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Abstract—This letter presents a new method for the digital pre-
distortion of power amplifiers (PAs) based on sparse behavioral
models. The Gram-Schmidt orthogonalization is synergistically
integrated into the orthogonal matching pursuit algorithm to
decorrelate the selected model regressors against the components
still to be selected. Experiments conducted on a test bench based
on a GaN PA driven by a 15-MHz orthogonal frequency division
multiplexing signal were conducted in order to validate the algo-
rithm. Experimental results in a digital predistortion application
and a comparison with other state-of-the-art algorithms highlight
the enhancement of its pruning capabilities, reducing the number
of coefficients while maintaining the performance.

Index Terms—Behavioral modeling, compressive-sensing, dig-
ital predistortion, orthogonal matching pursuit, power amplifier.

I. INTRODUCTION

THE evolution of wireless communication systems is
pushing the design of power amplifiers (PAs) towards

challenging constraints in terms of linearity and efficiency.
The power range where the PA is more efficient is also where
nonlinearity occurs, leading to the need of techniques as digital
predistortion (DPD) to mitigate this inconvenience.

The pruning of behavioral models is being extensively
researched by the community, coming along with a wide set
of techniques that range from the application of the principal
component analysis (PCA) method [1] to matching pursuit
algorithms like the compressive sampling matching pursuit
(CoSaMP) [2] and the orthogonal matching pursuit (OMP)
[3]. Compressed-sensing techniques are characterized by their
simplicity and flexibility, due to the low computational com-
plexity of the greedy algorithms these techniques are based on.
Greedy algorithms do not perform any a priori decision about
the selection of components, becoming suitable for the pruning
of Volterra series. OMP [4] is a greedy algorithm that makes
a hard decision based on a local optimal criterion whereby
the estimated output of the model is always orthogonal to
the residual [5], orthogonalization from which OMP takes
its name. Since OMP selects one component of the model
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at each iteration, a pseudoinverse of the data matrix with a
number of columns that is equal to the iteration value has to
be performed. The work in [6] proposed a simplified sparse
parameter identification resulting in a lower computational
complexity and in [7], a greedy algorithm ensures that the
selected element has maximum energy in every iteration.

The estimation of Volterra coefficients is intricate since the
basis functionals of the Volterra series are highly correlated.
This correlation leads to a large condition number in the model
matrices, implying that the equations system is ill-conditioned,
affecting the least-squares (LS) solution.

A doubly orthogonal matching pursuit (DOMP) algorithm is
proposed in this letter to enhance the selection of coefficients
in a sparse parameter identification of the model. The main
contribution of this work is the addition of the Gram-Schmidt
orthogonalization at one step of the OMP algorithm, decorre-
lating the selected regressors and those still to be selected.

The remainder of this letter is organized as follows. First,
Section II introduces the details of model selection and derives
the DOMP algorithm. DPD experimental design and results
are detailed in Section III. Finally, Section IV summarizes the
main results and concludes the paper.

II. THE DOUBLY ORTHOGONAL MATCHING PURSUIT

The recovery of a high-dimensional vector from a set of
measured observations arises in many different fields. The
measurement process equation models a linear relation be-
tween the Volterra kernel vector h ∈ Cn and the system output
y ∈ Cm,

y = X · h+w, (1)

through the measurement matrix X ∈ Cm×n, which contains
one component of the model in each of its columns. The vector
w represents the measurement noise.

Greedy algorithms aim at recovering the Volterra kernel
vector through an iterative approach following the `1-norm
minimization. In this section, the DOMP algorithm is devel-
oped. Its pseudocode instructions are shown in Algorithm 1.

A. Initialization

The algorithm returns a support set, S, whose elements are
sorted in decreasing impact over the output. The initial state
of the support set is empty, S(0) = ∅, since no components
have been added to it yet. Prior to the algorithm iterations, the
matrix Z(0) = X is defined. This matrix will be used to keep
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the information of the orthogonalized regressors, and after the
algorithm execution, it will be equal to the result of applying
the Gram-Schmidt procedure to the regressors X in the order
of the final support set S(end). The residual is set to r(0) = y,
since it keeps track of the remainder left to be captured by
the selected regressors of the model and initially there are no
components in the support set.

B. Loop of the Algorithm

At each iteration t, the algorithm normalizes the basis
components by dividing each column of the matrix Z by its
`2-norm

Z
(t−1)
{i}

i/∈S(t−1)

←−−−−− Z
(t−1)
{i} /‖Z(t−1)

{i} ‖2. (2)

Then, the component with the highest normalized scalar
resolution in the direction of the residual is selected

i(t) ← arg max
i/∈S(t−1)

∣∣∣∣Z(t−1)
{i}

H
r(t−1)

∣∣∣∣ , (3)

where H is the Hermitian transpose.
Please note that the condition i /∈ S(t−1) is always met since

the residual is orthogonal to the selected basis set S(t−1).
This condition decreases the computational complexity of the
algorithm in a real implementation. The selected component
is then included into the support set

S(t) = S(t−1) ∪ i(t). (4)

Next, the algorithm performs the Gram-Schmidt orthogo-
nalization by first obtaining

p(t) = Z
(t−1)
{i(t)}

H
Z(t−1), (5)

where the components of p ∈ Cn are the vector projections
of the selected regressor onto each one of the components of
the basis. This projection is subtracted from each regressor,
hence the selected component is orthogonal to the remaining
of the basis set

Z(t) = Z(t−1) − p(t) ⊗ Z
(t−1)
{i(t)}, (6)

where the Kronecker product is denoted by ⊗.
With the inclusion of the Gram-Schmidt process a double

orthogonalization is ensured: the selected basis set is always
orthogonal to the residual and, at the same time, it is orthogo-
nal to the regressors that do not belong to the selected support
set. The estimation of the Volterra kernel vector is computed
through LS

ĥ = X+
S(t)y, (7)

where X+
S(t) = X̃S(t)XH

S(t) is the Moore-Penrose pseudoin-
verse. The matrix X̃S(t) =

(
XH

S(t)XS(t)

)−1
may be used for

attaining a lower complexity version of the algorithm as in
[6]. The estimation of the output ŷ(t) can be obtained through

ŷ(t) = XS(t)ĥ. (8)

Finally, the residual is updated according to

r(t) = y − ŷ(t). (9)

Algorithm 1 Summary of the Doubly Orthogonal Matching
Pursuit (DOMP) Algorithm
Input: X ∈ Cm×n, y ∈ Cm

Output: S(t)

1: Initialization : Z(0) = X, r(0) ← y, S(0) ← ∅
2: for t = 1 till stopping criterion is met do
3: Z

(t−1)
{i}

i/∈S(t−1)

←−−−−− Z
(t−1)
{i} /‖Z(t−1)

{i} ‖2

4: i(t) ← argmaxi/∈S(t−1)

∣∣∣∣Z(t−1)
{i}

H
r(t−1)

∣∣∣∣
5: S(t) ← S(t−1) ∪ i(t)

6: p(t) ← Z
(t−1)
{i(t)}

H
Z(t−1)

7: Z(t) ← Z(t−1) − p(t) ⊗ Z
(t−1)
{i(t)}

8: ĥ← X+
S(t)y

9: ŷ(t) ← XS(t)ĥ
10: r(t) ← y − ŷ(t)

11: end for

III. DPD EXPERIMENTAL DESIGN AND RESULTS

For the experimental validation of the algorithm generating
a DPD, the following test bench was used. The transmitter
under test is composed by the commercial I/Q modulator
SMU200A of Rohde & Schwarz followed by a ZHL42W
preamplifier of MiniCircuits and the evaluation board of a
PA based on the Cree CGH40010 GaN HEMT. A vector
signal analyzer PXA-N9030A from Keysight Technologies
is employed. A test signal based on a standard orthogonal
frequency division multiplexing (OFDM) was generated by
modulating 16-QAM random data into 900 carriers, resulting
in a band of 15 MHz. The signal exhibits a peak-to-average
power ratio (PAPR) of 10 dB and an oversampling rate of 6
was applied. The operation point is characterized by a gain of
48.9 dB and a gain compression of 1 dB. The target output
power was fixed to 31.9 dBm and the normalized mean square
error (NMSE) between the input and the output had a value of
−28.3 dB. The adjacent channel power ratio (ACPR) values
are −37.1 dBc and −36.9 dBc for the first left channel and
the first right channel, respectively.

In order to test the pruning capabilities of the algorithm,
a generalized memory polynomial (GMP) [8] model was
selected, in which a configuration of thirteenth order was set.
A fading memory with order (from 15 to 1) in the memory
polynomial branch was fixed. The non-diagonal branches were
set to seventh order and memory length of 1. The test Volterra
model before pruning contains 77 components. A number of
5500 samples were used for the DPD calculation, producing
a signal length to number of coefficients ratio of about 89.

The OMP, DOMP, CoSaMP and PCA algorithms were
run over an indirect learning scheme in order to perform
a benchmark. In each iteration of the algorithms, a DPD
was obtained, allowing to show the effect of adding new
components in all the schemes. The Bayesian information
criterion (BIC) proposed in [3] was also calculated along
with the OMP error evolution to attain its optimal number
of coefficients. Since CoSaMP requires a sparsity target, it
was run sweeping the sparsity level up to the number of
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Fig. 1. Linearization NMSE for the set of algorithms in comparison. The
DOMP algorithm shows better predistortion capabilities while reducing the
number of coefficients of the model.

3560 3570 3580 3590 3600 3610 3620 3630 3640

Frequency (Mhz)

-60

-40

-20

0

P
S

D
 (

d
B

m
/H

z
)

no DPD

OMP

DOMP

PCA

CoSaMP

Fig. 2. Power spectral density for the output without DPD, and the DPD
generated by the OMP, DOMP, PCA and CoSAMP algorithms for 20
coefficients.

components.

The linearization NMSE, i.e., the error between the input
signal after the linear gain of the PA and the output of the
predistorted PA, is shown in Fig. 1. The DOMP outper-
forms the rest of algorithms for every number of selected
components. For a fixed linearization error, the number of
components selected by the rest of the algorithms is always
higher compared to the DOMP set.

With the aim of comparing their linearization performance,
the power spectral density (PSD) of the output without DPD
and with DPD attained through the set of the tested algorithms
for a model of 20 coefficients is shown in Fig. 2. The
linearization capability of each algorithm is evidenced by its
reduction in spectral regrowth, obtaining a better linearization
performance with the DOMP DPD.

Finally, Table I shows the linearization ACPR for a fixed
number of 20 coefficients in each algorithm. The best predis-
tortion performance, corresponding to the DOMP algorithm,
improves in 28 dB the ACPR of the first adjacent channels
with respect to the case without DPD. Notice that the DOMP
DPD meets the spectral mask required for LTE.

TABLE I
ACPR VALUES OF THE SYSTEM WITHOUT DPD AND THE LINEARIZED

SIGNAL FOR THE OMP, DOMP, PCA AND COSAMP ALGORITHMS FOR
20 COEFFICIENTS.

ACPR-2
(dBc)

ACPR-1
(dBc)

ACPR+1
(dBc)

ACPR+2
(dBc)

no DPD -46.6 -37.1 -36.9 -46.3

OMP -54.7 -52.1 -51.6 -53.8

DOMP -66.9 -65.1 -65.1 -66.0

PCA -49.9 -42.1 -42.4 -49.7

CoSAMP -64.4 -62.6 -62.3 -63.8

IV. CONCLUSION

A novel method based on the OMP algorithm for the prun-
ing of PA behavioral models has been presented. The addition
of the Gram-Schmidt orthogonalization in the iteration of the
algorithm enables the selection of a better set of components in
a highly-correlated regressors scenario. The framework for the
use of this new technique is provided with a comprehensive
explanation of the algorithm steps. The paper has illustrated
the ability of producing a model with less components than
the classical method while still maintaining the performance.
A benchmark against state-of-the-art algorithms through the
results of a DPD produced with each technique has shown the
outperforming of the DOMP algorithm, giving an overview of
the quality of the results that can be obtained.

The coefficient reduction capabilities of the proposal have
been demonstrated with the predistortion of a commercial PA,
showing a better linearization performance for the same num-
ber of components. Its faster pruning and error minimization
make DOMP a forward-looking proposal in the pruning of
Volterra series models.
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