Intelligent Service Robotics (2021) 14:707-727
https://doi.org/10.1007/s11370-021-00393-4

ORIGINAL RESEARCH PAPER l')

Check for
updates

Multi-robot task allocation problem with multiple nonlinear criteria
using branch and bound and genetic algorithms

J. G. Martin'® - J. R. D. Frejo'® - R. A. Garcia'® - E. F. Camacho'

Received: 16 January 2021 / Accepted: 13 October 2021 / Published online: 13 November 2021
© The Author(s) 2021

Abstract

The paper proposes the formulation of a single-task robot (ST), single-robot task (SR), time-extended assignment (TA),
multi-robot task allocation (MRTA) problem with multiple, nonlinear criteria using discrete variables that drastically reduce
the computation burden. Obtaining an allocation is addressed by a Branch and Bound (B&B) algorithm in low scale problems
and by a genetic algorithm (GA) specifically developed for the proposed formulation in larger scale problems. The GA
crossover and mutation strategies design ensure that the descendant allocations of each generation will maintain a certain
level of feasibility, reducing greatly the range of possible descendants, and accelerating their convergence to a sub-optimal
allocation. The proposed MRTA algorithms are simulated and analyzed in the context of a thermosolar power plant, for which
the spatially distributed Direct Normal Irradiance (DNI) is estimated using a heterogeneous fleet composed of both aerial
and ground unmanned vehicles. Three optimization criteria are simultaneously considered: distance traveled, time required to
complete the task and energetic feasibility. Even though this paper uses a thermosolar power plant as a case study, the proposed
algorithms can be applied to any MRTA problem that uses a multi-criteria and nonlinear cost function in an equivalent way.
The performance and response of the proposed algorithms are compared for four different scenarios. The results show that
the B&B algorithm can find the global optimal solution in a reasonable time for a case with four robots and six tasks. For
larger problems, the genetic algorithm approaches the global optimal solution in much less computation time. Moreover, the
trade-off between computation time and accuracy can be easily carried out by tuning the parameters of the genetic algorithm
according to the available computational power.

Keywords Multi-robot system - Task planning - Multi-robot task allocation (MRTA) - Robotic sensor network - UAV - UGV -
Branch and bound - Genetic algorithm - Thermosolar plant

1 Introduction

In recent decades, there have been great advances in the field
of robotics with several works with humanoid robots [1],
robotic arms [2] and in mobile robots or unmanned vehi-
cles. Particularly, these unmanned vehicles have been used

X J. G. Martin
jgarmar @us.es

J.R. D. Frejo
jdominguez3 @us.es

R. A. Garcia
ramongr@us.es

E. F. Camacho
efcamacho@us.es

Department of Systems Engineering and Automation,
University of Seville, Seville, Spain

for plenty of different applications such as agriculture [3,4],
mapping [5,6], surveillance [7,8] or exploration [9].

Multi-robot systems (MRS) are groups of robots which
aim to collaborate in order to fulfill a set of tasks in an efficient
manner [10,11]. MRS can be used to tackle a set of tasks,
which entails multiple advantages in comparison with the
use of a single robot, i.e., complex tasks that are difficult
to address by using a single robot might be easily solved
by combining two or more robots, thus increasing global
efficiency and decreasing task completion times.

1.1 Multi-robot task allocation

MRS typically have a multi-robot task allocation (MRTA)
problem associated. MRTA problems have been widely stud-
ied in the last two decades [12—15]. This problem addresses
the question of allocating tasks to robots in the best pos-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-021-00393-4&domain=pdf
http://orcid.org/0000-0002-0362-5554
http://orcid.org/0000-0003-0018-2943
http://orcid.org/0000-0003-0211-811X
http://orcid.org/0000-0002-9636-5666

708

Intelligent Service Robotics (2021) 14:707-727

sible way to optimize one or more performance indexes,
such as energy consumption or total time spent among oth-
ers. According to the taxonomy proposed in [16], the MRTA
problem can be classified as:

— Single task robot (ST) or multi-task robot (MT) problem,
depending on the number of tasks each robot can perform
at a time: just one or more than one.

— Single-robot task (SR) or multi-robot task (MR) problem,
depending on the number of robots needed to perform a
task: only one or more than one.

— Instantaneous assignment (IA) or time-extended assign-
ment (TA), depending whether future allocations are
taken into account or not.

A further classification typology can be added according
to the different types of robots used:

— Homogeneous MRTA problem if all the robots have the
same characteristics.

— Heterogeneous MRTA problem if there are different
types of robots with their own characteristics.

Within MRTA solution approaches, two clear types can be
distinguished: centralized and decentralized. In many cases,
the use of a centralized approach in which we focus in this
paper makes it possible to improve the performance substan-
tially butin return it has the negative counterpart of increasing
the computational load. The performance also depends on the
algorithm used. The most commonly used are either:

e Market-based approaches such as auction algorithms
[17,18] are inspired in economy and provide a simple
way of allocating resources but imply explicit commu-
nication among the agents, which sometimes may cause
the communication cost be too high. The main advan-
tage of these approaches is the scalability and robustness
they exhibit, although optimality is never ensured since
any agent of the system has complete information about
it. Auctions have been widely used throughout human
history in order to allocate resources and in the case of
robots, which are not programmed to be selfish or to lie,
the auction-based algorithm [18-20] is appropriate.

e Optimization-based algorithms [21] focus on finding the
optimal solution of a problem mathematically, given a
set of constraints (usually a NP-Hard problem with the
corresponding computational burden) like in the Opti-
mal Assignment Problem (OAP) [22]. These approaches
often depend on a central agent and as a consequence, are
highly susceptible to attacks or communication failures.
Within these algorithms, there are two main subtypes:

@ Springer

— Deterministic, such as gradient and Hessian-based
methods [23,24].

— Stochastic, such as meta-heuristic algorithms [25]
like the Ant Colony Algorithm [26], Cuckoo Search
[27-29], Particle Swarm Optimization (PSO) [30-
32] or genetic algorithm (GA) [33] among others.

1.2 MRTA in the context of thermosolar plants

Thermosolar plants cover large extensions of land situated in
areas of high solar irradiance, in which mirrors are used to
concentrate solar thermal energy to generate electric power.
The most common type of thermosolar plant nowadays is the
Concentrated Solar Plant with Parabolic Trough Collector
(CSP PTO).

This type of plant uses parabolic mirrors to focus the
solar energy toward some piping situated in the focal point
of the parabola. Thermal oil is used as a heat transfer fluid
(HTF) circulating through these pipes and absorbing radia-
tion. Then, the HTF is transported to a power generation plant
through a manifold that collects the hot oil from the collec-
tors. Interested readers can find more information about these
plants in [34].

CSP PTC plants are usually operated by controlling the
total flow that goes through the manifolds, generally with
the aim of maintaining the oil temperature close to a given
setpoint. However, this control has an important drawback
whenever the irradiance is not uniform in the whole plant.
A localized decrease on the irradiance, produced by a cloud,
might trigger a decrease in the flow, but since the decrease
would be localized in a certain area of the plant there would
be other collectors where this decrease in flow might induce
an increase in the oil temperature. Increases in the oil tem-
perature above the maximum admissible can be harmful for
the process and even dangerous to the plant equipment and
therefore, in some cases, collectors must be defocused, as a
security measure, although that means throwing away energy.

The problem of defocusing has been addressed from dif-
ferent approaches by proposing the use of predictive control
strategies as model predictive control (MPC), [35,36]. In
other works, as [37], controlling the flow in each collector
by using valves is proposed. For these types of controllers,
having an estimation of the distribution of the irradiance
throughout the plant is needed.

MRS are frequently used in mobile robot sensor networks
(RSN) [38], a particular case of wireless sensor networks
(WSN) [39], where assembling a plant-wide network with
sensors is considered an extremely expensive option and an
alternative solution is sought by using robots that transport
the sensors to different places in the plant. This is the case
of thermosolar plants, where on the one hand, direct normal
irradiance (DNI) sensors, pyrheliometers, are quite expen-
sive and, on the other hand, there is a familiar and structured

Intelligent Service Robotics (2021) 14:707-727

709

environment where all the possible paths for the robots can
be pre-determined. Therefore, in this scenario, unmanned
vehicles equipped with DNI sensors would be sent to dif-
ferent areas of the plant to take measurements [40]. Since
a robot cannot take measurements at two different places
at the same time, although going to a spot first and then to
another is possible, we are dealing with a ST-TA problem
according to the classification previously introduced. If we
also take into account that we only need one vehicle to take
a measurement and that vehicles can be of different types,
we can complete the classification of the problem as a het-
erogeneous, ST , SR,TA, MRTA one. Another work where
a MRS has been proposed in the solar power plants context
is [41], where mobile robots are proposed for the inspection
and maintenance of the plants.

In this paper, a genetic algorithm and a branch and bound
algorithm are applied to a specific, heterogeneous, ST-SR-
TA MRTA problem, particularized in a case study of a RSN
that collects data all along a thermosolar power plant. For this
purpose, two types of robots with different possible paths and
speeds are proposed: UGVs and UAVs.

1.3 Contributions and outline

The main contribution of this work is the MRTA problem
formulation of an MRS in the context of inspection and mea-
surement tasks in a solar thermal plant. The problem has
been formulated using a cost function with multiple objec-
tives designed taking into account that our MRS is of the
ST-SR-TA type as well as the fact that there may be tasks
that are more urgent than others or that it may be more desir-
able to use some robots instead of others, e.g., it is better
to use ground vehicles whenever possible since that way,
the battery of aerial vehicles will be preserved in case some
urgent missions arise.

This formulation includes the use of discrete variables
that code the information of the allocations and allows to
greatly increase the speed of obtaining a solution since the
number of variables involved in coding an allocation falls
drastically. Finally, both a B&B algorithm and a genetic algo-
rithm have been specially designed for this formulation and
a comparison of the two approaches has been made. The
genetic algorithm designed makes use of a set of solutions
associated with the problem that are used by the algorithm
as initial population, which speeds up its performance and
ensures a good solution for the allocation.

This paper is organized as follows. The problem statement
and the mathematical formulation are presented in Sect. 2.
In Sect. 3, the proposed algorithms to approach the problem
are presented. In Sect. 4, the problem is particularized for
a case of study based on a thermosolar power plant and a
fleet of robots composed of UAVs and UGVs. The results
of proposing several scenarios for the optimization of the

problem are analyzed in Sect. 5. Finally, the conclusions and
future works are drawn in Sect. 6.

2 Problem statement

In this section, the MRTA problem considered is formulated
in the most generic possible way, assuming that there is a
fleet of robots receiving orders from an upper layer, which
also decides which tasks are to be done. It should be taken
into account that, although in this paper we apply this formu-
lation in the context of CSP PTC, an equivalent formulation
consisting of using a MRS as a RSN can be efficiently used
for other MRTA problems.

The MRTA problem considered is expressed mathemat-
ically for a set of N robots R = {ry,r2,...,ry} and a set
of M tasks S = {s1, 2, ..., sy }. According also to the tax-
onomy mentioned in Sect. 1, the problem can be defined as
follows:

e Heterogeneous, as there can be different types of robots.

e ST, as each robot can only fulfill one task at a time.

e SR, as only one robot is needed to fulfill one task.

e TA, since obtaining the optimal allocation for all tasks
requires having into account that:

— A robot can fulfill a new task once it has completed
the previous task.

— Each task requires a certain amount of time to be
completed.

— The best allocation may require that one or more
robots stay still while other robots perform more than
one tasks.

2.1 Discrete variables

A set of discrete variables u;(n) has been considered to
model the problem mathematically. These variables, u; (n),
represent the nth allocated task of robot i, i.e., n provides
information on the order in which a robot is performing the
allocated tasks. Thus, u; (n) € S U {0}, since robot i is either
performing a task as its nth mission or not doing anything
(u;j(n) = 0). Note that if this variable takes value O for a
robot i at any ng, u;(nx) = 0, it makes no sense that any
uj(ng41) # 0 with > 0. As n must be as large as the max-
imum number of tasks that a single robot can perform and
there are no limitations on this respect. The most extreme
case is that one single robot performs all the tasks and so,
it is considered that n € [1, ..., M] and as a consequence,
there are N x M variables. An example of these variables
can be seen in Table 1

One of the main advantages of using discrete variables
is that the constraints associated with the SR problem (a

@ Springer

710

Intelligent Service Robotics (2021) 14:707-727

Table 1 1In the allocation presented, robot 1 does task 1 first and, once,
it is finished disregarding the time its takes to do so, it performs task 3
while robot 2 performs task 2

Robot First robot Second robot
uy (1) u1(2) u1(3) us (1) uz(2) uz(3)
U 1 3 0 2 0 0

Note that since u1(3) = 0, robot 1 is not doing anything after fulfilling
task 3 and the same happens with robot 2 after completing task 2

robot cannot be assigned to more than one task at a time)
are satisfied automatically with no need of soft or hard con-
straints. A further advantage is that the number of discrete
variables used is smaller than when formulating the problem
with binary constraints, therefore making the computational
cost lower and making addressing nonlinear cost functions
easier.

2.2 Cost function

In order to carry out the optimization, the proposed cost func-
tion must take into account multiple criteria:

— Time employed to complete each task, i.e., the amount of
time elapsed between the allocation and the completion
of a task.

— Total distance traveled by each robot.

— Feasibility of the allocation from an energetic point of
view.

However, the approach proposed allows changing these
criteria just by changing the cost function.
In this work, we have also considered that:

— Each task may have a different weight as not all the tasks
are equally urgent. Moreover, it may be more desirable to
use a certain robot than another, which makes the distance
traveled by robots have different weights as well.

— It is also necessary to take into account that allocations
must be feasible, i.e., an allocation cannot use more
energy than the energy available. Notice as well that a
robot must not only have enough energy to fulfill its
allocated tasks but also to go to a charge station after
completing them.

A cost function based on different criteria such as the delay
on performing the tasks or the distance traveled by robots can
be formulated as follows:

M N
min J = Z;(Sjtj(U) +2Aidi(U) +y(U)
J= =

y(U) =a1y1(U) +az2y2(U)

@ Springer

st. u;(n) e SU{0}Vi,n)

where U = [u1(1), u1(2), .., u1(M), u2(1), ..., un(M)],
dj corresponds to the priority given to a certain task j, ¢;(U)
is the time that it takes to complete task j in a given alloca-
tion, A; corresponds to the penalty of using robot i and d; (U)
corresponds to the distance traveled by robot i. Note that
these parameters may vary depending on the problem and
they depend on the application (there may be applications
in which performing the tasks as fast as possible is desired,
applications where limiting the movement of the robots is
the best option, or mixed applications where we can have
both, robots mobility limited differently depending on the
robot and urgent and minor tasks). Function y (U) is used to
model the following soft constraints:

— Function y1(U) is a function which takes value O when
the allocation is feasible from an energetic point of view,
i.e., when there is enough battery for the allocation to
be fulfilled and to reach the battery stations from the
final points. In case the allocation is not feasible, it takes
the same value as the number of robots with not enough
energy to fulfill the allocation. This way, the penalization
is higher when the allocation implies more robots out of
energy.

— Function y»(U) is used to ensure that all the tasks are
performed and that each task is allocated only once. Thus,
itmodels the ST formulation of the problem. It takes value
0 when no task is repeated and every task is performed
and otherwise, it takes a value that equals the number of
tasks allocated to more than one robot plus the number
of tasks not allocated to any robot.

The weights o1 and o« are much larger than the rest of
the weights of the cost function since it is better to obtain
an allocation that complies with the constraints than one that
does not.

Note that the constraints can be modeled as soft constraints
since non-compliance is not critical. The fact that an allo-
cation makes a robot perform a task that has already been
performed by a different robot is not desirable, but there is
no physical problem with it. On the other hand, the fact that a
robot does not have enough energy to carry out the tasks allo-
cated to it will only imply that some of those tasks will not
be performed in time, since the robot will have to recharge
its battery. Anyway, in the case that an unfeasible allocation
has to be avoided, the value of «; and «> can be increased.
Finally, it should be noted that in the case that there is no fea-
sible solution, posing the constraints as soft constraints will
make the algorithms return those allocations that are closer
to the feasible zone.

The problem stated in this paper (1), and the algorithms
proposed in Sect. 3, do not depend on how functions #;, d;

Intelligent Service Robotics (2021) 14:707-727

71

Table2 Note that U; and U, represent the same assignment under this
formulation since both represent that robot 1 performs first task 1 and
then task 3 and robot 2 performs task 2

Robot First robot Second robot
U, 1 3 0 0 2 0
U, 1 0 3 2 0 0

and y are obtained, i.e., these can be either linear or non-
linear functions. In fact, other performance indexes, such as
energy consumption or carbon emissions, could be added to
the current ones, or even replace them, changing neither the
problem formulation nor the proposed algorithm. However,
it is important to remark that the faster these functions are
computed, the larger the problem solved optimally could be.

The specific functions used in this paper are detailed in
Sect. 4.3.

3 Proposed control algorithms

The considered MRTA problem (1) entails a discrete opti-
mization with N - M variables, which can take M + 1 discrete
values from 0 to M. As a consequence, computation times
will increase exponentially with the size of the problem mak-
ing impossible to solve the problem exhaustively, even for
relatively small problems. More specifically, the number of
feasible discrete solutions can be computed with:

Nyot = (N - M)MH! 2

where it can be seen that with 3 robots and 3 tasks the number
of feasible solutions is 6561, with 5 robots and 5 tasks, the
number of feasible solutions goes up to 244,140,625, with 8
robots and 8 tasks, the number of feasible solutions reaches
1.8014 - 10'°. However, the number of solutions to be evalu-
ated could be further bounded according to the soft constraint
a» introduced in the previous section, i.e., focusing on solu-
tions that perform all tasks once. Also, those solutions that
represent the same assignments as one already considered
(produced due to changes in the zeroes in U as can bee seen
in Table 2) can be removed from the count.

To this end, it is possible to make use of combinatorial
analysis to find a formula for the exact number of plausible
(potentially optimal) solutions.

N Py - YN PRY I M AN eNEr i N < g
T P M eRY oM if N > M
3)

where Pyy = M! is the number of permutations without

. g—1,M=1—(g=1) _ (M-1)!
repetition of S, PR}, } = GEDM=D—(g=1)

!IS

Number of Solutions
(logarithmic scale)

Fig. 1 Number of solutions (in logarithmic scale) depending on the
number of tasks and the number of robots (from 1 to 7 robots and from
1 to 7 tasks)

the number of permutations with repetitions and it is used
to compute the number of ways in which S can be divided
into a given number of groups, g, and Cj‘:, = ﬁ is
the combinatorial number that counts the number of ways of
creating groups of size g out of R.

The number of solutions obtained for some problems with
from 1 to 7 tasks and from 1 to 7 robots and the increasing
trends with both the number of tasks and the number of robots
can be better observed in Fig. 1.

As a consequence, in order to carry out the optimization,
this work considers two different approaches: for small-sized
problems, the optimal solution can be found by using a
Branch and Bound (B&B) algorithm (see Sect. 3.2). How-
ever, for medium- and large-scale problems finding the
optimal solution using B&B also becomes unfeasible. In this
case, the use of a genetic algorithm (GA) is proposed (see
Sect. 3.3).

Both algorithms (B&B and GA) make use of a set of ini-
tial solutions that provide an upper bound on the value of
the optimal cost function. The computation of these initial
solutions is detailed in the following Sect. 3.1.

3.1 Initial solutions

This section presents the set of suboptimal initial solutions
that has been used in this work for the application of the
B&B and GA algorithms. More specifically, the set of initial
solutions for the problem presented in Sect. 2, is composed
of the following subsets:

@ Springer

712

Intelligent Service Robotics (2021) 14:707-727

1. The N initial solutions resulting from solving the shortest
path problem for every robot i:

min di(Ui)
U;

s.t. eU;) =0
u;(n) eSU{0}Vvn 4)

where U; = [u; (1), u;(2), ..,u;(M)] and ¢(U;) = 0 is
the set of constraints, ensuring that all the tasks are car-
ried out once. Notice that this problem is the well-known
traveling salesman problem (TSP). TSP is a NP-Hard
problem that can be solved in an exact way using Held—
Karp algorithm [42] in a time O(n?2"). However, the
nearest neighbor (NN) algorithm [43], a heuristic greedy
algorithm consisting of choosing the nearest non-visited
node in each step, is used to generate feasible solutions
in a very reasonable time.

2. The N initial solutions resulting from solving the shortest
time problem for every robot i. The distances considered
in these problems are the ones resulting from adding the
estimated traveling times between robots and tasks and
the operation times required in the corresponding tasks:

min ()

S.t. eU;) =0
u;(n) eSU{0}VvVn 5)

where ¢ is the working time of each robot consider-
ing both the time needed to reach a task and the time
needed to perform the task (note that tl.* ;) = ;(Uy)
if in the allocation U; only robot i is used), U; =
[u; (1), u; (2), ..,u;(M)] and ¢(U;) = 0 is the set of con-
straints, ensuring that all the tasks are carried out once.
This problem is addressed in a similar way to the shortest
path problem. However, since the criteria are different,
the solution of this problem is both feasible and different
from the problem mentioned in (4).

3. Theinitial solution resulting from solving the assignment
problem using only distances:

N
min)\.id[(U)
U() i=1
s.t. c(U)=0

ui(1) e SU{O} Vi)

where U(1) = [u1(1), ua(1), ..,uy(1)] and ¢c(Uy) =0
is the set of constraints, ensuring that all the tasks are car-
ried out (if M <= N) or that all the robots are assigned
to one task (if M > N). In case there are more tasks
than robots (M > N), the problem is iterated by con-
sidering the allocation in the subsequent nth orders of

@ Springer

the robots. Each iteration takes into account the previous
allocation of the robots, the remaining tasks and the dis-
tance among them, and it is solved using Kuhn—Munkres
algorithm [44] in a time O(n?).

4. The initial solution resulting from solving the assignment
problem using only times:

M
min §iti(U)
() El 7

s.t. s(U)=0

ui(1) e SUO}V i 7)

Note that this problem can be hard to solve directly since
the time in which tasks are performed will depend on
the assignment in the previous iteration. Thus, in this
set of initial solutions, we address the problem similarly
to the distance assignment problem but considering the
time of reaching the task and performing it instead of the
distance.

All the considered initial solutions can be fast and eas-
ily computed by using well-known algorithms. It has to be
pointed out that the used set of initial solutions is indepen-
dent of the subsequently applied control algorithms (B&B
and GA). Therefore, the set used can be adapted for each
problem. The only necessary requirement is that the initial
solutions have to be computed fast enough to allow subse-
quent computations within the B&B or GA algorithm. In
order to have a good performance, it is also important that
the initial solutions correspond to the different criteria of the
cost function. For example, if a cost function minimizes time
and distance simultaneously the algorithms should be fed
with initial solutions reflecting an opposing behavior (i.e.,
minimizing only time or space).

3.2 Branch and bound algorithm

For small sized problems, the optimal solution for the opti-
mization problem presented in Sect. 2 can be computed by
using the Branch and Bound (B&B) algorithm [45]. This
algorithm, used for discrete and combinatorial optimization,
consists of developing the tree of possible solutions sequen-
tially, discarding the partial solutions that have a cost function
higher than a set boundary, until the optimal solution is found.
B&B has been used in some works to address the MRTA
problem, as in [46], where it is used in combination with a
Monte Carlo search tree [47]. However, to the best of our
knowledge, it has always been applied to the MRTA prob-
lem using binary variables for the task assignments while in
this work it is applied using discrete variables (which allows
to substantially decrease the number of leaves on the search
tree).

Intelligent Service Robotics (2021) 14:707-727 713
& -

(=1 u@=0 =2 wy@®=0 wu®=2 wy@)=1 w) =1 uM=0 =2 wuy®=0 wu®=2 w@)=1

LM =0 wM=1 PA)=0 v M=2 w®=1 u@)=2 LM =0 wuLM=1 gwA)=0 u@M=2 wd=1 u@)=2

Fig. 2 Initial allocation Tree with 2 robots and 2 tasks. The “branch”
is done by adding a single task to the task queue of each robot (in
every possible way). The entire set of possible allocations for the firstly
allocated tasks (composed of 6 leaves in this case) is generated

More specifically, in the present work, the use of the B&B
algorithm is proposed for solving small-scale [less than 103
solutions according to (3)] MRTA problems formulated as
in (1). The algorithm generates all the possible feasible com-
binations for each nth allocated task removing the ones that
show a cost function higher than the current upper bound for
the optimal cost function. For the remaining task allocations,
the corresponding possible combinations for the following
(n + 1)th allocated tasks are generated comparing their new
cost function with an upper bound. The algorithm continues
until all the possible optimal task allocations (for any order)
have been explored.

More specifically, the algorithm applied in this paper is
composed of the following steps:

1. The best (lowest) cost function obtained within the set
of previously computed initial solutions (see Sect. 3.1) is
taken as the initial estimation of the B&B threshold (J*).

2. Then, all the possible task allocations for the firstly allo-
cated tasks for each robot are generated, i.e., the new
“branch” is done by adding a single task to the task queue
of each robot (in every possible way). A simple example
with 2 robots and 2 tasks can be seen in Fig. 2.

3. The partial cost function of the generated allocations is
computed. This function corresponds to the distances and
times of the allocated tasks taking into account that many
tasks can be unallocated to any robot at this step. The
partial cost function used is similar to (1) but redefining
12(U) in order to eliminate the penalization for unallo-
cated tasks:

M M
Hbin J*U) = Y 8;t;(U) + Y Aidi(U) + y(U)
j=1 i=1
yWU) =aryi(U)
s.t. u;(n) e SU{O}Vi,n ®)

In contrast with the original cost function defined in (1),
y2(U) is not used since, in this case, also partial assign-
ments which do not fulfill all the tasks are evaluated.

Fig.3 Bound with J*: Discards for the tree shown in Fig. 2 assuming
that the partial cost function of the first and fourth leaves are higher than
J*(U) and are therefore discarded

u()=1
u (1) =0

u@=0 uyM=2 wy®=0 w®=2 wy)=1
LM =1 uy()=0 wM=2 uwud)=1 wd)=2

Fig.4 Cost function updates for the tree shown in Fig. 3. It is assumed
that the cost function of the allocation on the fifth leaf is lower than
J*(U) and, as a consequence, the value of J*(U) is updated. Subse-
quently, the sixth leaf (with a cost function higher than the updated
value of J*(U)) is removed accordingly

Y

() =0
wu()=1

uy) =2
() =1

u(l)=2
u(1) =0

® 0.

u(2) =0
Fig. 5 Allocation tree resulting from considering the task assigned in
the second place for the search tree in Fig. 4

u(2)=0
u(2)=2

Therefore, this partial cost function J*(U) will be lower
than an original cost function J (U) if some tasks are not
allocated or equal to the original cost function if all the
tasks are allocated (J*(U) < J(U)).

4. The task allocations with a cost function higher than the
B&B threshold are discarded as it can be seen in Fig. 3.

5. If any allocation is complete (i.e., all the tasks are allo-
cated) and the corresponding cost function is lower than
the current value of the B&B threshold, this value is
updated (also discarding the allocations lower than the
new cost function) as it can be seen in Fig. 4.

6. The allocations which have not been discarded are used
to generate a new set of possible allocations including
the nth allocated task for those solutions which have still
tasks to allocate, as it can be seen in Fig. 5.

7. The algorithm ends if the remaining leaves cannot be
increased any more (i.e., if all the tasks are allocated).
Otherwise, it returns to step 3 (Fig. 6).

@ Springer

714

Intelligent Service Robotics (2021) 14:707-727

u) =0
u() =1

uy) =2
uwu@) =1

u (1) =2
u(1) =0
u(2)=0
u(2) =2

u@=1
u(2) =0

@0

Fig.6 Cost function update for the tree shown in Fig. 5. It is assumed
that the cost function of the complete allocation on the first leaf is lower
than the current value of J*(U) (the one corresponding to the last leaf)
and, as a consequence, the second and third leaves (with a cost function
higher than the updated value of J*(U)) are also removed. Since only
one candidate leaf remains (U = [0, 1, 0, 2]) and this leaf cannot be
further increased, the remaining allocation is the optimal one

3.3 Genetic algorithm

The previously presented B&B algorithm computationally
explodes for medium and large-sized problems. As a result,
another faster but suboptimal algorithm has to be used for
these cases.

The genetic algorithm (GA) is a meta-heuristic algorithm
inspired by the process of natural selection and evolution
which relies on crossover, mutations and selection [48]. The
GA has been applied to similar MRTA problems in works
such as [49], where it is used in combination with intra-path
constraints in order to solve the allocation of a heteroge-
neous fleet of robots in a disaster scenario; [50], where a
multi-objective cost function including both energy and time
criteria is used; [51], where a multi-objective cost function
is also used in a multi-robot task context including time con-
straints and discrete variables are used to model the problem;
and [33,52], where similar structured environments with dis-
crete positions of the robots and discrete variables are used.

In this work, we have designed a GA including the use
of specially developed crossover and mutation strategies that
generate ordered solutions for the next generations. These
strategies generate new allocations that do not introduce
unfeasibility from the viewpoint of tasks (allocations that
do not fulfill all the tasks or that fulfill a task more than once
cannot be fathered by allocations that do) and thus, reduce
drastically the number of possible allocations and the com-
putation load. With the same criterion, it has been taken into
account that any allocation for a robot u; including interme-
diate zeroes is equivalent to the same allocation removing
these zeroes and adding them at the end. The crossover and

Table 3 Gen example

mutation methods presented in this section are novel to the
best of our knowledge.

An example of the individuals or chromosomes which
are used in this paper can be seen in Table 3, where the
nth allocated tasks for each robot R; are concatenated. Note
that each individual or chromosome corresponds to a full
candidate solution to the MRTA problem (i.e., all the tasks
assigned to all of the robots).

Notice that, even though the crossover and mutation strate-
gies developed do not generate unfeasible allocations from
the viewpoint of tasks, they can still produce unfeasible allo-
cations from an energetic point of view.

The GA applied for the considered MRTA problem is com-
posed of the following steps:

1. The set of feasible initial solutions presented in Sect. 2
is used to generate the initial population (i.e., the first
individuals) of the GA. In the case that the population
size is larger than the number of initial solutions previ-
ously computed, the rest of the population is filled with
randomly generated potentially optimal solutions. To do
this, we permute the set S randomly and then go through
all the tasks, selecting a random robot from R and allocat-
ing the task to the robot. This way, the resulting individual
will not activate y» in (1).

2. The cost function is computed for the entire set of indi-
viduals of the current generation. The fittest individuals
are selected as the elite population, which survive auto-
matically into the next generation.

3. The algorithm generates a new set of individuals, which
are distributed as follows:

(a) The elite population fraction, Gg, defines the percent-
age of the new population that is considered to be elite
individuals.
The Crossover fraction, Gc, defines the percentage of
the non-elite new population which is composed of
individuals generated by crossover. An example can
be seenin Fig. 7. Each crossover strategy is composed
of the following steps:
i. Two elite individuals are randomly selected.
ii. One task is randomly selected.
iii. The selected task is removed for both individu-
als.
iv. The task allocations are shifted in order to correct
the individual obtained in the previous step.

(b)

Robot First robot ith robot Nth robot
Gen example 1 3 .- 5 e 0 e 2 0 0 e 0 e 4 0 - 0 e 0
Order 01 02 0,, OM 01 02 0,, OM 01 02 0,, OM

@ Springer

Intelligent Service Robotics (2021) 14:707-727

715

¢3.(b).iii

(ol ol oo} [l

Individual 1

Robot 1 Robot 2

BN oH:-Q§:Q:00
HEHHBID

|

|

|

|

|

|

|

|

|

|

|

|

|

}

! 3.(b).v

(Rob‘ot 1, 1st order)

|
|
|
|
|
|
|
|

New Individual 1

M).iv

(Robot 2, 2nd order)

3.(b).v i
3.(b).vi 3

Fig. 7 Example of the crossover strategy with 2 robots and 4 tasks. The crossover is composed of three logical operations (elimination 3.(b).iii,
shifting 3.(b).iv and 3.(b).vi, and recombination 3.(b).v)

(©)

(d)

v. The selected task is reassigned to each individ-
ual but using the allocation considered by the
other individual (i.e., for the first individual, the
selected task is now allocated for the position
originally given by the second individual).
The task allocations are shifted again in order to
correct the individual obtained in the previous
step.
Owm is the fraction of individuals generated by muta-
tions, which are generated by using the first kind of
mutation proposed. An example can be seen in Fig. 8.
Each mutation for the first strategy is composed of the
following steps:

i. One elite individual is randomly selected.

ii. One task is randomly selected.

iii. The selected task is removed.

iv. The task allocation is shifted in order to correct

the individual obtained in the previous step.

v. A new robot and position is randomly selected
for the selected task.
The selected task is included in the randomly
selected position.
The task allocation is shifted again in order to
correct the individual obtained in the previous
step.
Owmp is the fraction of individuals generated by muta-
tions, which are generated using the second kind of
mutation proposed. An example can be seen in Fig. 9.
Note that Gyvp = 1 — Gy by definition, since there
are only 2 types of mutation. Each mutation for the
second strategy is composed of the following steps:

i. One elite individual is randomly selected.

ii. Two tasks are randomly selected.

iii. The selected tasks are exchanged.

Vi.

Vi.

vii.

Individual

Fig.8
4 tasks

Example of the first kind of mutation strategy with 2 robots and

Individual
Robot 1 Robot 2
(oo o [0|
3.(d).iii

Fig.9
and 4 t

~

3.(d). |‘i|

New Individual

Example of the second kind of mutation strategy with 2 robots
asks

(e) The algorithms end if the number of generations is

equal to the maximum number of generations or if the
solution has not been improved during a maximum
number of stall generations. Otherwise, the algorithm
goes back to Step (2).

@ Springer

716

Intelligent Service Robotics (2021) 14:707-727

Example 1 Let us take a case in which we have a population
size of 100 individuals. To create the next generation, we
will copy the 10 best individuals from the current genera-
tion. Then, considering Gc = 0.8, 80% of the 90 remaining
individuals, i.e., 72 individuals, must be created by crossover.
To do this, we take random selections of elite individuals and
do crossovers between them until we reach the 72 individuals
we need. The remaining individuals 100 — 10 — 72 = 18 are
created by mutations. Assuming Gy; = 0.5 and Gypp = 0.5
half of them, 9, are going to be generated by selecting a ran-
dom elite individual and applying mutation type 1 and the
other half by doing the same but applying mutation type 2.

Note that, since we start from a potentially optimal initial
population (the initial solutions plus the potentially optimal
random solutions) and since the proposed genetic algorithm
always maintains this property between generations, the mid-
dle zeroes in the gen do not affect the performance and speed
of this approach as the algorithm will not produce not poten-
tially optimal solutions.

4 Case study

In this section, the models used to simulate the robots are
described. Likewise, the solar power plant layout considered
is detailed. Finally, the problem formulated in Sect. 2 is par-
ticularized taking into account both the robot models and the
plant layout.

4.1 Robot fleet

Since the fleet is comprised by both aerial and ground
unmanned robots, there are different characteristics of speed
and energy consumption or recharging rates for each type of
robot. Likewise, different security energy levels have been
considered for each type of robot. The parameters consid-
ered for UAVs and UGVs can be seen in Table 4. Note that
Vinean 15 the mean speed of the robots in the XY plane and
VZmean 18 the landing/taking off speed. A different number of
UGVs and UAVs is considered for the simulations in order
to analyze the time required to solve problems of different
sizes.

4.2 Solar plant layout

Anareaof 63 ha (1180x530m)has been chosen as amodel of
a generic thermosolar power plant of approximately 30 MW,
where several obstacles have been placed. It is assumed that
no robot can move through the power plant for security rea-
sons and, as a consequence, there is a big square forbidden
area for all types of robots in the central upper part of the map

@ Springer

Table 4 Value of the parameters of the robots

Parameter UGVs UAVs

Vinean 1.5 m/s 10 m/s

Vzmean 0 m/s 3 m/s

Discharge rate 0.005% per second 0.1% per second
Charge rate 0.0025% per second 0.03% per second
Security energy 10% 20%

Note that discharge and charge rates refer to operating and charging
time, respectively

corresponding to the steam generation, turbine and generator
(see Fig. 10).

In the case of aerial robots, it is also assumed that they are
neither allowed to fly over the collectors for identical reasons,
so the only allowed paths are those which do not go through
the small vertical rectangular obstacles which represent the
collectors.

In the case of ground robots, manifolds are considered
insurmountable and to overcome them they must exclusively
go through the authorized crossing-points, which can be con-
sidered as bottlenecks for moving from one part of the plant
to another.

This area has been meshed into a grid of 434 spots where
measurements can be taken. This grid has been created by
placing the measurement spots in the intersection of 35
columns and 13 rows. Columns have been placed in the space
between collectors, while rows have been placed taking into
account that there must be rows in the horizontal passing
places and that the space between rows must be similar to
the space between columns.

In Fig. 10 and in the rest of figures used in this paper, the
red circles represent the measurement spots, the red squares
represent the charge stations and the different forbidden areas
are represented by:

— Black rectangles in the case they affect all the robots.
This area is where the offices, parking lots, deposits, ther-
mal energy storage (TES), and energy generation zone
(including the steam generation, the turbine, and the elec-
tric generator) are located.

— Green rectangles in the case they affect only UAVs. This
rectangles represent the solar collectors and are com-
prised of parabolic mirrors.

— Blue rectangles in the case they affect only UGVs. This
rectangles represent the manifolds that distribute the HTF
to the collectors and back to the steam generator.

Notice that, even though UAVs cannot fly over the collec-
tors, their potential to move through the plant is bigger than
in the case of UGVs, which need to go through a crossing
pass that can act as a bottleneck to go from one sector to

Intelligent Service Robotics (2021) 14:707-727 717
525 | | T T | | T i I | | T I I | [l
472 H 8
429 H |
386Hg "2 '8 '8 8 8 "8 ' 8" |
344 H |
302 H |
260 - S e e e e S S W T W N N W - H
218 H ! i
176 H H
134H ¢+ ptp g gt gt n . i

91 H 8

48 H |

Si+—t+—t+—+t+t++—+t+t++—+t+tt—t—tt
O s R s R0y Ty T 0 0 Ry Ty T R Ty Ty By T Ny Ry B Bp 0 Oy U % By % % % %y 00, 70, %0, 7, 0,

Fig. 10 Solar plant layout. The solar collectors are represented by ver-
tical green rectangles. There is a grid of the 434 measurement spots (red
dots). There are three zones or sectors splitted by the manifolds [(blue
rectangles)] and the power plant main [zone (black rectangle)]: upper

another. On the other hand, UGVs have a higher durability
than UAVs, as they have a longer-lasting battery and consume
less power.

4.3 Cost function

In this paper, the distances between each robot and each task
and the distance between each task and the other tasks have
been pre-calculated. This consideration can be done since the
plant is a structured environment and the starting positions of
the robots, the positions of the tasks and the possible paths are
known. Thus, we only need to pre-compute these distances
for the actual positions of the robots and the tasks at the
moment of solving the MRTA problem.

Making use of these distances and the speed and discharg-
ing rate of the robots, it is possible to pre-calculate all the
times and energy needed by a robot to go from its starting
position to a task, or from one task to another. Besides, an
initial delay time, ti" , 1s considered for each robot since a
robot can be considered for an allocation even if it is cur-
rently charging of finishing a previous task. These initial
delay times can be estimated knowing the speed, the state
of the robot and the parameters of the allocated task (in case
the robot is finishing a previous task); or the charging rate
and the energy level (in case the robot is charging). These
parameters can be consulted in Table 4.

left sector, upper right sector and lower sector. There are also 4 charge
stations (red squares) 1 in each upper sector and 2 in the lower sector
(color figure online)

Once these data are obtained and there is a proposed U,
the process of obtaining the distance traveled by each robot,
d;(U), is as simple as adding the distances that each robot
i must do due to its allocated tasks, i.e., the distance from
its starting position to the task allocated as its first task, the
distance from its first allocated task to the second allocated
task, etc. This can be mathematically expressed by:

M
di(U) =) di(U) Vi

k=1
. DRT itk =1
dip(U) ={ i@ : vi ©)
l wik—n .ty 1TK>1

where dAik(U) is the distance traveled by robot i as a result
of the kth allocated task, Dst contains the distance between
robot a starting position and task b, and D;FbT are the distances
between task a and task b.

Similarly, the process of checking if the allocation is fea-
sible from an energetic point of view, y1(U) = 1, is simple
as well, since the initial energy of the robots, E;, and the
different needed energies have been pre-calculated. This can
be mathematically expressed by:

M
E/U) =) Eu(U) Vi
k=1

@ Springer

718

Intelligent Service Robotics (2021) 14:707-727

525

472
429
386 g + g gon.2, R, 8, 8,
344

302 [

260

218 [
176 -0 -0 -0 -0 -0-0-0-0-0-10- fl! .
134H o ¢ 0 ¢ o e m e e e 24 " a J

91—

48 [

—t—+

0‘396\.-"'96‘
gl e e e e e e T T B e e e

Fig. 11 Example scenario

Eww) = | B =1y
ik = T . l
wik—1y.u k)i Tk >1

N
yiU) = 8i(U)
i=1
5:(U) = {0 if EY — E;(U) = E®

1 if E — E(U) < E® vi (10)

where E;(U) is the estimated energy consumed by robot i
after finishing all its allocated tasks, E i (U) is the estimated
energy consumed by robot i as a result of the kth allocated
task, E};bT contains the estimated energy that robot a needs to
move from its starting position to task b, E;Fch contains the
estimated energy that robot ¢ needs to move between task
a and task b, and E® is the security energy level, i.e., the
minimum energy needed to reach a charging station.
However, the process of obtaining the delay time of each
task, ¢; (U), is a little bit different, not only is the time needed
to reach the position of the task relevant but also the accu-
mulated time of the robot which is performing task j. The
operating time of each robot is defined and set to the initial
delay calculated previously, i.e., #; (U) = t{ Vi. Once the ini-
tial values are set, we must go through each robot queue of
allocated tasks updating #; (U) by adding the necessary time
to reach the following task and the operation time of this task,
t;)p. Each time a task j is considered the delay time of task
Jj is set to the current value of the operating time of robot i,
ie.,t;(U) = tl-(Uj’.‘). This can be mathematically expressed

@ Springer

by:
Nj+1 Nj+1
W)= Y k@) + Y tn gy Vi
k=1 =
TRT ifk=1
. Rjug; (1) .
TRk (U) = | pr1 & droq Y (11)

ug; (k=1),ug;i(k),R;

where R; represents the robot to which task j has been allo-
cated, N; is the number of tasks allocated to robot R before
task j, fg jk(u R j) is the traveling time of robot R; as a result
of the k' allocated task; TQ%T contains the time that robot a
needs to get from its starting position to task b, and T,};;Tc con-
tains the time that robot ¢ needs to go from task a to task
b.

Notice that, even though the amount of energy needed to
fulfill the task has been neglected, adding it would not modify
substantially the proposed approach.

Example 2 In Fig. 11, we can see an example with 2 robots
(an UGV and an UAV) and 3 tasks. The allocation consists
of robot 2 performing sequentially tasks 2 and 3, and robot
1 performing task 3, i.e., U* = [3 00 12 0]. In this case,
distance traveled by robot 2 is dj (U*) = D{"E and distance
traveled by robot 2 is dp (U*) = DETI + DITT2 Analogously,
the corresponding consumed energies are E(U*) = E{{g
and E,(U*) = Eng + ElTE On the other hand, the time
required to complete the tasks in this allocation are t; (U*) =
X+ 4°, oU*) = n(U*) + T3, + 13" and 3(U*) =
Tllg + t§p. Thus, since all the tasks are allocated and none

Intelligent Service Robotics (2021) 14:707-727

719

Table 5 Robot parameters in the four scenarios

(s)

o
L
S-IV. S-1

1

EY (%)

S-IV. S-1

Starting spot (coordinate x, coordinate y)

Type of robot

S-1

Parameter

S-1IT - S-1IV

S-11

S-11I

S-1I

S-1I S-111 S-1v S-1 S-II S-1II

S-IV. - S-1

S-111

S-11

Scenario

10

15
10

18

32
92
26

84
44
76
40
25

98

2

2
2
1
1

(326.5,176) (1052.5, 48)

(161.5, 429)
(821.5, 48)

(227.5, 386)

A
G
A
A

Robot;
Robot;
Robotj

10.5
11

94
30
50

(986.5, 386)

(182.5, 472)
(62.5, 344)
(29.5, 302)

(260.5, 176)
(293.5, 48)

53

(953.5,218)
(359.5,5)

(1100, 412)

A
A

15

61

28

(755.5, 344)

(1151.5, 48)

Roboty
Robots

"
0

76

45

1

(392.5,472) (1151.5, 134)

(260.5, 525)

2.5

32
25

88

(227.5, 302)

(953.5, 472)

Robotg
Robot7;

n O O ®

26

12
77

s B

(491.5, 525)

(161.5, 386)
(29.5, 429)

Robotg
Robotg

(194.5, 472)

Robot g

of the tasks is allocated more than once (y»(U*) = 0) and
assuming Ej(U*) < E{ — E® and E»(U*) < E§ — E®
(y1(U*) = 0), the cost function will be: J = §; - (T} +
0 48 (TR + 0P+ T, + 657 + 83 (TR +157) +
A - (DRY) + 22 - (DY + DY),

4.4 Scenarios

To test both, the GA and B&B approaches, a set of different
sized scenarios are simulated:

— Scenario I (S-I): in this scenario, there are 4 robots (2
UGVs and 2 UAVs) and a set of 6 objective spots (tasks),
which according to (3) correspond to 60,480 possible
solutions.

— Scenario II (S-II): in this scenario, there are 6 robots (3
UGVs and 3 UAVs) and a set of 8 objective spots (tasks),
which according to (3) correspond to 51,891,840 possible
solutions.

— Scenario III (S-III): in this scenario, there are 10 robots (6
UGVs and 4 UAVs) and 9 objective spots (tasks), which
according to (3) correspond to 1.7643-10'? possible solu-
tions. In this scenario, it has been considered that all the
robots are concentrated in an area of the plant and all
tasks are concentrated in the opposite area of the plant. .

— Scenario IV (S-1V): in this scenario, there are 5 robots, 2
UGVs and 3 UAVs, and 15 objective spots (tasks), which
according to (3) correspond to 5.0685- 10" possible solu-
tions. This scenario models a common situation where
there are several tasks per robot.

These scenarios are determined by the amount of robots
and their types, locations, starting energy, delay on being
prepared in the starting point, and penalty for using each one;
and the amount of tasks, their locations and the operating time
that it takes to perform them. The parameters that define these
scenarios can be seen in Table 5 for robots and in Table 6 for
Tasks. Note that in Table 5, G stands for ground robots and
A for Aerial robots.

4.5 GA tuning

The GA has been tuned with the parameters shown in Table 7.
These parameters have been chosen heuristically. Given the
heuristic nature of the GA, it has been run 10 times in each
of the scenarios described in the previous subsection.

@ Springer

720

Intelligent Service Robotics (2021) 14:707-727

Table 6 Tasks parameters in the four scenarios

Parameter ~ Objective spot (coordinate x, coordinate y) 8 t?p (s)

Scenario S-1 S-1I S-1I1 S-1vV S1 SII Ssmr SIv. SIS S-Ir S-Iv
Task (392.5, 302) (227.5, 176) (821.5,218) (161.5, 218) 3 2 5 8 10 40 0 30
Task, (458.5, 302) (689.5, 472) (1085.5, 134) (29.5, 176) 1 3 2 6 10 0 0 23
Tasks (1151.5,472) (491.5, 134) (1019.5, 48) (524.5, 344) 5 5 2 3 30 20 40 69
Tasky (623.5, 176) (623.5,5) (1151.5, 48) (788.5, 5) 1 4 4 1 20 40 60 48
Tasks (788.5, 344) (1085.5,344) (986.5, 218) (161.5,91) 2 2 5 7 20 70 20 93
Taske (854.5, 48) (359.5, 48) (920.5, 5) (425.5,134) 1 2 4 2 10 80 25 109
Task7 - (62.5, 429) (1052.5,91) (491.5,91) - 10 2 8 - 30 30 57
Taskg - (656.5, 472) (1151.5,5) (788.5, 429) - 2 1 6 - 50 10 21
Taskog - - (1118.5, 218) (161.5, 302) - - 4 1 - - 20 107
Task g - - - (887.5, 302) - - - 6 - - - 68
Task - - - (326.5, 48) - - - 3 - - - 21
Task s - - - (590.5, 5) - - - 3 - - - 23
Task 3 - - - (920.5, 344) - - - 6 - - - 38
Task 4 - - - (1052.5,386) - - - 3 - - - 11
Tasks - - - (260.5, 48) - - - 1 - - - 109

Table 7 GA tunning parameters

Pop.size Gg Gc Omi Gwm2 Max Gen. Max Stall Gen.

100 01 07 05 0.5 50 30

5 Results

This section shows and discusses the simulation results on
the application of the proposed algorithms for the proposed
scenarios.

5.1 Scenario |

In this case, the best allocation obtained from solving Sce-
nario I using the GA, which is also the most frequently
obtained allocation among the GA repetitions, is the opti-
mal allocation, obtained with the B&B algorithm and that
can be seen in Fig. 12. The optimal allocation implies that
robot 1 and 2 stay still, robot 3 performs task 1 and task 2
sequentially, and robot 4 performs the rest of the tasks in the
following order: 3, 5, 6 and 4.

The best initial solution obtained for Scenario I, which
corresponds to the assignment problem for distances [see
Eq. (6)], is shown in Fig. 13. As it can be easily seen in the
figure, there are some similarities and differences with the
achieved allocation after applying GA. The most important
difference is that, after applying the GA, the UGVs are not
allocated to any task and the tasks that were previously per-
formed by UGVs are now distributed to the UAVs.

@ Springer

Moreover, in those cases in which the optimal allocation
cannot be achieved by combining the initial solutions, the
GA makes use of the mutation strategy to jump out of the
local minima of the cost function.

5.2 Scenarioll

As for Scenario I, the allocation obtained from solving
Scenario II by using the B&B algorithm (i.e., the optimal
allocation) coincides with the best allocation obtained using
the GA. The allocation is shown in Fig. 12.

However, in contrast to the previous scenario, the most
repeated allocation among the repetitions is not the optimal
one, reaching a value of cost function close but slightly larger
to the optimal one (Fig. 14).

5.3 Scenario lll

The B&B algorithm cannot be applied to Scenario Il because
of the combinatorial explosion due to the size of the prob-
lem. As a consequence, it is not possible to know if the best
allocation provided by the GA is the optimal one. The best
allocation obtained from solving Scenario III by using the
GA is shown in Fig. 15.

As it can be seen in Fig. 15, in this scenario robots are
concentrated in a sector of the plant while tasks are located in
another sector. As a consequence, only two aerial robots are
assigned to the entire set of tasks, implying that the obtained
solution highly differs from the ones obtained for the set of
initial solutions.

Intelligent Service Robotics (2021) 14:707-727

721

525

472
429
386H: o2 R
344

302 [

260

218

134
91

48 [

5 H

0 2 6 9.

Fig. 12 Optimal allocation for Scenario I. Note that in the image the ground robots appear in purple while the aerial robots appear in blue (color

figure online)

T T T T T T T T
3]

525

472
429 11
IR1
386 — g L]
344 — \

302

260

218

176 H rz

134; L

91

48 [

5[

Fig. 13 Allocation using assignment problem using distances with all robots

5.4 Scenario IV

As in the previous scenario, the optimal solution cannot be
found due to the size of the problem. The best allocation
obtained from solving Scenario III by using the GA is shown
in Fig. 16).

In this allocation, most tasks are performed by UAVs,
while UGVs remain as backup robots performing only those

tasks that are near their initial locations (14 and 4). Note that
in the allocation obtained the route followed by robot 4 is
quite strange, leaving task 9 for the end and attending tasks 2
and 5 before. However, it must be taken into account that the
allocation obtained is not the optimal one (since the GA is a
metaheuristic algorithm) and that, in this case, this allocation
makes sense since there are other parameters to be consid-
ered in addition to the distance. As we can seen in Table 6,

@ Springer

722 Intelligent Service Robotics (2021) 14:707-727

525 l i i l l l l l l I | | | | I | | T | T l | | I | I I
IR |
472 o il
R&Y
T7) IRY
429 - . . . IR? -
386— L] L] . [
344 I i
TS5
302 1. i
260 - === =T = = Vi = = N W e e L
218 — Il
176 - Tfll I q. i
T
134Hg"s'8s'8"8"8°8" 3 : i
91 | u
proill BU BN BN B BN BN BN BE BN B T6|. 1)I,R.Z' q. i
T4j 1
St—t—+—t+—t+—+—t+t—t—t—t—t—t—t—t—t—t et s S S S S S — — —— —
2 D% % %% 000 N 2% H, % B %, 0, B %o R 2% % %% 2,0, 77, 77
2 N s
878 78 T 5 e s 2s s G S 2o 6 o Yo T8 6 o Be O 25 %6 Ve S 18 %o ol Js o 0 @ % %0 %%

Fig. 14

I I T I I I T | | I I I
. ®

I R7

kb

525

472
429 11
386 RE
344
302
260 -

218

176 [
134

91

Fig. 15 Allocation with Genetic algorithm in Scenario IIT

task 9 has low importance (59 = 1) and the time required to
fulfill it is long (tg P = 107 s). Thus, performing it first would
delay significantly other tasks allocated to robot 4.

5.5 Performance comparison
In Table 8, all the values of J can be compared. In the first

column, there are the values of the best solutions among the
initial solutions. In the second and third column, there are the

@ Springer

best J values and the mean J values among all the repetitions,
of the solutions obtained using the GA. In the last column,
there are the values of the solutions obtained using B&B and
therefore the optimal values for each scenario.

It can be seen that, in those scenarios where the optimal
value using B&B could be obtained, this value is achieved
by the GA most times, getting very near when it is not. It can
also be checked that, even though B&B ensures an optimal

Intelligent Service Robotics (2021) 14:707-727 723
525 H
472 r
429 r
386 N
344 1
302 N
260 1
218 1
176 [M
134 L

91 H . 8| 74 <0 -0 -0-0-0-0H
T5 / R
48 N B BN B3 B 118 - 0 - - . . N B N EE BRI
T 1]R4) drip 1 1
SH—t—t—t—t—t—+—t+—t s S S S S S S S P e e e e e s
2 D% % %% 000 N 2% H, % B %, 0, B %o R 2% % %% 2,0, 77, 77
ERORA N AR NNN RN N NN RNARRNR NN RN RN

Fig. 16 Allocation with Genetic algorithm in Scenario IV

Table 8 Cost function for the best initial solution (J™), best (Jbesl) 4 x10*

and mean (JSA) cost functions obtained using the GA and optimal J

cost function obtained using B&B (J°PY) 35" mean J| |

. Best J
Initial solutions ~ GA B&B 3l |

J i @, e

Scenario I 5490.81 3285.08 3366.02 3285.08]

Scenario II 12488.67 5182.70 5457.36 5182.70 E

Scenario Il 23823.12 1950529 20141.02 - -

Scenario IV 59952.30 53390.35 53762.06 -

Notice that the values of J for the GA correspond to the minimum

and the mean value of applying the GA 10 times, so even though the

minimum value coincides with the optimal value, this does not mean

that the GA always reaches it (since the mean value is over the optimal 0 s s s s s

one) 0 10 20 30 40 50

solution, it is only computationally feasible in small-sized
problems.

As an example of the performance of the GA, the evo-
lution of the best J values and the mean J values among
the repetitions in a single run of the GA can be observed in
Fig. 17.

5.6 Computational costs

The different computational costs using an Intel(R) Core(TM)
17-8700 CPU with 3.20 GHz processor can be compared in
Fig. 18 for the mean times required for the GA. As it can
be seen, the time required for solving scenario III is 2.27s.
Given that the mean time required for solving the cost func-
tion on this scenario is 3.2- 10™* s in the time it takes to solve
the scenario using the GA, the cost function could be solved

Generations

Fig. 17 Genetic evolution in Scenario II

around 7000 times, which contrasts with the 1.5579 - 1013
possible solutions that there are in this scenario.

The computation time required for solving the set of initial
solutions is negligible since it is below 1072 s for the four
scenarios considered. In the B&B algorithm, the lower the
bound is, the faster the algorithm is, and so, the computation
time varies with the bound obtained from the set of initial
solutions. However, only the lower bound has been consid-
ered with a computation time of 5.8 s for the first scenario
and 206,040s for the second one, i.e., 2.38 days. As pre-
viously stated, solving the third and fourth scenarios using
B&B is not practicable due to the exponential increase in the
computation times.

@ Springer

724

Intelligent Service Robotics (2021) 14:707-727

«
w o s

N
2]

ary
(3]

Computational time (s)
- [N

o
o

Scenario

Fig. 18 Total computation times in each Scenario

It is also important to remark that, even though in small
scenarios with few robots and tasks the B&B algorithm
takes a similar time to the genetic algorithm and reaches
an optimum solution, the computational cost increases expo-
nentially with the size of the problem as it corresponds to a
NP-Hard problem.

5.7 Monte Carlo studio

To validate the efficiency of our method, we have generated
20 different random scenarios for each problem size from 1
to 8 robots and from 4 to 8 tasks, i.e., 640 scenarios. Each
scenario has been solved 50 times in the case of the GA
from where we are taking the mean and the minimum value
of J among the iterations. The J values obtained with both
methods, GA and B&B, are shown in Fig. 19, where it can
be seen that in many cases the optimal allocation is among
the initial solutions. Also, it can be seen that in a few cases
the mean GA is nearer the initial solutions than the optimal
allocation, as it corresponds to a metaheuristical method.

Notice that B&B was only computed for cases where the
number of solutions would not exceed 107 and that the GA
tuning parameters, including the population size, were main-
tained constant and equal to those in Table 7.

The mean improvement of the GA over the initial solu-
tions is 9.48% when considering the mean value among the
iterations and it ascends to 12.61% when considering the
minimum value among the iterations. Also, we can define
optimality by how close the obtained J is to the one obtained
in the B&B (in the cases in which it has been computed) in
reference to the one of the initial solutions (disregarding all
the cases in which the optimal solution is among the initial
ones). Under this definition, the mean optimality considering
the mean value among the iterations is 93.17%, while con-
sidering the minimum value among the iterations it increases
up to 93.81%.

@ Springer

6 Conclusions

In this work, the MRTA problem has been formulated in the
context of a thermosolar power plant where a MRS formed
by various types of robots (ground and aerial) is in charge of
collecting the DNI data. Under this approach, we assume a
list of the tasks to be performed along with the time it takes to
complete them and an associated priority or urgency. Besides,
we also prioritize the use of a certain type of robot over the
other or what is the same, to minimize the weighted distance
traveled by the robots. Thus, we proposed a multi-criteria
cost function that evaluates allocations taking into account
the time needed to perform each task and the distance traveled
by robots. However, the algorithms proposed in this paper do
not vary when considering other criteria.

In this cost function, the constraints associated with ener-
getic feasibility and to the completion of the entire set of tasks
only once have been included as soft constraints. In order to
solve this problem, discrete variables that code the allocation
in a compact way have been used, which, combined with the
B&B algorithm or the GA designed for the formulation in
this work, allow to accelerate the computation of a feasible
(if possible) and optimal (or quasi-optimal) allocation.

The B&B algorithm has proved to be able to obtain the
optimal allocation. Moreover, it can be computed faster than
the genetic algorithm if the size of the problem does not
exceed a certain limit. However, as expected, the calculation
time in this method increases with the size of the problem
addressed, getting to a point where the B&B algorithm cannot
be computed in a reasonable time. For medium- and large-
scale problems, the proposed GA algorithm allows to obtain
a suboptimal solution in a shorter period of time.

The proposed algorithm has been tested considering a fleet
composed of UGVs and UAVs and a 63 ha (1180 x 530m),
30MW thermosolar plant with a known structured layout, in
4 different sized scenarios (varying the number of robots of
each type, the number of tasks and the starting parameters).

The results obtained show that the optimal solution can
be computed using a B&B algorithm in a short time (less
than 10s) for problems with between 4 and 5 robots and 5 or
6 tasks, i.e., problems with around 10® possible allocations
according to Eq. (2). For larger sizes, the results show that the
GA provides a good solution that is quite close to the optimal
one (in Scenario II the GA achieves an allocation with cost
5454.36 while the optimal allocation cost is 5182.70).

The simulation results also show that the proposed set
of initial solutions used as initial population improves the
speed of the GA method at the same time that it provides a
floor for it, and it also allows to obtain an initial bound of the
cost function to be used by the B&B algorithm. The observed
increase in the computation speed becomes more remarkable
as the problem size increases.

Intelligent Service Robotics (2021) 14:707-727

725

x10%

5.5 T T
—min J achieved with GA

—mean J achieved with GA
—J achieved with Initial Solutions
* J achieved with B&B

T

4.5

3.5

2.5

1.5

300

400 600

Scenarios ordered by J

Fig. 19 In the figure, the different random scenarios have been ordered
by the value of J obtained from the initial solutions (note that, due to the
different parameters considered in the problem, there can be scenarios
with similar sizes but very different values of J and vice versa). We can
see the mean J value and the minimum J value obtained among the 50

Future research lines for this approach might include
improving the GA developed, making use of a wider part
of the genetic pool to create the descendant individuals and
trying different strategies as Roulette Wheel, testing it with
real robots in the context of a distributed estimation of the
radiation, the use of clusterings to split large groups of robots
and tasks into smaller, affordable ones which can be solved
by using the B&B algorithm and the testing of other meta-
heuristic algorithms such as the Cuckoo Search with this
formulation.

Acknowledgements This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Advanced Grant OCON-
TSOLAR, Grant agreement No 789051)”. The authors also gratefully
acknowledge the financial support by the European Research Council
[Advanced Grant OCONTSOLAR number 789051] and the Span-
ish Ministry of Science, Innovation, and Universities [Grant number
1JC2018-035395-1].

Author contributions J. G. Martin: Idea, code, writing of the paper,
review and submission. J. R. D. Frejo: Idea, code, writing of the paper,
review. R. A. Garcia: Idea, code, writing of the paper, review. E. F.
Camacho: Idea, writing of the paper, review.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This project has received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agreement
No 789051)”.

Code availability Code is available by request to the first author.

GA iterations, respectively, in dark blue and in green. As expected, the
mean value is contained between the minimum and the best J obtained
by solving the initial solutions (black). The J obtained using B&B is
represented by red dots and is always the minimum value (color figure
online)

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Consent to Participate J. G. Martin, J. R. D. Frejo, R. A. Garcia and E.
F. Camacho consent to be part of the developed work in this paper.

Consent to Publish J. G. Martin, J. R. D. Frejo, R. A. Garcia and E. F.
Camacho consent the journal to publish this work.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Jin M, Lee J, Tsagarakis NG (2016) Model-free robust adaptive
control of humanoid robots with flexible joints. IEEE Trans Ind
Electron 64(2):1706-1715

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

726

Intelligent Service Robotics (2021) 14:707-727

2.

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

Patidar V, Tiwari R (2016) Survey of robotic arm and parameters.
In: 2016 International conference on computer communication and
informatics (ICCCI)

Quaglia G, Visconte C, Scimmi LS, Melchiorre M, Cavallone P,
Pastorelli S (2020) Design of a UGV powered by solar energy for
precision agriculture. Robotics 9(1):13

Tokekar P, Hook JV, Mulla D, Isler V (2016) Sensor planning for
a symbiotic UAV and UGV system for precision agriculture. IEEE
Trans Rob 32(6):1498-1511

Maini P, Sujit PB (2015) On cooperation between a fuel constrained
UAV and a refueling UGV for large scale mapping applications.
In: 2015 International conference on unmanned aircraft systems
(ICUAS). IEEE, pp 1370-1377

Nex F, Remondino F (2014) UAV for 3D mapping applications: a
review. Appl Geomat 6(1):1-15

Puri A (2005) A survey of unmanned aerial vehicles (UAV) for
traffic surveillance. University of South Florida, Department of
Computer Science and Engineering, pp 1-29

Semsch E, Jakob M, Pavlicek D, Pechoucek M (2009) Autonomous
UAV surveillance in complex urban environments. In: 2009
IEEE/WIC/ACM International joint conference on web intelli-
gence and intelligent agent technology, vol 2. IEEE, pp 82-85
Ropero F, Muiioz P, R-Moreno MD (2019) TERRA: a path planning
algorithm for cooperative UGV-UAV exploration. Eng Appl Artif
Intell 78:260-272

Cortés J, Egerstedt M (2017) Coordinated control of multi-robot
systems: a survey. SICE J Control Meas Syst Integr 10(6):495-503
Rizk Y, Awad M, Tunstel EW (2019) Cooperative heteroge-
neous multi-robot systems: a survey. ACM Comput Surv (CSUR)
52(2):1-31

Khamis A, Hussein A, Elmogy A (2015) Multi-robot task alloca-
tion: areview of the state-of-the-art. Cooperative robots and sensor
networks. Springer, Berlin, pp 31-51

Gerkey BP, Mataric M (2003) A formal framework for the study
of task allocation in multi-robot systems. Int J Robotic Res—IJRR
Gerkey BP, Mataric MJ (2003) Multi-robot task allocation: ana-
lyzing the complexity and optimality of key architectures. ICRA
3:3862-3868

Yan Z, Jouandeau N, Cherif AA (2013) A survey and analysis of
multi-robot coordination. Int J] Adv Robotic Syst 10(12):399
Gerkey BP, Mataric MJ (2004) Are (explicit) multi-robot coor-
dination and multi-agent coordination really so different. In:
Proceedings of the AAAI spring symposium on bridging the multi-
agent and multi-robotic research gap, pp 1-3

Dias MB, Zlot R, Kalra N, Stentz A (2006) Market-based multi-
robot coordination: a survey and analysis. Proc IEEE 94(7):1257—
1270

. Gerkey BP, Mataric MJ (2002) Sold!: auction methods for multi-

robot coordination. IEEE Trans Robot Autom 18(5):758-768
Choi H, Brunet L, How JP (2009) Consensus-based decentralized
auctions for robust task allocation. Trans Robotics 25(4):912-926
Lee D-H (2018) Resource-based task allocation for multi-robot
systems. Robot Auton Syst 103:151-161

Horst R, Pardalos PM, Van Thoai N (2000) Introduction to global
optimization. Springer, Berlin

Gale D (1989) The theory of linear economic models. University
of Chicago press, Chicago

Atay N, Bayazit B (2006) Mixed-integer linear programming
solution to multi-robot task allocation problem. In: All computer
science and engineering research (WUCSE-2006-54)

Darrah M, Niland W, Stolarik B (2005) Multiple UAV dynamic
task allocation using mixed integer linear programming in a SEAD
mission. In: Infotech@ Aerospace, p 7164

Juedes D, Drews F, Welch L, Fleeman D (2004) Heuristic
resource allocation algorithms for maximizing allowable work-
load in dynamic, distributed real-time systems. In: 18th IEEE

@ Springer

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

proceedings of international parallel and distributed processing
symposium, p 117

Wang J, Gu Y, Li X (2012) Multi-robot task allocation based on
ant colony algorithm. J Comput 7(9):2160-2167

Huang L, Ding Y, Zhou MC, Jin Y, Hao K (2018) Multiple-solution
optimization strategy for multirobot task allocation. IEEE Trans
Syst Man Cybern Syst

Xue F, Dong T, You S, Liu Y, Tang H, Chen L, Yang X, Li J
(2020) A hybrid many-objective competitive swarm optimization
algorithm for large-scale multirobot task allocation problem. Int J
Mach Learn Cybern 1-15

Xue F, Tang H, Su Q, Li T (2019) Task allocation of intelligent
warehouse picking system based on multi-robot coalition. KSII
Trans Internet Inf Syst 13(7)

Asma A, Sadok B (2019) PSO-based dynamic distributed algorithm
for automatic task clustering in a robotic swarm. Procedia Comput
Sci 159:1103-1112

Choudhury BB, Biswal BiB (2011) A PSO based multi-robot task
allocation. Int J Comput Vis Robotics 2(1):49-61

Li X, Ma H-X (2008) Particle swarm optimization based multi-
robot task allocation using wireless sensor network. In: 2008
International conference on information and automation. IEEE, pp
1300-1303

Jose K, Pratihar DK (2016) Task allocation and collision-free path
planning of centralized multi-robots system for industrial plant
inspection using heuristic methods. Robot Auton Syst 80:34-42
Camacho EF, Berenguel M (2012) Control of solar energy systems.
IFAC Proc Vol 45(15):848-855

Frejo JRD, Camacho EF (2020) Centralized and distributed model
predictive control for the maximization of the thermal power of
solar parabolic-trough plants. Sol Energy 204:190-199

Sanchez AJ, Gallego AJ, Escafio JM, Camacho EF (2018) Event-
based MPC for defocusing and power production of a parabolic
trough plant under power limitation. Sol Energy 174:570-581
Sanchez AJ, Gallego AJ, Escafio JM, Camacho EF (2018) Tem-
perature homogenization of a solar trough field for performance
improvement. Sol Energy 165:1-9

Anis Koubaa, Abdelmajid Khelil (2014) Cooperative robots and
sensor networks. Springer, Berlin

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wire-
less sensor networks: a survey. Comput Netw 38(4):393-422
Martin JG, Garcia RA, Camacho EF (2021) Event-MILP-based
task allocation for heterogeneous robotic sensor network for ther-
mosolar plants. J Intell Robot Syst 102(1):1

Maurtual, Susperregi L, Ferndndez A, Tubio C, Perez C, Rodriguez
J, Felsch T, Ghrissi M (2014) MAINBOT-mobile robots for
inspection and maintenance in extensive industrial plants. Energy
Procedia 49:1810-1819

Bellman RE (1961) Dynamic programming treatment of the trav-
eling salesman problem

Johnson DS, McGeoch LA (1997) The traveling salesman prob-
lem: a case study in local optimization. Local Search Comb Optim
1(1):215-310

Kuhn HW (1955) The Hungarian method for the assignment prob-
lem. Naval Res Logist Q 2(1-2):83-97

Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey.
Oper Res 14(4):699-719

Kartal B, Nunes E, Godoy J, Gini M (2016) Monte Carlo tree
search with branch and bound for multi-robot task allocation. In:
The IJCAI-16 workshop on autonomous mobile service robots
Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI,
Rohlfshagen P, Tavener S, Perez D, Samothrakis S, Colton S (2012)
A survey of Monte Carlo tree search methods. IEEE Trans Comput
Intell AT Games 4(1):1-43

Goldberg DE (2006) Genetic algorithms. Pearson Education India

Intelligent Service Robotics (2021) 14:707-727

727

49. Gil E, Bernardine JM, Stentz DA (2011) Time-extended multi-
robot coordination for domains with intra-path constraints. Auton
Robot 30(1):41-56

50. Tolmidis AT, Petrou L (2013) Multi-objective optimization for
dynamic task allocation in a multi-robot system. Eng Appl Artif
Intell 26(5-6):1458-1468

51. Rajmohan M, Sundar R, Baskaran R et al (2018) Multi-objective
optimisation of multi-robot task allocation with precedence con-
straints. Def Sci J 68(2):175-182

52. Liu C, Kroll A (2016) Performance impact of mutation operators
of a subpopulation-based genetic algorithm for multi-robot task
allocation problems. Springerplus 5(1):1361

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Multi-robot task allocation problem with multiple nonlinear criteria using branch and bound and genetic algorithms
	Abstract
	1 Introduction
	1.1 Multi-robot task allocation
	1.2 MRTA in the context of thermosolar plants
	1.3 Contributions and outline

	2 Problem statement
	2.1 Discrete variables
	2.2 Cost function

	3 Proposed control algorithms
	3.1 Initial solutions
	3.2 Branch and bound algorithm
	3.3 Genetic algorithm

	4 Case study
	4.1 Robot fleet
	4.2 Solar plant layout
	4.3 Cost function
	4.4 Scenarios
	4.5 GA tuning

	5 Results
	5.1 Scenario I
	5.2 Scenario II
	5.3 Scenario III
	5.4 Scenario IV
	5.5 Performance comparison
	5.6 Computational costs
	5.7 Monte Carlo studio

	6 Conclusions
	Acknowledgements
	References

