Figure 1.

Figure 4

Figure 6.

Figure 7

Strains	Density of Bands (% of wild type)
WT-M	100
A16FJ-M	114 ± 20
S28Vβ-M	105 ± 12
V32Fβ-M	147±11
WT-MP	100
A16FJ-MP	110±1
S28Vβ-MP	101 ± 11
V32Fβ-MP	91±13

Figure 9.

Figure 10.

Supplemental Data.

Supplemental Figure S1. Kinetics of electron transfer from Q_A^- to Q_B^- and Q_B^- in response to a saturating flash given to (A) WT (black trace), A16FJ (blue trace), and V32F β mutant cells (green trace) and (B) WT (black trace), S23A α (blue trace), and S28A β Cyt b_{559} mutant cells (red trace). Conditions: 20 µg chlorophyll samples in 2 mL BG-11 medium. Samples were incubated in darkness for 1 min. The levels of F_o and F_m were normalized.

Supplemental Figure S2. Time-dependent, flash-induced PSII fluorescence yield for (A) WT, (B) V32F β , and (C) S28A β mutant cells [pre-illuminated with medium blue light (~50 μ E m⁻² s⁻¹) for 2 min] with and without strong blue actinic light. The intensity of strong blue light was ~400 μ E m⁻² s⁻¹.

Supplemental Figure S3. Time-dependent, flash-induced PSII fluorescence yield for (A, B) WT, (C, D) V32F β , and (E, F) S28A β mutant cells with and without strong blue actinic light. The intensity of strong blue light was ~400 μ E m⁻² s⁻¹. (B), (D) and (F) were treated with 0.4M betaine to inhibit state transition. The cells were grown under light conditions with intensity 80-90 μ E m⁻² s⁻¹.

Supplemental Figure S4. 77 K-fluorescence emission spectra for WT, A16FJ and V32F β mutant cells. (A) Excited phycobilisomes at 580 nm (excitation bandwidth 3 nm; emission bandwidth 1 nm; spectra were normalized at 650 nm). (B) Excited chlorophyll at 435 nm (excitation bandwidth 5 nm; emission bandwidth 1 nm; spectra were normalized at 722 nm). All measurements were carried out at 77 K, with cell suspensions at chlorophyll concentration 20 µg mL⁻¹.

Table S1. The DNA sequence of synthetic mutagenic oligonucleotides

A16FJf:	5- GTG GTG GGT GTA GTG <u>TTC</u> GGT ATT GGC GCC ATT -3
A16FJr:	5- AAT GGC GCC AAT ACC <u>GAA</u> CAC TAC ACC CAC CAC -3
A16LJf:	5- GTG GTG GGT GTA GTG <u>CTC</u> GGT ATT GGC GCC ATT -3
A16LJr:	5- AAT GGC GCC AAT ACC <u>GAG</u> CAC TAC ACC CAC CAC -3
A16SJf:	5- GTG GTG GGT GTA GTG <u>TCC</u> GGT ATT GGC GCC ATT -3
A16SJr:	5- AAT GGC GCC AAT ACC <u>GGA</u> CAC TAC ACC CAC CAC -3
G19FJf:	5- GTA GTG GCC GGT ATT TTC GCC ATT GGT GTT CTA -3
G19FJr:	5- TAG AAC ACC AAT GGC <u>GAA</u> AAT ACC GGC CAC TAC -3
A20FJf:	5- GTG GCC GGT ATT GGC <u>TTC</u> ATT GGT GTT CTA GGG -3
A20FJr:	5- CCC TAG AAC ACC AAT <u>GAA</u> GCC AAT ACC GGC CAC -3
S23Aαf:	5- TAC TGG GTG ATC CAC <u>GCC</u> ATC ACC ATC CCG ATG -3
S23Aαr:	5- CAT CGG GAT GGT GAT <u>GGC</u> GTG GAT CAC CCA GTA -3
S28 Aβf:	5- ACC CTG GCG GTG CCC <u>GCC</u> GTC TTC TTT GTC GGG -3
S28A β r :	5- CCC GAC AAA GAA GAC <u>GGC</u> GGG CAC CGC CAG GGT-3
S28 Vβf:	5- ACC CTG GCG GTG CCC <u>GTT</u> GTC TTC TTT GTC GGG -3
S28 Vβ r :	5- CCC GAC AAA GAA GAC <u>AAC</u> GGG CAC CGC CAG GGT-3
V32Fβf:	5- CCC TCT GTC TTC TTT <u>TTC</u> GGG GCG ATC GCC GCG -3
V32Fβr:	5- CGC GGC GAT CGC CCC <u>GAA</u> AAA GAA GAC AGA GGG -3

f: forward; r: reverse. Mutations were marked with red color and underlined.