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Abstract. Clustering analysis is one of the most commonly used tech-
niques for uncovering patterns in data mining. Most clustering methods
require establishing the number of clusters beforehand. However, due to
the size of the data currently used, predicting that value is at a high
computational cost task in most cases. In this article, we present a clus-
tering technique that avoids this requirement, using hierarchical cluster-
ing. There are many examples of this procedure in the literature, most
of them focusing on the dissociative or descending subtype, while in this
article we cover the agglomerative or ascending subtype. Being more ex-
pensive in computational and temporal cost, it nevertheless allows us
to obtain very valuable information, regarding elements membership to
clusters and their groupings, that is to say, their dendrogram. Finally,
several sets of data have been used, varying their dimensionality. For
each of them, we provide the calculations of internal validation indexes
to test the algorithm developed, studying which of them provides better
results to obtain the best possible clustering.

Keywords: Machine Learning, Hierarchical Clustering, Internal Vali-
dation Indexes

1 Introduction

In recent years, the size of the information available for various types of studies
has grown considerably. Areas like medicine [1], social networks [2], energy [3]
or electronic consumption [4] are just a few examples of this, with an increasing
amount of data. This information needs to be processed to get some useful
knowledge.

Among the different possible solutions to data analysis we focus on Machine
Learning techniques, allowing us to extract the main features and a model cov-
ering the main information in a dataset. One of the most used model is called
clustering, which determines the number of instances of a certain grouping within
the data under study. Within the existing grouping variants, hierarchical clus-
tering provides us with very interesting additional information. We can see the
evolution of the clusters in each step of the algorithm, thus studying the group-
ing of X elements within the data. There exists two subtypes within hierarchical
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clustering: dissociative or descending, starting from a group with all the ele-
ments, and ending in a cluster for each instance in the dataset; or agglomerative
or ascending, starting with as many clusters as exists elements in the dataset
and ending with a single agglomerative cluster with all of them.

Nowadays, there exists several frameworks to work with Machine Learning
techniques to obtain knowledge. One of the most known is Apache Hadoop [5],
that is built around the programming model based on the Google paradigm
MapReduce [6]. Moreover, one of the most widely used open source projects
is Apache Spark [7]. In the Google paradigm, it is read and written from the
hard disk on many occasions, which reduces produces a detriment in the speed
of data processing. Spark, the number of write/read cycles on the disk, so that
intermediate calculations are logically and quickly stored in RAM. To do this,
Spark uses a data structure called ”Resilient Distributed Datasets” (RDD), that
are specially designed to parallelize cache calculations with high data volume. In
addition, this system contains the scalable library for Machine Learning (MLlib),
with a series of such as algorithms classification, regression, recommendation
systems and clustering techniques, will be of great help to achieve our goal [8].

The purpose of this article is to present a new agglomerative clustering tech-
nique implemented in Apache Spark. We have tested our algorithm using diverse
datasets, that were created by means of a random database generator. Further-
more, we have applied different internal clustering validation indexes (CVIs) [9]
in order to test our clustering results and compare the CVIs performance be-
tween the agglomerative hierarchical clustering implemented (AHC) and that
provided by Spark as a dissociative modality, Bisecting K-Means (BK-Means)
[10].

The rest of the document is organized as follows. Section 2 reviews differ-
ent types of clustering techniques, as well as the CVIs used during our experi-
mentation. Section 3 describes the algorithm and its implementation. Section 4
presents the experiments carried out and, finally, Section 5 summarizes the main
conclusions of this work.

2 Related Work

In this section are reviewed the main grouping methods, as well as the internal
validation indexes that have been used in our experimentation.

2.1 Clustering methods

There are several types of clustering algorithms, which could be classified into
the following categories depending on the method we use [11]:

– Grouping by partitions: Given a set of n elements, the partition method
builds K groups, where each partition represents a cluster and K ≤ n. It’s
based on the principle of distance between the individuals, so given an initial
K, a first solution could be obtained. Then the process consists in iterating
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over the dataset, moving objects between groups and trying to improve the
previous solution.

– Density-based methods: In this approach it is possible to obtain a clustering
whose groups are made up of high-density areas and separated from each
other by low-density areas.

– Grid-based methods: It consist in dividing the elements into a finite cell space
which is part of a grid structure. It is applied independently to the size of
the data, and the difference is given by the number of cells in each dimension
of the generated space.

– Hierarchical clustering : It groups data to form a set, or to separate some
already existing sets to give origin to other two. Thus, the distance is mini-
mized or the similarity between them is maximized. It is possible to choose
different measures to quantify both distance and similarity in this type of
grouping.

Within the family of hierarchical algorithms there are two versions or strate-
gies that can be used:

– Dissociative or descending : It starts with a cluster that includes all the ob-
jects, from which successive divisions are made, forming smaller groups until
as many groups as there are elements in the dataset are obtained.

– Agglomerative or ascending : It works the opposite way to the descending
version. It starts with as many clusters as there are elements in our dataset.
At each step, more and more clusters of instances are formed until you end
up with a single cluster made up of all available data.

From the first group of algorithms, we can find numerous examples in the
literature [12,13,14]. However, in this work we present a version of the agglomer-
ative option. The main problem of this implementation lies in the computation
time needed when treating with large amount of data. Hence, there are few
examples in the literature of implementations of this type of strategies [15,16].

2.2 Validation indexes

The validation of the results obtained by clustering algorithms is a fundamen-
tal part of the clustering process. CVI have been typically used to evaluate the
partition obtained. Most popular CVIs are Dunn [17] and Silhouette [18]. Fur-
thermore, indexes presented in [9], have been used in this work, being some of
them a simplification of Dunn and Silhouette.

Dunn and Silhouette. We describe in the following the two most used vali-
dation indexes in the literature, which have been implemented in this work for
our experiments:

– Dunn: Measure widely applied in literature, but open to the possibility of
choosing between several variants for calculation. The index is defined by:

Dunn =
Min(Inter-cluster)

Max(Intra-cluster)
(1)
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,where Inter-cluster is computed as the distance between all the points of
a certain cluster M to all the points of a cluster N, and divided by the
product of the number of elements in both clusters. Intra-cluster represents
the distance between all the elements that are part of a cluster, divided by
the number of instances within that set.

– Silhouette: Silhouette distance is calculated for each point i of a cluster:

Silhouettei =
(bi − ai)

Max(bi, ai)
(2)

,where bi is the shortest distance between point i to the rest of points of any
cluster in which i is not a part of; and ai is the average distance between point
i and the rest of the points of the clusters to which it belongs. Silhouette
value is in the interval −1 ≤ Silhouettei ≤ 1, being its optimal value equals
to 1.

Other indexes. As aforementioned, we have used three other validation indexes
from [9] in order to check and compare the goodness of our clustering algorithm.
Davis-Bouldin is included [19], which uses data object quantities and features
inherent to the dataset to set the compactness and separation of the clusters;
BD-Silhouette is a simplification of the traditional Silhouette index based on
using intra-cluster and inter-cluster distances to the centroid of each cluster,
rather than every element within them; and BD-Dunn, which also simplifies the
calculations of the internal validation index Dunn is used the centroid of each
group of data.

3 Our proposal

In this section we present our approach for AHC. Our technique starts from as
many clusters as instances and, in an ascending way, groups them until it reaches
a single cluster. In the next, we show the pseudocode of our strategy is shown
in Algorithm 1:

The algorithm receives as parameters: a RDD of objects of type ”Distance”
[20], (class created internally to represent the distance between any two ele-
ments of the database); the number of clusters to be obtained; the strategy for
computing the distances; and the total number of instances in the dataset.

Line 10 refers to the the calculation of the Cartesian product, which is nec-
essary to find the distances between the points or clusters of each iteration with
respect to the other elements of the RDD of objects of type ”Distance”. In ad-
dition, the step performed on line 11 is configurable according to the designated
strategy for calculating the distance between elements in the database, being
the implemented options ”min”, ”max” and ”avg”. They refer to the minimum,
maximum or mean distance between the distances of the remaining points from
each of the points that make up the pair found during line 2 of the algorithm,
respectively. In the literature, each of these strategies establishes a different hier-
archical clustering typology. Being ”minimum or simple link grouping” (simple
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Algorithm 1 Agglomerative Hierarchical Clustering (AHC)

Input: RDD with objects Distance, number of clusters, strategy for the distance be-
tween elements and number of elements of the DataSet.

Output: Hierarchical clustering model.
1: for a← 0 to (elementsDataSetNumber − numClusters) do
2: Find the next cluster as the pair of elements with the shortest distance between

them within the RDD of Distance (they can be two DataSet points; a DataSet
object and a cluster; or two clusters).

3: Save the elements of the pair that make up the new cluster.
4: Update the hierarchical clustering model with the cluster found on line 2 and

its elements.
5: if a < (elementsDataSetNumber - numClusters - 1) then
6: Delete from the RDD of Distance the match found on line 2.
7: Search the RDD for Distance for all the relationships between the first point

or cluster found on line 2 and the rest of the elements.
8: Search the RDD for Distance for all the relationships between the second

point or cluster found on line 2 and the rest of the elements.
9: Delete from the RDD of Distance all items found on lines 7 and 8.

10: Calculate the Cartesian product from the elements found in lines 7 and 8.
11: Add to the RDD of Distance the distances from the cluster found on line 2

to the other elements calculated on line 10.
12: end if
13: Every 5 iterations make a backup copy of the RDD of Distance.
14: end for

linkage), ”maximum or complete link grouping” (complete linkage) and ”average
or average link grouping” (average linkage), respectively [21].

3.1 Implementation

For the creation of this hierarchical grouping, several variants can be made de-
pending on the basis for storing the information, using ”Resilient Distributed
Dataset” (RDD) or ”DataFrames”. Both objects are provided by Apache Spark.
In addition, some functions from MLlib were used, which allows us to delegate
some calculations of our algorithm.

Following Spark recommendations, collect() and coalesce() [22] methods were
used in order to accelerate the process. With the collect() method, it is possible
to obtain data stored in memory during previous calculations, so that it is not
necessary to wait for the executions lazy of the Spark framework. Through the
use of the coalesce() method, it is possible to reduce considerably the partitions
in which the data are parallelized during the execution of our algorithm. Spark
divides the stored data into four times the number of working nodes being used.

Spark offers other alternatives to solve this issue, such as using the count()
method, which count the number of elements of a given RDD, thus forcing the
system to use the data stored in memory. Finally, this alternative was replaced
by the former one in our implementation due to the results in terms of execution
time between both during the performance tests of the algorithm.
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In addition, through experimentation, checkpoints each several iterations
helps to achieve better performance of the algorithm. Therefore, it is neces-
sary to remember the data that are within the RDD of the distances between
all elements. After several performance tests, 5 iterations were inferred as the
optimum number for these backups. As for the coalesce() method, tests were
carried out with several multiples of 4, following Spark’s recommendations that
establish to use them by multiplying by the number of CPUs used during the
execution. The best configuration was to use 8 partitions to distribute the data
since the equipment where the tests have been performed has 4 CPUs (it is
described in Section 4.1). Following Spark’s recommendations, it is one of the
configurations that usually work best.

4 Experimentation

In this section we present the experimental setup and results obtained using our
AHC approach and the comparison with respect to the use of the dissociative
clustering algorithm BK-Means.

4.1 Working environment and Datasets

Our goal is to check the goodness of the different grouping obtained by our al-
gorithm, using several datasets and evaluating the results by means of multiple
CVIs. The experiments were executed in: IntelliJ IDEA development environ-
ment; the Apache Spark framework using the Scala language; and the Machine
Learning library provided by the MLlib framework; a computer with an Intel
Core i7-7700HQ CPU with 4 cores of 2.8 GHz, 16 GB of RAM, an SSD of 256
GB and a HDD of 1TB.

A total of 60 datasets have been used in our experimentation, which were
generated by using the database generator in [9]. This tool allowed us to configure
the desired number of clusters, dimensions, and the number of points for each
cluster.

For the experimentation, three different configurations for the number of
clusters (K) have been used : 3, 5 and 7; 20 different configurations for the
dimensionality of the data: from 1 to 20; and 100 points for each of cluster. In
order to achieve the 20 different dimensions expressed above, a dataset has been
taken as the basis for each different K with 20 total dimensions, from which the
different dimensions from 1 to 20 have been selected.

4.2 Experimental results

In order to study which CVI offers the best results using our hierarchical al-
gorithm as the basis for clustering, we must first define how to measure this
goodness. In our experiments, the modality avg distance of the hierarchical clus-
tering algorithm has been chosen, explained in Section 3. As for the configuration
of the BK-Means algorithm, all the default values for parameters have been set.
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Since the number of clusters (K) for each of the datasets is known beforehand,
we would check in how many datasets each of the indexes matches K. After
executing the algorithm for each of the datasets, different cluster numbers on
the resulting model for each CVI has been tested. Specifically, K values from
3 to 9 have been used (3 < K < 9 ). This interval has been chosen in order to
guarantee that all K values can be found, since, the minimum would be 3 and
the maximum would be 7 in the data used during the experimentation.

The results have been grouped according to two criteria: by the number of
clusters, and by the number of dimensions in each of the databases. Following
the first of the criteria, each index could obtain a maximum of 20 hits in each
of the numbers of clusters. Whereas for the second criterion, each index could
obtain a maximum of 3 hits for each of the dimensions available in our databases.
In this sense, each of the indexes will have two different hits: one grouping all the
cluster numbers for each dimension, being able to obtain a maximum of 20; and
another grouping all dimensions for each cluster number, being able to obtain a
maximum of 3. The results can be summarized in the following Tables 1, 2 and
3:

Index
AHC
(K3)

AHC
(K5)

AHC
(K7)

BK-Means
(K3)

BK-Means
(K5)

BK-Means
(K7)

AHC
(Total)

BK-Means
(Total)

Silhouette 20 18 14 20 18 7 52 45
Dunn 19 18 14 17 18 7 51 42

Silhouette-BD 17 15 9 13 14 3 41 30
Dunn-BD 19 18 13 17 18 7 50 42

Davis-Bouldin 20 18 14 18 18 7 52 43

Table 1. Summary of hits of each index grouped by the number of clusters in each
dataset.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

Silhouette 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 14
Dunn 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 14

Silhouette-BD 0 0 1 2 1 2 3 2 3 2 3 3 2 2 2 2 2 3 3 3 7
Dunn-BD 0 1 2 2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 13

Davis-Bouldin 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 14

Table 2. Summary of hits of each index grouped by the number of dimension in each
dataset in AHC execution.

Calculating the total success percentage of each of the CVIs studied would be
as simple as dividing the ”Total” columns of the previous tables by the maximum
number of clusters and dimensions of those groupings, 60 and 20, respectively.
Figure 1 summarizes the global results for each CVI, showing the percentage of
total hits, and grouping the tests carried out by the number of clusters, and by
the number of dimensions for each dataset.

The best indexes taking into account the grouping of databases by the num-
ber of clusters have been Silhouette and Davis-Bouldin in the case of using our



8 José David Mart́ın-Fernández et al.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

Silhouette 1 1 2 2 2 2 3 2 3 3 3 3 3 2 3 2 2 2 2 2 7
Dunn 0 0 1 2 2 2 3 2 3 3 3 3 3 2 3 2 2 2 2 2 7

Silhouette-BD 0 0 0 1 0 0 1 2 2 3 3 2 2 2 2 2 2 2 2 2 2
Dunn-BD 0 0 1 2 2 2 3 2 3 3 3 3 3 2 3 2 2 2 2 2 7

Davis-Bouldin 1 0 1 2 2 2 3 2 3 3 3 3 3 2 3 2 2 2 2 2 7

Table 3. Summary of hits of each index grouped by the number of dimension in each
dataset in BK-Means execution.

AHC algorithm, both obtaining a success rate of 87%. Studying the case of the
BK-Means algorithm it can be observed how the best index has been the only
Silhouette, with a 75% success rate. If we study the percentages by the number of
dimensions, we find the same previous winners plus Dunn in the case of using our
AHC algorithm, all obtaining a 70% success rate on the number of dimensions.
However, in the case of using the BK-Means algorithm, the Dunn-BD index
would have to be added to the previous winners, all with a 35% success rate. A
much smaller percentage than in the case of the AHC algorithm. So it can be
concluded that the best indexes to validate our hierarchical clustering algorithm
are both Silhouette and Davis-Bouldin, as they are the ones that are most ac-
curate in all the conditions studied in the case of using our AHC algorithm and
the only Silhouette in the case of the BK-Means algorithm.
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Fig. 1. Percentage of total hits for each of the indexes.

We have found that the greater the number of clusters, by the more difficult
the finding the optimum number of clusters. Specifically, the worst results were
obtained for K = 7. On the other hand, from the point of view of dimensions, all
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indexes have had problems when the databases had a low number of dimensions.
More specifically from 1 to 6 in the most cases, concluding that the greater the
number of dimensions, the better all the indexes studied in this article behave
with our hierarchical clustering algorithm.

With respect to computation time, the following Table compare the different
algorithms used 4:

Hierarchical
Type

Clustering
(300p)

Clustering
(500p)

Clustering
(700p)

BK-Means 1.95s 1.86s 1.68s
AHC 43.12s 105.94s 156.85s

Table 4. Average computation time for each type of hierarchical clustering.

As it can be seen, the executions have been grouped according to the number
of points of each dataset studied with 300, 500 and 700 points. In all the variants
studied, the BK-Means algorithm has obtained better computation times than
the proposed AHC algorithm, as expected.

5 Conclusions

This article presents a new approach for AHC, together with a performance
comparison involving several clustering validation indexes. On the one hand,
the effectiveness of the generated model by this clustering algorithm has been
verified. On the other hand, we have established Silhouette and Davis-Bouldin
as the best validation indexes for our algorithm. In addition, better results than
the BK-Means algorithm developed by Apache Spark have been achieved in all
indexes.

Moreover, all the indexes under study have problems in finding the optimum
number of clusters when the number of clusters is high, and the dimensions of
the points are reduced. Therefore, with the developed algorithm in environments
may be used a high number of dimensions, since knowing a priori the optimal
number of clusters in a database is not an easy task.

For future work, the main objetive is to improve the implementation of this
hierarchical clustering algorithm; by increasing the number of instances that can
be introduced, and also trying to reduce the computation time with respect to
the dissociative version (BK-Means).

All the code generated, as well as the used databases during the study can
be found at the following link: https://github.com/Joseda13/LinkageClustering.
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