
A novel approach for avoiding overlapping among biclusters in expression data

Beatriz Pontes
Department of Computer Science

University of Seville
Avda. Reina Mercedes s/n, 41012, Seville, Spain

bepontes@lsi.us.es

Federico Divina
School of Engineering

Pablo de Olavide University
Ctra. Utrera, Km 1, 41013, Seville, Spain

fdivina@upo.es

Raúl Giráldez
School of Engineering

Pablo de Olavide University
Ctra. Utrera, Km 1, 41013, Seville, Spain

giraldez@upo.es

Jesús S. Aguilar–Ruiz
School of Engineering

Pablo de Olavide University
Ctra. Utrera, Km 1, 41013, Seville, Spain

aguilar@upo.es

Abstract

Biclustering is a technique used in analysis of microar-

ray data. It aims at discovering subsets of genes that

presents the same tendency under a subsest of experimen-

tal conditions. Various techniques have been introduced for

discovering significant biclusters. One of the most popu-

lar heuristic was introduced by Cheng and Church [6]. In

the same work, a measure, called mean squared residue,

for estimating the quality of biclusters was proposed. Even

if this heuristic is successful in finding interesting biclus-

ters, it presents a number of drawbacks. In this paper we

expose these drawbacks and propose some solutions in or-

der to overcome them. Experiments show that the proposed

solutions are effective in order to improve the heuristic.

Keywords: Gene Expression Data, Biclustering, Mean

Squared Residue

1 Introduction

By measuring the expression level of a large number of
genes (of the same organisms or of different ones), under
different experimental conditions (different environments,
individuals, time series, different cells etc.), it is possible to
analyze the behavior of the genes. This allows to discover
or justify certain biological phenomena.

Microarray techniques allow to quantify and store these
expression data in a matrix, whose columns represent genes
and rows represent conditions [3, 9]. Such a matrix is called
an expression matrix. Therefore, each entry of the ma-
trix denotes the numerical expression level of a gene un-

der a certain experimental condition. With the development
of microarray technique, the interest in extracting useful
knowledge from gene expression data has experimented an
enormous increase. Machine learning techniques have been
applied successfully to this context.

Among these techniques, clustering is often used to
group genes that behave similarly under all the conditions
[4]. However, some genes may be relevant only for a subset
of conditions. Traditional clustering cannot be addressed in
two dimensions simultaneously. This motivated the devel-
opment of biclustering algorithms, that was introduced to
microarrays analysis by Cheng and Church [6]. Bicluster-
ing aims at grouping genes presenting similar trends under
a subset of experimental conditions. So a bicluster repre-
sent a submatrix of the expression matrix. From biological
point of view, biclustering is a very interesting technique, as
it is possible to discriminate groups of conditions by using
different groups of genes. Biclustering has been proven to
be even much more complex than clustering [8].

Two critical factors have influence on the biclusters
searching problem: the definition of a measure that assigns
a value of quality to the potential biclusters, and the devel-
opment of a suitable heuristic. The Mean Squared Residue

[6] (henceforth MSR) is an example of a quality measure
for biclusters. MSR has turned into one of the most popu-
lar measures to quantify the quality of a bicluster and it has
been used by many researches who have proposed differ-
ent heuristics for biclustering biological data [8, 5, 1, 10].
Cheng and Church also proposed a heuristic for discover-
ing biclusters using MSR. This heuristic is described in the
the following sections.

In this work, a particular emphasis is placed on the
heuristic proposed in applied by the biclustering algorithm.
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The exhaustive search of all the biclusters in a microarray is
of exponential order regarding the number genes and con-
ditions. Therefore, it is necessary to develop an heuristic
which can find good solutions, although these are not the
optimal ones. Cheng and Church developed a sequential
covering algorithm. Although this approach is one of the
main references for many researchers, it has several short-
comings. Such drawbacks are analyzed in the next section
and represent the main motivations for this work. Experi-
ments show that the original algorithm proposed in [6] re-
turns biclusters whose MSR is not the one calculated by the
algorithm, due to the presence of random values in the ex-
pression matrix. Our proposal do not present such a draw-
back.

This paper is organized as follows. In section 2 we de-
scribe the algorithm proposed in [6] and analyze its short-
coming. Section 3 describes our proposal. Experiments and
conclusions are described in sections 4 and 5, respectively.

2 Cheng & Church Approach

As it was mentioned before, the original algorithm of
Cheng and Church [6] (henceforth Ch&Ch) adopts a se-
quential covering algorithm in order to return a list of n bi-
clusters from an expression data matrix. The scoring metric
to measure the biclusters’ quality is MSR, that tries to evalu-
ate the coherence of the genes and conditions of a bicluster
B consisting of I rows and J columns. MSR is defined as:

MSR(B) =
1

I · J
i=I∑
i=1

j=J∑
j=1

(eij − eiJ − eIj + eIJ)2 (1)

where eij , eiJ , eIj and eIJ represent the element in the ith

row (condition) and jth column (gene), the row and column
means, and the mean of the whole B, respectively. The
smaller the value of MSR, the better the bicluster is consid-
ered.

Regarding to the algorithm, a simplified scheme of
Ch&Ch is given in Figure 1, where the inputs EM and δ are
respectively the expression data matrix and the threshold for
the MSR, and L is the list of biclusters that is returned.

After preprocessing the missing values of EM by re-
placing with random numbers (line 1) and initializing the
list of bicluster to empty (line 2), the bicluster discover-
ing process is repeated n times (lines 5-11). First, the bi-
cluster B is initialized to the whole matrix EM . Next, the
multiple node deletion phase (line 6) produces a δ-bicluster
Bδ , that is with a MSR value no larger than the preset limit
δ. This phase is based on the elimination of those rows or
columns whose residue is greater than a certain value, de-
pending on the MSR of the current matrix. Later, the sin-
gle node deletion phase (line 7) removes the row or column

Input: Expression Matrix EM; Thresholds δ
Output: List of Biclusters L
1 preprocess the missing values of EM
2 list L = ∅
3 Bicluster B
4 repeat n times
5 B = EM
6 Bδ = multiple node deletion phase(B,δ)
7 B′

δ = simple node deletion phase(Bδ,δ)
8 B′′

δ = addition phase(B′
δ)

9 L = L ⊕ B′′
δ

10 substitution phase(B′′
δ , EM)

11 end_repeat
12 return L

Figure 1. Cheng and Church’s original algo-
rithm.

from Bδ with the greater residue and returns B′
δ . Next, the

node addition phase (line 8) tries to enlarge the current bi-
cluster B′

δ , adding those columns and rows that do not in-
crease the residue of the matrix above the limit δ and the
obtained bicluster B′′

δ is stored in the list L (line 9). Fi-
nally, the substitution phase (line 10) replaces the elements
in the EM that are also in B′′

δ with random numbers. The
substitution of elements contained by the found biclusters
with random values is done in order to prevent overlapping
among biclusters, so that, as Cheng and Church states, it
very unlikely that elements covered by existing biclusters
would contribute to any future bicluster discovery [6].

This strategy succeeds in avoiding the overlapping, how-
ever it presents two main drawbacks:

1. As biclusters are discovered, more and more elements
of the original expression matrix are lost, since they are
substituted with random values. It follows that the ex-
pression matrix the algorithm is working on contains
more and more random values as biclusters are dis-
covered. As a consequence, the algorithm may return
biclusters that are not real, since they contain random
values. Moreover, in this way some biclusters might
not be found. For instance, if gene j and condition i
are contained in a bicluster B, the element eij is sub-
stituted by a random value in the expression matrix.
This may prevent gene i to be included in other biclus-
ters under the same condition j, even if it could have
improved the quality of the bicluster, since some of
its original expression values have been substituted by
random values. In general it is desirable to avoid over-
lapping among biclusters, but not at the cost of loosing
possible important interactions among genes.

2. During the execution of the algorithm, the MSR of bi-
clusters considered has to be computed. If a bicluster
contains random values its computed MSR is not real,
since it is influenced by the presence of random val-
ues. This has a negative influence of the overall search
process, since the algorithm cannot compute the real
values of MSR for some biclusters.
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After having performed a number of experiments, we
have found that after that a number biclusters has been dis-
covered, the percentage of random values in the expression
data matrix is very high.

Another point that has to be considered is that the Ch&Ch
make use of a threshold δ in order to reject biclusters: bi-
cluster with MSR higher than δ are rejected. However if
some elements of the biclusters are random, the MSR of this
biclusters might be higher that δ, and thus rejected. But
again the MSR is influenced by the presence of random val-
ues. The MSR of the same bicluster with the original ele-
ments is different, and could therefore be lower than δ. Also
the opposite case may arise, i.e., a bicluster with estimated
MSR lower than δ is accepted, but when the original values
are used instead of the random ones, the MSRmight increase
to a level higher than δ. In this last case the bicluster should
have been rejected.

B =

⎛
⎜⎜⎜⎜⎝

53 8 65 84
122 77 134 60
55 10 67 86
73 28 85 104
140 95 152 171

⎞
⎟⎟⎟⎟⎠

Figure 2. Example of a bicluster containing a
random element (showed in bold). The origi-
nal value of the element was, e.g., 153.

Figure 2 shows an example of a bicluster of such a sit-
uation. The bicluster represented in the table has a MSR
equal to 259.47. If the element shown in bold were a ran-
dom value and the original value were 153 the MSR of the
bicluster would drop to 0 when the MSR is computed with
the original value. If a delta of, e.g., 100 were used, the bi-
cluster depicted in the table would be rejected, even if with
the original values it represents a perfect bicluster.

The above considerations clearly show that the replace-
ment strategy adopted by Cheng and Church may prevent
the discovering of interesting biclusters, or, on the other
hand, yields the algorithm towards the discovering of bi-
clusters considered to be interesting only because of random
values they contain. This clearly illustrate the limitations
of the replacement policy adopted by Cheng and Church.
These considerations represents our main motivations for
the work presented in this paper.

3 Our Approach

In this section we describe the variations we incorpo-
rated to Ch&Ch, giving rise to a variant algorithm we call
Ch&Ch-R. The main variation is represented by the re-
moval of the substitution phase used in the original algo-
rithm (see line 10 in Figure 1). We have also introduced

other variations in order to render Ch&Ch not deterministic.
This was necessary since in our version of Ch&Ch elements
contained in already found biclusters are not replaced by
random values. It follows that a deterministic version of
Ch&Ch would always find the same bicluster.

3.1 Overlapping Control Mechanism

In our context, two biclusters are overlapped if they con-
tain the same gene (or group of genes) under the same ex-
perimental conditions. By controlling the level of overlap-
ping among biclusters, we can decide whether a bicluster
may be considered as a significative one, with respect to its
overlapping percentage with the previous ones. In our ap-
proach, we control the overlapping by means of a matrix of
weights W , as in [8]. This matrix has the same dimensions
as the original expression data matrix, so that each element
w(eij) of W represents a weight associated with eij . Ini-
tially, w(eij) = 0,∀i, j. Each time a bicluster B is stored
in the list L, w(eij) is increased by one if eij ∈ B.

The matrix of weights W will allow to know how many
times each element eij is contained in the found biclusters.
So it can be used to measure the overlapping of a new bi-

cluster as P (B) =
�

eij∈B w(eij)

V (B) , where V (B) is the vol-
ume of a bicluster B and w(eij) is the weight for the el-
ement eij ∈ B. P (B) will be high for a bicluster whose
elements are already contained in the previous biclusters.

Since we aim at avoiding overlapping as much as possi-
ble, P (B) can be used, in combination with MSR, in order
to reject biclusters. In order to do this, we need to define a
criterion for establishing if P (B) is to be considered high.
Bottom and top limits for P (B) are 0 and nb, respectively,
where nb is the number of biclusters found.

In order to use P (B) for rejecting biclusters in different
iterations, it is convienient that the range of values P (B)
can assume is always the same in all iterations. For this
purpose in Equation 2 we define the overlapping factor of a
bicluster for the iteration nb.

Pnb(B) =

∑
i,j∈B w(eij)

V (B) × nb
(2)

Notice that Pnb(B) ∈ [0, 1], ∀nb. In this way, we can use
it to reject B if Pnb(B) is greater than a certain threshold
ω. Moreover, notice that, the latest biclusters are allowed
to have more elements in common with the already found
ones, because Pnb(B) tends to be smaller as nb increases.
In other words, the biclusters with high overlapping are pe-
nalized more in the first iterations.

By setting the overlapping threshold ω, the user can de-
cide the level of overlapping among the solutions. In our
experiments, we have used threshold ω = 0.5.
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3.2 Re-adaptation of Cheng & Church Al-
gorithm

The main adaptation we propose consists of eliminating
the substitution phase of the original algorithm and includ-
ing the overlapping control mechanism described in the pre-
vious section. Notice that since Ch&Ch is deterministic,
by removing the substitution phase, the algorithm will pro-
duce always the same bicluster. Therefore, the adaptation of
the algorithm requires some modifications in order to make
the algorithm non-deterministic. Thus, we propose the next
variations:

• The substitution phase has been replaced by the over-
lapping control mechanism, that produces biclusters
with overlapping factor smaller than ω and updates the
matrix of weights W .

• Multiple node deletion phase has been redefined in
terms of the selection of the rows or columns to be
deleted from the bicluster. Removing first those rows
or columns that produce more overlapping with previ-
ous biclusters speeds up the convergence of the algo-
rithm. The selection of the rows and columns is made
using the matrix of weights W .

• The selection mechanism for the columns or rows to
be added in the node addition phase has been also re-
defined. Those columns or rows that are less over-
lapped with previous biclusters are selected first, pro-
vided that its addition does not increase the matrix
residue above δ. Likewise, this selection is based on
the matrix of weights W . The redefinition of the node
addition phase aims at finding biclusters with a low
overlapping degree.

• Finally, the initial bicluster is randomly determined
from the original microarray, with the exception the
first iteration where the initial bicluster is the whole
matrix as in Ch&Ch.

Adding aforementioned modifications, the pseudocode
of our re-adaptation of Ch&Ch, called Ch&Ch-R, is shown
in Figure 3.

After preprocessing the missing values of EM, the vari-
ables L (list of biclusters), nb (counter for the loop or num-
ber of biclusters found), W (matrix of weight) and B (initial
bicluster) are initialized. Notice that in the first iteration, the
bicluster B is initialized to the the whole matrix EM (line
5) in order to take into account the whole set of genes and
experimental conditions. Next, the while-loop is executed,
where the three first phases (lines 7-9) are the re-adapted
multiple node deletion phase, simple node deletion phase
and re-adapted addition phase, respectively. These steps al-
ways produce δ-biclusters, that is MSR(Bδ), MSR(B′

δ) and

Input: Expression Matrix EM; Thresholds δ and ω
Output: List of Biclusters L
1 preprocess the missing values of EM
2 list L = ∅
3 nb = 1
4 Matrix of Weight W = 0
5 Bicluster B = EM
6 while nb <= n (number of biclusters)
7 Bδ = multiple node deletion phase(B,δ,W) [re-adapted]

8 B′
δ = simple node deletion phase(Bδ,δ)

9 B′′
δ = addition phase(B′

δ,W) [re-adapted]

10 if P(B′′
δ ) <= ω

11 nb = nb + 1
12 L = L ⊕ B′′

δ
13 update W
14 end_if
15 B = random selection (EM)
16 end_while
17 return L

Figure 3. Ch&Ch-R Algorithm.

MSR(B′′
δ ) are smaller that δ. Notice that single node dele-

tion (line 8) phase is always deterministic, since the selec-
tion of the row or column to be removed depends on their
residues. Therefore, there is no adaptation of this phase in
our approach.

Once B′′
δ is returned by the re-adapted addition phase,

the overlapping control method is run. If the overlapping
factor of the bicluster P(B′′

δ ) does not exceed the threshold
ω, then nb is increased, the bicluster is included within the
list and W is updated according to B′′

δ as described in sec-
tion 3.1. Otherwise, if the overlapping factor is above ω, the
bicluster B′′

δ is rejected, because it has too many common
elements with the biclusters previously found.

Finally, bicluster B is randomly generated from the orig-
inal dataset EM to be used in the next iteration. The di-
mension of B is also randomly chosen, as well as the spe-
cific genes and conditions that make up the bicluster. In
the original algorithm, each iteration starts from the whole
matrix EM , modified from the last iteration by the substitu-
tion phase, the one we have eliminated. However, different
experiments showed that starting from a random bicluster
produced better results and the convergence is faster.

4 Experiments

In order to test our proposal we conducted experi-
ments with Ch&Ch and Ch&Ch-R on three well known
datasets: Yeast Saccharomyces cerevisiae cell cycle expres-
sion dataset originated from [7] (2884 genes and 17 con-
ditions); Human B–cells expression data originated from
[2](4026 genes and 96 conditions); and Colon Cancer

dataset originated from [7] (2000 genes and 62 conditions).
For the yeast dataset, δ was set to 300, for the human

dataset to 1200 and for the colon dataset δ was set to 500.
The values of δ used for the yeast and the human dataset
are taken from [6], while for the colon dataset the value of
δ was set following a procedure suggested in [6].
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Table 1. Ch&Ch average results for each dataset. Standard deviation is given between brackets.
Dataset MSR MSR(real) GeneVarMean Overlap GenesMean CondsMean
Yeast 124.80(72.86) 498.46(306.08) 836.36(456.27) 42.94%(36.30) 219.47(309.99) 7.25(3.42)

Human 857.01(107.99) 9940.90(8381.73) 10985.36(8780.13) 49.53%(23.62) 271.52(234.25) 14.70(12.26)
Colon 389.02(76.99) 2159.61(13343.43) 5929.48(16066.57) 9.26%(18.40) 21.89(22.12) 8.81(7.24)

Table 2. Ch&Ch-R average results for each dataset. Standard deviation is given between brackets.
Dataset MSR GeneVarMean Overlap GenesMean CondsMean Overlap2Bics
Yeast 225.138(24.85) 334.02(84.33) 94.55%(12.21) 758.18(212.89) 8.59(2.47) 30.1%(17.58)

Human 1109.94(21.09) 1432.11(101.06) 91.21%(13.45) 134.53(17.34) 45.66(7.41) 25.23%(0.39)
Colon 435.31(13.84) 742.64(13.99) 94.81%(12.15) 134.48(18.15) 24.80(4.44) 33.94%(0.65)

All these datasets were preprocessed as in [6]. The most
important preprocessing operation regards missing values:
missing values are replaced with random values, although
it is known the existing risk that these random numbers can
affect the discovery of biclusters [11]. The expectation was
that these random values would not form recognizable pat-
terns. For each dataset, we have obtained 100 biclusters,
using both the Ch&Ch and Ch&Ch-R.

Tables 1 and 2 show the average results (and their devia-
tions in brackets) obtained on each dataset by the two algo-
rithms. The first column gives the average MSR, the second
column in Table 1 shows the mean of the real MSR, i.e.,
when the MSR is calculated using the original values, and
not the random values introduced in the substitution phase.
The column GeneVarMean shows the gene variance. Next
column (Overlap) represents the mean of the percentages of
overlapping for each biclusters with all the previous ones.
Note that in Table 1 this value also represents the mean
of the percentage of random values that have been used in
the algorithm. This is because values that are contained in
more than a bicluster have been substituted with random
values. In Table 2, this value only represents the average
overlapping with previously found biclusters. This is not
equivalent to the amount of overlapping between two given
biclusters. Finally, columns GenesMean and CondsMean

show the mean of the number of genes and conditions.
From these tables, it is evident that the random values

introduced in the expression matrix during the substitution
phase negatively affect Ch&Ch. In fact, the MSR com-
puted considering the original values is, on average, higher
than the specified δ. This means that many of the biclus-
ters returned by the algorithm are not δ-biclusters, which
is in contradiction with the specification of the algorithm.
This fact is particularly evident for the human and the colon
datasets, where the average real MSR is about eight and four
time higher, respectively, than the δ used for these datasets.
Moreover, it can be noticed the huge difference between the
MSR computed by Ch&Ch and the real one.

On the other hand, all the biclusters obtained by
Ch&Ch-R are δ-biclusters, and the average MSR is much
lower than the MSR of the biclusters found by Ch&Ch. This
results in itself show the limitations of the substitution phase

adopted in Ch&Ch. This substitution phase is effective for
avoiding overlapping among biclusters, as it can be noticed
by the overlapping percentages shown in Table 1. However,
the cost of this substitution phase is producing biclusters
that are not δ-biclusters.

As far as the gene variance is concerned, it can be no-
ticed that, in general, Ch&Ch obtained better results. How-
ever this result is influenced by the fact that MSR is much
higher for the biclusters discovered by Ch&Ch. In general
biclusters with lower MSR have also a lower gene variance,
and this explain the lower average gene variance for the bi-
clusters obtained by Ch&Ch-R.

Biclusters found by Ch&Ch-R are characterized by a
higher volume, even if the average MSR of the biclusters is
lower than the MSR of biclusters found by Ch&Ch. This
is due to the overlapping policy adopted by Ch&Ch. In
fact, the random values introduced causes biclusters found
in later iterations of the algorithm to have a very low vol-
ume. This is because random values are in general not in-
cluded in biclusters, since they introduce noise that would
cause the genes not be be coherent under some conditions.

Table 2 contains an additional column, named Over-

lap2Bics, with the average percentages of overlapped val-
ues between two given biclusters for each dataset. Note that
these amounts are considerably lower than the overlapping
percentage of the whole set of biclusters (column Overlap).

Finally, for complete our experiments, Figure 4 shows
an example of one bicluster for each dataset found by
Ch&Ch-R. From a visual inspection of the biclusters, we
can notice that the genes contained in the biclusters found
on the human and colon dataset fluctuate in unison under the
same subset of experimental conditions. The bicluster rel-
ative to the yeast dataset contains many genes that present
an almost flat behavior. This is reflected by the lower gene
variance for this dataset.

One consideration that is worth mentioning is that many
of the biclusters found by Ch&Ch-R would not have been
discovered by Ch&Ch, due to the overlapping policy it
adopts. By introducing random values, there is the risk of
masking interesting biclusters, which, in this way, will not
be discovered.
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Figure 4. Examples of three biclusters. The leftmost bicluster is relative to the yeast dataset, the
bicluster in the center is relative to the human dataset, and the rightmost one to the colon dataset.

5 Conclusions

In this paper we have proposed some variations that can
be applied to the Ch&Ch algorithm in order to overcome
its shortcomings described in section 2. The original algo-
rithm is very good at discovering biclusters, however, after
some iterations it starts to work with more and more ran-
dom values in the expression matrix, due to the substitution
phase used. This causes the algorithm to estimate wrongly
the MSR of the biclusters.

Our proposal is based on a matrix of weights, that is used
to estimate the overlapping of a bicluster with already found
ones. We have defined an overlapping factor which is used
in order to reject biclusters if their overlapping is above a
certain threshold. In this way the algorithm is always work-
ing with the original expression data, and so the biclusters
it finds only contains original data. Since no random values
are introduced in the expression matrix, we have introduced
other modifications to the algorithm in order to render it non
deterministic. Results show that many biclusters found by
Ch&Ch have a MSR that is higher than δ, due to the random
values they contain. This is an important shortcoming of
Ch&Ch, since in this way the biclusters it discovers are not δ
biclusters. It is also important to notice that many biclusters
found by Ch&Ch-Rwould have not been obtained using the
original Ch&Ch. This is due to the fact that Ch&Ch does not
work with the original expression matrix. This causes that
many biclusters are masked by random values.

As future work, we intend to investigate a way to use
the overlapping factor for guiding the algorithm towards bi-
clusters that have little overlap with other ones. This could
be done, e.g., by modifying the modification phases of the
algorithm, and by using the overlapping factor, in combina-
tion with MSR in order to decide, for instance, which node
to delete from the bicluster.
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