
European Journal of Operational Research 299 (2022) 869–882

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Assembly flowshop scheduling problem: Speed-up procedure and

computational evaluation

Victor Fernandez-Viagas a , ∗, Carla Talens a , Jose M. Framinan

a , b

a Industrial Management, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, Seville 41092, Spain
b Laboratory of Engineering for Environmental Sustainability, University of Seville, Camino de los Descubrimientos s/n, Seville 41092, Spain

a r t i c l e i n f o

Article history:

Received 3 February 2021

Accepted 3 October 2021

Available online 9 October 2021

Keywords:

Scheduling

Two-stage assembly

Flow shop

Three-stage assembly

Accelerations

Speed-up procedure

Heuristics

Makespan

Computational evaluation

ASP

Multistage assembly

a b s t r a c t

In this paper, we address the assembly flowshop scheduling problem, which is a generalisation of two

well-known scheduling problems in the literature: the three-stage Assembly Scheduling Problem (ASP)

and its variant with two stages denoted as the two-stage ASP. For this problem, we prove several the-

oretical results which are used to propose a speed-up procedure. This acceleration mechanism can be

applied in any insertion-based method for the problem under study and, consequently, also for their spe-

cial cases. In addition, we propose four efficient constructive heuristics for the problem, based on both

Johnson’s algorithm and the NEH heuristic. These proposals are compared against 47 algorithms existing

in the literature for related problems. The results show the excellent performance of the proposals.

© 2021 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

d

c

s

c

d

H

2

2

t

o

G

H

s

a

t

l

p

u

o

i

p

p

b

l

t

w

u

a

c

(

a

o

t

h

0

(

. Introduction

Assembly scheduling is the branch of the scheduling theory

ealing with scenarios where a set of operations must have been

ompleted before the next operation can be initiated. Assembly

cheduling is present in many manufacturing sectors, including

omputer manufacturing, car and motor industries, or plastic in-

ustries, among others (see e.g. Allahverdi & Aydilek, 2015; Fattahi,

assan Hosseini, & Jolai, 2013; Hwang & Lin, 2012; Liao, Lee, & Lee,

015; Zhang, Zhou, & Liu, 2010 or Sheikh, Komaki, & Kayvanfar,

018). Its importance for today’s manufacturing scenarios has been

hus perceived by academics and practitioners, with a high number

f contributions produced in the last decades (see Framinan, Perez-

onzalez, & Fernandez-Viagas, 2019 for a review on this topic).

owever, as this review attests, most contributions do not con-

ider scheduling decisions for the operations taking place after the

ssembly, therefore important issues such as the transportation of

he assembled product, or scheduling in more complex assembly

ayouts are seldom addressed
∗ Corresponding author.

E-mail address: vfernandezviagas@us.es (V. Fernandez-Viagas).

o

(

p

t

ttps://doi.org/10.1016/j.ejor.2021.10.001

377-2217/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
In this paper, we focus on the generic assembly scheduling

roblem with a first phase, where the components of the prod-

ct are manufactured in several dedicated machines, and a sec-

nd phase composed of several operations in series (i.e. adopt-

ng a flowshop after the manufacturing of the components of the

roduct), which can model assembly stages with collection, trans-

ortation, and/or common operations. This decision problem is la-

elled in the following as Multi-stage Assembly Scheduling Prob-

em (MASP). The scheduling criterion considered is the minimisa-

ion of the maximum completion time of the jobs, or makespan,

hich is a widespread objective aimed at maximizing machines’

tilisation. Furthermore, we assume that the jobs are processed in

ll machines of the second phase in the same order (permutation

onstraint). According to the notation proposed in Framinan et al.

2019) , this problem can be denoted as DP m → F m | prmu | C max .

The MASP can be seen as a generalization of two well-known

ssembly scheduling problems: On the one hand, if the number

f machines in the second phase is one, MASP can be reduced

o the so-called Two-stage Assembly Scheduling Problem (2ASP)

r DP m

→ 1 || C max problem, first introduced by Lee, Cheng, & Lin

1993) . On the other hand, if the number of stages in the second

hase is two with one machine in each stage, it can be reduced

o the three-stage ASP (Koulamas & Kyparisis, 2001), denoted as
 under the CC BY-NC-ND license

https://doi.org/10.1016/j.ejor.2021.10.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.10.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vfernandezviagas@us.es
https://doi.org/10.1016/j.ejor.2021.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

3

s

o

F

t

(

a

o

m

i

o

m

l

t

n

l

a

a

r

t

l

y

i

i

V

o

t

M

m

s

n

e

o

l

S

y

t

s

t

S

2

T

(

r

q

u

p

p

p

e

c

c

T

n

m

o

p

a

t

m

c

a

p

(

p

3

i

t

�

f

e

(

c

i

s

t

i

t

s

C

C .

C

C

s

a

t

p

F

s

�

t

e

&

L

a

c

t

C

C

w

t

s

i

s

t

A

a

l

ASP. In addition, note that, if no assembly is considered (and con-

equently, the number of dedicated machines in the first stage is

ne), the problem can be reduced to the well-known Permutation

lowshop Scheduling Problem (FPSP) (Johnson, 1954). Given that

he 2ASP is NP-hard for two or more machines in the first phase

 Lee et al., 1993), the MASP is also NP-hard when either there are

t least two dedicated machines in the first stage, or more than

ne machine in the second phase. It is thus not surprising that

ost contributions on the MASP are devoted to proposing approx-

mate algorithms capable of providing good (but not necessarily

ptimal) solutions with a reasonable computational effort. Since

ost of these algorithms are based on conducting some type of

ocal search, their ability to quickly assess the quality of the solu-

ions found is a crucial aspect for their efficiency, as in this man-

er they may explore a large portion of the solution space within a

imited computation time. Such speed-up procedures (also known

s accelerations) use specific properties of the scheduling problem

nd therefore they cannot be translated to other problems. In this

egard, the pioneering speed-up procedure by Taillard (1990) for

he F m | prmu | C max problem cannot be applied even for the same

ayout with different objectives and/or constraints, and, along the

ears, different speed-ups have been proposed for several schedul-

ng problems (see e.g. Naderi & Ruiz, 2010; Nowicki, 1999; Now-

cki & Smutnicki, 1998; Rios-Mercado & Bard, 1998 , or Fernandez-

iagas, Molina-Pariente, & Framinan, 2020). However, to the best

f our knowledge, no speed-up procedure has been proposed for

he MASP problem.

In this paper, we propose a speed-up procedure for the

ASP that reduces the complexity of insertion-based local search

ethods from O (n 2 · m) to O (n · m) . Using this acceleration and

ome theoretical results found for the problem, we propose four

ew constructive heuristics and compare them against the most

fficient so-far heuristics for the problem, as well as against

ther state-of-the-art heuristics from related scheduling prob-

em. The remainder of the paper is organised as follows: in

ection 2 we describe the problem under consideration and anal-

se the related literature. Some theoretical results required are in-

roduced in Section 3 . The speed-up procedure proposed is pre-

ented in Section 4 , while the constructive heuristics are de-

ailed in Section 5 . The computational evaluation is carried out in

ection 6 and the conclusions are discussed in Section 7 .

. Problem description and background

In the problem under study, there are n jobs to be scheduled.

he jobs consist first on the manufacturing of m 1 components

first phase/stage, denoted as pre-assembly phase), each one car-

ied out on a dedicated machine. These components are subse-

uently assembled in an assembly phase, thus forming a single

nit. This assembly phase, where the single unit is assembled or

rocessed, is composed of a number of serial operations, each one

erformed in a specific machine. Therefore, the assembly and the

revious/subsequent operations (second phase composed of sev-

ral stages) can be modelled as a flowshop consisting of m 2 ma-

hines. It is assumed that the sequence in which the jobs are pro-

essed in the flowshop remains the same across all m 2 machines.

he processing time of job j ∈ { 1 , . . . , n } on each machine i is de-

oted by p i j , with i ∈ { 1 , . . . , m } (m = m 1 + m 2) . Note that the first

 1 processing times correspond to each one of the components

f the job, while p m 1 + k, j with k ∈ { 1 , . . . , m 2 } corresponds to the

rocessing times of the subsequent operations carried out in the

ssembly phase. The operation i of job j is denoted O i, j . The objec-

ive of the scheduling decision problem is to minimize the maxi-

um completion time of the jobs or makespan. The problem under

onsideration is illustrated by the example in Fig. 1 with five jobs

nd machines. Each job is composed of two components which are
870
rocessed on a pre-assembly phase with two dedicated machines

i.e. each machine processing a different one). Once both are com-

leted, they are grouped into a single unit, which is processed in a

-machine flowshop.

In this setting, a feasible semiactive schedule (see definition

n Pinedo, 2012) can be defined by giving the order in which

he jobs or components have to be processed in both phases, i.e.

= (π1 , . . . , πk , . . . , πn) a sequence of the jobs. In principle, a dif-

erent order of the jobs could be employed for each stage, how-

ver, Potts, Sevast’janov, Strusevich, Van Wassenhove, & Zwaneveld

1995) show that an optimal solution of the 2ASP can be obtained

onsidering only sequences and, given the permutation constraint

mposed in the second phase, the sequence resulting from the as-

embly cannot be altered in the subsequent operations. Therefore,

he problem can be expressed as finding a sequence � with min-

mal makespan C max = max j∈{ 1 , ... ,n } C m j , being C i j the completion

ime of job j on machine i . These completion times can be recur-

ively computed (from left to right) using the following equations:

 i,πk
=

k ∑

l=1

p i,πl
, i ∈ { 1 , . . . , m 1 }; k ∈ { 1 , . . . , n } . (1)

 m 1 +1 ,πk
= max { max

i ≤m 1

{ C i,πk
} , C m 1 +1 ,πk −1

} + p m 1 +1 ,πk
, k ∈ { 1 , . . . , n }

(2)

 m 1 + i,π1
= C m 1 + i −1 ,π1

+ p m 1 +1 ,π1
, i ∈ { 2 , . . . , m 2 } . (3)

 m 1 + i,πk
= max { C m 1 + i −1 ,πk

, C m 1 + i,πk −1
} + p m 1 + i,πk

,

i ∈ { 2 , . . . , m 2 }; k ∈ { 2 , . . . , n } . (4)

Note that Eq. (1) computes the completion times in the first

tage, whereas Eq. (2) determines the completion times on the

ssembly machine and Eqs. (3) and (4) compute the comple-

ion times in the rest of the machines of the second phase. This

rocedure to obtain a semiactive schedule is usually denoted as

orward Codification . In contrast, the inverse procedure to con-

truct a schedule (from right to left) using the inverse sequence

= (π1 , . . . , πn) = (πn , . . . , π1) is denoted as Backward Codifica-

ion (for previous uses of this codification in the literature, we refer

.g. to Ribas, Companys, & Tort-Martorell, 2010; Ribas, Companys,

 Tort-Martorell, 2013 for the traditional flow shop, or Pan, Wang,

i, & Duan, 2014; Wang, Wang, Liu, & Xu, 2013 for the hybrid vari-

nt of the flow shop). Using this procedure, completion times are

omputed according to Eq. (5) in the assembly phase and Eq. (6) in

he pre-assembly phase.

 i,πk
= max { C i +1 ,πk

, C i,πk +1
} + p i,πk

, i ∈ { m, . . . , m 1 + 1 } ,
k ∈ { n, . . . , 1 } (5)

 iπk
= max { C m 1 +1 ,πk

, C i,πk +1
} + p i,πk

, i ∈ { m 1 , . . . , 1 } , k ∈ { n, . . . , 1 }
(6)

ith C i,πn +1
= 0 , i ∈ { 1 , . . . , m } , and C m +1 ,πk

= 0 , k ∈ { 1 , . . . , n } .
With respect to the previous literature on the topic, in view of

he relationship of the problem under consideration with other as-

embly scheduling problems, it is worth also to analyse the ex-

sting solution procedures for related problems, namely the two-

tage ASP with a single machine in the assembly stage (DP m → 1),

he customer order scheduling problem (DP m → 0), the two-stage

SP with parallel machines in the assembly stage (DP m → P m)

nd, finally, the three-stage assembly flow shop scheduling prob-

em (DP m → F 2).

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Fig. 1. Example of the problem under consideration with five jobs and machines.

p

t

l

c

T

t

L

J

s

o

p

L

h

t

w

A

i

r

n

t

a

h

e

w

t

a

&

s

o

r

R

t

s

i

l

d

G

a

t

b

u

m

d

a

s

t

w

i

(

s

S

b

&

m

T

p

o

s

a

a

o

m

(

a

p

(

b

c

h

i

a

Regarding the DP m → 1 layout, several heuristics have been

roposed to solve the problem with the objective of minimising

he makespan (DP m → 1 || C max). Lee et al. (1993) address the prob-

em with two machines in the first phase and an assembly ma-

hine in the second phase and shown that it is strongly NP-hard.

hese authors develop a Branch and Bound (B&B) procedure for

he problem and proposed three heuristics, labelled LCL 1 , LCL 2 and

CL 3 , based on the characteristics of the problem and applying

ohnson’s algorithm. Sun, Morizawa, & Nagasawa (2003) design a

eries of heuristic algorithms, denoted as SMN 1 to SMN 14 , based

n the basic idea of Johnson’s algorithm (Johnson, 1954) and com-

are them against the heuristics proposed in Lee et al. (1993) .

in, Cheng, & Chou (2006) show that the problem is strongly NP-

ard even when all the jobs have the same processing time on

he second-stage machine and design a heuristic, labelled as H 4 ,

hich is compared against LCL 1 , LCL 2 and LCL 3 (Lee et al., 1993). In

llahverdi & Al-Anzi (2006) , the two-stage ASP with setup times

s addressed and the authors proposed two evolutionary algo-

ithms and a simple and efficient algorithm, denoted as AA . Fi-

ally, Komaki & Kayvanfar (2015) address the problem with release

ime of jobs and developed several constructive heuristics, labelled

s I 1 to I 48 . The authors also propose a lower-bound and a meta-

euristic algorithm. With respect to DP m → 1 || ∑

C j , the first refer-

nce addressing this objective is Tozkapan, Kirca, & Chung (2003) ,

here the authors prove that there exists a sequence that is op-

imal for the problem and propose two heuristics, labelled T CK1

nd T CK2 , to find an upper bound for their B&B algorithm. Al-Anzi

 Allahverdi (2006) also address this problem and propose three

imple constructive heuristics (S1 , S2 and S3) based on the idea of

rdering the jobs according to the Shortest Processing Time (SPT)

ule, and two additional constructive heuristics, labelled A 1 and A 2 .

ecently, Framinan & Perez-Gonzalez (2017b) develop a construc-

ive heuristic, denoted as F AP , which outperforms the existing con-

tructive heuristics and is based on the problem properties stud-

ed by Al-Anzi & Allahverdi (2006) . Finally, Lee (2018) proposes six

ower bounds and test them in a B&B algorithm. The author also

esigns four greedy-type constructive heuristics, labelled G 1 , G 2 ,

 3 and G 4 .
871
Regarding the DP m → 0 layout, the problem has been mostly

ddressed with the objective of minimizing the total completion

ime. Sung & Yoon (1998) propose two constructive heuristics

ased on the SPT rule. The first one, denoted as ST P T , sched-

les the order with the smallest total processing time across all

 machines, and the second one, labelled SMP T , selects the or-

er with the smallest maximum amount of processing time on

ny of the m machines. Leung, Li, & Pinedo (2005) propose a con-

tructive heuristic that selects as the next order to be sequenced

he one that would be completed the earliest, that is, the order

ith the Earliest Completion Time (ECT). Based on this idea and

ncluding some look-ahead concepts, Framinan & Perez-Gonzalez

2017a) propose a constructive heuristic and two specific local

earch mechanisms for the problem, SHIF T k and SHIF T k OPT
.

There are few references addressing the DP m → P m layout. In

ung & Kim (2008) , a heuristic, SAK, applying a processing-time-

ased pairwise exchange mechanism is designed, while Allahverdi

 Al-Anzi (2012) propose a mathematical model and three new

etaheuristics, both minimising total completion times. Recently,

alens, Fernandez-Viagas, Perez-Gonzalez, & Framinan (2020) pro-

ose for the same objective two new constructive heuristics based

n specific knowledge of the problem. The first one, NCH, con-

tructs iteratively a sequence by selecting the most suitable job,

nd, for the second proposal, the NCH heuristic is embedded into

 beam search-based constructive heuristic. The authors also carry

ut a computational evaluation which shows that the proposals are

ore efficient than the existing heuristics.

Finally, regarding the DP m → F 2 , Koulamas & Kyparisis

2001) propose two heuristics to minimise the makespan, H0 K

nd H3 K, using Johnson’s algorithm, and analyse their worst-case

erformance ratio. In Komaki, Teymourian, Kayvanfar, & Booyavi

2017) , the authors propose also for makespan minimisation a

io-inspired metaheuristic together with a lower bound and four

onstructive heuristics inspired from the lower bound. These

euristics (denoted as DR 1 , DR 2 , DR 3 and DR 4) compute different

ndices and sort them in a non-decreasing order.

To summarise the state of the art, although there are several

pproximate algorithms (heuristics and metaheuristics) that have

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

b

b

b

a

s

m

t

fi

t

c

i

o

w

s

3

t

p

i

(

�

b

{

c

s

o

d

v

g

t

p

(

t

f

h

a

t

f

c

t

P
d

m

l

s

c

w

d

{

Fig. 2. Example of graph model for a MASP instance.

Fig. 3. Example of the reverse graph model for the MASP instance.

w

(

C

i

c

een proposed to solve some related scheduling problems, to the

est of our knowledge, the problem under consideration has not

een addressed so far in the literature. So, the performance of all

forementioned algorithms is not clear for the problem under con-

ideration. In addition, most of the proposals incorporate generic

echanisms, without taking advantage of the specific characteris-

ics of the problem under study, which could help in the search of

nding more efficient algorithms to solve the problem. To tackle

hese challenges, we propose a speed-up procedure based on spe-

ific properties of the problem in order to decrease the complex-

ty of approximate algorithms. Using this procedure and some the-

retical results of the problem, we also propose four heuristics

hich are compared against the heuristics identified from related

cheduling problems.

. Theoretical results

The speed up procedure proposed in this paper is based on

he critical path. In this section we provide the definitions and

roofs required using concepts from graph theory. To do so, it

s convenient to depict a graph model associated to a sequence

solution) of the MASP. More specifically, for a given sequence

= (π1 , . . . , πn) in a MASP, a direct graph G (�) = (V, E) can

e constructed, with V containing nodes O

i
′

j
(i

′ ∈ { 1 , . . . , m 2 }, j ∈
 1 , . . . , n }) representing the completion of the processing of job

j on machine m 1 + i
′
, nodes O 0 , j (j ∈ { 1 , . . . , n }) representing the

ompletion of the processing of all components of job j, and a

ource node s . Note that, although the notation for the nodes and

perations is the same as in Section 2 (O

i
′

j
), the range of the in-

ices i and i
′

is different as we here aggregate all operations pre-

ious to the assembly stage in a single node. The edges E in the

raph connect some nodes with different weights:

• Each node O

i
′
, j

(i
′ ∈ { 1 , . . . , m 2 − 1 } and j ∈ { 1 , . . . , n − 1 }) is

connected to node O

i
′
, j+1

and to node O

i
′ +1 , j

with weights

p
m 1 + i ′ ,π j+1

, and p m 1 + i +1 ,π j
, respectively.

• Each node O 0 j (j ∈ { 1 , . . . , n }) is connected to node O 1 j with

weight p m 1 +1 ,π j
.

• The source node s is connected to nodes O 0 j (j ∈ { 1 , . . . , n })
with weights max i ∈{ 1 , ... ,m 1 }

∑ j

k =1
p i,πk

.

Fig. 2 shows an example of the graph model for an instance of

he MASP with four jobs, and m 1 dedicated machines in the first

hase followed by three operations in series in the second phase

 m 2 = 3). It is clear that G (�) is a Directed Acyclic Graph (DAG in

he following, see e.g. Cormen, Leiserson, Rivest, & Stein, 2009), a

act that we will use later since the optimal substructure property

olds for finding the longest path in a DAG, but in any graph (i.e.

 sub-path of the longest path is a longest path).

Using this representation, the critical path associated to a solu-

ion of a given instance of the MASP problem is the longest path

rom the source to the last operation of the last job. More specifi-

ally, given G (�) , we define P �(O

i
′

j
) the critical path of O

i
′
, j

as

he longest path in G (�) going from s to O

i
′
, j

. In other words,

 �(O i j) is an ordered set of vertices in E providing the maximum

istance between s and O

i
′
, j

. It follows that P �(O mn) is simply the

akespan yield by sequence �, and that the makespan value (the

ength of such critical path) can be computed using the following

et of equations 1 :

 i ′ πk
= max { c i ′ −1 ,πk

, c i ′ ,πk −1
} + p m 1 + i ′ ,πk

i
′ ∈ { 1 , . . . , m 2 };
1 Note that c i ′ j is the length of the path from the source until node O i ′ , j . Again,

e intentionally use c i ′ j due to its relationship with the completion times (C i j)

efined in Section 2 . In fact, it is easy to show that c 0 j = max i ∈{ 1 , ... ,m 1 } { C i, j } (j ∈
 1 , . . . , n }), while c i ′ j = C m 1 + i ′ , j , with i

′ ∈ { 1 , . . . , m 2 } .

t

i

m

a

t

872
k ∈ { 1 , . . . , n } (7)

ith c
i
′ π0

= 0 (i
′ ∈ { 0 , . . . , m 2 }) and c 0 π j

= max i ∈{ 1 , ... ,m 1 }
∑ j

k =1
p i,πk

 j ∈ { 1 , . . . , n }).

 max = c m 2 πn
(8)

Along with the direct graph associated to a sequence in a MASP

nstance, we can also define Ḡ (�) the reverse graph, which simply

onsists of transposing the direct graph and changing the direc-

ion of the edges. Fig. 3 provides the reverse graph of the MASP

nstance in Fig. 2 . The reverse graph is also a DAG, so the opti-

al substructure property holds. Similarly, P̄ �(O

i
′

j
) can be defined

s the longest path in the reverse graph from operation O

i
′
, j

to

he source. Its length can be computed using the following set of

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Fig. 4. Procedure to generate instances.

Fig. 5. Computational evaluation of heuristics. Average CPU time versus ARPD.

e

c

w

F

t

(

b

(

(

t

c

n

f

c

p

t

t

quations:

¯
 i ′ j = max { ̄c i ′ +1 , j , ̄c i ′ , j+1 } + p m 1 + i ′ ,π j

i
′ ∈ { m 2 , . . . , 0 };

j ∈ { n, . . . , 1 } (9)

ith c̄ m 2 +1 , j = 0 (j ∈ { 1 , . . . , n }) and c̄
i
′
,n +1

= 0 (i
′ ∈ { 0 , . . . , m 2 }).

urthermore, c̄ s = max j∈{ 1 , ... ,n }
(

c̄ 0 j +

∑ j

k =1
p

i
′
,πk

)
.

Obviously, the length of P �(O

i
′

j
) and P̄ �(O

i
′

j
) is the same (i.e.

he makespan of the sequence).

Let us assume that, for a given partial sequence � =

π1 , . . . , πk −1) of size k − 1 , the corresponding c
i
′

j
and c̄

i
′

j
have
873
een computed and that a job σ is to be inserted in position l

 l ∈ { 1 , . . . , k }). Then we can construct a graph for the sequence

π1 , . . . , πl−1 , σ, πl , . . . , πk −1) (we label it augmented graph to dis-

inguish it from the graph obtained before the insertion). Clearly,

i
′
,πl −1

in the augmented graph are the same than in the origi-

al graph and c̄
i
′ πl

are the same than in the original reverse graph

or all i
′
. With the values of c

i
′
,πl −1

in the original graph we can

ompute c σ
i
′
l

in the augmented graph using Eq. (8) , i.e. we com-

ute the longest path from s to operations O

i
′
l

taking into account

hat σ has been inserted in position l). Then the makespan (i.e.

he longest path to the last operation of the last job in the di-

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

r

(

b

m

s

C

k

4

t

t

t

b

l

i

e

j

c

p

p

d

S

S

S

S

c

c

h

5

p

fi

l

S

s

i

c

p

i

5

d

r

b

n

s

t

t

o

i

2

p

p

a

m

c

5

C

D

s

a

D

m

m

m

p

p

i

p

fl

t

F

w

v

i

i

a

ect graph) would be given by max
i
′ ∈{ 0 , ... ,m 2 } { c σi ′ l + c̄

i
′ πl

} (see Eq.

10)), and thus the minimum makespan that can be obtained

y inserting job σ in position l ∈ { 1 , . . . , k } would be given by

in l∈{ 1 , ... ,k }
{

max
i
′ ∈{ 0 , ... ,m 2 } { c σi ′ l + c̄

i
′ πl

}
}

. Therefore, k ∗ the best po-

ition to insert job σ in a partial sequence is given by Eq. (11) .

 max = max
i ′ ∈{ 0 , ... ,m 2 }

{ c σ
i ′ l + c̄ i ′ πl

} (10)

∗ = arg min

l∈{ 1 , ... ,k }

{
max

i ′ ∈{ 0 , ... ,m 2 }
{ c σ

i ′ l + c̄ i ′ πl
}
}

(11)

. Proposed speed-up procedure

Equipped with the previous theoretical results, we propose in

his section a speed-up procedure to accelerate the calculation of

he makespan in insertion-based mechanisms. More specifically,

his procedure can be applied in the insertion of any job in the

est position of a partial sequence. Traditionally, in order to calcu-

ate the position which minimises the makespan, the job is tested

n each position k (with k ∈ { 1 , . . . , n }) and its makespan value

valuated. To calculate the makespan, the completion time of each

ob πl , � = (π1 , . . . , πl , . . . , πn) , has to be obtained on each ma-

hine i (with i ∈ { 1 , . . . , m }). This traditional procedure has a com-

lexity O (n 2 · m) . This time complexity is reduced by the proposed

rocedure to O (n · m) , by applying previous theoretical results 2 . A

etailed explanation of this procedure is as follows:

STEP 1. Calculate completion times, C i j using the forward codifica-

tion (Eqs. (1) –(4)).

TEP 2. Calculate completion times, C i j using the backward codifi-

cation (Eqs. (5) , and (6)).

TEP 3. For each position k ∈ { 1 , . . . , n }
STEP 3.1. Calculate the completion time of the new job in the

first phase, when is inserted in position k :

C σik = C i,πk −1
+ p i,σ , i ∈ { 1 , . . . , m 1 } (12)

STEP 3.2. Calculate the completion time of the new job in the

first machine of the second phase, when is inserted in

position k :

C σm 1 +1 ,k = max { max
i ∈{ 1 , ... ,m 1 }

{ C σi,k } , C m 1 +1 ,πk −1
} + p m 1 +1 ,σ

(13)

STEP 3.3. Calculate the completion time of the new job in the

other machines of the second phase, when is inserted

in position k :

C σi,k = max { C σi −1 ,k , C i,πk −1
} + p i,σ , i ∈ { m 1 + 2 , . . . , m }

(14)

STEP 3.4. For each machine i ∈ { 1 , . . . , m 1 + m 2 }
STEP 3.4.1.

C max,i = C σik + C iπk
(15)

STEP 3.5.

C k max = max
i ∈{ 1 , ... ,m 1 + m 2 }

{ C max,i } (16)

TEP 4.

C max = min

k ∈{ 1 , ... ,n }
{ C k max } (17)

TEP 5. Insert job σ in position k ∗ = arg min { C k } .
k ∈{ 1 , ... ,n } max

2 Note that, in this procedure, we explicitly compute the operations in each ma-

hine in the first phase. For a complete proof of these results using solely con-

epts from the specific scheduling problem, we refer to the on-line materials or

ttp://grupo.us.es/oindustrial/en/research/results .

5

p

874
. Proposed constructive heuristics

In this section, we propose four constructive heuristics for the

roblem, the first two being based on Johnson’s algorithm. The

rst one constructs a complete sequence by reducing the prob-

em to a 2-machine flow shop scheduling problem (detailed in

ection 5.1), while the second divides the problem into several

ubproblems and solves them using Johnson’s algorithm (detailed

n Section 5.2). Regarding the NEH-based proposals, a simple NEH

onsidering the speed-up procedure in the previous section is ex-

lained in Section 5.3 . Finally, a proposal modifying the job to be

nserted in the NEH algorithm is explained in Section 5.4 .

.1. Johnson-based constructive heuristic: JbH CB

Recently, Fernandez-Viagas & Framinan (2017) show that, un-

er certain conditions, the flow shop scheduling problem can be

educed to scheduling the jobs in the most saturated machine, or

ottleneck. The proposed Johnson-based constructive heuristic, de-

oted as JbH CB , takes advantage of this fact by reducing the flow

hop in the second phase of our problem to a single machine. In

his case, the problem under consideration could be reduced to

he DP m → 1 || C max problem. This reduced problem is solved by

btaining a sequence using Johnson’s algorithm and then evaluat-

ng this sequence in the original problem. In order to construct a

-machine flowshop instance suitable for Johnson’s algorithm, the

rocessing times of each job on such first machine are its sum of

rocessing times in the first phase divided by the number of jobs,

nd those for the second machine are its processing times on the

ost saturated machine in the second phase. A detailed pseudo-

ode of this algorithm is shown in Appendix A (Fig. 6).

.2. Divide-and-Conquer algorithm: DCA

The second Johnson-based proposal is a Divide-and-

onquer Algorithm (denoted as DCA), which reduces the

P m → F m | prmu | C max problem to several 2-machine flow-

hop scheduling problems and solves them using Johnson’s

lgorithm. More specifically, the algorithm firstly reduces the

P m → F m | prmu | C max problem to a F m | prmu | C max with m 2 + 1

achines. The processing time p
′
1 j

of each job j in the first

achine is the maximum completion time in the first phase

ultiplied by a parameter a , ie. p
′
1 j

= max i ∈{ 1 , ... ,m 1 } { a · p i j } . The

rocessing times in the other m 2 machines are the original

rocessing times in the second phase, i.e. p
′
i +1 , j

= p m 1 + i, j , with

 ∈ { 1 , . . . , m 2 } . Once a flow shop is obtained, following a similar

rocedure as in Campbell, Dudek, & Smith (1970) , m 2 2-machine

owshop subproblems are generated with the following processing

imes:

p
′′
1 j =

k ∑

i =1

(k + 1 − i + (m 2 + 1) · b) p
′
i j (18)

p
′′
2 j =

m 2 +1 ∑

i = m 2 +1 −k

(i − m 2 + 1 + k + (m 2 + 1) · b) p
′
i j (19)

ollowing a similar reasoning than in Dannenbring (1977) , the

eight of the processing times with respect to the machines is a

alley, i.e. the first (last) machines have a higher (lower) weight

n p
′′
1 j

and a lower (higher) one in p
′′
2 j

. Finally, a parameter b is

ntroduced to calibrate this weight. A detailed pseudo-code of the

lgorithm is shown in Appendix A (Fig. 7).

.3. NEH with the speed-up procedure: NEHS

In this section, two NEH-based constructive heuristics are pro-

osed. Since the paper by Nawaz, Enscore, & Ham (1983) , the NEH

http://grupo.us.es/oindustrial/en/research/results

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Fig. 6. Pseudocode of JbH CB .

Fig. 7. Pseudocode of DCA .

h

p

i

e

t

d

A

t

s

e

2

e

N

t

s

j

o

euristic has become a cornerstone heuristic to solve scheduling

roblems. In its original version, this heuristic firstly sorts the jobs

n non-increasing sum of processing times. Following this order,

ach job is inserted in the best position of an initially empty par-

ial sequence, according to a certain objective function. This proce-

ure is repeated until there is no more jobs in the initial sequence.

lthough initially proposed to minimise the makespan in a permu-

ation flow shop scheduling problem, the NEH algorithm has been

uccessfully adapted for several different scheduling problems (see
875
.g. Companys, Ribas, & Mateo, 2010; Vázquez-Rodríguez & Ochoa,

011) and in fact, some extensions are state-of-the-art for sev-

ral scheduling problems (see e.g. Chen, Yuan, Ng, & Cheng, 2021;

aderi & Ruiz, 2010).

Our first proposal, denoted as NEHS, is an adaptation of the

raditional NEH algorithm with the incorporation of the proposed

peed-up procedure (detailed in Section 4). More specifically, the

obs are initially sorted (α = (α1 , . . . , αn)) in non-increasing sum

f their processing times in all machines of the shop (i.e. i ∈

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Fig. 8. Pseudo code of NEHS.

{

s

�

i

t

t

w

e

s

5

h

N

e

b

C

b

t

i

s

α
a

f

�

s

j

t

o

a

6

c

r

r

c

c

e

t

i

i

t

c

6

t

V

(

t

f

g

I

a

i

i

p

r

t

m

f

e

{

g

e

s

r

V

t

t

e

S

f

p

d

g

 1 , . . . , m 1 + m 2 }). The first job of this order (α1) forms a partial

equence, denoted as �, initially composed of a single job (i.e.

= (α1)). Then, in iteration k 1 (with k 1 ∈ { 2 , . . . , n }), the follow-

ng steps are repeated: i) Calculate the completion times (C i j) using

he forward codification; ii) Calculate completion times (C i j) using

he backward codification; iii) Insert job αk 1
in the position of �

hich minimises the makespan, applying the speed-up procedure

xplained in Section 4 . A detailed pseudo-code of the algorithm is

hown in Appendix A (Fig. 8).

.4. Constructive heuristic F T F

In this section, we explain the second NEH-based constructive

euristic, denoted as F T F heuristic. As mentioned above, in the

EH algorithm, the job to be inserted in each iteration is taken it-

ratively from an initial sequence. Many different initial orders has

een tested by researchers along the years (see e.g. Dong, Huang, &

hen, 20 08; Kalczynski & Kamburowski, 20 08; Kalczynski & Kam-

urowski, 2009; Liu, Jin, & Price, 2017), having a great influence in

he performance of the algorithm. We try to take advantage of this

nfluence by varying the job to be inserted in each iteration. More

pecifically, the F T F algorithm also starts with both the sequence

, sorting the jobs in non-increasing sum of their processing times,

nd the partial sequence � = (α1) . Then, in each iteration k 1 , the

ollowing two options are tested:

1. Insert job αk 1
in the best position of � and denote the new

partial sequence as �aux . After that, insert job αk 1 +1 in the best

position of �aux and denote �1 the new partial sequence.

2. Insert job αk 1 +1 in the best position of � and denote the new

partial sequence as �aux . After that, insert job αk 1
in the best

position of �aux and denote �2 the new partial sequence.

Once both options are evaluated and the best sequence among
1 and �2 is stored for the following iteration, replacing partial

equence �. In addition, index k 1 is increased two units, as two

obs are inserted in each iteration. The procedure continues until

here is no more jobs in α. Obviously, in case k 1 is equal to n ,

nly αk 1
is tested in every position. A detailed pseudo-code of the

lgorithm is shown in Appendix A (Fig. 9).

. Computational evaluation

In this section, we test the performance of the proposals by

omparing them against the most promising approximate algo-

ithms of the related literature. More specifically, a total of 51 algo-

ithms are implemented and compared under the same computer

onditions on an extensive set of instances. All experimentations
876
arried out in the paper have been run on a cluster of comput-

rs Intel Core i7-8700 with 3.2 GHz and 8 GB RAM. To deal with

his issue, the procedure to generate the test instances is detailed

n Section 6.1 . Parameters a and b used in heuristic DCA are cal-

brated in Section 6.2 , while the all re-implemented heuristics of

he related literature are enumerated in Section 6.3 . Finally, the

omputational results are shown in Section 6.4 .

.1. Instances generation

In this section, we explain the procedure adopted to generate

he instances. We follow a similar procedures as in Taillard (1993) ,

allada, Ruiz, & Framinan (2015) and Fernandez-Viagas & Framinan

2020) . In our case, a total of 1200 instances are generated to test

he proposals, varying the number of jobs, and machines in the

ollowing manner:

• Number of jobs: n ∈ { 50 , 100 , 150 , 200 , 250 , 300 }
• Number of machines in the pre-assembly phase: m 1 ∈

{ 2 , 4 , 6 , 8 }
• Number of machines/stages in the assembly phase: m 2 ∈

{ 1 , 2 , 5 , 10 , 20 }
For each combination of these parameters, 110 instances are

enerated and 10 are chosen to compose the propose benchmark.

n order to select the instances, we have to deal with the bal-

nce between the assembly and pre-assembly phases, since one

s composed of dedicated parallel machines, while the other one

s a flow shop. Under this situation, the balance to generate the

rocessing times is not trivial. In this work, we introduce a pa-

ameter γ to generate the distribution of the processing times in

he second phase. Thereby, the processing times in the dedicated

achines (pre-assembly) stage are generated according to a uni-

orm distribution [1,99], while in the assembly phase they are gen-

rated following a uniform distribution [1 , 100 · γ − 1] , with γ ∈

 1 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , 2 . 0 , 2 . 2 , 2 . 4 , 2 . 6 , 2 . 8 , 3 . 0 } . Next, 10 instances are

enerated for each value of γ , which results in 110 instances for

ach combination of n , m 1 , and m 2 . To determine the best ten in-

tances for testing the algorithms in each combination of the pa-

ameters, we select the hardest one as done in Taillard (1993) and

allada et al. (2015) . To do so, we first compare in each instance

he makespan value obtained by a reference constructive heuris-

ic (the NEH algorithm proposed by Nawaz et al., 1983) and a ref-

rence metaheuristic (the iterated greedy IG proposed by Ruiz &

tützle, 2007). Then, the ten instances with lowest percentage dif-

erence between the two algorithms have been selected (a similar

rocedure is followed by Fernandez-Viagas & Framinan, 2020 to

etermine the hardest instances). Let β1 denote the benchmark

enerated using this procedure. More specifically, considering the

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Fig. 9. Pseudo code of FTF.

A

t

t

i

{

p

t

s

v

6

r

a

i

b

f

E

v

RPD1 as the Average Percentage Deviation between the NEH and

he IG, the procedure to generate β1 is detailed as follows in Fig. 4 .

In addition, a different set of instances, β2 , is generated

o fit the parameters of the proposals to avoid an overcal-

bration. β2 consider the same levels of the parameters n ∈

 50 , 100 , 150 , 200 , 250 } , m 1 ∈ { 2 , 4 , 6 , 8 } , and m 2 ∈ { 5 , 10 , 20 } , plus

arameter γ = { 1 , 1 . 25 , 1 . 5 , 1 . 75 , 2 , 2 . 25 , 2 . 5 } . For each combina-

ion of these four parameters, 10 instances are generated, using the

ame uniform distributions for the processing times as in the pre-

ious case.
877
.2. Experimental parameter tuning

Among the four new proposals included in this paper, two pa-

ameters have to be calibrated only for the DCA heuristic, namely

 and b. After some preliminary tests, we select the follow-

ng levels for the calibration: a ∈ { 1 , 1 . 25 , 1 . 5 , 1 . 75 , 2 , 2 . 5 , 3 } and

 ∈ { 0 . 025 , 0 . 05 , 0 . 1 , 0 . 15 , 0 . 20 , 0 . 25 } . The calibration has been per-

ormed using the Average Relative Percentage Deviation (ARPD2,

q. 20) for each instance of benchmark β2 , where Best is the best

alue found for an instance. A non-parametric Kruskal-Wallis anal-

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

y

a

r

c

a

A

6

l

sis performed separately for both parameters reveals that there

re statistically significant differences between the levels of the pa-

ameters (all p-values found equals to 0.0 0 0). In addition, the best

ombination of parameters is found for a = 2 and b = 0 . 15 , which

re used in the subsequent experiments.

RP D 2 :=

C max − Best

Best
· 100 (20)

.3. Implemented heuristics

We have identified a number of heuristics from related prob-

ems that are to be compared against our proposals. These are:

• Heuristics for the DP m → 1 || C max problem:

- LCL 1 , LCL 2 and LCL 3 (Lee et al., 1993): Let p
′
1 j

=

max i ∈{ 1 , ··· ,m 1 } p i j and p
′
2 j

=

∑ m

i = m 1 +1 p i j , LCL 1 applies John-

son’s algorithm to the job instance with job j defined by p
′
1 j

and p
′
2 j

. LCL 2 identifies the machine k with the maximum

workload in the first phase (max i ∈{ 1 , ··· ,m 1 } {
∑ n

j=1 p i j }), so

that p
′
1 j

= p k j . Then, it applies Johnson’s algorithm as in

LCL 1 , using the same p
′
2 j

. Finally, LCL 3 applies Johnson’s

algorithm with p
′
1 j

=

∑ m 1
i =1

p i j

m 1
and the previous p

′
2 j

.

- H 4 (Lin et al., 2006): Let p
′
j
=

∑ m 1
i =1

p i j /p
′
2 j

(p
′
2 j

is com-

puted as in LCL 1), this heuristic arranges the jobs in non-

decreasing order of p
′
j
.

- SMN 13 and SMN 14 (Sun et al., 2003): These heuristics are

adapted by computing
∑ m

i = m 1 +1 p i j each time the processing

time in the second phase is considered. The steps of these

heuristics can be consulted in the referred paper.

- AA (Allahverdi & Al-Anzi, 2006): This algorithm inserts, step

by step, an unscheduled job in an initially empty partial se-

quence. Among the unscheduled jobs, it first selects the job

with minimum value of the maximum processing times in

the first phase (Step 1a), and second the job with the min-

imum processing time in the second phase (Step 1b). If the

value obtained from Step 1a is less than or equal to that ob-

tained from Step 1b, it places the corresponding job in the

next earliest available position in the sequence, otherwise it

places the corresponding job in the next latest available po-

sition in the sequence.

- 14 heuristics provided by the combination of different dis-

patching rules (Komaki & Kayvanfar, 2015): From the initial

16 dispatching rules proposed (I 1 to I 16), 7 (I 3 , I 4 , I 8 , I 9 , I 10 ,

I 11 and I 12) can be adapted and applied to the problem un-

der study.
∗ Non-decreasing order of I 3 = max i ∈{ 1 , ··· ,m 1 } p i j .

∗ Non-decreasing order of I 4 =

∑ m 1
i =1

p i j

m 1
.

∗ Non-decreasing order of I 8 = p i ∗ j , where i ∗ is the most

loaded machine in the first phase.
∗ Non-increasing order of I 9 =

∑ m

i = m 1 +1 p i j .
∗ Non-increasing order of I 10 = max i ∈{ 1 , ··· ,m 1 } p i j + ∑ m

i = m 1 +1 p i j .

∗ Non-increasing order of I 11 =

∑ m 1
i =1

p i j

m 1
+

∑ m

i = m 1 +1 p i j .
∗ Non-increasing order of I 12 = p i ∗, j +

∑ m

i = m 1 +1 p i j , where

p i ∗ j is the same as in I 8 .

After combining I 3 , I 4 and I 8 with I 9 , I 10 , I 11 and I 12 , we obtain

12 additional dispatching rules (I 17 to I 28) to which the John-

son’s algorithm is applied. Note that the indicator of I 3 is the

same as DR 1 , and I 17 = LCL 1 , I 18 = LCL 3 and I 19 = LCL 2 .
• Heuristics for the DP m → 1 || ∑

C j problem:

- T CK1 and T CK2 (Tozkapan et al., 2003): T CK 1 obtains m 1 +
1 different sequences by applying the SPT in each ma-

chine of the first phase and in the machine of the sec-
878
ond phase. To adapt this heuristic to our problem, the

SPT rule obtained in the second phase is computed by

using the sum of processing times in each machine of

that second phase. Then, the sequence with the low-

est C max is selected. T CK 2 computes three indices for

each job that have been adapted to our problem: MP T j =

min { p 1 j , p 2 j , · · · , p m j } ; AP T j =

1
m 1 + m 2

∑ m

i =1 p i j ; and MXP T j =
max { p 1 j , p 2 j , · · · , p m j } . Then, three sequences are obtained

by sorting the jobs in non decreasing order of these indica-

tors, and the sequence yielding the lowest C max is selected.

- A 1 and A 2 (Al-Anzi & Allahverdi, 2006): These algorithms

construct a sequence by iteratively appending a job at the

end of the current partial sequence. For algorithm A 1 , the

job is chosen so that the next indicator is minimised:

A 1 j = max
i ∈{ 1 , ... ,m 1 }

{

j−1 ∑

r=1

p i [r] + p i j

}

(21)

while for algorithm A 2 the indicator is adapted to our prob-

lem by dividing the assembly time by the number of assem-

bly machines, m 2 , i.e.:

A 2 j = max
i ∈{ 1 , ... ,m 1 }

{

j−1 ∑

r=1

p i [r] + p i j

}

+

m ∑

i = m 1 +1

p i j (22)

- S1 , S2 and S3 (Al-Anzi & Allahverdi, 2006): The authors

designed several dispatching rules. Heuristic S1 sorts the

jobs in non decreasing order of
∑ m

i = m 1 +1 p i j . Heuristic S2

is obtained by sorting the jobs in non decreasing order of

max i ∈{ 1 , ... ,m 1 } { p i j } and, finally, heuristic S3 sorts the jobs in

non decreasing order of max i ∈{ 1 , ... ,m 1 } { p i j } +

∑ m

i = m 1 +1 p i j .

- G 1 , G 2 , G 3 and G 4 (Lee, 2018): These heuristics construct a

sequence by inserting the job with the smallest value of an

indicator. The indicators for each heuristic are G 1 j = C [j] −
C ∗

2
; G 2 j = C 1 ∗

j
− C 1 ∗

j−1
; G 3 j = C 1 ∗

j
− C ∗

2
and G 4 j = C [j] − C1 ∗

j
,

being C1 ∗
j

the completion time of job j in the first phase

and C2 ∗ the completion time of the last-positioned job in

the second phase. These indicators have been adapted com-

puting the completion times in the second phase using

Eq. (4) .

- F AP (Framinan & Perez-Gonzalez, 2017b): This heuristic

computes an indicator taking into account which phase is

dominant and an estimation of the completion time of the

unscheduled jobs. The indicator has been adapted consider-

ing
∑ m

i = m 1 +1 p i j instead of p •, which is defined as the sum

of the processing times of the unscheduled jobs in the as-

sembly phase.
• Heuristics for the DP m → 0 || ∑

C j problem:

- ST P T (Sung & Yoon, 1998): A sequence is constructed sort-

ing the jobs in ascending order of their sum of their pro-

cessing times on the m 1 machines. In our case, m 1 + m 2 are

considered.

- SMP T (Sung & Yoon, 1998): A sequence is constructed sort-

ing the jobs in ascending order of their maximum process-

ing time on the m 1 machines. In our case, m 1 + m 2 are con-

sidered.

- ECT (Ahmadi, Bagchi, & Roemer, 2005; Leung et al., 2005):

In this heuristic, the order with the earliest completion time

is selected as the next to be sequenced. The completion time

is computed according to Eq. (4) .

- SHIF T k and SHIF T k OPT
(Framinan & Perez-Gonzalez, 2017a):

SHIF T k obtains a partial sequence in an iterative manner

using the ECT heuristic. Then, the jobs are iteratively re-

moved from their position and reinserted. The procedure is

repeated until the so-obtained partial sequence does not re-

turns a lower objective function value. SHIF T k restarts the

OPT

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Table 1

Computational results grouped by m 1 and m 2 . Average CPU times (ACPU) are given in seconds in last columns.

Heuristic m 1 m 2 ARPD2 ACPU

2 4 6 8 1 2 5 10 20

NEHS 0.377 0.529 0.527 0.465 0.336 0.160 0.364 0.683 0.832 0.475 0.008

FTF 0.076 0.169 0.146 0.115 0.302 0.050 0.043 0.043 0.196 0.127 0.016

JBH CB 9.423 8.934 9.131 8.811 1.242 4.916 10.786 14.547 13.920 9.075 0.000

DCA 2.867 3.114 3.288 3.332 0.385 0.804 2.951 5.867 5.757 3.150 0.000

LCL 1 9.336 9.199 8.875 8.831 1.073 4.865 10.721 15.017 13.664 9.060 0.000

LCL 2 8.979 9.802 9.949 9.699 1.679 5.985 11.359 15.055 13.996 9.607 0.000

LCL 3 9.407 9.019 9.095 8.877 1.174 5.020 10.731 14.636 13.976 9.100 0.000

H4 9.208 8.972 8.904 8.723 1.228 4.754 10.576 14.533 13.705 8.952 0.000

SMN13 17.323 13.246 15.430 11.638 8.487 23.645 10.723 14.926 14.326 14.409 0.007

SMN14 9.321 9.123 8.892 8.557 1.132 4.939 10.494 14.704 13.634 8.973 0.007

AA 9.130 9.149 9.292 9.034 1.023 4.638 10.671 15.201 14.261 9.151 0.001

I4 9.419 9.050 9.203 8.946 1.265 5.042 10.865 14.691 13.948 9.155 0.000

I8 9.865 9.844 9.956 9.699 1.680 6.092 11.612 15.486 14.374 9.840 0.000

I9 9.838 9.851 10.012 9.764 1.807 6.181 11.457 15.635 14.285 9.866 0.000

I10 9.456 9.190 9.385 8.898 1.388 4.860 10.849 14.975 14.117 9.232 0.000

I11 9.512 9.209 9.436 8.891 1.440 4.837 10.851 15.071 14.138 9.262 0.000

I12 9.676 9.553 9.642 9.235 1.577 5.338 11.258 15.402 14.087 9.527 0.000

I20 9.391 9.281 8.967 9.032 1.277 5.082 10.728 15.017 13.773 9.168 0.000

I21 9.556 9.537 9.560 9.158 1.506 5.181 11.187 15.276 14.148 9.453 0.000

I22 9.862 9.859 9.948 9.689 1.694 6.092 11.603 15.486 14.362 9.840 0.000

I23 9.397 9.233 8.872 8.899 1.116 5.005 10.728 15.017 13.673 9.100 0.000

I24 9.419 9.050 9.203 8.946 1.265 5.042 10.865 14.691 13.948 9.155 0.000

I25 9.864 9.858 9.944 9.679 1.678 6.081 11.612 15.486 14.365 9.836 0.000

I26 9.398 9.271 8.952 9.037 1.275 5.057 10.728 15.017 13.783 9.164 0.000

I27 9.419 9.050 9.203 8.946 1.265 5.042 10.865 14.691 13.948 9.155 0.000

I28 9.865 9.844 9.956 9.699 1.680 6.092 11.612 15.486 14.374 9.841 0.000

TCK1 13.251 14.170 14.315 14.296 8.494 11.808 15.029 17.664 17.051 14.008 0.000

TCK2 10.225 10.072 10.418 9.896 2.004 6.277 12.196 15.865 14.458 10.153 0.000

A1 10.018 9.981 10.013 9.758 1.749 6.184 11.706 15.722 14.383 9.942 0.053

A2 10.200 9.880 9.932 9.889 1.860 6.136 11.810 15.827 14.283 9.975 0.071

S1 13.251 14.170 14.315 14.296 8.494 11.808 15.029 17.664 17.051 14.008 0.000

S2 9.391 9.878 9.595 9.939 1.730 5.641 11.659 15.456 14.058 9.701 0.000

S3 11.741 13.153 13.512 13.879 6.904 10.455 14.441 17.303 16.291 13.071 0.000

G1 20.673 20.914 20.921 20.714 6.796 15.545 25.416 30.420 25.922 20.806 0.441

G2 9.396 9.227 8.969 8.563 1.189 4.873 10.721 14.702 13.747 9.039 0.423

G3 9.640 9.410 9.575 9.369 1.135 5.529 11.467 15.424 13.979 9.499 0.440

G4 20.673 20.914 20.921 20.714 6.796 15.545 25.416 30.420 25.922 20.806 0.447

FAP 9.321 9.139 9.052 8.970 1.351 4.975 10.627 14.801 13.903 9.120 4.248

STPT 10.603 10.463 10.664 10.082 2.717 6.692 12.241 16.062 14.587 10.453 0.000

SMPT 12.480 13.403 13.541 13.484 5.976 11.666 15.029 17.664 15.832 13.227 0.000

ECT 21.635 21.975 22.296 22.164 7.993 18.044 27.271 30.506 26.338 22.018 0.139

SHIF T k 22.340 22.833 22.942 22.797 7.909 18.763 28.549 31.647 26.843 22.728 0.278

SHIF T k OPT
22.340 22.833 22.942 22.797 7.909 18.763 28.549 31.647 26.843 22.728 0.279

SAK 6.462 6.445 6.400 6.035 0.595 2.323 7.076 11.051 10.663 6.336 0.989

NCH 10.076 10.135 9.949 9.427 1.773 5.880 11.741 15.835 14.286 9.897 0.006

DR1 9.391 9.281 8.967 9.032 1.277 5.082 10.728 15.017 13.773 9.168 0.000

DR2 10.890 11.987 12.341 12.802 8.926 12.326 12.271 13.379 13.122 12.005 0.000

DR3 20.610 20.789 21.065 20.612 11.337 25.435 22.281 23.768 21.058 20.769 0.000

DR4 11.514 13.129 13.844 14.298 7.818 11.961 14.668 16.229 15.344 13.196 0.000

H0K 8.380 8.613 8.819 8.969 2.948 10.049 10.085 11.021 9.404 8.695 0.000

H3K 7.019 7.638 7.871 8.029 2.141 6.187 7.981 10.804 11.104 7.639 0.000

reinsertion phase whenever a better sequence is found and

repeats the process until no further improvement is found.
• Heuristics for the DP m → P m || ∑

C j problem:

- SAK (Sung & Kim, 2008): This heuristic sorts the jobs in non

decreasing order of psum j =

∑ m 1
i =1

p i j + p m 1 +1 , j . Set k 1 = 1

and k 2 = k 1 +1, it exchanges the k 1 th job and the k 2 th job.

If the objective function value is improved, it keeps the ex-

change. If not, k 2 = k 2 +1. In order to adapt it to our problem,

the indicator is computed as psum j =

∑ m

i =1 p i j .

- NCH (Talens et al., 2020): This heuristic constructs itera-

tively a sequence by selecting one job among the unsched-

uled jobs and adding it at the end of the partial sequence.

The job with the minimum value of the indicator P HI j =

a · IT j + C m 1 +1 , j is selected. The indicator has been adapted

by computing C m, j as
∑ � m 1 + m 2 / 2 �

i = m 1 +1
p i j /m 1 .

• Heuristics for the DP m → F 2 || C max problem:
879
- Dispatching rules DR 1 , DR 2 , DR 3 and DR 4 (Komaki et al.,

2017): DR 1 and DR 4 sort the jobs in non-decreasing order of

max i ∈{ 1 , ··· ,m 1 } p i j and max i ∈{ 1 , ··· ,m 1 } p i j +

∑ m

i = m 1 +1 p i j , respec-

tively. To adapt the dispatching rules DR 2 and DR 3 , DR 2

sorts the jobs according to non-decreasing
∑ � m 1 + m 2 / 2 �

i = m 1 +1
p i j

and DR 3 according to non-decreasing
∑ m

i = � m 1 + m 2 / 2 � +1 p i j .

- Heuristic H0 K (Koulamas & Kyparisis, 2001) applies John-

son’s algorithm to the problem by solving the 2-machine

flowshop problem where the processing times of the first

machine are the average processing times of the first

� m 2 / 2 � machines in the assembly phase, and those of the

second machine are the last 	 m 2 / 2
 machines.

- Heuristic H3 K (Koulamas & Kyparisis, 2001) transforms the

problem into a 3-machines flow shop and then applies the

algorithm proposed by Röck & Schmidt (1983) . The process-

ing times of the first machine in the transformed problem

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

Table 2

Holm’s procedure.

Hypothesis p-value γi Wilcoxon α/ (2 − γi + 1) Holm’s procedure

H 1 : DCA = H3K 0.000 1 R 0.025 R

H 2 : FTF = SAK 0.000 2 R 0.050 R

p

6

f

(

b

e

s

q

a

C

t

s

s

I

f

i

t

t

0

s

h

t

w

t

a

t

F

w

T

7

s

2

b

m

j

a

s

p

t

a

s

o

l

i

u

m

t

r

h

l

F

a

a

A

o

f

d

are the processing times in the pre-assembly phase. For the

second machines, the average processing times of the first

� m 2 / 2 � machines in the assembly phase are considered. Fi-

nally, for the third machines, the last 	 m 2 / 2
 processing

times are considered.

All these heuristics are compared against the heuristics pro-

osed in Section 5 (JbH CB , DCA, NEHS, and FTF).

.4. Comparison of heuristics

The comparison among the implemented algorithms is per-

ormed using Benchmark β1 , under the same computer conditions

same programming lenguage, C#, same common functions and li-

raries and same computer). Two common indicators are used to

stablish the most efficient algorithms for the problem under con-

ideration. Firstly, the ARP D 2 indicator is used as a measure of the

uality of the solutions of each approximate algorithm (with Best

s the best solution found in the instance). Secondly, the Average

PU time (also denoted as ACP U) is used to measure the compu-

ational effort required by each algorithm. The computational re-

ults are shown in Table 1 with regard to parameters m 1 and m 2 . A

ummary of the average computational results is shown in Fig. 5 .

n terms of the quality of the solutions, the best result is clearly

ound by the FTF heuristic with an ARP D 2 value of 0.127 requir-

ng 0.016 seconds in average. This heuristic clearly outperforms

he best heuristic from the literature, which is the SAK heuris-

ic. This latter algorithm has an ARP D 2 value of 6.336 found in

.989 seconds. Using the ACPU and ARP D 2 indicators, we show the

et of non-dominated heuristics in bold in Table 1 (Pareto set of

euristics). This set is formed exclusively by the proposed heuris-

ics DCA (0.0 0 0, 3.150), NEHS (0.0 08, 0.475) and FTF (0.016, 0.127),

hich clearly outperform any other implemented heuristic from

he related literature. This hypothesis is confirmed by performing

 Holm’s procedure (Holm, 1979) comparing the heuristics against

he closest ones from the literature (i.e. hypotheses DCA = H3K and

TF = SAK), and using a non-parametric Wilcoxon signed-rank test

ith a 0.95 confidence level. The statistical results are shown in

able 2 , yielding a p-value equal to 0.0 0 0 in both cases.

In view of the results, the following comments can be done:

• Regarding the two-stage assembly scheduling problem (DP m →

1 || C max), several heuristics have been proposed in the literature

up-to-now: LCL 1 , LCL 2 , LCL 3 , H 4 , SMN 13 , SMN 14 , I 3 , I 4 , I 8 , I 9 , I 10 ,

I 11 , I 12 , DR 1 , DR 4 , and heuristics from I 20 to I 28 . This problem

is found for m 2 = 1 in the proposed benchmark, i.e. in 240 in-

stances. For this case, the average results, ARPD2, are shown

in the sixth column of Table 1 . Among all these heuristics de-

veloped specifically for that problem, the best ARPD2 is found

by LCL 1 with ARP D 2 = 1 . 073 and 0.0 0 0 average CPU times. In

addition, SAK obtains an ARPD2 value of 0.595 in 0.566 sec-

onds. Both heuristics are clearly outperformed by the new pro-

posals. Thereby, DCA, NEHS, and FTF obtain an ARPD2 value

of 0.385, 0.336 and 0.302, respectively. The ACPU required is

0.0 0 0, 0.0 04, and 0.0 07 seconds respectively. A non-parametric

Wilcoxon signed-rank test has confirmed this assumption re-

jecting that LCL 1 = DCA and SAK = F T F with p-values equal to

0.0 0 0 in both cases.
• Similarly to the three stage assembly scheduling problem

(DP m → F 2 || C max), the best heuristic among the specific ones
880
developed for the problem (i.e. DR 1 , DR 2 , DR 3 , DR 4 , H0 K, and

H3 K) is DR 1 with ARP D 2 = 5 . 082 and ACP U = 0 . 0 0 0 . Further-

more, it is worth noting the excellent performance found by the

adaptation of the AA heuristic to the problem, with ARP D 2 =

4 . 865 and ACP U = 0 . 0 0 0 . Nevertheless, both heuristics are out-

performed by the DCA heuristic (ARP D 2 = 0 . 804) also requiring

ACP U = 0 . 0 0 0 . This is confirmed by a p-values equal to 0.0 0 0 in

a Wilcoxon signed-rank test.
• Almost all adapted approximate algorithms perform relatively

well for the problem under consideration with a low number

of assemblies machines (mainly in case m 2 = 1). However, their

performance highly worsen as m 2 increases. In fact, there is

only one adapted heuristic with ARPD2 lower than ten (H0K)

for m 2 = 20 and no one with ARPD2 lower than 9. In contrast,

the NEHS and FTF proposals perform very well regardless the

value of the parameter (NEHS with an ARPD2 lower than 0.900

and FTF lower than 0.350 for any m 2 value).
• The influence of parameter m 1 in the problem is much lower

than that of m 2 . Most of the implemented algorithms have a

variation in the ARP D 2 lower than 1.0 0 0 when m 1 is changed.

In this regard, the best behaviour with the increase in m 1 is

found by the SMN13 heuristic, which reduces the ARPD2 from

17.323 (in m 1 = 2) to 11.638 (in m 1 = 8).

. Conclusions

In this paper, we have addressed the multi-stage assembly flow

hop scheduling problem. This problem is a generalisation of both

ASP and 3ASP. For the general problem, we have proposed a num-

er of theoretical results that allow us to develop an efficient

ethod to speed up approximate algorithms based on inserting

obs into a partial sequence and, as a consequence, this result can

lso be applied to any of its special cases. In addition, four con-

tructive heuristics have been proposed to find high-quality ap-

roximate solutions for the problem under consideration. The first

wo proposals are based on Johnson’s algorithm, while the last two

lgorithms are based on the NEH heuristic incorporating the new

peed-up procedure. An extensive evaluation has been performed

n a new hard set of instances specifically designed for the prob-

em under consideration. In this evaluation, a total of 51 approx-

mate algorithms have been again re-implemented and compared

nder the same conditions.

The computational evaluation has shown the excellent perfor-

ance of the proposals to solve the problem with respect both

o the quality of the solutions and to the computational effort

equired. More specifically, the set of efficient (non-dominated)

euristics for the multi-stage assembly flow shop scheduling prob-

em and also for its small variants (i.e. DP m → 1 || C max and DP m →
 2 || C max) is formed exclusively by the new proposals DCA, NEHS,

nd FTF. Therefore, they can be considered as the new state-of-the-

rt constructive heuristics for these problems.

cknowledgment

The authors wish to thank the referees for their comments

n the earlier versions of the manuscript. This research has been

unded by the Spanish Ministry of Science and Innovation , un-

er the project “ASSORT” with reference PID2019-108756RB-I00 ,

https://doi.org/10.13039/501100004837

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

a

S

1

A

T

a

S

f

R

A

A

A

A

A

C

C

C

C

D

D

F

F

F

F

F

F

F

H

H

J

K

K

K

K

K

L

L

L

L

L

L

N

N

N

N

P

P
P

R

R

R

R

R

S

S

nd by the Junta de Andalucia under the projects “DEMAND”, “IB-

OS and “EFECTOS”, with references P18-FR-1149, 5835 and US-

264511, respectively.

ppendix A

In this appendix, we show the pseudocode of all our proposals.

hereby, Figs. 6–9 indicate the pseudocode for JbH CB , DCA , NEHS

nd F T F , respectively.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2021.10.001

eferences

hmadi, R., Bagchi, U., & Roemer, T. A. (2005). Coordinated scheduling of customer
orders for quick response. Naval Research Logistics, 52 (6), 493–512. https://doi.

org/10.10 02/nav.20 092 .
l-Anzi, F. S. , & Allahverdi, A. (2006). A hybrid tabu search heuristic for the

two-stage assembly scheduling problem. International Journal of Operations Re-
search, 3 (2), 109–119 .

llahverdi, A., & Al-Anzi, F. S. (2006). Evolutionary heuristics and an algorithm for

the two-stage assembly scheduling problem to minimize makespan with setup
times. International Journal of Production Research, 44 (22), 4713–4735. https://

doi.org/10.1080/0 020754060 0621029 .
llahverdi, A. , & Al-Anzi, F. S. (2012). A new heuristic for the queries scheduling

problem on distributed database systems to minimize mean completion time.
In Proceedings of the 21st international conference on software engineering and

data engineering, SEDE 2012 (pp. 93–97) .
llahverdi, A., & Aydilek, H. (2015). The two stage assembly flowshop scheduling

problem to minimize total tardiness. Journal of Intelligent Manufacturing, 26 (2),

225–237. https://doi.org/10.1007/s10845- 013- 0775- 5 .
ampbell, H. G. , Dudek, R. A. , & Smith, M. L. (1970). Heuristic algorithm for the n

job, m machine sequencing problem. Management Science, 16 (10), 630–637 .
hen, R., Yuan, J., Ng, C. T., & Cheng, T. C. E. (2021). Single-machine hierarchical

scheduling with release dates and preemption to minimize the total completion
time and a regular criterion. European Journal of Operational Research . https://

doi.org/10.1016/j.ejor.2020.12.006 .

ompanys, R., Ribas, I., & Mateo, M. (2010). Improvement tools for NEH based
heuristics on permutation and blocking flow shop scheduling problems. In IFIP

Advances in information and communication technology, 338 AICT (pp. 33–40).
https://doi.org/10.1007/978- 3- 642- 16358- 6 _ 5 .

ormen, T. H. , Leiserson, C. E. , Rivest, R. L. , & Stein, C. (2009). Introduction to algo-
rithms (3rd ed.). The MIT Press .

annenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. Man-

agement Science, 23 (11), 1174–1182. https://doi.org/10.1287/mnsc.23.11.1174 .
ong, X., Huang, H., & Chen, P. (2008). An improved NEH-based heuristic for the

permutation flowshop problem. Computers & Operations Research, 35 (12), 3962–
396 8. http://www.sciencedirect.com/science/article/pii/S0305054 807001116

attahi, P., Hassan Hosseini, S. M., & Jolai, F. (2013). Some heuristics for the hy-
brid flow shop scheduling problem with setup and assembly operations. In-

ternational Journal of Industrial Engineering Computations, 4 (3), 393–416. https:

//doi.org/10.5267/j.ijiec.2013.03.004 .
ernandez-Viagas, V., & Framinan, J. M. (2017). Reduction of permutation flowshop

problems to single machine problems using machine dominance relations. Com-
puters and Operations Research, 77 , 96–110. https://doi.org/10.1016/j.cor.2016.07.

009 .
ernandez-Viagas, V. , & Framinan, J. M. (2020). Design of a testbed for hybrid flow

shop scheduling with identical machines. Computers and Industrial Engineering,

141 .
ernandez-Viagas, V. , Molina-Pariente, J. M. , & Framinan, J. M. (2020). Generalised

accelerations for insertion-based heuristics in permutation flowshop scheduling.
European Journal of Operational Research, 282 (3), 858–872 .

raminan, J. M., & Perez-Gonzalez, P. (2017a). New approximate algorithms for the
customer order scheduling problem with total completion time objective. Com-

puters and Operations Research, 78 , 181–192. https://doi.org/10.1016/j.cor.2016.

09.010 .
raminan, J. M., & Perez-Gonzalez, P. (2017b). The 2-stage assembly flowshop

scheduling problem with total completion time: Efficient constructive heuris-
tic and metaheuristic. Computers and Operations Research, 88 , 237–246. https:

//doi.org/10.1016/j.cor.2017.07.012 .
raminan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic

assembly scheduling problems: A review and classification of concurrent-type
scheduling models and solution procedures. European Journal of Operational Re-

search, 273 (2), 401–417. https://doi.org/10.1016/j.ejor.2018.04.033 .

olm, S. (1979). A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics, 6 , 65–70 .

wang, F. J. , & Lin, B. M. T. (2012). Two-stage assembly-type flowshop batch
scheduling problem subject to a fixed job sequence. Journal of the Operational

Research Society, 63 (6), 839–845 .
881
ohnson, S. M. (1954). Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1 (1), 61–68 .

alczynski, P. J., & Kamburowski, J. (2008). An improved NEH heuristic to
minimize makespan in permutation flow shops. Computers & Operations

Research, 35 (9), 30 01–30 08. http://www.sciencedirect.com/science/article/pii/
S03050548070 0 0172

alczynski, P. J., & Kamburowski, J. (2009). An empirical analysis of the op-
timality rate of flow shop heuristics. European Journal of Operational Re-

search, 198 (1), 93–101. https://doi.org/10.1016/j.ejor.2008.08.021 . http://www.

sciencedirect.com/science/article/pii/S037722170800739X
omaki, G. M., & Kayvanfar, V. (2015). Grey Wolf Optimizer algorithm for the two-

stage assembly flow shop scheduling problem with release time. Journal of Com-
putational Science, 8 , 109–120. https://doi.org/10.1016/j.jocs.2015.03.011 .

omaki, G. M., Teymourian, E., Kayvanfar, V., & Booyavi, Z. (2017). Improved discrete
cuckoo optimization algorithm for the three-stage assembly flowshop schedul-

ing problem. Computers and Industrial Engineering, 105 , 158–173. https://doi.org/

10.1016/j.cie.2017.01.006 .
oulamas, C., & Kyparisis, G. (2001). The three-stage assembly flowshop scheduling

problem. Computers and Operations Research, 28 (7), 689–704. https://doi.org/10.
1016/S0305-0548(0 0)0 0 0 04-6 .

ee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the makespan in the
3-machine assembly-type flowshop scheduling problem. Management Science,

39 (5), 616–625. https://doi.org/10.1287/mnsc.39.5.616 .

ee, I. S. (2018). Minimizing total completion time in the assembly scheduling prob-
lem. Computers and Industrial Engineering, 122 , 211–218. https://doi.org/10.1016/

j.cie.2018.06.001 .
eung, J. Y. T., Li, H., & Pinedo, M. (2005). Order scheduling in an environment with

dedicated resources in parallel. Journal of Scheduling, 8 (5), 355–386. https://doi.
org/10.1007/s10951- 005- 2860- x .

iao, C.-J., Lee, C.-H., & Lee, H. C. (2015). An efficient heuristic for a two-stage assem-

bly scheduling problem with batch setup times to minimize makespan. Com-
puters and Industrial Engineering, 88 , 317–325. https://doi.org/10.1016/j.cie.2015.

07.018 . 4113
in, B. M. T., Cheng, T. C. E., & Chou, A. S. C. (2006). Scheduling in an assembly-type

production chain with batch transfer. Omega, 35 (2), 143–151. https://doi.org/10.
1016/j.omega.20 05.04.0 04 .

iu, W., Jin, Y., & Price, M. (2017). A new improved NEH heuristic for permutation

flowshop scheduling problems. International Journal of Production Economics,
193 , 21–30. https://doi.org/10.1016/j.ijpe.2017.06.026 .

aderi, B., & Ruiz, R. (2010). The distributed permutation flowshop schedul-
ing problem. Computers & Operations Research, 37 (4), 754–768. http:

//www.scopus.com/inward/record.url?eid=2- s2.0- 70350752447&partnerID=
40&md5=668c5360d210fc7c4da0d99874bc9c94

awaz, M. , Enscore, J. E. E. , & Ham, I. (1983). A heuristic algorithm for the

m -machine, n -job flow-shop sequencing problem. OMEGA, The International
Journal of Management Science, 11 (1), 91–95 .

owicki, E. (1999). The permutation flow shop with buffers: A tabu search ap-
proach. European Journal of Operational Research, 116 (1), 205–219. https://doi.

org/10.1016/S0377-2217(98)0 0 017-4 .
owicki, E., & Smutnicki, C. (1998). The flow shop with parallel machines: A tabu

search approach. European Journal of Operational Research, 106 (2–3), 226–253.
https://www.scopus.com/inward/record.uri?eid=2- s2.0- 0032050653&partnerID=

40&md5=8d49189a360b07184cf08d3ebfcc67eb

an, Q.-K., Wang, L., Li, J.-Q., & Duan, J. H. (2014). A novel discrete artificial bee
colony algorithm for the hybrid flowshop scheduling problem with makespan

minimisation. Omega (United Kingdom), 45 , 42–56. https://doi.org/10.1016/j.
omega.2013.12.004 .

inedo, M. (2012). Scheduling: Theory, algorithms and systems . Springer .
otts, C. N. , Sevast’janov, S. V. , Strusevich, V. A. , Van Wassenhove, L. N. , & Zwan-

eveld, C. M. (1995). The two-stage assembly scheduling problem: Complexity

and approximation. Computers and Operations Research, 43 (2), 346–355 .
ibas, I., Companys, R., & Tort-Martorell, X. (2010). Comparing three-step

heuristics for the permutation flow shop problem. Computers & Operations
Research, 37 (12), 2062–2070. http://www.sciencedirect.com/science/article/pii/

S0305054810 0 0 050X
ibas, I., Companys, R., & Tort-Martorell, X. (2013). A competitive variable

neighbourhood search algorithm for the blocking flow shop problem. Eu-

ropean Journal of Industrial Engineering, 7 (6), 729–754. https://doi.org/10.
1504/EJIE.2013.058392 . http://www.scopus.com/inward/record.url?eid=2-s2.

0-84891367893&partnerID=40&md5=dcc193d7a615114fb7316b9354a57d89
ios-Mercado, R. Z., & Bard, J. F. (1998). Heuristics for the flow line problem

with setup costs. European Journal of Operational Research, 110 (1), 76–98.
http://www.scopus.com/inward/record.url?eid=2- s2.0- 0032189491&partnerID=

40&md5=e8648b37d7ae6a878baabc93854ebfde

öck, H. , & Schmidt, G. (1983). Machine aggregation heuristics in shop scheduling.
Methods of Operations Research, 45 , 303–314 .

uiz, R. , & Stützle, T. (2007). A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of Operational

Research, 177 (3), 2033–2049 .
heikh, S., Komaki, G. M., & Kayvanfar, V. (2018). Multi objective two-stage assembly

flow shop with release time. Computers and Industrial Engineering, 124 (3), 276–

292. https://doi.org/10.1016/j.cie.2018.07.023 .
un, X., Morizawa, K., & Nagasawa, H. (2003). Powerful heuristics to mini-

mize makespan in fixed, 3-machine, assembly-type flowshop scheduling. Eu-
ropean Journal of Operational Research, 146 (3), 498–516. https://doi.org/10.1016/

S0377- 2217(02)00245- X .

https://doi.org/10.1016/j.ejor.2021.10.001
https://doi.org/10.1002/nav.20092
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0002
https://doi.org/10.1080/00207540600621029
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0004
https://doi.org/10.1007/s10845-013-0775-5
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0006
https://doi.org/10.1016/j.ejor.2020.12.006
https://doi.org/10.1007/978-3-642-16358-6_5
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0009
https://doi.org/10.1287/mnsc.23.11.1174
http://www.sciencedirect.com/science/article/pii/S0305054807001116
https://doi.org/10.5267/j.ijiec.2013.03.004
https://doi.org/10.1016/j.cor.2016.07.009
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0015
https://doi.org/10.1016/j.cor.2016.09.010
https://doi.org/10.1016/j.cor.2017.07.012
https://doi.org/10.1016/j.ejor.2018.04.033
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0021
http://www.sciencedirect.com/science/article/pii/S0305054807000172
https://doi.org/10.1016/j.ejor.2008.08.021
http://www.sciencedirect.com/science/article/pii/S037722170800739X
https://doi.org/10.1016/j.jocs.2015.03.011
https://doi.org/10.1016/j.cie.2017.01.006
https://doi.org/10.1016/S0305-0548(00)00004-6
https://doi.org/10.1287/mnsc.39.5.616
https://doi.org/10.1016/j.cie.2018.06.001
https://doi.org/10.1007/s10951-005-2860-x
https://doi.org/10.1016/j.cie.2015.07.018
https://doi.org/10.1016/j.omega.2005.04.004
https://doi.org/10.1016/j.ijpe.2017.06.026
http://www.scopus.com/inward/record.url?eid=2-s2.0-70350752447%26partnerID=40%26md5=668c5360d210fc7c4da0d99874bc9c94
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0034
https://doi.org/10.1016/S0377-2217(98)00017-4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032050653%26partnerID=40%26md5=8d49189a360b07184cf08d3ebfcc67eb
https://doi.org/10.1016/j.omega.2013.12.004
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0039
http://www.sciencedirect.com/science/article/pii/S030505481000050X
https://doi.org/10.1504/EJIE.2013.058392
http://www.scopus.com/inward/record.url?eid=2-s2.0-84891367893%26partnerID=40%26md5=dcc193d7a615114fb7316b9354a57d89
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032189491%26partnerID=40%26md5=e8648b37d7ae6a878baabc93854ebfde
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0044
https://doi.org/10.1016/j.cie.2018.07.023
https://doi.org/10.1016/S0377-2217(02)00245-X

V. Fernandez-Viagas, C. Talens and J.M. Framinan European Journal of Operational Research 299 (2022) 869–882

S

S

T

T

T

T

V

V

W

Z
ung, C. S., & Kim, H. A. (2008). A two-stage multiple-machine assembly scheduling
problem for minimizing sum of completion times. International Journal of Pro-

duction Economics, 113 (2), 1038–1048. https://doi.org/10.1016/j.ijpe.20 07.12.0 07 .
ung, C. S., & Yoon, S. H. (1998). Minimizing total weighted completion time at

a pre-assembly stage composed of two feeding machines. International Journal
of Production Economics, 54 (3), 247–255. https://doi.org/10.1016/S0925-5273(97)

00151-5 .
aillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing

problem. European Journal of Operational Research, 47 (1), 65–74 .

aillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64 (2), 278–285 .

alens, C., Fernandez-Viagas, V., Perez-Gonzalez, P., & Framinan, J. M. (2020).
New efficient constructive heuristics for the two-stage multi-machine assembly

scheduling problem. Computers and Industrial Engineering, 140 , Article 106223.
https://doi.org/10.1016/j.cie.2019.106223 .

ozkapan, A., Kirca, O., & Chung, C. S. (2003). A branch and bound algorithm to

minimize the total weighted flowtime for the two-stage assembly scheduling
882
problem. Computers and Operations Research, 30 (2), 309–320. https://doi.org/10.
1016/S0305-0548(01)0 0 098-3 .

allada, E., Ruiz, R., & Framinan, J. M. (2015). New hard benchmark for flow-
shop scheduling problems minimising makespan. European Journal of Oper-

ational Research, 240 , 666–677. http://www.scopus.com/inward/record.url?eid=
2- s2.0- 84905527090&partnerID=40&md5=0fbd129d7b07bd21fc567ef759e8135d

ázquez-Rodríguez, J. A., & Ochoa, G. (2011). On the automatic discovery of vari-
ants of the NEH procedure for flow shop scheduling using genetic program-

ming. Journal of the Operational Research Society, 62 (2), 381–396. https://doi.org/

10.1057/jors.2010.132 .
ang, S.-Y., Wang, L., Liu, M., & Xu, Y. (2013). An enhanced estimation of distri-

bution algorithm for solving hybrid flow-shop scheduling problem with iden-
tical parallel machines. International Journal of Advanced Manufacturing Technol-

ogy, 68 (9–12), 2043–2056. https://doi.org/10.10 07/s0 0170-013-4819-y .
hang, Y., Zhou, Z., & Liu, J. (2010). The production scheduling problem in a multi-

page invoice printing system. Computers and Operations Research, 37 (10), 1814–

1821. https://doi.org/10.1016/j.cor.2010.01.014 .

https://doi.org/10.1016/j.ijpe.2007.12.007
https://doi.org/10.1016/S0925-5273(97)00151-5
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00846-8/sbref0050
https://doi.org/10.1016/j.cie.2019.106223
https://doi.org/10.1016/S0305-0548(01)00098-3
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905527090%26partnerID=40%26md5=0fbd129d7b07bd21fc567ef759e8135d
https://doi.org/10.1057/jors.2010.132
https://doi.org/10.1007/s00170-013-4819-y
https://doi.org/10.1016/j.cor.2010.01.014

	Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation
	1 Introduction
	2 Problem description and background
	3 Theoretical results
	4 Proposed speed-up procedure
	5 Proposed constructive heuristics
	5.1 Johnson-based constructive heuristic:
	5.2 Divide-and-Conquer algorithm:
	5.3 NEH with the speed-up procedure:
	5.4 Constructive heuristic

	6 Computational evaluation
	6.1 Instances generation
	6.2 Experimental parameter tuning
	6.3 Implemented heuristics
	6.4 Comparison of heuristics

	7 Conclusions
	Acknowledgment
	Appendix A
	Supplementary material
	References

