MP and VBW models, respectively, as commented above.

From this, we can replace the 3–D filtering with an equiv-
alent structure composed of five 1–D filters. Since Q = 1,
the new filter-bank has the same number of coefficients as
the general Volterra third-order model (i.e., no pruning has
been applied to the 3–D filter). Filtering being limited to these

five 1–D convolutions, the pruning starts to be effective as Q
increases. If such is the case, the number of coefficients will
grow linearly, not exponentially, with corresponding complex-
ity reduction.

B. Radial Pruning of an nth-Order Kernel

A general Volterra kernel can be represented by a grid
forming an n–D cube (hypercube) and selection of the radial
directions can be performed in a way similar to that followed
with the third-order kernel. In that case, the first two filters
are constructed with the coefficients of the Cartesian axis,
the second two filters use those in the diagonals of the cube
faces, and the remaining filter is formed with coefficients
belonging to the main diagonal. Denoting by Sn,r the number
of radial directions of type r for the case of an nth-order
kernel, and following a similar procedure (i.e., upgrading the
dimensionality from the Cartesian axis to the main diagonal),
the adopted regressors for the 1–D FIR filters are
• Cartesian axis directions: The direction of the ith axis

(i = 1, 2, . . . , n) is defined by qi = q and qj = 0 (j 6=
i). In this case, there are Sn,1 = 2 types of regressors,
expressed as

Πn,1,1{x(k), q} = x2(k)|x(k)|n−3x∗(k − q)

and
Πn,1,2{x(k), q} = |x(k)|n−1x(k − q).

• Diagonals of the (n−2)-D hyper-planes: The ith (n−2)-
D facet (i = 1, 2, · · · , n) of the hypercube in the delay
space is mathematically defined by qi′ = qi = 0 (i′ 6=
i) and the direction of its diagonal by qj = q, for all
j 6= i, i′. According to (2), there are Sn,n−2 = 3 types
of regressors given by

Πn,n−2,1{x(k), q} = |x(k − q)|n−3x2(k)x∗(k − q),

Πn,n−2,2{x(k), q} = |x(k − q)|n−3|x(k)|2x(k − q)

and

Πn,n−2,3{x(k), q} = |x(k − q)|n−5x3(k − q)x∗2(k).

The diagonals of the hyper-planes of different dimensions
can be defined in a similar way:

• Diagonals of the (n−1)-D hyper-facets: The ith (n−1)-
D facet (i = 1, 2, · · · , n) of the hypercube is defined by
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qi = 0 and the direction of its diagonal by qj = q, for
all j 6= i. The expressions for the Sn,n−1 = 2 types of
regressors are

Πn,n−1,1{x(k), q} = |x(k − q)|n−3x2(k − q)x∗(k)

and

Πn,n−1,2{x(k), q} = |x(k − q)|n−1x(k).

• Main diagonal, qi = q for i = 1, 2, · · · , n: The regressor
on the main diagonal (Sn,n = 1) is

Πn,n,1{x(k), q} = |x(k − q)|n−1x(k − q).

The model obtained after selection of these radial directions,
which we call a radially pruned Volterra (RPV) model, can be
expressed by the following equation

yRPV(k) =
N∑

n=1

n∑
r=1

Sn,r∑
s=1

Q∑
q=0

hn,r,s(q)Πn,r,s{x(k), q}. (6)

The RPV model contains a finite number of radial directions,
given by single, scalar delay (q) regressors, or 1–D FIR filters
with Q coefficients each. For that reason, the complexity grows
linearly with Q instead of the exponential growth of the FV
model [11], as discussed in the following section.

C. Simplified Model with Radial Pruning

According to the preceding discussion, the radial pruning of
a Volterra model yields a novel structure, the RPV model with
a reduced number of coefficients. In some cases, the trade-off
between accuracy and computational cost makes it desirable to
give up part of the model precision in order to further reduce
its complexity. This can be achieved with a second step in
the pruning process, consisting of the removal of some of the
less relevant 1–D convolutions. In agreement with previous
remarks, the third-order Volterra filter is approximated with
1–D filtering in five radial directions, whereas in an nth-order
Volterra term with n > 3, the number of radial directions
increases. Likewise, we propose a new pruned structure for the
nth-order Volterra filter, limited to the five radial directions of
the third-order kernel, and call this the simplified RPV (SRPV)
model.

We have also adopted a more user-friendly notation for the
regressors Πn,r{x(k), q}, with only two indexes indicating the
order n, and the direction r = 1, · · · , 5. The regressors are:
• Main diagonal

Πn,1{x(k), q} = |x(k − q)|n−1x(k − q).

• Diagonals of the (n − 1)-D hyper-facets: There are two
types of regressors given by

Πn,2{x(k), q} = |x(k − q)|n−3x2(k − q)x∗(k)

and
Πn,3{x(k), q} = |x(k − q)|n−1x(k).

• Cartesian axis directions: The regressors are

Πn,4{x(k), q} = x2(k)|x(k)|n−3x∗(k − q)

and
Πn,5{x(k), q} = |x(k)|n−1x(k − q).

The output of the SRPV model can be expressed by the
following equation

ySRPV(k) =
N∑

n=1

5∑
r=1

Q∑
q=0

hn,r(q)Πn,r{x(k), q}. (7)

D. Other Models with Radial Structure

To complete the proposal of radial pruning, let us mention
other models with simplified radial structure that have been
recently published. Firstly, the Hammerstein model and its
generalization, the MP model, have diagonal structures in
accordance with the radial selection proposed in this paper.
Another structure that has provided some helpful clues in the
pruning of the FV behavioral model is the VBW model [5].
This behavioral model for wideband amplifiers was formally
derived starting from the equivalent circuit and following a
conventional Volterra analysis, and also presents 1–D filtering
in radial directions. Finally, the EVBW model [9] is formu-
lated by joining the MP and the VBW approaches.

III. COMPLEXITY OF THE PROPOSED MODELS

An important issue in the expression of a behavioral model
is the number of coefficients, both at the identification phase
and for the prediction of the PA output response. In the pro-
posed RPV model, a major requirement is to gain a significant
computational reduction compared to the FV model, for which
the complexity has been analysed in [11]. As other published
approaches, the RPV model has the advantage that the pruning
methodology is based on retaining only a few directions of the
delay space, yielding a reduced number of 1–D filters. For an
RPV model truncated to order N = 2P + 1, the number of
coefficients can be expressed as:

M = (P + 1) (Q + 1) + (3 + P ) PQ . (8)

This equation shows that the RPV model exhibits a linear
increment of the number of coefficients with respect to Q,
instead of the exponential increase of the FV model.

Regarding the SRPV model, as only five branches are
retained, it can be implemented with an even more reduced
set of 1-D filters. The number of terms is expressed in closed
form as:

M = (P + 1) (Q + 1) + 4PQ . (9)

It is worthwhile noting that the number of coefficients in the
SRPV model shows a linear dependence on Q, like the RPV
does, and also a linear dependence with respect to the model
order, N = 2P + 1.

A comparison of the different models in terms of complexity
is shown in Fig. 2, where the number of coefficients has been
represented versus the maximum delay Q for different fifth-
order models. The extreme cases are the FV model (dotted
line), with an exorbitant number of coefficients, and the MP
model (dot-dashed line and upward triangles), with a modest
linear dependence. Slightly more complex than the MP, and
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Fig. 2. Number of coefficients for different fifth-order behavioral models.

exhibiting an exponential dependence, is the VBW model (dot-
dashed and downward triangles). The model of [6] presents
the same dependence, but with a significant increase in the
number of parameters. The RPV model (continuous line and
left-pointed triangles) has moderate complexity, and thanks to
its linear behavior, the number of coefficients is maintained
below that of the model of [6] for Q ≥ 4. The EVBW
(continuous line and squares) and GMP (dotted line and
diamonds) models display approximately similar performance,
with a slight reduction of GMP complexity for Q ≥ 4. It is
evident that although the number of coefficients in EVBW
rises exponentially with Q, this number is specially reduced
and highly competitive. Finally, the SRPV model (continuous
line and right-pointed triangles) displays intermediate values
between the GMP and the RPV models. According to this
figure, we can classify the models into three groups in relation
to the computational cost for a given maximum delay. For
example, in the case of Q ≥ 4, the RPV model and the
model of [6] are computationally more expensive, the GMP
model and the EVBW model have a moderate complexity, and
finally the VBW is in the least expensive range. As we will
demonstrate in the following section, the SRPV appears as a
compromise to avoid the high computational cost of RPV, yet
maintaining acceptable accuracy.

Although even-order terms can be considered in the base-
band representation [12], we have excluded them from all
models in this study, because there are no even-order terms
in the bandpass PA model, and it is the aim of this paper to
preserve a tight relation between the baseband approach and
the bandpass Volterra model. However, the possibility exists
of including these even terms to enhance the basis set, thus
reducing the modeling error.

IV. APPLICATION TO A REAL RF AMPLIFIER

For the evaluation of the presented model, we have used
a commercial amplifier. The evaluation board was designed
using a MAX2430 surface-mount packaged device (MAXIM
Integrated Products Inc., Sunnyvale, CA), which is a low-
voltage silicon RF PA operating in the frequency range of

800-1000 MHz, suitable as a driver amplifier for portable and
mobile telephone systems. Measurements were performed at
915 MHz using the manufacturer’s commercially available
evaluation board, with the device operating as a class-AB
amplifier by applying the recommended bias voltage of 3.6 V.
The experimental setup has been presented elsewhere [5].

The initial characterization of the model is performed by
evaluating its ability to predict the PA output waveform.
The first probing signal was a WCDMA-like signal with a
bandwidth of 2 MHz, a PAR of 4.5 dB, and at levels of
−14 dBm, −12 dBm, and −10 dBm. With these signal levels,
the amplifier is operating in the nonlinear regime with a peak
power beyond −11 dBm, the 1-dB compression point. The
coefficients of a fifth-order model were extracted by using the
measured output waveform (sampled at a rate of 10 Msa/s) via
a conventional least-squares algorithm [4],[13], and the NMSE
with respect to the measured signal was calculated with the
RPV model for different maximum delays. According to the
complexity shown in Fig. 2, it is possible to map Q to the
number of coefficients in order to provide a common reference
to compare the different models. The results of the RPV and
SRPV models are presented in Fig. 3 by a solid line (left-
pointed and right-pointed triangles, respectively). The same
figure also shows the performance of the other relevant models
under study.

According to this figure, the proposed RPV model obtains
the lowest NMSE when the number of coefficients is above
or equal to 29 (corresponding to Q = 2 for this model), and
this fact is more noticeable as the amplifier is operated in a
more nonlinear condition. The identification test in Fig. 3(c)
for Pi = −10 dBm shows that the RPV model obtains an
NMSE that improves [6] by 1 dB, although the latter is more
complex.

Accepting the restriction of equal complexity, the RPV and
SRPV models compare favorably with respect to the other
approaches in the full range of complexities. Another way
of interpreting this figure is to compare the NMSE for the
same maximum delay. For example with Q = 1, there is an
improvement of over 3 dB with the RPV model against the
MP model in Fig. 3(a).

Using the identified fifth-order kernels of Fig. 3(c), the
responses with the validation set of WCDMA signals (PAR
= 4 dB) are plotted in Fig. 4 in terms of the NMSE. The
figure shows an almost similar validation performance of
all the models with an NMSE of approximately −34 dB,
against identification values ranging from −37 to −35 dB.
We observe that for a number of coefficients above 24, there
is a degradation of a few tenths of dB in the characteristic
of GMP, and the same applies to [6] when the number of
coefficients is greater than 36.

V. MODEL PERFORMANCE WITH OFDM SIGNALS

The models described in the preceding sections have also
been tested with OFDM signals, in correspondence with the
growing trend to include multicarrier modulations in the
physical layers of today’s wireless communications standards.
The applied probing signal was designed to meet a 2-MHz
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as a function of of the number of coefficients. The marks correspond to
maximum delays in the range from 0 to 5 samples. Amplifier under test:
MAX2430. Model identification of Fig. 3(c) was used (−10 dBm), and
validation was accomplished by using a different test WCDMA signal with
4-dB PAR.
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Fig. 5. Comparison of fifth-order models in terms of the NMSE as a function
of the number of coefficients. The marks correspond to maximum delays in
the range from 0 to 5 samples. Amplifier under test: MAX2430 driven with
a 915-MHz OFDM signal with 8 subcarriers and 8.4-dB PAR at a level of
−12 dBm.

bandwidth with a mean power level of −12 dBm, and uses
eight subcarriers. The OFDM symbols were pre-processed
with a root-raised cosine filter using a roll-off factor of 0.25
and a delay of 24 symbols, yielding a PAR of 8.4 dB.

The NMSE values associated with each of the fifth-order
models are shown in Fig. 5. The amplifier under test was the
MAX2430 device biased as a class-AB amplifier. Although the
excitation signal drove the amplifier into a clearly nonlinear
regime, it is evident that the RPV model obtains the best
overall performance in all cases. With a complexity equal or
higher than 29 coefficients (i.e., Q ≥ 2 for RPV and Q ≥ 3
for SRPV), the proposed models offer NMSE improvements
in the range of 1–2 dB over the model in [6]. It is also notable
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Fig. 6. Cross-validation of the different fifth-order models in terms of the
NMSE as a function of the number of coefficients. The marks correspond
to maximum delays in the range from 0 to 5 samples. Amplifier under test:
MAX2430 driven with a 915-MHz WCDMA signal at a level of −12 dBm
and 4-dB PAR. Model identification was accomplished by using a 915-MHz
OFDM test signal with 8 subcarriers and 8.4-dB PAR at the same level.
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Fig. 7. Comparison of fifth-order models in terms of the ACEPR as a function
of the number of coefficients. The marks correspond to maximum delays in
the range from 0 to 5 samples. Amplifier under test: MAX2430 excited by
a 915-MHz OFDM signal with 8 subcarriers and 8.4-dB PAR at a level of
−12 dBm.

that even though EVBW is similar to the GMP model in terms
of computational cost, its performance is slightly better.

A further step is the cross-validation of the models by using
different signal waveforms to extract model coefficients and to
assess model accuracy. For this purpose, the OFDM probing
set applied in Fig. 5 is again used for model identification, and
the parameter values so obtained are employed to predict the
output response of the PA driven by a WCDMA-like signal.
We remark that these are very different types of signals, with a
difference in the peak-to-average power ratios above 3 dB. The
NMSE values of the modeled outputs are depicted in Fig. 6 in
terms of the number of coefficients for the different models.
These results were obtained carrying out the identification and

validation tests on the same evaluation board. However, it has
to be emphasized that the models were also validated with
measurement results performed on a different evaluation board
of the same commercial circuit. The low values of the NMSE
suggest that the extracted models are valid for the commercial
circuit, and not only for the particular evaluation board used
in the experimental setup. In spite of the fact that the training
and validation signals are quite dissimilar, it is evident that
the models exhibit good generalization properties that mostly
agree with the previously commented results. It is notable that
starting from 15 coefficients, all the models perform nearly
flat, although there is some deterioration in the NMSE of
the model of [6] as the complexity increases, which can be
related to a more difficult generalization when the number of
coefficients is very high. In agreement with this matter, the
good performance of the VBW model, which exhibits a radial
structure, is remarkable. According to Fig. 2, it presents a
complexity similar to that of the MP model, but with better
accuracy. In the rest of the models, the evaluation again places
RPV, SRPV, and EVBW in a better position compared to
MP, GMP, and the model of [6], although the differences are
reduced to a few tenths of dB.

In addition to the NMSE, another figure of merit for model
performance assessment is the adjacent channel error power
ratio (ACEPR), defined as the power of the error signal, cal-
culated as the difference between the measured and modeled
signal, in the adjacent channel relative to the power within the
channel [14]. The ACEPR associated with the different models
for the MAX2430 amplifier driven with OFDM signals is
depicted in Fig. 7, where we observe results similar to those of
the NMSE. In this case, starting from 15 coefficients, the best
performance is for the RPV, with the SRPV following closely
the curve. The rest of the models present similar performance.

The spectra of the measured and predicted signals are de-
picted in Fig. 8 for the case of cross-validation, i.e., the models
were trained with OFDM excitations and the extracted kernels
were subsequently tested with WCDMA signals. The traces in
the upper part of the figure correspond to measurement data
(dots) and the simulated spectra for the fifth-order RPV model
with a memory length of four samples (solid line). Comparing
with the GMP model of the same order and memory length, if
we recall that the NMSE values attained in Fig. 6 were very
low, it is not possible to distinguish the two traces from the
measurements (only the RPV model is depicted). Likewise,
the spectra of the error signals for the RPV and GMP models
(solid line and dotted line in the lower part of Fig. 8) reveal
comparable performance.

Finally, the set of measurements used for identification
was also applied to a ZHL-5-2G amplifier (Minicircuits Inc.,
Brooklyn, NY), a 5-W PA useable over 700 to 2200 MHz
operated with a dc voltage of 24 V, and using the same OFDM
signal at a carrier frequency of 2 GHz. The excitation level
was about 5 dB below the input 1-dB compression point.
The performance in the spectral domain is compared again
in Fig. 9. In this case, there are no significant differences,
although the level of the error signal for the RPV model
is lower in the signal channel. However, it is important to
emphasize that this amplifier was driven at a more linear point
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Fig. 8. Power spectra of the measured, modeled, and error signals simulated
with fifth-order GMP and RPV models. Amplifier under test: MAX2430
excited by a 915-MHz WCDMA signal with 4-dB PAR, at a level of
−12 dBm. Model identification was accomplished by using a 915-MHz
OFDM test signal with 8 subcarriers and 8.4-dB PAR at the same level.
Resolution bandwidth: 100 kHz.
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Fig. 9. Power spectra of the measured, modeled, and error signals simulated
with fifth-order GMP and RPV models. Amplifier under test: ZHL-5-2G
excited by a 2-GHz OFDM signal with 8 subcarriers and 8.4-dB PAR at
a level of −12 dBm. Resolution bandwidth: 100 kHz.

of operation, compared to the MAX2430.

VI. CONCLUSIONS

In this paper, we have presented a novel approach to prune
discrete-time complex-baseband Volterra models by select-
ing radial directions. The proposed method accomplishes a
significant reduction in the number of coefficients, with a
complexity that compares favorably with that of other widely
used behavioral models. The family of models has been
extensively tested with measurement data from a class-AB
amplifier at 915 MHz and a 5-W amplifier at 2 GHz. The
obtained values of the NMSE were as low as −35 dB for a
memory length of only two samples with a WCDMA signal
at a strongly nonlinear point of operation, and near −33 dB

for an OFDM signal with eight subcarriers when the input
backoff was set at 5 dB. In this case the comparison in terms
of the ACEPR showed that the proposed model obtained the
best scores, with a value below −35 dB with two delay taps,
which outperforms the other available models by about 1 dB.
The computational cost of the models has been reduced due
to the the radial pruning, which allows a trade-off between
the number of parameters of the model and its accuracy. The
good results place the proposed approach as a model of choice
for behavioral modeling applied to predistortion techniques for
PAs with memory.

Comparing the mathematical expression of the regressors
defined for most of the Volterra-based behavioral models used
for PAs, our results seem to show that the radial structure is
relevant to the general configuration of a FV model. However,
further work is necessary to demonstrate the physical origin of
these radial terms, which could be derived from a circuit-level
approach like that used to devise the VBW model in [5].

Another topic of interest is the improved performance that
these models experience when even-order terms are included
in the model definition [12]. As their origin is not due to any
even-order term in the bandpass PA model, it is convenient
to elucidate whether the associated improvement is due to
compensation of baseband nonlinearities.
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