
P
p

D
D
I

a

A
R
R
A
A

K
D
M
M
R

1

e
o
B
t
g
T
d

w
c
h

(

h
0

Computers in Industry 120 (2020) 103243

Contents lists available at ScienceDirect

Computers in Industry

jou rn al hom ep age: www.elsev ier .com/ locate /compind

rognosis of multiple instances in time-aware declarative business
rocess models

iana Borrego∗, María Teresa Gómez-López, Rafael M. Gasca
epartment of Languages and Computer Systems, Universidad de Sevilla, Escuela Técnica Superior de Ingeniería Informática, Dpto. Lenguajes y Sistemas

nformáticos, Av Reina Mercedes s/n, 41012 Sevilla, Spain

 r t i c l e i n f o

rticle history:
eceived 27 September 2019
eceived in revised form 7 April 2020
ccepted 7 April 2020
vailable online 18 May 2020

eywords:
eclarative business processes
ultiple instances
odel-based prognosis

obustness

a b s t r a c t

Technological evolution, heading for industry 4.0, makes companies tend to automate their management
and operation, ideally defining it through business process models. To describe policies or rules related
to the execution order of the activities in an organization, Declarative Business Process Models permit
a relaxed description of activity order, which needs monitoring to detect non-conforming behaviors.
Commonly, the detection of a violation implies that the malfunction has already occurred, being better
to avoid the violation in advance. To predict future violations, prognosis is required.

To allow the modeling of real business behavior, an extension of declarative business process models
including both time patterns and multiple instances is proposed. This new model can be used to prog-
nosticate if current process instances may violate a defined model in the future, according to the analysis
of the robustness of the process instances evolution. The proposed Model-Based Prognosis is based on
analyzing the event traces that represent the current instances and propagate their possible progression
through the Constraint Programming paradigm. To ascertain if the model could be violated, it is analyzed
how its robustness can tackle unexpected behaviors.
To complete the formalization and modeling, an implementation applied to a real medical example is
included in the paper. The prognosis of concurrent instances is addressed, dealing with formalized time
and activity patterns even considering the resource availability, and getting acceptable execution times.

The automatic verification and prognosis of declarative business processes are addressed considering
concurrency and synchronization of multiple instances, performing well in terms of execution time.

© 2020 Elsevier B.V. All rights reserved.
. Introduction

The continuous evolution of companies towards Industry 4.0
ntails the need for processes to automate their management and
peration tasks, for example, by defining their behavior through
usiness Process Models. Among those tasks, the automatic detec-
ion of malfunctions should be a major concern, since this can
reatly facilitate the resolution of possible errors, lowering costs.
he increasing complexity can provoke malfunctions that must be
iagnosed and prognosticated [1].

Compliance analysis ascertains whether the business process is

orking as modeled or not according to the KPIs defined by the

ompany [2]. Unfortunately, this detection is executed after a fault
as been produced. The idea presented in this paper is not limited to

∗ Corresponding author.
E-mail addresses: dianabn@us.es (D. Borrego), maytegomez@us.es

M.T. Gómez-López), gasca@us.es (R.M. Gasca).

ttps://doi.org/10.1016/j.compind.2020.103243
166-3615/© 2020 Elsevier B.V. All rights reserved.
continuous observation and diagnosis of past compliance violations
(reactive management) but also includes the skill to predict possi-
ble future violations (pro-active management) at run-time, through
monitoring a potentially large number of process instances.

What violation is detected depends on the elements monitored
during process execution. Business process compliance can involve
the different dimensions of a process model (i.e. control flow,
data flow, resources or time). Business processes cannot always
be described imperatively and implemented by commercial Busi-
ness Process Management Systems (BPMSs), especially when there
is a high human interaction. An example of this type of scenario
is the medical environment, where medical guidelines describe
the correct and incorrect order among actions. Declarative mod-
els describe what is permitted and prohibited instead of a strict
description of the order of the activities. When the executions of the

activities are not guided by software that establishes what activity
is executed in each moment, the activities can be executed vio-
lating the business rules defined by the experts. It is even more
complex when the guidelines involve several instances that can

https://doi.org/10.1016/j.compind.2020.103243
http://www.sciencedirect.com/science/journal/01663615
http://www.elsevier.com/locate/compind
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2020.103243&domain=pdf
mailto:dianabn@us.es
mailto:maytegomez@us.es
mailto:gasca@us.es
https://doi.org/10.1016/j.compind.2020.103243

2 sca / C

b
r
b
i
o
a
a
t
t
i
f

1

t
p
a
a
t
t
t
b
s

p
(
n
F
t
a
n
i
a
L
l
i
s
t
b
fi
b

t
l
d
a
f
t
t

i
M
t
i
p
i
i
t
e

•

 D. Borrego, M.T. Gómez-López and R.M. Ga

e executed at the same time and have shared resources. For this
eason, our proposal is centered on the modeling of declarative
usiness processes that include a time perspective and multiple

nstances. Monitoring the event traces that include the timestamps
f executed activities, we can detect a declarative model violation
nd even forecast a violation to avoid in the future. A previous
pproach was analyzed in [3], where declarative models supported
ime perspective to prognosticate an error in the future. However,
he previous paper did not include the problem of how multiple
nstances can affect the shared resources and the prognosis in the
uture according to how instances can evolve.

.1. Problem statement

Usually, regulations, laws, or guidelines (often available as tex-
ual descriptions) give rise to compliance requirements in business
rocesses, such as ‘an anesthesia test must be done 4 days before
n operation’. This rule will be violated if, on the day of the oper-
tion, the anesthesia test has not been done. But if the test needs
hree days to be analyzed in the laboratory, we can detect the viola-
ion even two days before the operation, although it will be too late
o avoid the malfunction. The prognosis tries to detect four days
efore the operation that the violation is about to happen, but it
till can be avoided.

There is another problem that makes the prognosis more com-
lex since frequently the time that we need to execute an activity
three days for anesthesia test in the example) is affected by the
umber of process instances that are executed at the same time.
or example, a laboratory can analyze 1000 tests per day, then the
ime the process needs is related to the number of instances running
t the same time. In this context, we propose to perform the prog-
osis of declarative business processes to detect that a misbehavior

s close to happening according to the execution of other instances,
nd considering we still have time to avoid the non-conformity.
ikewise, determining how close an execution is to a possible vio-
ation (e.g., using robustness) is gaining relevance. Therefore, we are
nterested in the compliance objectives which are related to time,
pecified as compliance rules or constraints limiting, for example,
he exact time of execution of the activities or even time distances
etween them. These compliance rules regarding time will be veri-
ed over the past events of all running instances, predicting future
ehaviors.

To analyze the current process state and how it can evolve in
he future, it becomes necessary to get past events from an event
og, which may be extracted from a variety of data sources, e.g.,
atabases, flat files, message logs, transaction logs, ERP systems,
nd document management systems. From the information stored
or those past events, temporal data is taken into account, so that
he prognosis about the future attainment of running instances on
ime is performed.

Likewise, to get an accurate and realistic prognosis, process
nstances cannot be assumed to be independent of each other [4].

oreover, the dependencies among activities can be defined in
erms of synchronization of instances to execute the same activity
n batch for a set of instances [5]. Batch activities permit, for exam-
le, to execute the same activity when at least 10 instances reached

t, or how multiple resources permit the execution of the activities
n parallel. Then, different types of activities regarding synchroniza-
ion and/or execution coordination require specific treatment. For
xample:
The execution of activities requiring resources is limited to the
corresponding availability. This may bring process instances to
wait for resources to be able to continue their progress.
omputers in Industry 120 (2020) 103243

• Activities whose execution is limited to certain dates, either peri-
odically or in particular fixed dates.

• Activities whose execution is ruled with batch activation may
lead to groups of process instances waiting for their synchroniza-
tion.

These more complex models can be compared to the current
instances to avoid malfunctions. But to detect that a malfunction is
about to happen when it is still solvable, we propose the analysis of
the robustness of the system. Robustness is the capacity of a system
to operate correctly even if an unexpected situation occurs. Thus,
the prognosis of business processes and the determination of their
robustness should be performed on account of all previous ideas.

1.2. Contribution

In this paper, we consider the execution of multiple instances
simultaneously. Since the execution of some activities may require,
for example, the use of available resources or even the synchroniza-
tion of different instances, the fulfillment of the time restrictions
of a process instance may depend on the timing of other process
instances.

In this paper, we address the prognosis of the compliance of
declarative business processes, determining their robustness, mak-
ing several contributions:

• Consideration of the simultaneous execution of multiple
instances. To deal with it, certain activity patterns are identi-
fied and formalized, so that the coordination and synchronization
of different cases are performed, even taking into account the
resource availability. We identify various types of activities
whose execution patterns are different depending on resources,
dates, number of cases, etc. So, they are not independent for each
process instance. Those activity patterns are analyzed and for-
malized.

• Description of Model-Based Prognosis, including the description
of declarative business process models by compliance rules [6]
with an extension of Declare [7], and the definition of the obser-
vational model coming from the event log.

Likewise, and to get a more accurate and realistic progno-
sis, some time restrictions defined in business policies may be
changed getting more constrained ones. This way, they still fulfill
policies but provide us with a major capability to properly deter-
mine the process robustness. This is due to predictions made at
design time may be affected by the number of running instances
and/or the available resources, being necessary to adjust them
according to problematic scenarios.

• Carrying out of the prognosis to determine a potential non-
compliance of business rules in the future. To this end, the process
model and event traces are formulated through the Constraint
Programming paradigm to predict violations.

• Management of the robustness of the running instances. For
that purpose, the cases in the event log corresponding to cur-
rent instances are analyzed to determine how sensitive they are
to small changes related to possible delays in the execution of
activities. The concept of robustness used in this paper is ori-
ented towards the capacity of a system to be adapted to external
situations, maintaining its correctness regarding the model.

The paper is structured as follows: Section 2 tackles the
modeling of the problem, defining necessary concepts and iden-
tifying time and activity patterns; Section 3 presents a real multi

instance example; Section 4 explains how Constraint Programming
paradigm can be used to perform the proposed verification and
prognosis, carried out in detail in Section 5; Section 6 deals with
the evaluation; Section 7 gives backgrounds on related areas; and

D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243 3

monit

fi
t

2
f

c
i
p
i
t
t
p
n

i
m
a
a
c
d
m
t
R
o

d
(
s
b
n
e
a
d
b
f

b
b
i
i
(

Fig. 1. Compliance

nally, conclusions are drawn and future work is proposed in Sec-
ion 8.

. Formalization of the time patterns in declarative models
or multiple instances

As mentioned, to prognosticate a system it is necessary to
ompare the model with the observations. Centering the problem
nto declarative models that include descriptions about multi-
le instances and time restrictions, we aim to monitor multiple

nstances compliance, identify future inconsistencies and manage
he robustness of current cases. To this end, we propose an archi-
ecture that combines the modules for modeling, monitoring and
rognosticating to detect violations in advance and analyze robust-
ess.

The proposed Compliance Monitoring Architecture is depicted
n Fig. 1. It consists of four modules: (1) in the Declarative model

odule, the business model is defined, getting a final specification
s a work-flow and its compliance rules; (2) these model and rules
re verified over events coming of the execution of cases in the Pro-
ess Execution module; (3) the verification and the corresponding
iagnosis and/or prognosis are performed in the Monitoring engine
odule, aim of this paper, which is detailed below; and finally (4)

he results from that monitoring are shown to users through the
eporting/Visualization module, and may be different depending
n the monitoring that was carried out.

Regarding the Monitoring engine module, it receives two types of
ata: declarative models stating compliance objectives, and events
from an event log) of past and current process instances that
hould accomplish the model. Usually, events can have attributes,
eing activity, time, costs, and resource typical examples of attribute
ames [8]. From this information, which is usually presented in an
vent log, and to perform the prognosis proposed in this paper, we
re interested in the information about activity and time, since it
oes not affect, for example, what resources were used in the past,
ut we will only consider their possible lack of availability in the
uture.

To perform the prognosis of declarative models, our approach is
ased on Model-based diagnosis. It is used to ascertain whether the

ehavior of a system is correct or not, and to find out the responsible

n case of malfunction. This identification is carried out by compar-
ng the expected behavior (the model) with the observed behavior
the observational model).
oring architecture.

2.1. Observational model formalization

In this case, the information in the event log conforms to the
Observational Model of the system. Then an observational model is
described by that sequence of events, ordered by the time when
they were thrown. As the proposed prognosis is based on the cor-
rect order execution of a set of activities, according to a declarative
model, some definitions about event, trace, and log are included
below.

Definition 1 (Event). Let A be the set of activities of a process
model, an event is described by means of a tuple 〈tr, a, t, r〉, where:
trace (Definition 2) (tr) represents the identifier or the process
instance that traces their executions that facilitates to distinguish
an instantiation from the others; a ∈ A is the activity executed in a
particular instant of time t; and, in case a needs some resource to
be executed, r is the used resources, empty otherwise.

Definition 2 (Trace). A sequence of events [e1, e2, . . ., en] is a trace,
if ∀ei, ej, with 1 ≤ i < j ≤ n, ei . tr = ej . tr and ei . t < ej . t.

Definition 3 (Log). An event log L = {l1, . . ., lm} is a set of traces li.

Continuous monitoring of the events in a system implies that
those events can conform partial or full traces. Each trace of events
(partial or full) can be compliant with the declarative model or not.
A compliant partial trace can be robust or weak. To clarify these
terms, we use the definitions introduced in [3].

Definition 4 (Full Trace (FT) and Partial Trace (PT)). Being T a trace
and Ex(T) the set of non-optional activities executed in T, T is a Full
Trace if there is no other compliant trace R that meets Ex(T) ⊂ Ex(R),
and a Partial Trace otherwise.

Definition 5 (Promising (PrT), Robust (RT) and Weak Trace (WT)).
Being ST the set of concurrent running traces of a declarative BP
model, and being T a Partial Trace in ST, T is a:

• Promising Trace: If T is compliant with the model.
• Robust Trace: If T is promising and, besides, there is more than
one possible option (regarding time) to execute all the necessary
activities to get T to be FT. These options are affected and limited
due to the concurrent execution of the traces in ST.

• Weak Trace: If T is promising but not robust.

4 D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243

Fig. 2. Single activity pattern.

2

b
h
s
m
l
a

a
a

2

m
a
c
d
t

•

•

•

•

•

Fig. 4. Interval activity pattern.

Fig. 5. Resource activity pattern.

Fig. 6. Date activity pattern.
Fig. 3. Initiation activity pattern.

.2. Model formalization

The model describes the expected and correct behavior designed
y business experts. As commented, in contexts where a high
uman interaction exists, declarative models are more suitable,
ince models can be described as a set of rules or guidelines per-
itted or prohibited to achieve the organizational goal. Different

anguages have been defined to describe declarative models, as
nalyzed in [6].

The proposed model is based on Mobucon with new types of
ctivities and time patterns extension of ConDec [9], formed of
ctivities and order relations between them.

.2.1. Activity patterns
As mentioned, and to model declarative models considering

ultiple instances and address the prognosis, different types of
ctivities are identified regarding the way they affect the con-
urrent execution of instances. Therefore, this subsection aims to
epict those activity patterns, so that a solution for each one of
hem is proposed in the following sections.

Activities patterns:

Single activity: activity that can be executed at any time by any
number of instances, without limitations (Fig. 2).
Initiation Activity: first activity to be executed by every process
instance (Fig. 3).
Interval Activity: the activity should be executed between the
moment Ini and End, measured from the execution time of the
initial activity (Fig. 4).
Activity depending on resource perspective: activity whose exe-
cution is limited by the available resources, which can be
classified as human resources, technological resources or data
resources (Fig. 5).

Activity executed on a date: activity whose execution is per-
formed one day, either in a concrete date or regularly (i.e. after
some periodical meeting) (Fig. 6).
Fig. 7. Batch activity pattern.

• Batch activity: activity clustering a set of active activity instances
together and synchronizing their execution according to prede-
fined rules [5] (Fig. 7). Two types of use of case are differentiated:
(1) achieving an increased process performance (the activity is
executed when a certain number of cases are synchronized, to
save setup costs); and (2) comparing business cases (the synchro-
nization is needed to compare cases according to specific criteria).
Likewise, a batch activity can be provided to multiple available

resources, being possible to run several batches in parallel when
they are needed.

sca / Computers in Industry 120 (2020) 103243 5

a

2

d

•

•

•

•

r

3

t
m
r
e
s
m
[
c
s
t
e
w
i
o
o
t
l
t
i
p

d
p
s
p
w

t
i
r
t
t
c
d

Table 1
CSP solutions.

tA tB tC tD

5 6 7 −1
5 7 8 −1
5 8 9 −1
D. Borrego, M.T. Gómez-López and R.M. Ga

Also, any combination of patterns is allowed. For instance, an
ctivity executed on a date may also be limited by resources.

.2.2. Order and time relation between activities
Likewise, as it was aforementioned, declarative models let to

escribe the order relation between activities:

Precedence: If activity A precedes B, then to execute B, A must
have been executed before.
Response: Activity B is a response of activity A if, whenever A is
executed, then B must be executed afterwards.
Succession: A and B are in succession relation if A precedes B and
B is a response to A.
Distance: Time distances between activities (i.e. minimum time
to wait between the execution of two activities) may be affected
by the number of available resources and/or running instances.
These distances were defined as business policies, which are rules
and regulations to define the limits within which decisions must
be made and actions must be taken. Therefore, they should be
fulfilled. However, and to perform a more realistic prognosis,
our proposal considers the number of resources and/or run-
ning instances to internally work with modified distances (more
restrictive ones) which are consistent with the original distances
and do not contradict the business policies.

As a summary, Fig. 8 represents the types of activities and order
elations between them.

. Motivating example

A relevant example of processes that have a high human interac-
ion are medical guidelines [10], not only for the use of declarative

odels but also to demonstrate the importance of detecting a fault
elated to human health before it occurs. In this paper, we use as an
xample the protocol of pregnancy of the Health System of Andalu-
ia, described in [3], but enriched with some activity patterns that
ay affect the execution of concurrent instances. As explained in

3], this example of declarative model includes activities with spe-
ific time restrictions, due to some tests of the pregnancy exam
chedule are related to the size of the fetus and/or the legal conno-
ations of the gestation week. Intending to facilitate the following
xplanations, this section only presents a part of the real example,
here only a fragment of the overall process is modeled, shown

n Fig. 9. We are based on Mobucon EC [11], the time extension
f Declare, since it fits the necessities of the example better than
thers, including our proposed and previously detailed activity pat-
erns that include multiple instances. Also, like in [3], the used
anguage is an extension of the Mobucon framework, where the
ime interval and the time needed between activities have been
ncluded. The problem of modeling health protocols is an open
roblem in the area [12].

Detailing the example, the process begins when the patient
etects a possible pregnancy (amenorrhea, day 0). Then starts the
rocess of booking medical appointments, attending medical con-
ultations and conducting certain clinical tests, which must be
erformed at certain times of pregnancy (defined as ranges in
eeks counted from day 0).

As mentioned, the objective of our proposal is not based on
he definition of a new language, it is an extension of the exist-
ng, but only to establish the necessary patterns for the problem
equirements including multiple instances patterns. In detail, for

he example: (i) some activities count on time restrictions on when
hey should be executed, indicated with time intervals inside cir-
les over the activities; (ii) likewise, minimum and maximum time
istances between activities are indicated in the corresponding
5 6 8 7
5 7 9 8

arrows; (iii) and also, some activities present different behaviors
when executing multiple concurrent instances, following some
patterns, such as the execution of the activity Blood test is limited
by resources of type R1, the Gynecologist Appointment only can take
place in certain dates, and the Urine Culture Test is a batch activity
that can be performed when the executions of a certain number of
instances are synchronized there.

4. Constraint programming to prognosticate declarative
Models

Based on the declarative model extended with time patterns and
a set of traces of events, it is possible to verify and prognosticate the
system. The proposed methodology for prognosticating is based on
the system robustness, which is described as the capacity of a sys-
tem to work correctly under unexpected situations. To compute the
robustness of a system, we use the concept of super solutions com-
ing from the Constraint Programming paradigm. Some definitions
must be introduced to understand the meaning of super solution.

Constraint programming is based on the algorithmic resolution
of Constraint Satisfaction Problems (CSP), and is an Artificial Intel-
ligence technique which provides us a way to model declarative
models, describing what can happen or what is prohibited instead
of exactly what must occur.

Definition 6 (Constraint Satisfaction Problem (CSP)). A CSP [13] con-
sists of the triple 〈V, D, C〉, where V is a set of n variables v1, v2, . . ., vn

whose values are taken from finite domains Dv1, Dv2, . . ., Dvn ∈ D
respectively, and C is a set of constraints on their values. A con-
straint ck (xk1, . . ., xkj) ∈ C is a predicate that is defined on the
Cartesian product Dk1 × . . . × Dkj. This predicate is true iff the value
assignment of these variables satisfies the constraint ck.

Definition 7 (Solutions of a CSP). The solutions of a CSP Const are the
elements of the set of tuples (〈v1, v2, . . ., vn〉, 〈val1, val2, . . ., valn〉),
where vali ∈ Dvi, vi and every value vali assigned simultaneously to
a variable vi satisfy the constraints C of Const.

To facilitate the understanding of these definitions, we proceed
to illustrate them with the following example:

Variables and domains:
tA, tB, tC, tD : Integer
Constraints
tA < tB
tB < tC
tD > 0 → tB < tD ∧ tD < tC

When determining if this CSP has any solution, it is possible
to count on previous instantiations of some variables (establishing
specific values or constraining their domains even more), therefore
it is necessary to run the CSP solver to obtain only the possible

values (if any) of the remaining variables.

For our example, a previous instantiation could be: tA = 5, tC < 10.
In this specific case, the solutions found by the solver would be the
ones collected in Table 1.

6 D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243

Fig. 8. Declarative activities and relations.

ivating example.

a
t
o
e
a
o
i

p
i
m
i
a

Fig. 9. Mot

In this proposal, being a CSP a model that represents the declar-
tive model and the running instances in a concrete current time, if
he CSP has a solution, it means it is possible to finish the execution
f the instances as expected. However, if no solution is found, the
xecution may not finish properly. The small example presented
bove would represent the CSP model, instantiation and resolution
f the small declarative example in Fig. 10, with only one running
nstance.

To carry out this idea of using Constraint Programming for our
rognosis process, the CSP creation and resolution process depicted

n Fig. 11 is followed. For this, as can be seen in the diagram, the CSP

odel is first obtained from the complete declarative model (that

s, both its structure and everything related to temporal constraints
nd multiple instances).
Fig. 10. Small declarative BP model.
Once the CSP Model has been obtained, the information con-
tained in the event log is used to partially instantiate the CSP (that
is, events already occurred in traces executed or in execution). In
this way, a CSP is obtained where the non-instantiated variables are

D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243 7

n and

t
t
d
n

t
t
a
s
t
t

l

•

•

•

4

a
i
t

m
B
t
a
g
t
w
t
c
c
b
i

Fig. 11. CSP creatio

hose that represent the events that have not yet occurred. Thus,
he resolution of this CSP allows seeing if, under the current con-
itions, the future execution of these events would be possible or
ot.

To model the problem as a CSP, we should distinguish between
he modeling of (1) event traces for multiple instances, and (2)
he declarative modeling of activity patterns, time intervals of the
ctivities, and time distance between activities. First, we detail the
tructural formulation of the declarative model, which is based on
he formulation presented in [3] with some changes due to the
reatment of multiple instances.

Regarding Definition 6, the parts of the CSP adapted to our prob-
em are:

Variables: There is a variable for each instance and each activity,
which represents when the activity was executed for an instance.
These variables represent the formulation of the event traces.
Domain: For each variable, the finite set of Long values that rep-
resent the plausible timestamps of the execution of each activity.
Constraints: According to the declarative model, the permitted
time relations between the variables must be included, which
represent the activities and time patterns formulation.

.1. Formulation of event traces

In the modeling of the problem as a CSP, all running instances
t a particular time should be considered. Then, there is a variable
n the CSP for each execution of each activity, which represents its
imestamp.

Regarding the treatment of multiple instances, these events are
odeled in the CSP by means of two arrays for each activity: the

oolean array ActEX and the Integer array ActT. Each boolean in
he i-th position of ActEX indicates if the i-th instance executes the
ctivity Act either in the past or in the future. Similarly, each Inte-
er in the i-th position of the array ActT points out the particular
ime when the i-th instance executes the activity Act, −1 other-
ise. We are inspired by the formulation in [3], but it was limited

o one instance. Derived from the new patterns introduced, where

onstraints among different instances are included, the CSP must
onsider variables for every instance. To represent if an activity has
een executed or not for an instance, the following constraints are

ncluded in the model:
resolution process.

• If an activity has not been executed for a particular instance, then
its execution time for that instance should be greater than the
current time, due to it would be executed in the future.

• The model should therefore support the representation of exe-
cuted and future events, as a tuple 〈Instance, Activity, Time,
Resources〉, being each concept, respectively, the concrete Instance
that executed Activity in a particular Time using Resources. Each
event 〈ins, act, t, r〉 should satisfy the following rules [14]:

–if ins already executed act, then t ≤ currentTime and
actEX[ins] = true.
–if ins did not execute act yet, but it will do it in the future, then
t > currentTime.
–if ins does not execute act at any time, then t = −1 and
actEX[ins] = false.

4.2. Activities and time patterns formulation

This subsection details the formulation of each previously men-
tioned activity pattern, as well as the time limitations (i.e. time
intervals and time distances between activities).

Likewise, the formulation of the activity relations is depicted in
Fig. 12.

• Activities with limited resources: their formulation requires an
array resources storing which type of resource is used by each
activity, and an array num r esources holding the number of avail-
able resources per type (i.e. how many available resources per
type and time unit). In case the execution of an activity is not
affected by limited resources (or it counts on infinite units), the
corresponding position in resources holds a zero.

Then, if, for example, activities Ax and Ay need the same lim-
ited resource of type Ri (i.e. resources[x] = resources[y] = i), the
ith − 1 position of num r esources holds a number N indicating
the amount of available resources of type Ri per time unit. So,
the values in the arrays AxT and AyT are constrained so that they
cannot be repeated more than N times among both arrays. This
way, and due to AxT and AyT store the times when Ax and Ay are
executed respectively, we are therefore constraining the number
of uses of Ri per time unit.

∀ a ̇ ((resources[a] = i) → ∀ value ∈∑

∪AaT (AaT .cardinality(value) ≤ num resources[i]))

;1;
• Activities executed on a date: their execution is limited to cer-

tain dates, which can be classified as follows.

8 D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243

n of d

•

Fig. 12. Formulatio

–If an activity a can only be executed in some date/s known a
priori (either periodical or concrete dates), this just limits the
values defined in the domain of the array AT.

For concrete dates:
D : {date1, date2, date3, . . . }
;1;
For periodical dates:
D : {date, date + period, date + 2 * period, date + 3 * period, . . . }
;1;

–If the dates when an activity A can be executed are known but
limited to some conditions, it requires the inclusion in the CSP
of a constraint accordingly. For example, if a new execution of A
can only be performed at least minTime time units and at most
maxTime time units from the last one, the constraint would be:

∀ x, y ∈ AiT (x = y ∨ minTime ≤ |x − y| ≤ maxTime)
;1;

Batch activities, whose execution pattern entails some consid-
erations:

–The different executions of a batch activity take place when
a batch of at least N instances reaches it. Then, to perform the
prognosis process, we should constraint the future execution
times in ABT of each batch activity AB for the running instances
that have not reached AB at the current time.
–Due to the limitation of at least N instances reaching AB to
allow its execution, it can come up that, after the execution
of some prior batches, a remainder of M instances (M < N) is
still running. To deal with it, our methodology would consider
that these M running instances could finish on time iff it is still
possible the appearance of at least N − M new instances which
could arrive on time to the batch activity (that is, making possi-
ble the fulfillment of the M running instances without violating
any time restriction), therefore allowing the execution of all
instances in batch. In the following, we name this fact as future
arrival of instances on time.
To formally formulate these concepts, we add the next variables

and constraints to the CSP model.
–An array batch is used to store on each i-th position the min-
imal number of running instances that are needed to execute
each i-th activity of the model. In case an activity is a batch
activity, its corresponding value would be greater than 1.
–Also, and to determine the possibility of a future arrival of
instances on time, the calculation of the minimal time it takes to
arrive at each activity from the activity init is performed. These

minimal times are obtained considering the best cases regard-
ing time, hence by adding time distances and intervals of time
in the fastest path to each activity.
eclarative patterns.

For the example in Fig. 9, the calculations are shown in the
following box:

int minTime Amenorrhea = 0
int minTime AskForMidwifeA = minTime Amenorrhea + 1
int minTime AskForABloodT = 0
int minTime BloodTest = minTime AskForABloodT + 2
int minTime MidWifApp = max(minTime AskForMidwifeA + 14,

5*7+1)
int minTime AskForGynecologistApp = 0
int minTime GynecologistApp =
max(10*7+1, minTimeMidWifApp + 14, minTime BloodTest + 4,
minTime AskForGynecologistApp + 7)
int minTime UrineCulture = max(minTime GynecologistApp + 1,

11*7+1)
int minTime FamilyDocApp =
max(15*7+1, minTime MidWifApp, minTime UrineCulture + 7)
;1;

–Finally, and being AB a batch activity, the values in ABT are
constrained taking into account three aspects: (1) the partic-
ular times when the activity AB was executed in the past (i.e.
∀i|ABT[i] < currentTime) are not verified since they are supposed
to be correct; and the future executions of AB should be carried
out (2) in batches of at least N instances (where N = batch[AB]),
or (3) in a particular time that is after currentTime + minTime AB

and hence allowing the future arrival of instances on time.
∀ x in ABT ̇ ((x > currentTime) → ABT .cardinality(x) ≥

batch[AB] ∨ x > currentTime + minTime AB)
;1;

• Time distances between activities: as it was aforementioned,
these distances are internally modified to more restrictive ver-
sions so that we can get a more accurate prognosis. More
precisely, the minimum time would be increased under certain
circumstances, such as lack of resources and/or too many running
instances. So, these new distances are no longer fixed, but they
are dependent on these changing elements.

–Regarding the resources’ availability, and being A an activity
that should be executed in a determined interval of time I, if the
amount of available resources for A is under a certain threshold,
the distance of time between the activity (or activities) just pre-
ceding A should be increased. This is due to the possible delay
in the execution of A because of the lack of available resources,
causing the need of anticipation of the prior activities so that
the execution of A in I may be fulfilled.

–As for the number of running instances, we have the opposite
case: the more instances are running, the more the execution

D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243 9

Table 2
Structural formulation of the motivating example.

Variables and domains
AmenorrheaEx[], AskForMidwifeAppointmentEx[], BloodTestEx[],

. . .: Boolean

AmenorrheaT[], AskForMidwifeAppointmentT[], BloodTestT[], . . .:
Integer

. . .

Structural formulation: compliance rules of the model
for each instance ins

(AmenorrheaEx[ins] ∨ AmenorrheaT[ins] = -1)

(AskForMidwifeAppointmentEx[ins] ∨
AskForMidwifeAppointmentT[ins] = -1)

. . .
end for

for each instance ins

AskForMidwifeAppointmentEx[ins] → AmenorrheaEx[ins]

∧ AmenorrheaT[ins] < AskForMidwifeAppointmentT[ins]

AskForMidwifeAppointmentEx[ins] → MidwifeAppointmentEx[ins]

∧ AskForMidwifeAppointmentT[ins] < MidwifeAppointmentT[ins]

MidwifeAppointmentEx[ins] → FamilyDoctorAppointmentEx[ins]

∧ MidwifeAppointmentT[ins] < FamilyDoctorAppointmentT[ins]

∧ FamilyDoctorAppointmentEx[ins] →
FamilyDoctorAppointmentEx[ins]

∧ MidwifeAppointmentT[ins] < FamilyDoctorAppointmentT[ins]

. . .
end for

Time constraints
for each instance ins

tini = AmenorrheaT[ins]

tini + 42 � MidwifeAppointmentT[ins] �tini + 84

4

s
p
e
t

a
3

5

t
i
b
B

Table 3
Activities and time pattern formulation of the motivating example.

Formulation of resources
for each resource r

bagT = bag with the content of the arrays ActT of all

activities needing r

for each value v in bagT

bagT.cardinality(v) ≤ num resources[r]

end for

end for

Formulation of activities executed on a date
for each activity act with execution on certain dates

for each par of instances ins1, ins2

|actT[ins1]-actT[ins2]|≡ 0 (mod P) //being P the periodicity of
execution of act

end for

end for

Formulation of batch activities
for each batch activity act

for each value v in actT

if v >currentTime

actT.cardinality(v) >batch[act] ∨ v >currentTime + minTimeAct

end for

end for

Formulation of time distances
AskForMidwifeAppointmentT[ins] + (14*max(1,numI/20))

� MidwifeAppointmentT[ins]

BloodTestT[ins] + (4*(max(1,numI/20))*(max(1,10/numR))

� GynecologistAppointmentT[ins]

. . .

Table 4
Event log (on date 30-Nov-2018).

Case ID Activity name Timestamp Resource . . .

1 Amenorrhea 27-Sep-2018 – . . .
2 Amenorrhea 4-Oct-2018 – . . .
3 Amenorrhea 9-Oct-2018 – . . .
4 Amenorrhea 9-Oct-2018 – . . .
5 Amenorrhea 10-Oct-2018 – . . .
5 Ask for midwife appointment 22-Oct-2018 – . . .
3 Ask for midwife appointment 27-Oct-2018 – . . .
2 Ask for midwife appointment 5-Nov-2018 – . . .
5 Ask for a blood test 6-Nov-2018 – . . .
5 Blood test 11-Nov-2018 R1=1 . . .
2 Ask for a blood test 16-Nov-2018 – . . .
3 Ask for a blood test 16-Nov-2018 – . . .
3 Midwife appointment 18-Nov-2018 – . . .
4 Ask for midwife appointment 20-Nov-2018 – . . .
3 Blood test 21-Nov-2018 R1=1 . . .
2 Blood test 21-Nov-2018 R1=2 . . .
1 Ask for midwife appointment 22-Nov-2018 – . . .
1 Ask for a blood test 25-Nov-2018 – . . .
tini + 112 � FamilyDoctorAppointmentT[ins] �tini + 126

. . .
end for

of the prior activity/activities should be anticipated (i.e. the
minimum distance should be increased too).
In order to include these ideas, we consider that the minimum

distance [min(time)] between a pair of activities A, B were defined
for (i) an optimal number of instances running (optI); and, (ii) in
case the execution of B is limited by resources of type R, an optimal
number of resources of this type (optR). Therefore, if the number
of running instances is more than optI, and/or the number of avail-
able resources is less than optR, thus the new distance should be
calculated. Then, being numI the number of running instances and
numR the number of available resources, the distance between
each pair of activities would be as follows:

[min (time * (max(1, numI/optI)) * (max(1, optR/numR)))]
;1;
This way, the minimum time would be affected only if there

are more instances and/or fewer resources than enough.

.3. CSP model of the motivating example

To illustrate these described ideas to get a CSP model, Table 2
hows a fragment of the CSP created for the motivating exam-
le in Section 3, including (i) the declaration of variables, (ii) the
xplained structural formulation, and (iii) the constraints regarding
ime limits.

Likewise, Table 3 collects a fragment of the formulation of the
ctivities and time patterns for the motivating example in Section
.

. Automating prognosis based on robustness analysis

During the execution of a system and depending on its declara-

ive model, it is possible to detect inconsistencies (verification task
n Fig. 1) by checking the expected behavior of the system, defined
y the model, versus the real behavior collected in an event log.
esides, in this paper, we do not only want to check if a partial
4 Ask for a blood test 28-Nov-2018 – . . .
5 Midwife appointment 29-Nov-2018 – . . .

instance is satisfiable, but we also want to prognosticate potential
problems to avoid malfunctions in the future for multiple instances
that are executed concurrently (prognosis task in Fig. 1), determin-
ing the activities which are the source of inconsistencies (critical
activities analysis task in Fig. 1).

These three tasks addressed in this paper, which are related
to model-based prognosis, are based on Constraint Programming
to determine if the event traces analyzed during the monitoring
are PrTs, RTs or WTs. To clarify this idea, Table 4 shows PTs for the
example in Fig. 9, collected in the event log. Thanks to the use of
Constraint Programming, it is possible to know if these PTs are PrTs,
meaning that there exists a way to finish all instances satisfying the

compliance rules for the possible events in the future. Therefore,
using Constraint Programming, future events could be inferred for
the non-executed activities to get FTs, trying to find out a solution
of the CSP.

10 D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243

Table 5
Instantiation from the event log.

Instantiation of variables according to past cases in the event log (Table 4)
AmenorrheaT[0] = 0

AmenorrheaT[1] = 7

. . .
AskForMidwifeAppointmentT[5] = 25

AskForMidwifeAppointmentT[3] = 30

. . .
currentTime =64

Table 6
Objective function to get the widest FTs.

v

5
i

p
c
t
a
p
4

v

w
t
t

v
i
t

s
t
f

5
i

C
s
a

5

p
e
t
a
s

a
i
i
m
i

Table 7
Example of variables and constraints for (1-0)-super solutions.

Example of variables
act1T[], act2T[], act1Ex[], act2Ex[]

act2T[]’ //act2 should be executed in the future

Example of the constraints’ format
for each instance i

act2Ex[i] → act1Ex[i] ∧ act1T[i] < act2T[i]

act2Ex[i] → act1Ex[i] ∧ act1T[i] < act2T[i]’
Objective function
Maximize (AmenorrheaEx[] + BloodTestEx[] + . . .)

In the following subsections, the automatic computation of both
erification and prognosis are explained.

.1. Computing verification for declarative models and multiple
nstances

In order to compute the verification of multiple traces, the com-
lete formulation of the CSP as presented in Section 4 must be
reated, which means: (i) Variables (V), formed by the aforemen-
ioned arrays ActEX and ActT, whose (ii) Domains (D) are Boolean
nd Long respectively, and being affected by the (iii) Constraints (C)
reviously defined as structural and patterns formulation in Section
.

The CSPs are created according to the trace, at run-time when a
erification process must be executed.

Regarding the content of the arrays ActT, they collect the times
hen each activity of the model is executed by each instance. Then,

his content is in line with the granularity of the events recorded in
he event log [15].

In order to illustrate the verification, Table 5 shows the setting of
ariables that correspond to past events collected in the event log
n Table 4, which is the instantiation model that should be included
o the already defined CSP model (in Tables 2 and 3).

To assure that current traces are promising, this CSP must be
olved and all variables should be instantiated, so that it is possible
o assign a future time of execution to all non-executed activities
or each trace, therefore obtaining at least a FT for each PrT.

.2. Computing prognosis for declarative models and multiple
nstances

To prognosticate declarative models, once the aforementioned
SP for verification is built, some considerations should be made,
uch as (1) how to obtain the FT?; (2) when is the model robust?;
nd (3) how to get alternative solutions? Let us detail them below.

.2.1. How to obtain the FT?
As explained, the satisfiability of the CSP built in the verification

hase implies that there is at least a FT for each running PrT (i.e. for
ach current instance). This assures all running traces may be able
o finish on time. However, and to perform the best prognosis, we
re interested in obtaining the widest FT for each concurrent PrT,
o that more activities are analyzed.

The way to get those widest FTs is by transforming the CSP into
 Constraint Optimization Problem (COP), which is a CSP that also

ncludes an objective function to be optimized. The objective then
s to maximize the number of executed activities (that is, the maxi-

ization of the number of true values in the arrays ActEx, as shown
n Table 6).
act2T[i] < act2T[i]’ ∧ currentTime < act2T[i]’

end for

5.2.2. When is the system robust?
In case the verification determines that there are FTs for all cur-

rent instances, the model would be robust if those FTs are also RTs.
That is, the model is robust iff all activities that should be executed
in the future as part of those FTs (of all instances) can be executed in
at least two different times. So, the current instances would count
on alternative solutions to successfully end on time.

As mentioned, the performed prognosis should determine the
existence of different options to execute upcoming activities. To
carry this out, we propose the use of super solutions in Constraint
Programming, where the idea is to know if, when an expected
behavior occurs, the system has several options to evolve during
the future and be satisfiable.

Definition 8 ((m,n)-super solution). An (m,n)-super solution of a
CSP is a solution in which, if m variables v1, . . ., vm cannot take their
values val1, . . ., valm, another solution of the same CSP can be found
where v1, . . ., vn take values val′1 ∈ Dv1 , . . ., val′m ∈ Dvm and at most
n other variables must change their values.

Super solutions are a generalization of super models in propo-
sitional satisfiability. In this paper we use (1,0)-super solutions,
where if one variable cannot take its value in a solution of a CSP, it
is possible to find another solution by re-assigning this variable vi

with a new value vali [16], being not necessary to change the value
of the remaining variables.

More precisely, the variables whose values can be reassigned
are those that correspond to activities that have not been executed
yet. In the case of one of those activities has only one possible date
to be executed, we would be facing a non-robust solution.

To translate this idea into the presented CSP, so that it is possible
to determine if the current traces are robust, certain new variables
are included in the CSP to represent that the upcoming activities
can be executed in at least two different future times. The general
idea is shown in Table 7, which consists of duplicating those not
executed activities.

Therefore, to determine the robustness, the CSP formulation of
all upcoming activities must be complemented by including their
corresponding duplicates at the variables section, and also dupli-
cating the constraints where they are involved. Once this new CSP is
solved, the critical activities which are not robust (i.e. do not count
on two possibilities of execution) are established.

To clarify the idea of the new CSP formulation, Table 8 shows
the affected fragments of the CSPs in Tables 2 and 3 where the
formulations of the non executed activity MidwifeAppointment for
instance 1 has been duplicated.

6. Evaluation

This section aims to analyze the effectiveness and efficiency of

the presented approach. So, this section provides an empirical study
for performing the prognosis of multiple traces running in a declar-
ative process scenario, as well as analyzing the robustness of the
non-conforming cases, based on Constraint Programming. Taking

D. Borrego, M.T. Gómez-López and R.M. Gasca / C

Table 8
Example of CSP formulation for determining robustness.

Variables and domains
AmenorrheaEx[], MidwifeAppointmentEx[], . . .: Boolean

AmenorrheaT[], MidwifeAppointmentT[], . . .: Integer

MidwifeAppointmentT[]’, . . .: Integer

Structural formulation: compliance rules of the model
. . .
(MidwifeAppointmentEx[1] ∨ MidwifeAppointmentT[1] = -1)

(MidwifeAppointmentEx[1] ∨ MidwifeAppointmentT[1]’ = -1)

. . .
AskForMidwifeAppointmentEx[1] → MidwifeAppointmentEx[1]

∧ AskForMidwifeAppointmentT[1] < MidwifeAppointmentT[1]

AskForMidwifeAppointmentEx[1] → MidwifeAppointmentEx[1]

∧ AskForMidwifeAppointmentT[1] < MidwifeAppointmentT[1]’

. . .

Time constraints
Tini + 42 � MidwifeAppointmentT[1] �Tini + 84

Tini + 42 � MidwifeAppointmentT[1]’ �Tini + 84

. . .
MidwifeAppointmentT[1] < MidwifeAppointmentT[1]’

∧ currentTime < MidwifeAppointmentT[1]’

Formulation of time distances
AskForMidwifeAppointmentT[1] + (14*max(1,numI/20))

� MidwifeAppointmentT[1]

AskForMidwifeAppointment [1] + (14*max(1,numI/20))

t
e

•

•

i
p
r

•

•

•

t
c
t
i
c
t

T

� MidwifeAppointmentT[1]’

. . .

hese aspects into account, the current evaluation addresses two
valuation questions (EQs):

EQ1, which checks the suitability of the proposed methodology
for the prognosis of multiple traces, using Constraint Program-
ming. Specifically, it may be divided into two subquestions, since
both effectiveness (EQ1(1)) and efficiency (EQ1(2)) of the method
are checked.
EQ2, which checks the efficiency of the proposed analysis of
robustness by using (1-0)-super solutions.

For this case study, the full example of the pregnancy protocol
s used. It consists of 28 activities (including all different activity
atterns), 33 relation orders, 12 interval relations, and 17 distance
elations.

To answer the EQs, these analyses should be performed:

To answer EQ1(1), we count on 280 event logs recording compli-
ant partial traces. To check the effectiveness, either these traces
or even the original declarative model are intentionally modi-
fied to introduce or change data or components of the model so
that the partial traces are no longer compliant. When perform-
ing the prognosis of these modified cases, the proposed method
behaves correctly for the 100 percent of them, identifying their
non-conformity.
To answer EQ1(2), while these cases (conforming or non-
conforming to the model) are checked, the execution times are
measured.
Likewise, to answer EQ2, the robustness analysis is performed for
the cases where the prognosis determines non-conformity, and
the execution times are also measured.

As for the suitability of our proposal, it depends on the processes
hat are intended to be monitored have time intervals (between
onsecutive events) with a size larger than the computation time of

he CSPs that have to be resolved for the prognosis. Specifically, this
s of interest to Corporate Governance, since prognosis information
an be obtained in a dashboard, indicating possible future violations
hrough alerts and thus facilitating decision-making.
omputers in Industry 120 (2020) 103243 11

Regarding the resolution complexity of CSPs, its analysis is based
on the significant increase of computational cost around critical
values, called phase transition [17]. In CSPs, the order parameter
is the constraint tightness & ratio (constraint tightness is defined
as the ratio of the number of forbidden tuples to the total number
of possible combinations). This causes that for low values of the
order parameter (underconstrained CSPs with few constraints and
therefore many possible solutions) there is low computational cost,
because, having so many solutions, finding the first solution is easy
and therefore fast. For high values of the order parameter (overcon-
strained CSPs, with many constraints, few solutions or even none)
there is also low computational cost because the constraints are
pruned very prematurely and the search space is reduced. There-
fore, the computational problem occurs with intermediate values
of the order parameter, where the cost rises substantially.

The evaluation of the proposal is run on an Intel(R) Core (TM)
CPU i7, 2.2 GHz, 8 GB memory, running macOS High Sierra.

Figs. 13 and 14 show, respectively, the execution times for
the verification and the prognosis processes. In both of them, the
time(s) (y-axis) is displayed depending on the number of simulta-
neously running instances (z-axis) and the percentage of executed
activities (x-axis) of the total number of activities of all running
instances.

Both charts show acceptable times, which increase as the
number of simultaneous instances increases, and decrease as the
number of activities to verify or prognosticate decreases (due to the
number of variables of the CSP to assign values to is reduced). It is
possible to sense minor increases when several resources or batch
activities are instantiated since they cause a significant domain
reduction.

7. Related works

The complexity of the description of business process models
is aligned with the new scenarios that the organizations perform
to get their goals. This paper presents contexts where multiple
instances influence in the execution of the declarative models that
include time-perspective. The new model can be used to prognos-
ticate a possible deviation. Thereby, the proposal in this paper is
centered on the enlargement of the declarative models and the def-
inition of mechanisms to avoid deviations of the expected behavior
ahead of their appearance, so that it is not too late to solve them. For
this reason, this section is divided into three subsections, accord-
ing to the languages related to declarative modeling, the possibility
of prognosing business process models, and the evaluation of that
prognosis.

7.1. Declarative business process models

Declarative models have been widely used in the last decade in
business processes, and then several paradigms and languages have
been developed to support them. Declarative models are under-
stood as a mechanism to specify a trajectory in state space and the
constraints that describe, in a declarative way, the correct move-
ments in that state space [18]. The differences between declarative
process languages are centered in the different perceptions of what
is a state, as studied in [19,20]. Some of the most relevant are the
case handling paradigm [21], Artifact-centric modelling [22], PENE-
LOPE [23], the constraint specification framework [24] or Declare
language [25]. Some of them, such as PENELOPE, include the pos-
sibility to describe time as a parameter to model. However, none

of them take into account multiple instance perspective and how
it affects to time perspective.

The incorporation of time information can be found in several
real-world examples [12], where it is necessary to include elements

12 D. Borrego, M.T. Gómez-López and R.M. Gasca / Computers in Industry 120 (2020) 103243

Fig. 13. Execution time of the verification process.

e of t

t
e
o
w

p
s
w
t
s
s

7

o

Fig. 14. Execution tim

o describe the time patterns necessary in each case [26]. These
lements, included in the model, can help in the fault detection
r prevention, combined with a monitoring architecture [14], even
hen the information is partial or incomplete [27].

Different techniques have been used to model and analyze tem-
oral elements combined with business process artifacts [28]. This
pecifically necessitates incorporating a notion of metric time as
ell as time distances and deadlines for process activities. Referring

o [29] again, it can be argued that none of the existing approaches
upports these temporal specifications within compliance con-
traints or to multiple instances.
.2. Prognosing declarative models

Conformance checking has been used to verify the correctness
f declarative models in different scenarios and for different lan-
he prognosis process.

guages [30,31]. The detection of redundancies or inconsistencies in
declarative process models has been an object of study [32], not
being tackled the inclusion of time components neither multiple
instances in this analysis before our proposal.

However, not only verification is relevant. As discussed in [29],
the proactive management of compliance violations during process
run-time constitutes an important functionality, advancing a pos-
sible incongruity before it occurs. Even though the evaluation of
existing approaches provided in [29] shows that some of them sup-
port proactive management, these approaches focus on detecting
violations caused by the interplay between compliance constraints.
By contrast, in our approach, the focus is centered on foreseeing vio-
lations that might commit during the process execution for a loss

of robustness.

However, the new challenges tackled in this paper are related
to the time-patterns adapted or enlarged to support how multiple

sca / C

i
t
p
a
n

7

t
C
m
L
e
(
u
a
a
a
e
p
t
n
a
A
t
f
e
t
a
t
a
t
a
i
t
n
(
o
a
a
(
r
c
c
(
a
t
e

8

i
h
f
d
t
m

d
d
c

C

D. Borrego, M.T. Gómez-López and R.M. Ga

nstances can be time-affected. The search of general mechanisms
hat help organizations to align their decisions has been analyzed
reviously [33], but not from the declarative model perspective. In

 previous work [3], the time-aware prognosis was included, but
ot taking into account the multiple instance perspective.

.3. Evaluation of business process prognosis

The verification of the declarative models has been guided by the
ype of paradigm used to model them [34]. In this paper, we opt for
onstraint Programming, although it is not the unique reasoning
ethod used for compliance monitoring, as found in the literature.

inear Temporal Logic and Event Calculus are also important ref-
rences. One of the most used techniques is Linear Temporal Logic
LTL) expressions [35][36] that can be used to represent desirable or
ndesirable patterns. LTL formula can be evaluated by obtaining an
utomaton that is equivalent to the formula and checking whether

 path corresponds to the automaton. Unfortunately, the use of
utomatons does not allow us to infer the correct time intervals
ven before the compliance rules are activated. It is due to our pro-
osal does not only analyze the compliance rules activated because
he antecedent occurred. We include the whole model in the diag-
osis process as in [37], but with the difference that in this case

 declarative language is used instead of an imperative language.
nother evaluation technique to verify the process correctness is

he Event Calculus [38], which is a first-order logic programming
ormalism that represents the time-varying nature of facts, the
vents that have taken place at given time points and the effect that
hese events reflect on the state of the system. Although one of the
dvantages of the use of event calculus is deductive reasoning about
he effects of the occurrence of events and, more importantly, the
bductive reasoning to discover a hypothesis about the malfunction
o explain the evidence of events. Unfortunately, it cannot propose

 new set of data (events in this case) to avoid this malfunction,
nferring possible faults in the future. Once a model is described,
he next challenge is how to compute its robustness and correct-
ess. We have decided to use Constraint Programming because:
1) it is a very mature area that has been applied to a wide range
f problems, and with a high level of complexity; (2) it uses prop-
gation techniques to reduce the search space efficiently; (3) there
re numerous tools and algorithms to model and solve problems;
4) it permits an easy definition of the Complex data using a wide
ange of constraints (such as implication constraints, disjunctive
onstraints, reified constraints, global constraints, and channeling
onstraints), which allow the modeling of all parts of the problem
both declarative model with time patterns and running instances);
nd therefore (5) it makes possible and easier the performing of
he verification, prognosis and robustness analysis effectively and
fficiently.

. Conclusions and future work

The detection of malfunctions in a system is very important, but
t is always performed a posteriori implying that the malfunction
as already happened. This is why this paper presents a framework

or prognosticating a possible error before it occurs. The proposal
evelops a mechanism for the prognosis at run-time of declara-
ive business processes considering the concurrent execution of

ultiple instances.
To this end, and as the previous modeling of the problem, we

efine, analyze and formalize time and activity patterns, so that

ifferent multi-instance casuistry regarding concurrency and syn-
hronization is taken into account.

To compute the verification and prognosis automatically, the
onstraint Programming paradigm is used, making use in particular
omputers in Industry 120 (2020) 103243 13

of the search of (1,0)-super solutions for the robustness analysis,
and using a real scenario to deploy it.

The framework performs well in terms of execution time, with
promising results due to the use of Constraint Programming.

As future work, some interesting lines are being analyzed, such
as the consideration of scenarios subject to some uncertainties like,
for example, to prioritize instances so that they may not execute an
activity by their arrival time, or even the possibility of count on a
batch execution that requires the grouping of instances with some
similar characteristics.

Likewise, we plan to include activities with non-atomic execu-
tions, and also activities requiring more than one type of resource.

Authors’ contributions

Diana Borrego: Methodology, Software, Validation, Formal
analysis, Investigation, Writing – Original Draft, Writing – Review
& Editing, Visualization

María Teresa Gómez-López: Conceptualization, Methodology,
Investigation, Resources, Supervision

Rafael M. Gasca: Formal analysis, Investigation, Supervision

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgement

This work has been partially funded by the Ministry of Science
and Technology of Spain by ECLIPSE projects and the European
Regional Development Fund (ERDF/FEDER).

References

Yan, R., Chen, X., Wang, P., Onchis, D.M., 2019. Deep learning for fault diagnosis and
prognosis in manufacturing systems. Comput. Ind. 110, 1–2, http://dx.doi.org/
10.1016/j.compind.2019.05.002.

Pérez-Álvarez, J.M., Maté, A., López, M.T.G., Trujillo, J., 2018. Tactical business-
process-decision support based on kpis monitoring and validation. Comput. Ind.
102, 23–39, http://dx.doi.org/10.1016/j.compind.2018.08.001.

Gómez-López, M.T., Parody, L., Gasca, R.M., Rinderle-Ma, S., 2014. Prognosing the
compliance of declarative business processes using event trace robustness. In:
On the Move to Meaningful Internet Systems: OTM 2014 Conferences – Con-
federated International Conferences: CoopIS, and ODBASE 2014, Amantea, Italy,
October 27–31, 2014, Proceedings, pp. 327–344, http://dx.doi.org/10.1007/978-
3-662-45563-0 19.

Liu, J., Hu, J., 2007. Dynamic batch processing in workflows: model and implemen-
tation. Future Gener. Comput. Syst. 23 (3), 338–347, http://dx.doi.org/10.1016/
j.future.2006.06.003.

Pufahl, L., Weske, M., 2013. Batch activities in process modeling and execution.
In: Service-Oriented Computing – 11th International Conference, ICSOC 2013,
Berlin, Germany, December 2–5, 2013, Proceedings, pp. 283–297, http://dx.doi.
org/10.1007/978-3-642-45005-1 20.

Goedertier, S., Vanthienen, J., Caron, F., 2015. Declarative business process mod-
elling: principles and modelling languages. Enterprise IS 9 (2), 161–185.

Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P., 2011. Runtime
verification of ltl-based declarative process models. In: Runtime Verification –
Second International Conference, RV 2011, San Francisco, CA, USA, September
27–30, 2011, pp. 131–146, http://dx.doi.org/10.1007/978-3-642-29860-8 11.

van der Aalst, W.M.P., 2011. Process Mining – Discovery, Conformance and Enhance-
ment of Business Processes. Springer, http://dx.doi.org/10.1007/978-3-642-
19345-3.

Pesic, M., van der Aalst, W.M.P., 2006. A declarative approach for flexible business
processes management. In: Proceedings of the 2006 International Conference
on Business Process Management Workshops, BPM’06. Springer-Verlag, Berlin,
Heidelberg, pp. 169–180.

Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M., 2007. Declarative and proce-
dural approaches for modelling clinical guidelines: addressing flexibility issues.
Business Process Management Workshops, Vol. 4928 of Lecture Notes in Com-
puter Science, 335–346.
Montali, M., Maggi, F.M., Chesani, F., Mello, P., Aalst, W.M.P.V.d., 2014. Monitoring
business constraints with the event calculus. ACM Trans. Intell. Syst. Technol. 5
(1).

Dunkl, R., Fröschl, K.A., Grossmann, W., Rinderle-Ma, S., 2011. Assessing medical
treatment compliance based on formal process modeling. In: Information Qual-

dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2019.05.002
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1016/j.compind.2018.08.001
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1007/978-3-662-45563-0_19
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1016/j.future.2006.06.003
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-45005-1_20
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-29860-8_11
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3
dx.doi.org/10.1007/978-3-642-19345-3

1 sca / C

R

G

v

H

C

P

P

G

v

B

G

S

P

and New Directions, Proceedings of ISD 2011, Heriot-Watt University, Edin-
burgh, Scotland, UK, August 24–26, 2011, pp. 457–469, http://dx.doi.org/10.
1007/978-1-4614-4951-5 37.
4 D. Borrego, M.T. Gómez-López and R.M. Ga

ity in e-Health – 7th Conference of the Workgroup Human-Computer Interaction
and Usability Engineering of the Austrian Computer Society, USAB 2011, Graz,
Austria, November 25–26, 2011, pp. 533–546, http://dx.doi.org/10.1007/978-3-
642-25364-5 37, Proceedings.

ossi, F., van Beek, P., Walsh, T. (Eds.), 2006. Handbook of Constraint Programming.
Elsevier.

ómez-López, M.T., Gasca, R.M., Rinderle-Ma, S., 2013. Explaining the incorrect
temporal events during business process monitoring by means of compli-
ance rules and model-based diagnosis. In: 17th IEEE International Enterprise
Distributed Object Computing Conference Workshops, EDOC Workshops, Van-
couver, BC, Canada, September 9–13, 2013, pp. 163–172, http://dx.doi.org/10.
1109/EDOCW.2013.25.

an der Aalst, W.M.P., et al., 2011. Process mining manifesto. In: Business Process
Management Workshops – BPM 2011 International Workshops, Clermont-
Ferrand, France, August 29, 2011, pp. 169–194, http://dx.doi.org/10.1007/978-
3-642-28108-2 19.

ebrard, E., Hnich, B., Walsh, T., 2004. Super solutions in constraint programming.
In: Régin, J.-C., Rueher, M. (Eds.), CPAIOR, Vol. 3011 of Lecture Notes in Computer
Science. Springer, pp. 157–172.

heeseman, P., Kanefsky, B., Taylor, W.M., 1991. Where the really hard problems are.
In: Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence – vol. 1, San Francisco, CA, USA, pp. 331–337.

esic, M., van der Aalst, W.M.P., 2006. A declarative approach for flexible business
processes management. In: Business Process Management Workshops, BPM
2006 International Workshops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws,
Vienna, Austria, September 4–7, 2006, Proceedings, pp. 169–180, http://dx.doi.
org/10.1007/11837862 18.

arody, L., López, M.T.G., Gasca, R.M., 2016. Hybrid business process modeling for
the optimization of outcome data. Inf. Softw. Technol. 70, 140–154, http://dx.
doi.org/10.1016/j.infsof.2015.10.007.

oedertier, S., Vanthienen, J., Caron, F., 2015. Declarative business process mod-
elling: principles and modelling languages. Enterp. Inf. Syst. 9 (2), 161–185,
http://dx.doi.org/10.1080/17517575.2013.830340.

an der Aalst, W.M.P., Weske, M., 2005. Case handling: a new paradigm for business
process support. Data Knowl. Eng. 53 (2), 129–162, http://dx.doi.org/10.1016/j.
datak.2004.07.003.

hattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J., 2007. Towards formal analysis
of artifact-centric business process models. In: BPM, Vol. 4714 of Lecture Notes
in Computer Science. Springer, pp. 288–304.

oedertier, S., Vanthienen, J., 2006. Designing compliant business processes with
obligations and permissions. Business Process Management Workshops, Vol.
4103 of Lecture Notes in Computer Science, 5–14.
adiq, S.W., Orlowska, M.E., Sadiq, W., 2005. Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30 (5), 349–378, http://dx.doi.org/
10.1016/j.is.2004.05.002.

esic, M., Schonenberg, H., van der Aalst, W.M.P., 2007. DECLARE: full support for
loosely-structured processes. In: EDOC, IEEE Computer Society, pp. 287–300.
omputers in Industry 120 (2020) 103243

Lanz, A., Reichert, M., Weber, B., 2016. Process time patterns: a formal foundation.
Inf. Syst. 57, 38–68, http://dx.doi.org/10.1016/j.is.2015.10.002.

Chesani, F., Mello, P., De Masellis, R., Francescomarino, C.D., Ghidini, C., Montali, M.,
Tessaris, S., 2018. Compliance in business processes with incomplete informa-
tion and time constraints: a general framework based on abductive reasoning.
Fundam. Inform. 161 (1–2), 75–111, http://dx.doi.org/10.3233/FI-2018-1696.

Combi, C., Gambini, M., Migliorini, S., Posenato, R., 2014. Representing busi-
ness processes through a temporal data-centric workflow modeling language:
an application to the management of clinical pathways. IEEE Trans. Syst.
Man Cybern.: Syst. 44 (9), 1182–1203, http://dx.doi.org/10.1109/TSMC.2014.
2300055.

Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M., 2013. A frame-
work for the systematic comparison and evaluation of compliance monitoring
approaches. 17th Int’l EDOC Conference.

Smedt, J.D., Ciccio, C.D., Vanthienen, J., Mendling, J., 2016. Model checking of mixed-
paradigm process models in a discovery context – finding the fit between
declarative and procedural. In: Business Process Management Workshops – BPM
2016 International Workshops, Rio de Janeiro, Brazil, September 19, 2016, pp.
74–86, http://dx.doi.org/10.1007/978-3-319-58457-7 6, Revised Papers.

Borrego, D., Gasca, R.M., López, M.T.G., 2015. Automating correctness verification of
artifact-centric business process models. Inf. Softw. Technol. 62, 187–197.

Ciccio, C.D., Maggi, F.M., Montali, M., Mendling, J., 2017. Resolving inconsistencies
and redundancies in declarative process models. Inf. Syst. 64, 425–446, http://
dx.doi.org/10.1016/j.is.2016.09.005.

Voisin, A., Levrat, E., Cocheteux, P., Iung, B., 2010. Generic prognosis model for proac-
tive maintenance decision support: application to pre-industrial e-maintenance
test bed. J. Intell. Manuf. 21 (2), 177–193.

Cabot, J., Clarisó, R., Guerra, E., de Lara, J., 2010. Verification and validation of declar-
ative model-to-model transformations through invariants. J. Syst. Softw. 83 (2),
283–302.

van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F., 2005. Process mining and ver-
ification of properties: an approach based on temporal logic. OTM Conferences
(1), Vol. 3760 of Lecture Notes in Computer Science, 130–147.

Awad, A., Decker, G., Weske, M., 2008. Efficient compliance checking using BPMN-Q
and temporal logic. In: BPM, Vol. 5240 of Lecture Notes in Computer Science.
Springer, pp. 326–341.

Gómez-López, M.T., Gasca, R.M., Parody, L., Borrego, D., 2011. Constraint-driven
approach to support input data decision-making in business process manage-
ment systems. In: Information Systems Development, Reflections, Challenges
Kowalski, R.A., Sergot, M.J., 1986. A logic-based calculus of events. New Gener. Com-
put. 4 (1), 67–95, http://dx.doi.org/10.1007/BF03037383.

dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1007/978-3-642-25364-5_37
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1109/EDOCW.2013.25
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/978-3-642-28108-2_19
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1007/11837862_18
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1016/j.infsof.2015.10.007
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1080/17517575.2013.830340
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.datak.2004.07.003
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2004.05.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.1016/j.is.2015.10.002
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.3233/FI-2018-1696
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1109/TSMC.2014.2300055
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1007/978-3-319-58457-7_6
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1016/j.is.2016.09.005
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/978-1-4614-4951-5_37
dx.doi.org/10.1007/BF03037383
dx.doi.org/10.1007/BF03037383
dx.doi.org/10.1007/BF03037383
dx.doi.org/10.1007/BF03037383
dx.doi.org/10.1007/BF03037383
dx.doi.org/10.1007/BF03037383
dx.doi.org/10.1007/BF03037383

	Prognosis of multiple instances in time-aware declarative business process models
	1 Introduction
	1.1 Problem statement
	1.2 Contribution

	2 Formalization of the time patterns in declarative models for multiple instances
	2.1 Observational model formalization
	2.2 Model formalization
	2.2.1 Activity patterns
	2.2.2 Order and time relation between activities

	3 Motivating example
	4 Constraint programming to prognosticate declarative Models
	4.1 Formulation of event traces
	4.2 Activities and time patterns formulation
	4.3 CSP model of the motivating example

	5 Automating prognosis based on robustness analysis
	5.1 Computing verification for declarative models and multiple instances
	5.2 Computing prognosis for declarative models and multiple instances
	5.2.1 How to obtain the FT?
	5.2.2 When is the system robust?

	6 Evaluation
	7 Related works
	7.1 Declarative business process models
	7.2 Prognosing declarative models
	7.3 Evaluation of business process prognosis

	8 Conclusions and future work
	Authors contributions
	Conflicts of interest
	Acknowledgement
	References

