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Abstract
Cement factories require large amounts of energy. 70% of the variable cost goes to energy—33% to kiln thermal energy
and 37% to electrical energy. This paper represents the second stage of a broader research study which aims at optimising
electricity cost in a cement factory bymeans of using artificial intelligence. After an analysis of the different tools that could be
highly useful for the optimisation of electricity cost, for which a systematic review of the literature and surveys and an expert
panel of 42 professionals in the cement sector were carried out, a methodology was developed in order to reduce electricity
cost by optimising not only different variables of the production process, but also regulated electricity costs and electricity
market costs. Artificial neural networks and genetic algorithms will be the tools to be used in this methodology, which can
be applied to any cement plant in the world, and, by extension, to any electro-intensive consumer. The innovation of this
research work is based on the use of a methodology that not only combines two different variables at the same time—process
variables and regulated prices—but also makes use of artificial intelligence tools techniques.

Keywords Cement · Electricity cost · Optimisation · Artificial intelligence · Artificial neural networks and genetic algorithms

1 Introduction: problem identification

Cement manufacturing process consists of finely grinding
a series of minerals (limestone, marl and clay) and heating
them at about 1450ºC in a cement kiln to obtain an inter-
mediate product called clinker. The clinker is blended with
gypsum (a cement setting regulator) and other additives and
then ground again into a fine powder to form cement. The
process consists of 9 stages which are shown in Fig. 1.

TheSpanish cement sector faced a very severe crisiswhich
brought about a drastic reduction in consumption. From2006
up to 2014 cement consumption decreased from 55.9 million
t. to 10.8 million t, which represented a decrease of 80.67%.
Spanish cement companies were forced to change their strat-
egy and started then exporting large quantities of cement and
clinker to different countries in the world.

The loss of competitiveness of cement companies in recent
years has led to a drastic reduction in Spanish exports. Dur-
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ing 2018, Spanish plants exported a total of 8,103,947 t. of
cement and clinker. This amount was reduced to 6,232,043 t.
in 2019—a reduction of 23.1%. [26].

The energy consumption of a cement plant has a very
important weight in the income statement. Energy comprises
up to 70% of variable cost in a cement factory: 33% for
thermal energy (Kiln) and 37% for electrical energy [17].
Therefore, the cost of electricity consumption in cement pro-
duction is a fundamental competitive factor.

Electricity costs in Spanish electro-intensive industry,
according to Eurostat data, can be sometimes up to 30%
higher than they are in other European countries [11]. Energy
price in Spain is higher than that in most direct competitor
countries. Based on a consumption between 20,000 MWh
and 150,000MWh, which is the range within which 100% of
Spanish cement companies were located in 2018—excluding
taxes and levies—comparative data for the cost of electricity
in electro-intensive industry in the 28 EU countries reveal
that Spanish industry has one of the highest electricity costs,
being only surpassed by Ireland, Malta and the UK.

While the EU-28 average electricity price for non-
household consumers with a consumption between 20.000
and 150.000 MWh was 61,3 e/MWh in 2018, it reached
78,8 e/MWh in Spain.
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Fig. 1 Cement manufacturing process (% of electricity consumption referred to tons of cement)

Hence, it is essential to investigate how to optimise the
cost of electricity in cement factories in order to make them
more competitive.

2 Objective of the paper

The problem of the loss of competitiveness of cement indus-
try due to its high electricity costs is a common issue in
multiple countries. In the last few months (Spring/Summer
2021), the matter has acquired great relevance in countries
such as Spain. Specifically, our research pursues the devel-
opment of a methodology to optimise the cost of electricity
in a cement plant by means of influencing internal variables
of the plant: process variables and regulated electricity cost.

By reducing costs, the plant may become more compet-
itive. The methodology developed is perfectly valid for any
cement factory in the world. In addition, it is worth mention-
ing that by modifying the initial parameters of the model, it
could be applied to other electro-intensive industries, such
as extractive mining—copper and other mineral production,
automotive industry, aeronautical industry and agroindustry.

To apply it in other countries, it would only be neces-
sary to analyse the regulated electricity costs to be taken into
account, as well as the different factors that affect price for-
mation in the electricity markets.

Using artificial intelligence (AI) for the optimisation of
the cost of electricity in cement plants is the objective of a
broader research study within which this article is framed.
Our research study also includes a methodology aimed at
reducing the cost of electricity by applying AI techniques to
optimise the purchase of electricity [27].

3 Methodology

The tools that prove to be useful when applying AI to min-
imise electricity cost in the cement sector match those that
could potentially be applied in other industrial sectors. They
are mainly the following:

1. Internet of things (IoT): set of devices, objects and com-
puters connected to the internet and communicated with
each other, which help to collect information.

123



Electrical Engineering

2. Datamining: it is used to extract information contained in
historical or real time received data, to assist in decision
making [7, 31].

3. Machine learning: it is a branch of AI based on the design
of algorithms, which allow machines and computers to
learn from data without the need for constant human
intervention. Its strong point is that the learning process
is automated and improved as it consumes more data
without requiring human intervention [6, 33].

Although in the present paper these tools are tackled, we
will delve into machine learning techniques in particular in
order to apply them in the model proposed.

3.1 Mainmachine learning algorithms
and techniques

There aremachine learning techniques and algorithmswhich
are extremely useful for solving the kind of problem we
face in our research: the optimisation of the cost of elec-
tricity in an industrial plant. These include decision tree
algorithms, support vector machines, Bayesian networks,
fuzzy logic, nearest neighbours, K-means, artificial neu-
ral networks (ANN) and genetic algorithms. Attention will
be focussed on the last two, since they are the most rec-
ommended ones considering the systematic study of the
literature and the expert panel.

3.1.1 Artificial neural networks (ANN)

They are mathematical models which are based on the bio-
logical behaviour of brain neurons [8, 29, 30]. They are
connected in a specific way. They are organised into layers
and their goal is to learn by automatically tuning themselves,
so that they can accomplish complex tasks that could not be
performed by classical programming.

Figure 2 shows the graphical representation of an artificial
neuron. The sum of the inputs multiplied by their associ-
ated weights determines the nerve impulse that the neuron
receives. This value is processed inside the neuron by an acti-
vation function that returns the new value which will be sent
as the output value of the neuron.

Mimicking human brain, ANN receive a series of input
values, each of which reaches a node called neuron. The first
step, which is crucial for the application of the model, is the
proper selection of the input data. It is essential that they be
relevant data, that is, that they really affect the final result
that we try to predict [15].

Neurons in the network are grouped into layers. There are
three types of layers [15]:

– Input layer. It is the one that gets the information from the
outside world.

– Hidden layers. They process the information internally.
– Output layer. It is the one that gets the response from the
network and transfers it to the outside world.

Each of the neurons in the network has a weight, a numer-
ical value (ω), which modifies the received input. The new
values obtained leave the neurons and continue on their way
through the network. The value obtained in each neuron
would be a linear regression model to which a bias—“b”—-
would be added: Y � X1*ω1 + X2*ω2 + X3*ω3 + b. It is not
unusual that the results obtained by the neural network (Y )
initially do not coincide with the real result. It is due to the
fact that the network should receive some training and learn
how to perform its function correctly. Therefore, such train-
ing is carried out by modifying the weights of the neurons
so that they get as close as possible to the desired results.
Thus, one of the most widespread networks, which is known
as multilayer perceptron-MLP [19], arises.

In this model, training data are entered in the network.
If the result obtained with the initial weights was erroneous,
weights should be adjusted until the output error isminimised
or eliminated. This training algorithmic method that will be
used in our research is called backpropagation. By means
of derivatives, errors will be calculated by the network as
the variation between the result obtained and the expected
correct result for each group of weights. The goal of the
backpropagation algorithm will be to minimise the error (E)
as much as possible. The error will be expressed as the dif-
ference between the output value and the expected correct
result, and it will be squared, since it is not relevant that the
error has a positive or negative value. Itwill also bemultiplied
by 1/2 to simplify the square when calculating the derivative.
The derivative will provide the error variation with respect
to weights variation.

E � 1/2(y − S)2 → ∂E/∂ω

E: Error.
y: Correct value.
S: Neural network output.

Once the end of the neural network is reached with a null
or near-zero error, the network is considered to be sufficiently
trained (Fig. 3).

3.1.2 Genetic algorithms

It is a method to generate the optimum solution to an opti-
misation problem. It starts with an initial population of
individuals with a certain genetic coding. Population evolves
so that only the best chromosomes will be selected to be part
of the new population. To do this, mechanisms for the selec-
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Fig. 2 Artificial neuron. Source:
own elaboration

Fig. 3 How does
backpropagation in artificial
neural networks work? Own
elaboration
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tion, crossover and mutation of chromosomes are applied
until a certain stopping criterion is met. An example of a
stopping criterion could be a certain number of generations
or cycles, until a specific convergence criterion is reached
[22]. This method can be used in combination with other
algorithms such as ANN and support vector machines, with
the aim of increasing performance and providing the model
with a more robust solution [20, 22–24].

3.2 Selecting specific tools to solve the problem

The model introduced in this article was developed using the
most appropriate tools to solve the problem raised and with
the aim of reducing electricity cost in cement factories. Our
approach followed the steps below.

3.2.1 A systematic literature review

In scientific literature, there are two types of literature reviews
[10]: the traditional or narrative review and the systematic
review of literature [21, 22]. In a systematic review of litera-
ture, achieved findings can be replicated [14]. The systematic

review is defined as a process of "systematic, transparent and
reproducible synthesis of research, with the dual objective
of improving the knowledge base and the formulation and
practice of policies" [38]. Due to its structured approach, the
systematic review of literature has been widely accepted in a
variety of scientific fields, such as social sciences, education
and supply chain management [1,12, 25, 34].

The field of study of our research is focussed on the
optimisation of electricity cost in cement companies by
using AI. Therefore, a search was conducted by introducing
keywords (electricity, optimisation, cement, artificial intel-
ligence, industry and energy). The sources of information
selected were Scopus, Web of Science and ABI Inform Col-
lection databases. The search period run until May 2021.

After an initial selection of the articles related to the sub-
ject that were found in the databases, a total of 12 articles
were selected [2–4, 9, 16, 17, 28, 35–37, 39, 40]. The study
of the previous literature provided quite a reduced number
of articles dealing with the issue of our research and which
contained very limited information. Only four of those arti-
cles considered the cement sector [9, 35–37]. The rest of
them were either intersectoral articles [3, 16, 17, 28, 39, 40]
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or general-industry oriented articles [2, 4]. After a detailed
analysis of them, the following conclusions were reached:

(a) Although all the articles dealt with issues related to the
one that is object of our analysis, only four of them [9,
35–37] were specifically focussed on the cement sector
and on the aspects addressed in this paper. Particularly,

+ Article [9] approached the process of optimising
thermal energy consumption in La Robla cement fac-
tory in Tudela Veguín, Spain, by means of using
statistical tools (AI was not applied). The initial
planning, along with several initial methodological
aspects of this study, served as a reference for our
study.
+ Article [37] approached a simulation model con-
ducted in four cement plants in South Africa, which
enabled as much as 7.1% energy savings (electricity
savings and thermal energy savings). To reach those
savings, a managing methodology, which considered
the crudemill, the kiln, the coalmill, crushers, cement
mills and other auxiliary machinery, was carried out.
Hence, a model was developed to distribute the load
among the different days of the week and seasons of
the year and always searching for the off-peak energy
times.Although it also addressed thermal energy cost,
the analysis of this methodology was extremely use-
ful for the present research when shifting electricity
consumption to the most economical off-peak peri-
ods.
+ Article [36] approached the problem of the cement
market in South Africa, where a remarkable increase
in electricity costs took place, which brought about
an important pressure on international producers. An
energymanagement system (EMS) was implemented
in order to cut the electricity bill. This system, apart
from controlling the periods of highest consumption,
shifted electricity demand to the most economical
daily off-peak times.
+ Article [35] focussed on managing and controlling
thermal energy. Some of the factors detailed in this
article were quite useful for our research, although
they did not refer to electricity consumption.

(b) Six of the articles [4, 16, 17, 28, 39, 40] focussed on the
study of different questions related to the optimisation
of electricity purchase in the markets. Although those
questions were of interest for our research as a whole,
they did not tackle specific aspects that are addressed in
this paper.

(c) Although two of the articles [2, 3] provided a generic
reference to AI and/or to industry in general, they did
not address in depth any of the aspects analysed in the

present research. Therefore, they were used for general
matters.

In addition to these articles, a doctoral thesis was analysed
[13]. It studied thermal energy savings in a clinker kiln, as
well as electricity savings in cement grinding by introducing
certain modifications to different variables.

Due to the scarce contributions of the previous existing
literature, the consultations with experts that are detailed in
the following session were considered to be fundamental and
extremely interesting. They complemented the information
obtained from the literature and specified it with information
collected from highly specialised sources in order to develop
a proposal which was adapted to real and current needs of
the sector.

3.2.2 Surveys and expert panel

Following the systematic review of literature, a study based
on surveys and an expert panel was conducted thanks to the
involvement of a total of 42 managers.

The expert panel has proved to be an effective method for
improving the development of a research study, as well as
for providing additional information on its quality [5, 18].
Surveys and the expert panel provided us with relevant infor-
mation to design the methodology that will enable us to
optimise the cost of electricity by using AI.

Quinlan et al. [32] state that when bringing together a
group of experts it is fundamental not only to count on experts
in the specific field under evaluation, but also on reviewers
with an interdisciplinary experience. The experts that were
chosen for our research met this requirement. In all cases,
they were professionals with between 22 and 41 years of
experience in different posts in the sector. Economists, civil
engineers, industrial engineers,mine engineers and chemists,
among others, were consulted.

In addition, it may be stated that all cement companies that
operate in Spainwere consideredwhen selecting the group of
experts. The involvement of the experts brought great added
value to our research thanks to their high experience and
knowledge of the sector.

Surveys, mainly used to obtain quantitative data, were
conducted among a total of 11 managers. This information
was extremely useful for arriving at another of the results
of our research. A quite utterly novel quantitative study
about the composition of regulated electricity cost in Spanish
cement industry was carried out. It was of great use for the
optimisation of regulated electricity costs in our research.

A total of 31 experts participated in the expert panel,
and they provided qualitative data on electricity prices
behaviour, operational costs of production machinery, the
process variables that affect electricity consumption, flexi-
bility in start/stop conditions of production machinery and
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on operational routines. Five of the thirty-one experts that
collaborated with qualitative data, those who were consid-
ered to be experts in AI, were asked to fill in a questionnaire
in order to evaluate the adequate tools to be used for the
development of our model.

For qualitative data collection from the panel of experts,
two questionnaires and a phone survey were carried out:

(1) Aquestionnaire to analyse regulated costs alongwith the
major or minor influence of the different process vari-
ables. The variables that were selected by the experts
were the ones that applied in the ANN architecture,
which is represented schematically in Fig. 4.

(2) A questionnaire to evaluate the most adequate tools to
solve the problem raised in this article. As it has already
been mentioned, five of the experts were specialists in
AI. The use of ANN along with the backpropagation
and genetic algorithms turned out to be the techniques
selected by 80% of the experts consulted, which hap-
pened to be in line with the majorly used tools in the
articles of the previous literature studied. [16, 17, 27,
38, 39].

(3) Finally, to avoid group answers conditioning, phone sur-
veyswere carried out with each of the experts consulted.
They aimed at deepening the answers that were given
in the questionnaires.

Thanks to all the information gathered through the sys-
tematic review of literature, surveys and the expert panel in
the cement sector, themost suitable AI tools for the optimisa-
tion of electricity consumption were selected and the model
to be applied was developed.

3.3 Development of the workingmethodology:
application of specific tools

The information used to assess electricity consumption was
provided by Malaga cement factory (Spain), which belongs
to FYMHeidelbergCement Group. The case of this factory is
completely analogous to the rest of cement plants. Therefore,
the results obtained will apply to any cement manufacturing
plant.

The development of the methodology for the fulfilment of
our objective has two different levels:

3.3.1 Amethodology for operational electricity
optimisation

The purpose is to reduce electricity consumption in a cement
factory by modifying certain variables of the production pro-
cess. To do this, power consumption and the variables on
which it depends will be analysed in detail at each of the
stages of the process [37].

There are 5 stages in the cement manufacturing process
which are critical to electricity consumption (crushing, raw
material grinding, clinker manufacturing, coal grinding and
cement grinding). For each of those stages, the variables
that affect electricity consumption and which could be eas-
ily influenced to optimise electricity consumption—without
incurring large costs or investments—were identified. Then,
5 consumption functions were obtained, one for each stage,
for which we will use the following nomenclature:

• CE(ti): electricity consumption/crusher electricity power
(kW).

• CE(M): electricity consumption/the raw mill electricity
power (kW).

• CE(H): electricity consumption/kiln electricity power
(kW).

• CE(MC): electricity consumption/coal mill electricity
power (kW).

• CE(MCEM): electricity consumption/cementmill electricity
power (kW).

• CE(Fx): stage X net electricity consumption (kWh).
• V(n)FX : “n” variable with impact on electricity consump-
tion in stage X, being n � 1, 2, …, X � 1, 3, 4, 5 y 6.

• ωnX : variable “n” weight in stage X.
• u: the value obtained in each of the neurons in the network
will be a linear regressionmodel to which a bias (u) should
be added.

The selection of the variables that impact on electricity
consumption, which was made for each stage of the cement
manufacturing process, will be described below.

1. Raw materials extraction /crushing (Stage 1: F1).
The two variables that can influence electricity con-
sumption and which were included in the data collection
process are:

– Size of crusher 1 output product (primary crusher):
V (1)F1(t1).

– Size of crusher 2 output product (secondary crusher):
V (2)F1(t2).

For each data pair (a–b, c–d, etc.), we will get an energy
consumption result (X, Z , Y ,…) (Table 1). The objective will
be to minimise that energy consumption, that is, to determine
the pair of V (1)F1(t1) and V (2)F1(t1) values which reduce F1
energy consumption to a minimum.

Electricity consumption will be calculated according to
the following expressions:

CE(F1)(t1) � CE(t1)F[V (1)F1(t1), ∗ω11

+ V (2)F1(t1) ∗ ω21 + u1] ∗ H(t1)
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Fig. 4 Artificial neural network
operation with backpropagation
algorithm. Source. Own
elaboration
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Table 1 Energy consumption result for each data pair (own elaboration)

V (1)F1(t1) V (2)F1(t1) CE(F1)(t1)

a b X

c d Z

e f Y

CE(t1): Primary crusher electricity consumption.
H(t1): Primary crusher operating hours.
u1: Bias.

Each of the two variables—V (1) andV (2)—will affect the
net energy consumption at this first stage (CE(F1)(t1)) with
a weight that will be represented" by “ω”.

For the secondary crusher, the consumption function
would be similar:

CE(F1)(t2) � CE(t2)F[V (1)F1(t2) ∗ ω11

+ V (2)F1(t2) ∗ ω21 + u1] ∗ H(t2)

CE(t2): Secondary crusher electricity consumption.
H(t2): Secondary crusher operating hours.
u2: Bias.

The function that would integrate the two crushers would
be:

CE(F1)(t1, t2) � CE(t1)F[V (1)F1(t1) ∗ ω11

+ V (2)F1(t1) ∗ ω21 + u1] ∗ H(t1)

+ CE(t2)F[V (1)F1(t2) ω11

+ V (2)F1(t2) ω21 + u1] ∗ H(t2)

2. Raw mill (Stage 3: F3).
Since it is a ball mill, the four variables which most influ-
ence electricity consumption at this stage are:

– Input raw material size: V (1)F3.
– Mill rotational speed: V (2)F3.
– Mill filling level: V (3)F3.
– Balls diameter: V (4)F3.

Acting in the same way we did in the previous stage, we
would get:

CE(F3) � CE(M)F[V (1)F3 ∗ ω13 + V (2)F3 ∗ ω23 + u3

+ V (3)F3 ∗ ω33 + V (4)F3 ∗ ω43 + u3] ∗ H(M)

CE(M): Raw mill power consumption.
H(M): Raw mill operating hours.
u3: Bias.

3. Clinker manufacturing (Stage 4: F4).
The two variables that were identified as the ones that
most influence electricity consumption at this stage are:

– False air entering cyclones: V (1)F4
– Clinker granulometry: V (2)F4

Operating in the same way we did in the previous stage,
we would get:

CE(F4) � CE(H)F[V (1)F4,

∗ω14 + V (2)F4 ∗ ω24 + u4] ∗ H(H)

CE(H): Kiln electricity consumption.
H(H): Kiln operating hours.
u4: Bias.

4. Coal grinding (Stage 5: F5).
The following two variables were selected as the ones
that may most influence electricity consumption at this
stage:

– Carbon size/granulometry: V (1)F5.
– Mill rotational speed: V (2)F5.

Operating in the same way we did in the previous stage,
we would get:

CE(F5) � CE(MC)F[V (1)F5,

∗ω15 + V (2)F5 ∗ ω25 + u5] ∗ H(MC)

CE(MC): Coal mill electricity consumption.
H(H): coal mill operating hours.
u5: Bias.

5. Cement mill (Stage 6: F6).
In FYMHeidelberg Cement Group Malaga Factory, there

are 3 cement mills: 5, 6 and 7.
A collection of data related to the four variables which can

influence electricity consumption at this stage was carried
out:

– Clinker size: V (1)F6(M5,M6,M7).

– Plaster size: V (2)F6(M5,M6,M7).

– Other additions size: V (3)F6(M5,M6,M7).

– Mill rotational speed: V (4)F6(M5,M6,M7).

Operating in the same way we did in the previous stage,
we would get (Table 2).

CE(F6) � CE(MCEM)F[V (1)F6,

∗ω16 + V (2)F6 ∗ ω26 + u6 + V (3)F6,

∗ω36 + V (4)F6 ∗ ω46 + u6] ∗ H(MCEM)
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CE(MCEM): Cement mill electricity consumption.
H(H): Cement mill operating hours.
u6: bias.

The aim will be to minimise electricity consumption at
these 5 stages taking into consideration the above-mentioned
14 variables, so that if changes are required in the installation
or the operational process in order to minimise electricity
consumption, these neither imply a significant expense nor a
high investment. It is simply a matter of finding the optimal
combination of variables V (n)Fx which minimise electricity
consumption in the factory.

To optimise the 14 variables—V (n)Fx—we will use the
artificial neuronal network structure with the backpropa-
gation algorithm that is shown in Fig. 4. It is in effect
recommended by the analysed literature and experts con-
tacted as the most effective tool. The 14 variables are present
in the input layer. Each of them will affect electricity con-
sumption at a different "i" stage (CE Fi). Such stages are
included in the second layer of the neural network. Each vari-
able will affect the consumption of the stage with a different
weight. The weights are represented as ωij.

i: Number of the variable.
j: Stage it affects.

In addition, the following will be made come true for each
stage:

ω11 + ω21 � 1 // ω13 + ω23 � 1 // ω14 + ω24 � 1 //

ω15 + ω25 � 1 // ω16 + ω26 + ω36 � 1.

The neural network will need to be trained. To do this,
different combinations of actual values of the 14 vari-
ables—V (n)Fi—which will be taken from the information
collected in the historical database of the plant, will be intro-
duced into the model. For each combination of variables, the
factory will get a CE value of the real electricity consump-
tion observed (y). The neural network will perform a series
of calculations with random weights (ωij) for each variable,
and different output values (s) will be obtained. The goal of
the neural network will be to minimise the error (E) between
the value actually obtained in the factory (y) and the output
value obtained with the neural network (s).

E � 1

2
(E)2

The error will be minimised by trying to make the dif-
ferences between "y" and "s" as small as possible (hence,
by minimising partial derivatives of electricity consumption
depending on theweight). To simplify the result of the deriva-
tive, the error will be squared andmultiplied by 1/2. Squaring

will eliminate the sign of the error, since it is not relevant for
our aim whether it be positive or negative. Once the error
is considered acceptable, we will be able to understand that
the artificial neural network is sufficiently trained and that it
offers acceptable values for ωij.

After the neural network is trained, the next step will be
to introduce different combinations of variables V (n)Fi into
it so that it calculates the predicted electricity consumption-
s—CE—by using the weights that were regarded as valid.
The ultimate goal of training our artificial neural network is
to reduce electricity consumption to a minimum. In order for
the model to have acceptable reliability, we will give each of
the 14 variables different values.

The model will provide us with the combination of val-
ues of the variables that reduces electricity consumption to
a minimum. The structure of the neural network with the
backpropagation algorithm would be as follows.

3.3.2 Amethodology for the optimisation of regulated
electricity prices

It is possible to improve electricity efficiency cost in a cement
factory by shifting electricity consumption to the most eco-
nomical off-peak periods [35].

In Spain, high voltage tariffs (with a contracted power
exceeding 450 kW in one of the periods, that is 6X access
tariffs) offer 6 periods of time (P1, …, P6) which range from
the highest to the lowest cost. This tariff has different energy
rates depending on the period of time inwhich it is consumed,
so that the bill will reflect the energy consumed in each of
the periods and the corresponding rate for each period, with
P1 being the most expensive period and P6 the cheapest one.
Periods are distributed through the year according to the fol-
lowing table (Fig. 5).

The objective will be to optimise the cost of energy by
focussing on the e/kWh, that is always taking the different
periods (P1, P2, …, P6) into consideration in order to use
the cheapest possible kWh.

In this section, possible decreases in contracted powerwill
also be determined, when possible, in order to reduce fixed
cost in the electricity bill. In both cases genetic algorithms
will be used.

The steps to be followed in this methodological develop-
ment are as follows:

Step (B1): The electricity consumption function for each
stage of the cement manufacturing process (9 functions) will
be determined for each of the 6 periods (P1, …, P6). The
cement manufacturing process can be seen in Fig. 1. We will
use the following nomenclature:

• CE(FX). Total electricity consumption in stage X. It will
be measured in kWh.
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Table 2 Energy consumption
result for each data pair (own
elaboration)

V(1)F6(M5, M6, M7) V(2)F6 (M5, M6, M7) V(3)F6(M5, M6, M7) V(4)F6(M5, M6, M7) CE(F6)(M5, M6, M7)

a B c d X

e F g h Z

i J k l Y

Energy calendars in Iberian 
Peninsula 6.1.-A taiff in working days

HOURS 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-5 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

January P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P1 P1 P1 P2 P2 P2 P2 P2 P1 P1 P1 P2 P2 P2

February P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P1 P1 P1 P2 P2 P2 P2 P2 P1 P1 P1 P2 P2 P2

March P6 P6 P6 P6 P6 P6 P6 P6 P4 P4 P4 P4 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P4 P4

April P6 P6 P6 P6 P6 P6 P6 P6 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5

May P6 P6 P6 P6 P6 P6 P6 P6 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5

1-15 June P6 P6 P6 P6 P6 P6 P6 P6 P4 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P4 P4 P4

16-30 June P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P2 P1 P1 P1 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

July P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P2 P1 P1 P1 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

August P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6

September P6 P6 P6 P6 P6 P6 P6 P6 P4 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P4 P4 P4

October P6 P6 P6 P6 P6 P6 P6 P6 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5

November P6 P6 P6 P6 P6 P6 P6 P6 P4 P4 P4 P4 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P4 P4

December P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P1 P1 P1 P2 P2 P2 P2 P2 P1 P1 P1 P2 P2 P2

P1 34 hours a year (*) Saturdays, Sundays and na�onal holidays, P5 at all hours. Except subs�tutable and unscheduled holidays

P2 46 hours a year

P3 24 hours a year

P4 40 hours a year

P5 48 hours a year

P6 120 hours a year

Fig. 5 Energy calendars in Iberian Peninsula. Distribution of time periods for electricity tariffs. (UCSENERGÍA. http://ucsenergia.com/calendarios-
energeticos/—RD. 11/64 2001)

• CEFX P(Y ). Hourly electricity consumption in stageX dur-
ing Y period. It will be measured in kw.

• HFX P(Y ). Working hours in stage X during period Y . It
will be measured in h.

Being X � 1, …,9 and Y � 1, …, 6.

Electricity consumption functions would be:

1.1. Extraction of rawmaterials/crushing It includes electric-
ity consumption from the extraction of raw materials from
the quarry to the entrance to the pre-homogenisation park
(Stage 1: F1).

In the case of FYM HeidelbergCement Group factory in
Malaga, there are two crushers. The function would be:

•

CEF(1)(t1,t2)=CEF1 P(1)(t1)*HF1P(1)(t1) +
CEF1P(1)(t2)*HF1P(1)(t2) + CEF1P(2)(t1)*HF1P(2)(t1) +
CEF1P(2)(t2)*HF1P(2)(t2) + CEF1P(3)(t1)*HF1P(3)(t1) +
CEF1P(3)(t2)*HF1P(3)(t2) + CEF1P(4)(t1)*HF1P(4)(t1) +
CEF1P(4)(t2)*HF1P(4)(t2) + CEF1P(5)(t1)*HF1P(5)(t1) +
CEF1P(5)(t2)*HF1P(5)(t2) + CEF1P(6)(t1)*HF1P(6)(t1) +
CEF1P(6)(t2)*HF1P(6)(t2).

1.2 . Homogenisation It includes transportation to the raw
mill on crushing belts (Stage 2: F2).

• CE(F2) � CEF2P(1)*HF2P(1) + CEF2P(2)*HF2P(2)
+ CEF2P(3)*HF2P(3) + CEF2P(4)*HF2P(4) +
CEF2P(5)*HF2P(5) + CEF2P(6)*HF2P(6).
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1.3. Raw mill Electricity consumption of the mill and
transportation of the elevators to the cyclone tower entrance
(Stage: F3).

• CE(F3) � CEF3P(1)*HF3P(1) + CEF3P(2)*HF3P(2)
+ CEF3P(3)*HF3P(3) + CEF3P(4)*HF3P(4) +
CEF3P(5)*HF3P(5) + CEF3P(6)*HF3P(6)

1.4.ClinkermanufacturingCyclones electricity consump-
tion, clinker kiln, cooling fans, etc. (Stage 4: F4).

• CE(F4) � CEF4P(1)*HF4P(1) + CEF4P(2)*HF4P(2)
+ CEF4P(3)*HF4P(3) + CEF4P(4)*HF4P(4) +
CEF4P(5)*HF4P(5) + CEF4P(6)*HF4P(6)

1.5. Coal grinding (Stage 5: F5).

• CE(F4) � CEF5P(1)*HF5P(1) + CEF5P(2)*HF5P(2)
+ CEF5P(3)*HF5P(3) + CEF5P(4)*HF5P(4) +
CEF5P(5)*HF5P(5) + CEF5P(6)*HF5P(6).

1.6. Cement mill (Stage 6: F6).

In FYM HeidelbergCement Group factory in Malaga, there
are three cement mills: (5, 6 and 7). The function would be:

• CE(F6)(M5,M6,M7) � CEF6P(1)(M5)*HF6P(1)(M5) +
CEF6P(1)(M6)*HF6P(1)(M6) + CEF6P(1)(M7)

*HF6P(1)(M7) + CEF6P(2)(M5)*HF6P(2)(M5) +
CEF6P(2)(M6)*HF6P(2)(M6) + CEF6P(2)(M7)

*HF6P(2)(M7) + CEF6P(3)(M5)*HF5P(3)(M5) +
CEF6P(3)(M6)*HF5P(3)(M6) + CEF6P(3)(M7)

*HF5P(3)(M7) + CEF6P(4)(M5)*HF6P(4)(M5) +
CEF6P(4)(M6)*HF6P(4)(M6) + CEF6P(4)(M7)

*HF6P(4)(M7) + CEF6P(5)(M5)*HF6P(5)(M5) +
CEF6P(5)(M6)*HF6P(5)(M6) + CEF6P(5)(M7)

*HF6P(5)(M7)+CEF6P(6)(M5)*HF6P(6)(M5) +
CEF6P(6)(M6)*HF6P(6)(M6)+CEF6P(6)(M7)

*HF6P(6)(M7)

1.7. Transportation (Stage 7: F7).

• CE(F7) � CEF7P(1)*HF7P(1) + CEF7P(2)*HF7P(2)
+ CEF7P(3)*HF7P(3) + CEF7P(4)*HF7P(4) +
CEF7P(5)*HF7P(5) + CEF7P(6)*HF7P(6)

1.8. Packaging (Stage 8: F8).

• CE(F8) � CEF8P(1)*HF8P(1) + CEF8P(2)*HF8P(2)
+ CEF8P(3)*HF8P(3) + CEF8P(4)*HF8P(4) +
CEF8P(5)*HF8P(5) + CEF8P(6)*HF8P(6).

Table 3 Powers contracted by Malaga factory (own elaboration)

Mw

MAXIMUM POWER—TWO TRANFORMERS 20 + 20

CONTRACTED POWER IN P1 14

CONTRACTED POWER IN P2 14

CONTRACTED POWER IN P3 17.2

CONTRACTED POWER IN P4 17.2

CONTRACTED POWER IN P5 17.2

CONTRACTED POWER IN P6 17.4

1.9. Auxiliary services Offices and other services that are
not directly related to production (Stage 9: F9).

• CE(F9) � CEF9P(1)*HF9P(1) + CEF9P(2)*HF9P(2)
+ CEF9P(3)*HF9P(3) + CEF9P(4)*HF7P(4) +
CEF9P(5)*HF9P(5) + CEF9P(6)*HF9P(6)

Genetic algorithms will be used to optimise—reduce—-
electricity consumption in each of the 9 stages of the process.
Since CEFXP(Y ) are fixed terms of the functions, genetic
algorithms will operate on the variable terms HFXP(Y ).
These algorithms continuously apply mechanisms for the
selection, recombination and mutation of chromosomes.
In our case, the mechanisms will consist of recombining
HFXP(Y ), so that they are always used in descending order
(P6, P5, …, P1); that is, operating hours of the equipment
in P(6) will be first used, then those in P(5), P(4), (…), and
finally the operating hours of the equipment in P(1) will be
used. This evolutive recombination cycle of the equation will
continue until a stop or convergence criterion is met [32]. In
our case, the criterion will be a certain % of reduction in
electricity consumption.

STEP B2 On the one hand, in order to avoid exceeding
access rate, six functions which limit this possibility were
defined. Machinery power demand (Mw) for each of the
periods should never exceed the contracted power for that
period.

On the other hand, by formulating other 6 algorithmic
functions, the model will attempt to reduce the factory con-
tracted power for each of the periods. Hence, if consumption
for a period Pi was lower than an established % of the max-
imum contracted and was set in C´, less power could be
contracted to lower the cost of the access rate in that period.

A total of 12 functions would be applied.
The powers contracted by Malaga factory are as follows

(Table 3).
To develop the functions related to access rates, the fol-

lowing nomenclature will be used:
CE(PY ): energy consumption in Y period. Y � 1, 2, …, 6.
Electricity consumption in each period will be the sum of

the consumptions registered for each of the stages in which
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we divided the cement manufacturing process. The maxi-
mum power limit for each established period can never be
exceeded.

Consumption in stage 1 must take into consideration that
two crushers are being used. In stage 6, three cement mills
will be operating: 5, 6 and 7.

B2.1. Functions to limit energy consumption in P1:

• CE(P1)�CEF1P(1) + CEF2P(1) + CEF3P(1) + CEF4P(1)
+ CEF5P(1) + CEF6P(1) + CEF7P(1) + CEF8P(1) +
CEF9P(1)≤14 Mw

• If 0< � CE(P1)≤C′ Mw (1 month under normal condi-
tions)→Access rate may be reduced.

B2.2. Functions to limit energy consumption in P2:

• CE(P2)�CEF1P(2) + CEF2P(2) + CEF3P(2) + CEF4P(2)
+ CEF5P(2) + CEF6P(2) + CEF7P(2) + CEF8P(2) +
CEF9P(2)≤14 Mw.

• If 0< � CE(P2)≤C′ Mw (1 month under normal condi-
tions)→Access rate may be reduced.

B2.3. Functions to limit energy consumption in P3:

• CE(P3)�CEF1P(3) + CEF2P(3) + CEF3P(3) + CEF4P(3)
+ CEF5P(3) + CEF6P(3) + CEF7P(3) + CEF8P(3) +
CEF9P(3)≤17.2 Mw.

• If 0≤CE(P3)≤C′ (1 month under normal condi-
tions)→Access rate may be reduced.

B2.4. Functions to limit energy consumption in P4:

• CE(P4)�CEF1P(4) + CEF2P(4) + CEF3P(4) + CEF4P(4)
+ CEF5P(4) + CEF6P(4) + CEF7P(4) + CEF8P(4) +
CEF9P(4)≤17.2 Mw

• If 0≤CE(P4)≤C′ (1 month under normal condi-
tions)→Access rate may be reduced.

B2.5. Functions to limit energy consumption in P5:

• CE(P5)�CEF1P(5) + CEF2P(5) + CEF3P(5) + CEF4P(5)
+ CEF5P(5) + CEF6P(5) + CEF7P(5) CEF8P(5) +
CEF9P(5)≤17.2 Mw.

• If 0≤CE(P5)≤C′ (1 month under normal condi-
tions)→Access rate may be reduced.

B2.6. Functions to limit energy consumption in P6:

• CE(P6)�CEF1P(6) + CEF2P(6) + CEF3P(6) + CEF4P(6)
+ CEF5P(6) + CEF6P(6) + CEF7P(6) + CEF8P(6) +
CEF9P(6)≤17.4 Mw

• If 0≤CE(P5)≤C′ (1 month under normal condi-
tions)→Access rate may be reduced.

B2.7. Limiting power by extension rights: the contracted
power must be<20 Mw:

The factory in our case has two parallel redundant 20 Mw
transformers. The energy consumption functions of the dif-
ferent periods should not exceed the 20 Mw limit.

STEP B3: "operation and sales restrictions" functions

The model will use another 9 functions that will be called
“Operation and Sales Restriction Functions”. They will rep-
resent the following:

– The maximum production capacity of each stage of the
cementmanufacturing processminus themaximumcapac-
ity of next stage should be>0, and at the same time≤ than
the storage capacity of raw material, fuel, by-product or
final product at each stage of the process (7 functions).

– Time constraints (2 functions).

For these new functions, we will take into consideration
the following nomenclature and data measured in tons/hour
(t/h) (Malaga factory):

• CPF1(t1): maximum production capacity per hour, in the
extraction of raw materials stage. 300 t/h.

• CPF1(t2): maximum production capacity per hour, in the
extraction of raw materials stage. 520 t/h.

• CAMp: maximum storage capacity for crushed raw mate-
rials.

• CPF2: maximum production capacity per hour in the
homogenisation stage. 320 t/h.

• CAMpH: maximum homogenised raw material capacity.
• CPF3: maximum production capacity per hour in the crude
grinding stage. 550 t/h.

• CACr: maximum crude oil storage capacity.
• CPF4: maximum production capacity per hour in clinker
manufacturing process/kiln. For rawmaterials: 240 t/h. For
clinker: 154 t/h.

• CACk: maximum clinker storage capacity.
• CPF5: maximum production capacity per hour in the coal
grinding stage.17.1 t/h.

• CACb: maximum coal storage capacity.
• CPF6: maximum production capacity per hour in the
cement grinding stage:

• CPF6(M5)—Cement mill 5: 29.2 t/h.
• CPF6(M6)—Cement mill 6: 78 t/h.
• CPF6(M7)—cement mill 7: 34.3 t/h.
• CPF7: maximum production capacity per hour in the trans-
portation stage.
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• CASL_CEM(Z): maximum cement storage capacity in
silo Z .

• CPF8: maximum production capacity per hour in the pack-
ing stage.

There are two packing lines with the following capacities:

• Line 1: 67 t/h (2700 sacks).
• Line 2: 55 t/h (2200 sacks).
• CAEns: maximum storage capacity in sacks storehouse.
• CPF9: maximum production capacity per hour in the aux-
iliary services stage.

• VECEM(Z): SALES of packaged cement type Z , being Z �
1, …, n.

• VGCEM(Z): sales of bulk cement type Z , being Z � 1, …,
n.

• CC: consumption of coal, measured in t/h.

1. Crusher maximum capacity. Stage 1 Extraction of raw
materials.

• CAMp≥CPF1(t1)*[HF1P(1)(t1) + HF1P(2)(t1) +
HF1P(3)(t1) + HF1P(4)(t1) + HF1P(5)(t1) + HF1P(6)(t1)]
+ CPF1(t2)*[HF1P(1)(t2) + HF1P(2)(t2) + HF1P(3)(t2)
+ HF1P(4)(t2) + HF1P(5)(t2) + HF1P(6)(t2)] −
CPF2*[HF1P(1) + HF1P(2) + HF1P(3) + HF1P(4) +
HF1P(5) + HF1P(6)]≥0.

Time constraints function:

HF1P(1)(t1), HF1P(2)(t1), HF1P(3)(t1), HF1P(4)(t1),
HF1P(5)(t1), HF1P(6)(t1), HF1P(1)(t2), HF1P(2)(t2),
HF1P(3)(t2), HF1P(4)(t2), HF1P(5)(t2), HF1P(6)(t2)∈7-
23 hours

2. Homogenisation stage maximum capacity.

• CAMpH ≥ CPF2*[HF2P(1) + HF2P(2) + HF2P(3) +
HF2P(4) + HF2P(5) + HF2P(6)] − CPF3*[HF3P(1)
+ HF3P(2) + HF3P(3) + HF3P(4) + HF3P(5) +
HF3P(6)]) ≥ 0

No time constraints.

3. Raw material mill maximum capacity.

• CACr≥CPF3*[HF3P(1) + HF3P(2) + HF3P(3) +
HF3P(4) + HF3P(5) + HF3P(6)] − CPF4*[HF4P(1) +
HF4P(2) +HF4P(3) +HF4P(4) +HF4P(5) +HF4P(6)]≥0

No time constraints.

4. Clinker manufacturing maximum capacity (kiln).

• CACk≥CPF4*[HF4P(1) + HF4P(2) + HF4P(3) +
HF4P(4) + HF4P(5) + HF4P(6)] − CPF6*[HF6P(1) +
HF6P(2) +HF6P(3) +HF6P(4) +HF6P(5) +HF6P(6)≥0

No time constraints.

5. Coal mill maximum capacity.

• CACb≥CPF5*[HF5P(1) + HF5P(2) + HF5P(3) +
HF5P(4) + HF5P(5) + HF5P(6)] − CC*[HF6P(1) +
HF6P(2) +HF6P(3) +HF6P(4) +HF6P(5) +HF6P(6)]≥0

No time constraints.

6. Cement mill maximum capacity/maximum capacity for
transportation.

Wewill have one function for eachof theZ types of cement
that is manufactured in the factory, being Z� 1, 2, …, n.

• CASL_CEM(Z)≥CPF6(M5)*[HF6P(1)(M5) +
HF6P(2)(M5) + HF6P(3)(M5) + HF6P(4)(M5) +
HF6P(5)(M5) + HF6P(6)(M5)] + CPF6(M6)*[HF6P(1)(M6)

+ HF6P(2)(M6) + HF6P(3)(M6) + HF6P(4)(M6) +
HF6P(5)(M6) + HF6P(6)(M6)] + CPF6(M7)*[HF6P(1)(M7)

+ HF6P(2)(M7) + HF6P(3)(M7) + HF6P(4)(M7) +
HF6P(5)(M7) + HF6P(6)(M7)] − CPF7[HF7P(1) +
HF7P(2) + HF7P(3) + HF7P(4) + HF7P(5) + HF7P(6)]
− CPF8*[HF8P(1) + HF8P(2) + HF2P(3) + HF8P(4) +
HF8P(5) + HF8P(6)] − VGCEM(Z) ≥0

No time constraints.

7. Packing maximum capacity.
We will have a function for each of the Z types of cement

that is manufactured in the factory, being Z� 1, 2, …, n.

• CAEns≥CPF8*[HF8P(1) + HF8P(2) + HF2P(3) +
HF8P(4) + HF8P(5) + HF8P(6)] − VECEM(Z)≥0.

VECEM(Z): sales of already packed type Z cement, being
Z=1,…, n.

Time constraints function:
HF8P(1), HF8P(2), HF8P(3), HF8P(4), HF8P(5),

HF8P(6) ∈ 7–23 h.

8. Auxiliary services maximum capacity.

In this stage, there would be no such constraints.
Taking into consideration the demand for clinker and dif-

ferent types of cement, electricity consumption functions,
restrictions on access rates and on available transformers, as
well as operating and selling restrictions, the use of genetic
algorithms will make the system suggest us the changes we
should make to move production to lower cost periods (P6,
P5, P4, etc.).
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Genetic algorithms continuously apply mechanisms of
selection, recombination and mutation of chromosomes,
which in our case would be the different regulated prices,
until an optimal value is reached.

4 Results: innovation brought by themodel

First of all, the research major novelty is that the model that
evolved was an absolutely innovative model, since it was
developed by applying a series of basic algorithms which
were based on AI techniques, though expressly addressed to
the cement sector.

Thanks to the experts contributions and the studied bib-
liography, it was possible to include the variables that
condition not only electricity consumption, but also the
knowledge of machinery behaviour and operational pro-
cesses in cement plants.

Secondly, the global research developed resulted in a
model that integrates three complementary aspects, which
enables a higher level of electricity cost optimisation than
that obtained in previous researches, which focussed on one
of the aspects in isolation. This question implies an innova-
tion in the research, as well as in the resulting model.

The three aspects on which the model for electricity cost
optimisation was focussed are described below. Only the first
two are the object of this paper.

(1) Process variables which incur zero or very low costs
[36].

(2) Regulated electricity costs. Machinery running is
shifted to the most economical off-peak times [37].

(3) Price of electricity in the market [16, 28, 39, 40].

Thirdly, due to the scarce previous literature, a panel of
experts was held, which provided qualitative and quantitative
information to approach the issue from a realistic, updated
and complete business viewpoint. The experts enabled the
gathering of information on all Spanish cement factories.

The use of the expert panel represents an innovative ele-
ment in researches in this field, since none of them had
previously made use of consultations with experts.

The panel of experts provided better results for the model,
since their expertisemade it possible to selectmore and better
process variables to optimise the cost of electricity.Moreover,
the experts were extremely useful when selecting the most
appropriate AI tools.

Fourthly, quantitative data obtained from expert surveys
provided another of the main results of the research. It is a
quite utterly novel quantitative study about the composition
of regulated electricity cost in Spanish cement industry. The
study was of great use for the optimisation of regulated elec-
tricity costs in our research. It will also provide the basis for

other future researches about electrical aspects in Spanish
cement sector.

Fifthly, we would like to remark that the model obtained
for the optimisation of electricity cost can be applied to any of
the cement factories that are distributed throughout theworld,
since the production process is the same as that followed by
the factory considered. If it was chosen to be applied in other
countries, only the composition of regulated electricity costs
should be considered, along with the different factors that
could affect electricity price formation in the market.

Furthermore, by introducing certain modifications to the
initial parameters, the model could be applied to other
electro-intensive processing industries.

Consequently, we would like to highlight that the results
obtained can serve as a basis for future researches, since the
model is perfectly able to be reproduced for other industrial
sectors. Therefore, a remarkably interesting line of research
for other sectors or even for intersectoral comparison is
opened.

5 Conclusions

1. It is possible to optimise electricity cost in cement fac-
tories by means of influencing certain process variables
and incurring zero or very low costs, as it is shown in
[36, 37]. Through ANN we will obtain the optimal com-
bination of these variables, which minimises electricity
consumption in the production process.

2. We can reduce electricity cost by optimising regulated
electricity prices, that is, by shifting the use of that
machinery with a higher electricity consumption in the
factory to periods with lower regulated electricity costs
[36, 37]. By means of using genetic algorithms we will
optimise the costs of regulated electricity prices.

3. The model resulting from this research process may be
applied to any cement factory in the world. Bymodifying
initial parameters, it could be applied to other electro-
intensive processing industries. It is therefore a model
that offers great versatility.

4. This model enhances products development—cement
and other industrial products. The methodology brought
forth contributes to influence and transform the way we
live and work, since it makes industries more compet-
itive. Competitiveness helps companies generate more
activity, added value and employment [2, 3].

5. Owing to its complexity, this article has its limitation,
since it only addresses a part of a broader research pro-
cess which integrates three different approaches to the
optimisation of electricity cost in cement factories. In
particular, the present paper approaches certain variables
in the cement manufacturing production process and the
optimisation of regulated electricity costs.
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