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Abstract

To model operational business processes in an accurate way, workflow models
need to reference both the control flow and dataflow perspectives. Checking
the correctness of such workflow models and giving precise feedback in case
of errors is challenging due to the interplay between these different perspec-
tives. In this paper, we propose a fully automated approach for diagnosing
correctness of semantic workflow models in which the semantics of activities
are specified with pre and postconditions. The control flow and dataflow
perspectives of a semantic workflow are modeled in an integrated way us-
ing Artificial Intelligence techniques (Integer Programming and Constraint
Programming). The approach has been implemented in the DiagFlow tool,
which reads and diagnoses annotated XPDL models, using a state-of-the-art
constraint solver as back end. Using this novel approach, complex semantic
workflow models can be verified and diagnosed in an efficient way.

Keywords: workflow, business process management, diagnosis, constraint
programming, integer programming

1. Introduction

Nowadays, organizations automate their business processes with workflow
models that can be enacted using workflow management systems (WFMSs).

∗Corresponding author. Tel. +34 954 556 234. Fax. +34 954 557 139
Email addresses: dianabn@us.es (Diana Borrego), h.eshuis@tue.nl (Rik Eshuis),
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For organizations it is essential to ensure the correct operation of workflow
models at design time, before the workflow models get enacted. An incor-
rect operational workflow can dissatisfy customers and fixing the errors can
be very costly, certainly compared to the costs of fixing the workflow model
before it is deployed. Correctness of a workflow model can be verified by
exhaustively checking all possible executions. Detected errors should be di-
agnosed, for instance by providing an error path that shows the cause of the
error, such that errors can be repaired in a quick and effective way [1].

Workflow models can reference different perspectives [2]. Most workflow
modeling and verification approaches only consider the control flow perspec-
tive [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], which is about the order in which
the individual activities of a business process are executed. Another relevant
perspective is the dataflow perspective [14], which details the flow of data
among activities subject to certain constraints. The dataflow perspective is
important because data constraints influence the possible executions of ac-
tivities [14] and in turn, the execution of activities results in certain data
constraints being enforced.

An effective means to express data constraints is to annotate activities
in a workflow model with pre and postconditions that specify the effect on
the data state for each activity. For instance, in the Sarbanes-Oxley Act
of 2002, the internal audit department takes the lead and works alongside
workflow owners for each process that has a direct effect on the data for the
financial reporting. Annotating activities inside these processes with pre and
postconditions facilitates compliance checking to ensure that workflows are
properly designed.

Only recently, approaches for verifying workflow models with dataflows
have been proposed [14, 15, 16, 17, 18]. However, these approaches do not
consider diagnosis of dataflow errors. Diagnosing dataflow errors is complex
due to the interplay between control flow and dataflow dependencies, as we
explain in Section 2 with an example.

The goal of this paper is to develop an approach for diagnosing the cor-
rectness of semantic workflow models, containing activities whose effects are
formally specified using pre and postconditions. An activity can start if the
execution of the workflow model has reached the activity and its precondi-
tion is satisfied. Upon completion, the activity delivers data that satisfies
its postcondition. An execution of the workflow can reach an activity whose
precondition is not satisfied. In that case the execution gets stuck at the
activity and fails.
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We distinguish between two different notions of correctness to diagnose
such dataflow errors:

• May-correctness. A workflow model is may-correct if every activity can
be executed at least once, so there is an execution in which the activity
is done.

• Must-correctness. A workflow model is must-correct if every possible
execution that reaches an activity satisfies the precondition of the ac-
tivity.

The diagnosis is performed at design-time, using Artificial Intelligence
techniques to compute the execution instances allowed by a workflow model.
For diagnosis, the workflow model is translated into two models: (1) an
Integer Programming model (IP model), to determine the different instances
of execution of the workflow, and (2) the preconditions and postconditions of
the activities are modeled as constraints in a Constraint Satisfaction Problem
(CSP) [19], following a BNF grammar in order to avoid any ambiguity.

This paper makes several contributions:

• Workflow data graphs are proposed as a formalism for modeling se-
mantic workflows with pre and postconditions for the activities. These
conditions are modeled as constraints according to a well-defined gram-
mar in BNF.

• Two correctness notions for workflow data graphs, may and must-
correctness, are proposed and novel diagnosis algorithms are developed
for verifying may and must-correctness. The algorithms are complete:
neither false positives nor false negatives are generated. Moreover, the
algorithms offer precise diagnosis of the detected errors, indicating the
execution causing the error where the workflow gets stuck.

• The approach has been implemented in the DiagFlow tool, presented
in [1]. The tool reads XPDL models [20] in which the semantics of
activities and the corresponding dataflow are specified using extended
attributes.

This paper is organized as follows. Section 2 presents a motivating ex-
ample to illustrate the concepts of may and must-correctness. Section 3
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introduces workflow data graphs as a formal model for semantic workflows
and defines may and must-correctness on workflow data graphs. Section 4
defines the IP and CSP formulations of a workflow data graph. The process
of diagnosis is explained, and two algorithms are presented. The diagnosis
of the motivating example is performed. Section 5 gives implementation de-
tails. Section 6 shows experimental results. Section 7 presents an overview
of related work found in the literature. And finally, conclusions are drawn
and future work is proposed in Section 8.

2. A Motivating Example

This section introduces an example of a semantic workflow model, shown
in Figure 1. This example describes the handling of a conference for an
organizing committee, and it is used to illustrate the concepts of may and
must-correctness in semantic workflow models. We use BPMN 2.0 [21] to
visualize workflow models.

Figure 1: Motivating Example

Figure 1 shows a workflow that consists of nine activities (rectangles with
rounded corners) and eight gateways or control nodes (diamonds), and a start
and end event (circles). A gateway with one incoming edge and multiple
outgoing edges is called a split; a gateway with multiple incoming edges
and one outgoing edge is a join. Gateways with the +-symbol are AND: all
incoming edges are required to pass the gateway, and the gateway activates
all outgoing edges. The other gateways are XOR: one incoming edge can
pass the gateway and one of the outgoing edges is activated as a result. In
the figure, the activity labels are abbreviations of activity names that are
listed in Table 1. The workflow performs the following steps:

1. The workflow starts with the establishment of the conference rate (ECR
activity), in order to begin the registration period.
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Table 1: Activities of the example

Abbreviation Activity

ECR Establishment of Conference Rate
SAP Selection of Accepted Papers
D Dinner
L Lunch
OS Other expenses + Social event
O Other expenses
R Registration
IGS International Guest Speaker
NGS National Guest Speaker

2. In the activity SAP, the process of acceptance of papers for the confer-
ence takes place. The number of final papers is determined.

3. The workflow is split into two branches. In the upper one, the cost
of the gala dinner (D) and the lunches (L) to serve during the confer-
ence are calculated concurrently. On the lower branch, the workflow
is routed according to the money spent in the social events during the
conference (O or OS activities).

4. Next, the registration of the attendees of the conference takes place
(R).

5. And finally, the workflow is routed depending on the available money
to spend in the invitation of national or international guest speakers
(NGS or IGS).

The activities in the example consume and produce data during the ex-
ecution of the workflow by reading and writing variables. Those variables
are listed in Table 2 with their corresponding domains and meanings. Ta-
ble 3 shows how these variables are used by the activities of the example,
indicating if they are read (rd) or written (wt).

Each activity in a workflow uses two types of condition over the dataflow
which must be satisfied. A precondition must be satisfied prior to execution
of the activity. If not, the workflow gets stuck at the activity and fails. A
postcondition is satisfied immediately after the activity has finished. The
preconditions and postconditions of the activities in the example in Figure 1
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Table 2: Data input for the example in Figure 1

Variable Domain Meaning

regFee {200..390} Conference registration fee
sponsorship {0..15000} External contributions to support the event
numPapers {50..80} Number of accepted papers
dinner {60..100} Gala dinner cost
lunch {10..30} Cost of each lunch served during the conference
others {30..185} Money for other expenses, like social events
confAtt {75..170} Number of conference attendees
guestSpeaker {0..10000} Money to spend in inviting a guest speaker

are shown in Table 4. The notation is explained in the next section.
It is easy to check that the workflow is correct from the control flow

perspective: each activity can be performed and there are no deadlocks, so
the workflow can always complete. To assess the correctness of the example
from the dataflow perspective, there are two important types of questions.
Both questions test whether the precondition of an activity a can be satisfied
by considering an arbitrary partial execution of the workflow in which a is
to be executed next. The partial execution of the workflow results in a data
state (assignment of values to variables) that has to satisfy the precondition
of a.

One question is whether for each activity a there exists at least one partial
execution of the workflow in which a can be done next and the resulting
data state satisfies the precondition of a. In that case, activity a can become
enabled and executed. Otherwise, the execution of the workflow may get
stuck at a, if the current data state does not satisfy the precondition of a. If
every activity can be executed, the workflow is may-correct.

The other relevant question is whether every possible partial execution
of the workflow results in a data state that satisfies the precondition of the
activity to be executed next. Phrased differently, can every possible partial
execution always be continued such that eventually the end state is reached?
If the answer is positive, the workflow is must-correct.

Note that must-correctness is stronger than may-correctness. It is straight-
forward to check that if a workflow is must-correct, it is also may-correct.
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Table 3: Data read and written on each activity

Activities
Variables ECR SAP D L OS O R IGS NGS

regFee wt - rd rd rd rd rd rd rd
sponsorship wt - rd rd rd rd - rd rd
numPapers - wt rd rd rd rd rd - -

dinner - - wt - - - rd rd rd
lunch - - - wt - - rd rd rd
others - - - - wt wt rd rd rd

confAtt - - - - - - wt rd rd
guestSpeaker - - - - - - - wt wt

May-correctness can be used as sanity check for each activity to see whether
its precondition is not too strict. Must-correctness can be used to check the
correctness of the entire workflow with all the activities.

In the case of the example in Figure 1, the workflow is may-correct since
every activity is executable. On the other hand, it is not must-correct: for
example, if the partial execution contains activities ECR, SAP, D, L, and OS
then the resulting data state can assign the following values to the variables:
regFee=200, dinner=100, lunch=30, others=30. But now the activity to be
executed next, R, has a precondition that is false, since 3∗30+100+30 ≮ 200.
Therefore, with that assignment of the variables, the workflow gets stuck at
activity R.

Note that all activities have correct pre and postconditions, and that the
workflow model has a correct control flow definition: no deadlock occurs if
the dataflow (pre and postconditions) is abstracted from. The error is caused
by the interplay between the control flow, which specifies that ECR, SAP,
D, L, and OS are performed before R, and the dataflow as specified by the
pre and postcondition of each activity, which determines the possible data
states just before R.

The error can be repaired in several ways, for instance by relaxing the
precondition of R, by strengthening the postconditions of D, L and OS, or
by rearranging the control flow. So finding an error at a precondition does
not necessarily imply the precondition itself is flawed.
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Table 4: Activities with their pre and postconditions

Activity Precondition and Postcondition

ECR pre: true
post: true

SAP pre: true
post: true

D pre: sponsorship > 0 ∨ numPapers > 60
post: regFee ∗ 0.1 ≤ dinner ∧ dinner ≤ regFee ∗ 0.35

L pre: sponsorship > 0 ∨ numPapers > 60
post: regFee ∗ 0.1 ≤ 3 ∗ lunch ∧ 3 ∗ lunch ≤ regFee ∗ 0.35

OS pre: sponsorship > 0 ∨ numPapers > 60
post: others ≤ 0.2 ∗ regFee+ 0.05 ∗ sponsorship ∧

others ≥ 0.05 ∗ regFee+ 0.05 ∗ sponsorship
O pre: sponsorship > 0 ∨ numPapers > 60

post: others ≤ 0.25 ∗ regFee ∧ others ≥ 0.05 ∗ regFee
R pre: 3 ∗ lunch+ dinner + others < regFee

post: numPapers ∗ 1.8 ≥ confAtt
∧numPapers ∗ 0.5 ≤ confAtt

NGS pre: confAtt ∗ (3 ∗ lunch+ dinner + others) <
confAtt ∗ regFee+ sponsorship

post: guestSpeaker ≥ 0.2 ∗ sponsorship ∧
guestSpeaker ≤ sponsorship+ 0.1 ∗ regFee ∗ confAtt

IGS pre: confAtt ∗ (3 ∗ lunch+ dinner + others) <
confAtt ∗ regFee+ sponsorship

post: guestSpeaker ≥ 0.4 ∗ sponsorship ∧
guestSpeaker ≤ sponsorship

3. Workflow Data Graphs

In order to analyze may and must-correctness of semantic workflows,
we propose an approach based on graph-theory and Artificial Intelligence
techniques.

In this section, we define workflow data graphs, including the structural
constraints that they should satisfy. Next, the notions of data instance sub-
graph and correctness for workflow data graphs are introduced. Finally, the
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concepts of partial instance subgraph and border activity are presented. The
definitions extend earlier proposed definitions for the control flow perspective
of workflow models [1, 22] by adding data.

3.1. Definition

A workflow data graph, such as the one shown in Figure 1, is a set of
activities that is ordered to a set of procedural rules. The effect of each
activity is specified with a pre and postcondition. The order of execution of
the activities is specified by means of directed edges, with a unique start and
a unique end node.

Definition 1. A workflow data graph is a tuple P = (Act, V,D,C,E, pre,
post, wt) where:

• Act is a set of activities;

• V is a set of typed variables;

• D is a set of finite domains (types), that contains for each variable
v ∈ V a finite domain Dv;

• C is a set of control nodes (gateways), partitioned into disjoints sets
of XOR splits SXOR, AND splits SAND, XOR joins JXOR, AND joins
JAND, and {start, end} where start is the unique start node and end the
unique end node. Each split in SXOR counts on condition expressions
for each gate of the gateway in order to specify the flow depending on
the data;

• E ⊆ Act× Act is a set of edges which determine precedence relation;

• pre : Act → Cs(V ) assigns to each activity its precondition (a con-
straint c ∈ Cs on the set of variables V );

• post : Act → Cs(V ) assigns to each activity its postcondition (a con-
straint c ∈ Cs on the set of variables V );

• wt : Act→ V assigns to each activity its written variables;

To simplify the exposition, OR gateways are not considered. We plan to
consider OR gateways in future work. Also, we do not consider guard condi-
tions. Other work considers verification of workflow models with dataflows
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and guard conditions but without preconditions [17]. In future work, we plan
to consider guard conditions.

Let a ∈ Act be an activity. We use the following rule. Variables in
the precondition of a, so in var(pre(a)), are read by a. Variables in the
postcondition of a, so in var(post(a)), are read and/or written by a.

Definition 2. Let v ∈ V be variable, let int val be an integer value, let
nat val be a natural value, and let float val be a float value. The set of
constraints on V , denoted Cs(V ), is generated by the following grammar in
BNF:

constraint ::= Atomic Constraint BOOL OP Constraint

| Atomic Constraint | ¬Constraint
BOOL OP ::= ∧ | ∨

Atomic Constraint ::= Function PREDICATE Function

Function ::= v FUNCTION Function

| v | int val | nat val | float val
PREDICATE ::= < | ≤ | = | > | ≥
FUNCTION ::= + | − | ∗

Next, each workflow data graph should satisfy the following structural
constraints on its control flow [1]:

1. the start node has no incoming edge and one outgoing edge;

2. the end node has one incoming edge and no outgoing edge;

3. each activity has one incoming and one outgoing edge;

4. each split node has one incoming and at least two outgoing edges;

5. each join node has at least two incoming edges and one outgoing edge;

6. each node is on a path from the start to the end node (connectedness);

7. the precedence relation is acyclic.

As it was mentioned in earlier work [1], formalizations of these constraints
are presented elsewhere [23]. The first five constraints are self-explanatory.
Constraints 1 and 2 were also included by Sadiq and Orlowska [22]. A work-
flow having more than one start point can be modeled by using immediately
after the start node a split node that connects to the different start points.
Similarly, a workflow with more than one end point can be modelled by using
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a join before the end node. The sixth constraint rules out unconnected work-
flows because such workflow graphs contain unreachable parts and therefore
are flawed by default.

The last constraint is also placed by other works on workflow verifica-
tion [22, 3, 9]. However, workflow graphs are still sufficiently expressive to
model loops that involve blocked iteration [22, 16]. Basically, any block in
a correct workflow graph can be repeated multiple times without affecting
control flow correctness, since a block has a single point of entry and a single
point of exit. Since we do not consider guard conditions, to verify workflow
models with loops a strong fairness constraint is required to ensure that loops
are exited eventually [24].

As in [1], we also use auxiliary functions inedge, outedge : N → P(E),
which both map each node to a set of edges. For a node n, inedge(n) is
the set of edges entering n, while outedge(n) is the set of edges leaving n.
Formally, inedge(n) = {(x, y) ∈ E | y = n} and outedge(n) = {(x, y) ∈
E | x = n}. We use subscripts to identify the different elements of inedge(n)
and outedge(n). For example, if inedge(n) = {e1, e2}, then inedge1(n) = e1
and inedge2(n) = e2.

3.2. Analysis

In order to check the may and must-correctness of a workflow, it is neces-
sary to check the executability of each activity. That executability depends
on the precondition of the activity being checked, and on the pre and post-
conditions of the activities executed before it in a particular instance of the
workflow. To define it formally, Sadiq and Orlowska [22] introduce the notion
of an instance subgraph, which corresponds to a particular execution instance
of a workflow graph.

An instance subgraph represents a subset of workflow activities that may
be executed for a particular instance of a workflow. The part of the workflow
graph that covers the visited nodes is an instance subgraph because it rep-
resents a specific execution instance based on the workflow graph. A formal
definition of instance subgraphs is presented elsewhere [23].

For this paper, we introduce two types of instance subgraphs: partial and
complete. A partial instance subgraph of a workflow graph is generated by
traversing a workflow graph from the start node, using the following rules:

• if an XOR split node is visited, one of its outgoing edge is visited based
on a guard condition;
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• if an AND split node is visited, then all outgoing edges are visited [1];

• if an XOR join node is visited, then its outgoing edge is visited only if
one of its incoming edges has been visited too and all other incoming
edges have not been visited [1];

• if an AND join node is visited, then its outgoing edge is visited only if
all its incoming edges have been visited too [1].

• if an activity is visited, then its outgoing edge is visited too.

A complete instance subgraph is generated by traversing a workflow graph
from the start node using the rules for partial instance subgraphs plus the
additional rule:

• if the incoming edge of an activity is visited, then the activity is visited
too.

Control flow verification [1, 22] only considers complete instance subgraphs.
However, to verify dataflows, we also need to consider partial instance sub-
graphs, which contain the incoming edge of an activity but not the activity
itself. To check whether the precondition of the activity is satisfied by the
partial instance subgraph, we need to identify the possible assignments of
variables written by the activities in the instance subgraph.

A data instance subgraph is an instance subgraph together with an as-
signment of values to the variables in V . The assignment must be feasible
according to the postcondition of the activities visited last. To formalize
this properly, we introduce the following notion: an activity a in an instance
subgraph (partial or complete) is a border activity if there is no activity a′

in the instance subgraph such that there is a directed path from a to a′.
For the workflow in Figure 1, the subset of activities shadowed in Figure 2
({ECR, SAP,D,L,OS}) induces a partial data instance subgraph, whose
border activities are D, L, and OS. Note that due to the traversal rules
the data instance subgraph also contains the successor (control) nodes of the
border activities. In a data instance subgraph, the assignment of values to
variables must be consistent with the postcondition of each border activity.

Definition 3. A data instance subgraph of a workflow graph (Act, V,D,C,E,
pre, post, wt) is a tuple (Act′, V ′, D′, C ′, E ′, pre′, post′, wt′, ν) where:
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Figure 2: Example of instance subgraph (shadowed activities)

• (Act′, V ′, D′, C ′, E ′, pre′, post′, wt′) is an instance subgraph with Act′ ⊆
Act, V ′ = V , D′ = D, C ′ ⊆ C, E ′ ⊆ E, pre′ = pre ∩ (Act′ → Cs(V )),
post′ = post ∩ (Act′ → Cs(V )), and wt′ = wt ∩ (Act′ → V ), and

• ν is an assignment of values to the variables in V ′, so that each vari-
able v ∈ V ′ is instantiated with a value ν(v) in its domain D′(v). For
each border activity a ∈ Act′, the valuation of variables in var(post(a))
should satisfy the postcondition post(a). As an example, for the border
activities D, L and OS in Figure 2, the valuation ν of var(post(D)) (i.e.,
ν(regFee) and ν(dinner)), var(post(L)) (i.e., ν(regFee) and ν(lunch))
and var(post(OS)) (i.e., ν(others), ν(regFee) and ν(sponsorship)), sat-
isfies the postconditions post(D), post(L) and post(OS) respectively.

There are two types of possible error for data instance subgraphs. First,
a data instance subgraph can get stuck at an XOR or AND join. Then it
contains the join but not the outgoing edge of the join [1]. This is a control
flow error that can be detected using existing techniques [1, 22]. We therefore
ignore such errors for the remainder of this paper.

The second error is a dataflow error. Different types of dataflow errors
can occur, depending on the level of detail on which the dataflow is specified.
At the minimal level, a workflow model specifies for each activity which
variables it reads and writes, but the workflow model contains no pre and
postconditions. Sun et al. [14] have analyzed which dataflow errors can occur
in such workflow models. For the purpose of this paper, the following two
errors are important:

• Data is missing if a variable is read by an activity, so referenced in its
precondition, but not written in any preceding activity.
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• Data is conflicting if the same variable is written in two parallel ac-
tivities. In that case, one activity overwrites the value of the variable
written earlier by the other activity.

These dataflow errors at the basic level can cause unexpected process in-
terruptions and should therefore be avoided. In Section 4.2 we define an
algorithm for detecting data conflicts.

At a more advanced level, a workflow model not only contains variables
read and written by activities, but also contains pre and postconditions for
activities. For such workflow models, dataflow errors can occur that are not
considered by Sun et al. [14]. A precondition of an activity is violated if the
precondition is not satisfied when the activity can be executed from a control
flow point of view. In that case, the workflow gets stuck and fails.

To formalize precondition violation errors, we introduce the notion of
trigger. A partial instance subgraph triggers activity a if it does not contain
a but does contain the incoming edge of a, which is unique. So the instance
subgraph “stops” just before a. In the example in Figure 2, the shadowed
partial instance subgraph triggers the activity R.

Based on the notion of trigger, we define two new notions of dataflow
correctness (cf. Def. 6 and Def. 7). First, we introduce two auxiliary notions
in Definition 4 and Definition 5.

Definition 4. An activity a is may-executable if there exists a data instance
subgraph that triggers a and whose valuation of variables satisfies the precon-
dition of a.

Definition 5. An activity a is must-executable if every data instance sub-
graph that triggers a has a valuation that satisfies the precondition of a.

Next, we define the two new notions of dataflow correctness.

Definition 6. A workflow data graph is may-correct if every activity is may-
executable.

Definition 7. A workflow data graph is must-correct if every activity is
must-executable.

In a must-correct workflow data graph, no preconditions can be violated.
But a may-correct workflow data graph might contain an activity whose
precondition can be violated. Still may-correctness is useful, as explained in
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Section 2: may-correctness can be used as sanity check for testing whether
preconditions are not too strict while must-correctness can be used to check
absence of precondition violations.

In the next section, we will formalize data instance subgraphs, including
the valuations they allow, as Constraint Satisfaction Problems. We will define
algorithms that use the IP and CSP formalizations to analyze the may and
must-correctness of workflow data graphs.

4. Diagnosis of Workflow Data Graphs: May and Must-correctness

In this section, we explain how may and must-correctness of workflow
data graphs can be diagnosed in a formal way. To formalize the control flow
perspective of workflow data graphs, we use an Integer Programming (IP)
formulation introduced in earlier work [1]. We formalize the dataflow per-
spective of workflow data graphs, i.e., pre and postconditions of activities,
as Constraint Satisfaction Problems (CSPs). The combination of IP formu-
lation and CSPs formalizes data instance subgraphs (cf. Definition 3). We
introduce two diagnosis algorithms for checking may and must-correctness.
If a workflow data graph is not may or must-correct, the algorithms identify
which activities are responsible for the incorrectness.

We first explain the combined IP and CSP model created for each work-
flow data graph, explaining the preprocessing which is necessary to avoid
conflicts among postconditions, and detect basic errors in the dataflow.

4.1. Combined IP and CSP model

We first explain the IP formulation that covers the control flow perspec-
tive of workflow data graph. Next we extend the IP model with CSP con-
straints that model the dataflow perspective of workflow data graph. Since
each IP constraint can also be interpreted as a CSP constraint, we can view
the entire model as a CSP model that we can check using CSP solvers.

IP formulation. For every activity a ∈ Act, we need to compute an instance
subgraph (cf. Definition 3) that triggers a. For this, we use the IP formula-
tion developed in earlier work [1], in which an IP variable is introduced for
each node and each edge of the workflow graph. A solution to the IP for-
mulation encodes an instance subgraph, where an IP variable has value 1 if
and only if the corresponding node or edge is part of the instance subgraph.
Complicating factor is that the existing IP formulation considers complete

15



instance subgraphs, that can only get stuck at (faulty) AND or XOR joins.
But an instance subgraph that triggers a is not complete.

To generate a partial instance subgraph that triggers a, we take the exist-
ing IP formulation [1] but replace one constraint. The existing IP formulation
uses for each a ∈ Act the constraint inedge1(a)− a = 0, which states that if
the incoming edge of a is activated, so inedge1(a) = 1, then a is activated as
well, so a = 1. To model that the incoming edge of a is activated but not a,
we replace for every a ∈ Act the constraint inedge1(a)−a = 0 in the original
IP formulation [1] with inedge1(a) >= a. This constraint allows that the
subgraph “stops” at a (inedge1(a) = 1 and a = 0) but disallows that a is
spontaneously activated, so inedge1(a) = 0 and a = 1 is not allowed.

To generate partial instance subgraphs, as it was mentioned before, we use
a slightly modified version of the basic IP formulation [1]. All constraints
below, except IP4, are taken from the basic IP formulation [1]. For AND
joins we use the relaxed IP formulation (IP4) to allow for partial instance
subgraphs that stop at an AND join. In that case, one of the parallel branches
synchronised by the AND join has completed, but the other ones have to
complete. This behavior is disallowed by the basic IP formulation.

Definition 8. For a workflow data graph P = (Act, V,D,C,E, pre, post, wt),
the Relaxed IP formulation maximizes the value at the end node subject
to the following constraints at each node in the workflow graph. For each
node and edge x of P , so x ∈ {Act ∪ C ∪ E}, an IP variable x is created.
The constraints, adapted from [1], are:

IP0 start = 1

IP1 For n ∈ (SAND ∪ SXOR ∪ {end}): inedge1(n) - n = 0

IP1a For n ∈ Act: inedge1(n) >= n

IP2 For n ∈ (Act ∪ JAND ∪ JXOR ∪ {start}): outedge1(n) - n = 0

IP3 For n ∈ SAND, being |outedge(n)| = k:
k∑

i=1

outedgei(n) - k·n = 0

IP4 For n ∈ JAND, being |inedge(n)| = k:
k∑

i=1

inedgei(n) - k·n ≤ 1

∀i ∈ [1, k]: n ≤ inedgei(n)
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IP5 For n ∈ SXOR, being |outedge(n)| = k:
k∑

i=1

outedgei(n) - n = 0

IP6 For n ∈ JXOR, being |inedge(n)| = k:
k∑

i=1

inedgei(n) - n = 0

CSP formulation. Constraint programming is based on the algorithmic res-
olution of Constraint Satisfaction Problems, and is an Artificial Intelligence
technique which provides us a way to model the semantic information of a
workflow data graph. A CSP [19] consists of the triple 〈V,D,Cs〉, where V
is a set of n variables v1, v2, ..., vn whose values are taken from finite domains
Dv1, Dv2, ..., Dvn respectively, and Cs is a set of constraints on their values.
The constraint ck (xk1, . . . , xkn) is a predicate that is defined on the Carte-
sian product Dk1× . . .×Dkj. This predicate is true iff the value assignment
of these variables satisfies the constraint ck.

The IP model encodes the control flow of a data instance subgraph. We
now explain how the dataflow, so the pre and postconditions of the activities
contained in the data instance subgraph, are translated into CSP constraints.
For each activity a ∈ Act, a constraint of the form a = 1⇒ (pre(a)∧post(a))
is defined. That is, if a is part of the partial instance subgraph, then its pre
and postcondition should be satisfied. We need the conjunction stipulating
that a = 1 to ensure that the pre and postcondition are only enforced if a is
activated, so a is in the instance subgraph.

Note that the pre and postcondition constraints hold for each activity in
the data instance subgraph, not just for border activities (cf. Definition 3).
This way, the constraints can be easily encoded in a CSP model. However,
this encoding complicates finding a solution to the CSP model, since the
postcondition of a border activity might conflict with the postcondition of
an earlier executed activity, if both activities reference the same variable.
For instance, a workflow data graph can contain two activities A and B that
both write integer variable i, where the postcondition of A is i < 10 and the
postcondition of B is i > 10. A data instance subgraph containing A and
B can assign only one value to i, so either the postcondition of A or of B
is violated. Therefore the postconditions of A and B conflict. To resolve
conflicts, we put the CSP model in SSA form, explained next.

SSA form. In order to resolve conflicts among postconditions, we will convert
the variables and constraints of the CSP model into Static Single Assignment
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(SSA) form. The SSA form is used in compiler design as an intermediate rep-
resentation for a program [25, 26]. If the workflow data graph is in SSA form,
each variable is assigned a value by only one activity. To turn a workflow data
graph into an SSA form, each variable v is separated into several variables
vi, each of which is assigned a value by only one activity.

A review of the literature reveals a highly cited algorithm to get the vari-
ables in a program in SSA form [26]. The algorithm computes the control
flow properties of programs, like conditions (XOR) or loops. As an example
of variables renaming, the workflow in Figure 3 uses 4 activities which read
and/or write the variables w, x, y, and z. Table 5 shows the pre and post-
conditions before and after renaming. Note that two new constraints have
been added at activity D. They are known as Φ-functions in [26], and they
indicate which assignment to the variable y reaches the join point. That is,
the value for variable y depends on the activity which was executed (B or
C ).

Figure 3: Workflow Example

However, the SSA form and the renaming algorithm is defined for sequen-
tial programs while workflow data graphs can contain parallelism. Due to
parallelism, dataflow errors can arise. For instance, two parallel activities
can assign the same variable a value (conflicting data, cf. Section 3). In that
case, the assignment to the variable at a subsequent AND join may not be
possible due to conflicting constraints in the CSP model. For instance, if in
Figure 3 the XOR nodes are replaced with AND nodes, both B and C write
variable y. The constraints encoding the Φ-function [26] for the subsequent
AND join are now unsatisfiable for y3.

Such dataflow errors are at a more basic level than violations of may and
must-correctness, as explained in Section 3. Therefore, these dataflow errors
need to be detected and resolved before may and must-correctness can be
diagnosed. The next section defines an algorithm for detecting basic dataflow
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Table 5: Variables before and after the renaming

Activity Before SSA After SSA

A pre: true pre: true
post: x > 20 post: x1 > 20

B pre: true pre: true
post: y = x+ 10 post: y1 = x1 + 10

z = x ∗ 2 z1 = x1 ∗ 2
C pre: x < 100 pre: x1 < 100

post: y = x+ 50 post: y2 = x1 + 50
w = y ∗ 2 w1 = y2 ∗ 2

D B = 1⇒ y3 = y1
C = 1⇒ y3 = y2

pre: y > x pre: y3 > x1
post: x = x ∗ y post: x2 = x1 ∗ y3

errors.

4.2. Detecting basic dataflow errors

As explained in Section 3, two basic dataflow errors are missing data and
conflicting data. We next discuss how each type of dataflow error can be
detected.

To identify missing data, we use the following constraint. For each activity
a ∈ Act that reads a variable v, if there is a directed path from the start
node to a where none of the activities in the path writes v, then missing data
is identified.

To identify conflicting data, we use the algorithm presented in Figure 4.
Variables in V are processed one by one in a while-loop. The current variable
being processed is current (line 6). The algorithm iterates over all activities
that write current in a nested for-loop. For each pair of distinct activities a1
and a2, the algorithm tests whether there exists a partial instance subgraph
that triggers both a1 and a2. The pre and postconditions of the activities
are not relevant for this check, so the CSP formulation is not used but only
the IP formulation.

The next theorem asserts the correctness of the algorithm.
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1: procedure Dataflow-No-Conflict-Check(Act, V,D,C,E, pre, post, wt)
2: error = false
3: unmarked = V
4: IP = make IP formulation for (Act ∪ C,E)
5: while unmarked 6= ∅ ∧ error = false do
6: current = a variable from unmarked
7: for a1 ∈ Act such that v ∈ wt(a1) do
8: for a2 ∈ Act such that v ∈ wt(a2) and a1 6= a2 do
9: IP1 = IP && (inedge1(a1)=1) && (a1=0) && (inedge(a2)=1)

&& (a2 = 0)
10: sol = solve IP1

11: if sol is not null then // CSP ′ is satisfiable, so conflict
12: Print ”Race between activities a1 and a2 for variable current”

13: error = true
14: end if
15: end for
16: end for
17: unmarked = unmarked \ { current }
18: end while
19: if error = false then
20: Print ”The workflow data graph is dataflow-correct”
21: end if
22: end procedure

Figure 4: Algorithm for checking absence of conflicts

Theorem 1. Let (Act, V,D,C,E, pre, post, wt) be a workflow data graph.
Algorithm Dataflow-No-Conflict-Check finds no error if and only if there is
no conflicting data.

Proof 1. In the proof, we use the following lemma: two activities are trig-
gered by the same instance subgraph if and only if they are in parallel. This
lemma follows immediately from the definition of instance subgraph and the
definition of trigger.
⇒: Since algorithm Dataflow-No-Conflict-Check finds no error, for each

variable there is no partial instance subgraph triggering two activities that
write the same variable. Therefore, there are no two parallel activities writing
the same variable. Therefore there is no conflicting data.
⇐: Suppose the algorithm finds an instance subgraph that triggers two
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activities a1 and a2 that both write variable v ∈ V . Then by definition there
is a data conflict.

4.3. Algorithm for May-correctness

To check may-correctness of a workflow data graph and provide proper
feedback in case of an incorrectness, we developed an algorithm (Figure 5)
that diagnoses whether each activity a is may-executable (cf. Def. 4). For
each activity a, the algorithm tries to find a data instance subgraph that
triggers a and whose valuation satisfies the precondition of a. The data
instance subgraph that is searched for is a solution to the combined IP and
CSP model defined in Section 4.1 plus additional constraints that encode
that a is triggered and that the precondition of a is satisfied.

Looking at the algorithm in more detail, it begins with the IP formulation
of the workflow data graph (line 4 in Figure 5), which states the control flow
constraints for data instance subgraphs. This IP formulation is combined
with the CSP formulation of the workflow (line 5), which states the pre and
postcondition constraints for the activities in data instance subgraphs. This
combined IP and CSP model is used in the sequel of the algorithm for every
data instance subgraph. Next, the algorithm performs a loop to check if
all the activities are may-executable (line 6). The activity being processed
in the loop is stored in variable current (line 7). To test whether activity
current is may-executable, the combined IP and CSP model is extended with
constraints that are true if the data instance subgraph triggers current and
satisfies the precondition of current (line 8). If no solution exists, there is no
such data instance subgraph for current, so current is not may-executable
(line 10). If all activities are may-executable, the workflow data graph is
may-correct (line 17).

The next theorem asserts that the algorithm is correct.

Theorem 2. Let (Act, V,D,C,E, pre, post, wt) be a workflow data graph.
Algorithm May-Correctness-Check finds no error if and only if (Act, V,D,C,
E, pre, post, wt) is may-correct.

Proof 2. ⇒: If algorithm May-Correctness-Check finds no error, for each
activity a, a data instance subgraph exists, represented by the solution to the
CSP model (line 9), that triggers a (line 8) and whose valuation, represented
by the assignment of variables to the CSP variables, satisfies the precondition
pre(a) of a (line 8). Therefore, each activity is may-executable, and therefore
the workflow data graph is may-correct.

21



1: procedure May-Correctness-Check(Act, V,D,C,E, pre, post, wt)
2: error = false
3: unmarked = Act
4: IP = make IP formulation for (Act,E)
5: CSP = IP + CSP formulation for (Act, pre, post)
6: while unmarked 6= ∅ do
7: current = an activity from unmarked
8: CSP ′ = CSP && inedge1(current) = 1 && current = 0 &&

pre(current)
9: sol = solve CSP ′

10: if sol is null then // CSP ′ is unsatisfiable
11: Print ”Activity current is not may-executable”
12: error = true
13: end if
14: unmarked = unmarked \ { current }
15: end while
16: if error = false then
17: Print ”The workflow graph is may-correct”
18: end if
19: end procedure

Figure 5: Algorithm for checking may-correctness

⇐: If (Act, V,D,C,E, pre, post, wt) is not may-correct, then there is an
activity a that is not may-executable. By Definition 4, every data instance
subgraph that triggers a can only have a valuation that violates the precondi-
tion of a. Therefore, the CSP model (line 8) has no solution (line 10).

The performance of the algorithm is discussed in Section 6.

4.4. Algorithm for Must-correctness

To verify must-correctness of a workflow data graph, we develop an algo-
rithm (Figure 6) that diagnoses whether each activity in the workflow data
graph is must-executable (cf. Def. 5). If an activity a is not must-executable,
the algorithm provides a counter example in the form of a data instance sub-
graph that triggers a and whose valuation violates the precondition of a. If
every activity is must-executable, the workflow data graph is must-correct
by definition.

First, the combined IP and CSP model is created (line 4 and line 5) as
defined in Section 4.1. As in algorithm May-Correctness-Check, each data
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1: procedure Must-Correctness-Check(Act, V,D,C,E, pre, post, wt)
2: error = false
3: unmarked = Act
4: IP = make IP formulation for (Act,E)
5: CSP = IP + CSP formulation for (Act, pre, post)
6: while unmarked 6= ∅ do
7: current = an activity from unmarked
8: CSP ′=CSP && inedge1(current) = 1 && current = 0 &&
¬pre(current)

9: sol = solve CSP ′

10: if sol is not null then // CSP ′ is satisfiable
11: Print ”Activity current is not must-executable”
12: error = true
13: end if
14: unmarked = unmarked \ { current }
15: end while
16: if error = false then
17: Print ”The workflow graph is must-correct”
18: end if
19: end procedure

Figure 6: Algorithm for checking must-correctness

instance subgraph is a solution to this CSP model extended with additional
constraints. Next, the algorithm performs a loop that processes each ac-
tivity of the input workflow data graph (line 6). Variable current stores
the activity processed in the loop. The algorithm extends for current the
combined IP and CSP model with constraints that state that the data in-
stance subgraph triggers current and that the precondition of current is
violated. If a solution to this extended CSP model exists (line 10) then
there is a data instance subgraph that triggers current and whose precon-
dition violates current. Therefore, current is not must-executable (line 11).
Otherwise, current is must-executable and the next activity is processed. If
every activity is must-executable, the workflow data graph is must-correct
(line 17).

We next prove that the algorithm is correct.

Theorem 3. Let (Act, V,D,C,E, pre, post, wt) be a workflow data graph.
Algorithm Must-Correctness-Check finds no error if and only if (Act, V,D,C,
E, pre, post, wt) is must-correct.
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Proof 3. ⇒: If algorithm Must-Correctness-Check finds no error, for each
activity a no data instance subgraph exists that triggers a (line 8) and whose
valuation, represented by the assignment of variables to the CSP variables,
satisfies the negation of the precondition pre(a) of a (line 8). Equivalently,
each data instance subgraph that triggers a has a valuation that satisfies the
precondition pre(a). Therefore, each activity is must-executable, and there-
fore the workflow data graph is must-correct.
⇐: If (Act, V,D,C,E, pre, post, wt) is not must-correct, then there is an

activity a that is not must-executable. By Definition 5, there exists a data
instance subgraph that triggers a and that has a valuation that violates the
precondition pre(a) of a. Therefore, the CSP model (line 8) has a solution
and the activity is not must-executable (line 11), so the algorithm finds an
error.

4.5. Correcting errors

From the feedback provided by the algorithms, the workflow designer
should opt for a repair action in order to make the workflow correct. Among
the possible repair actions when the activity a is non-executable and is identi-
fied as responsible of the incorrectness, the designer can decide, for example:

• to relax the constraint that defines the precondition of a. This option
should be taken when the problem is caused by the strictness of the
precondition.

• to strengthen the postcondition of some activities in the instance sub-
graph which triggers a. This may be a solution when the problem is
caused by postconditions that are too weak, allowing valuations of the
variables that cause the violation of the precondition of a.

• to modify the domain of values of some variables in the dataflow to
avoid the conflicting valuations.

4.6. Diagnosing the Motivating Example

This section presents the results of applying the algorithms to diagnose
may and must-correctness of the workflow model in Figure 1. The workflow
model has no missing and no conflicting data. As explained in Section 4.1,
the CSP model with the pre and postconditions for each activity needs to
be in SSA form. Table 6 shows the SSA form of the pre and postconditions
of the activities with the new names of the variables. Notice that for the
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activity R two new constraints are introduced because the variable others
has two new names (others1 and others2) assigned in two different branches
of a XOR split. These two new constraints unify the name of the variable to
others3 after the join.

Table 6: Activities with their pre and postconditions in SSA form

Activity Precondition and Postcondition

ECR pre: true
post: true

SAP pre: true
post: true

D pre: sponsorship1 > 0 ∨ numPapers1 > 60
post: regFee1 ∗ 0.1 ≤ dinner1 ∧ dinner1 ≤ regFee1 ∗ 0.35

L pre: sponsorship1 > 0 ∨ numPapers1 > 60
post: regFee1 ∗ 0.1 ≤ 3 ∗ lunch1 ∧ 3 ∗ lunch1 ≤ regFee1 ∗ 0.35

OS pre: sponsorship1 > 0 ∨ numPapers1 > 60
post: others1 ≤ 0.2 ∗ regFee1 + 0.05 ∗ sponsorship1 ∧

others1 ≥ 0.05 ∗ regFee1 + 0.05 ∗ sponsorship1
O pre: sponsorship1 > 0 ∨ numPapers1 > 60

post: others2 ≤ 0.25 ∗ regFee1 ∧ others2 ≥ 0.05 ∗ regFee1
R OS = 1⇒ others3 = others1

O = 1⇒ others3 = others2
pre: 3 ∗ lunch1 + dinner1 + others3 < regFee1
post: numPapers1 ∗ 1.8 ≥ confAtt1
∧numPapers1 ∗ 0.5 ≤ confAtt1

NGS pre: confAtt1 ∗ (3 ∗ lunch1 + dinner1 + others3) <
confAtt1 ∗ regFee1 + sponsorship1

post: guestSpeaker1 ≥ 0.2 ∗ sponsorship1 ∧
guestSpeaker1 ≤ sponsorship1 + 0.1 ∗ regFee1 ∗ confAtt1

IGS pre: confAtt1 ∗ (3 ∗ lunch1 + dinner1 + others3) <
confAtt1 ∗ regFee1 + sponsorship1

post: guestSpeaker2 ≥ 0.4 ∗ sponsorship1 ∧
guestSpeaker2 ≤ sponsorship1

Next, we diagnose the workflow model for may-correctness by applying
the algorithm May-Correctness-Check to the workflow model in Figure 1 with
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the renamed variables and pre and postconditions as shown in Table 6. The
algorithm determines that the workflow in Figure 1 is may-correct, since for
activity a with precondition pre(a) it is always possible to find at least one
data instance subgraph that triggers a and whose valuation of the variables
is within the determined finite domains listed in Table 2 such that pre(a) is
satisfied.

We diagnose for must-correctness by applying the algorithm in Figure 6 to
the workflow model in Figure 1 in SSA form. The algorithm finds for instance
an error when activity R is processed, since a data instance subgraph exists
that assigns the values 200, 100, 30 and 30 to the variables regFee, dinner,
lunch and others respectively, which makes the precondition of activity R
unsatisfiable. Therefore the workflow is not must-correct.

5. Implementation

We have implemented a tool that realizes the verification algorithms of
the previous section by extending the tool DiagFlow [1]. The new tool takes
XPDL 1.0/2.0 models [20] as input and translates them into CSPs according
to the formalization presented in this paper. For solving these CSPs, the
tool uses the COMETTM solver by Dynadec [27]. COMETTM combines the
methodologies used for constraint programming, linear and integer program-
ming, constraint-based local search, and dynamic stochastic combinatorial
optimization and offers a comprehensive software platform for solving com-
plex combinatorial optimization problems.

In order to carry out our new approach, we need to define some details
about the format of the input files. The original XPDL schema does not
model any semantic information of the workflow, so no pre and postconditions
are considered. Therefore we propose the following extension of the XPDL
schema, which conforms to the XPDL standard [20]:

1. input data of the activity (read operations)
2. output data of the activity (write operations)
3. precondition: constraint (or constraints) over the input data
4. postcondition: constraint (or constraints) over the input and output

data

In order to include these data, the XPDL input file must contain several
ExtendedAttributes to extend the XPDL node Activity [20]:

<xpdl:Activity ...>
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...

<xpdl: ExtendedAttribute Name="InputVariables">

<variable>...</variable>

<variable>...</variable>

...

</xpdl: ExtendedAttribute>

<xpdl: ExtendedAttribute Name="OutputVariables">

<variable>...</variable>

<variable>...</variable>

...

</xpdl: ExtendedAttribute>

<xpdl: ExtendedAttribute Name="Precondition" Value="..."/>

<xpdl: ExtendedAttribute Name="Postcondition" Value="..."/>

...

</xpdl:Activity>

The variables that are referenced in the preconditions and postconditions
of the activities use finite domains to define the ranges of values they can
take. To define those domains in the XPDL file, it is necessary to add
ExtendedAttributes within the node WorkflowProcess:

<xpdl:WorkflowProcess ...>

...

<xpdl:ExtendedAttributes>

<xpdl:ExtendedAttribute Name="Domain">

<variable>...</variable>

<initialValue>...</initialValue>

<finalValue>...</finalValue>

</xpdl: ExtendedAttribute>

...

</xpdl:ExtendedAttributes>

...

</xpdl:WorkflowProcess>

Figure 7 shows a screenshot of the DiagFlow tool during the diagnosis
of the may-correctness of the example discussed in this paper (Figure 1).
According to the pre and postconditions of its activities and the domains of
the variables, the DiagFlow tool determines it is may-correct. On the other
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hand, the workflow is not must-correct as can be seen in the screenshot in
Figure 8.

Figure 7: Screenshot of DiagFlow indicating may-correctness

Figure 8: Screenshot of DiagFlow indicating no must-correctness

6. Empirical Evaluation

The worst-case complexity of solving CSPs is high. Therefore we wish to
empirically evaluate the performance of the developed algorithms. This way,
we can assess whether in practice the time it takes to diagnose workflow data
models with the algorithms is acceptable.
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6.1. Experimental Design

The DiagFlow tool receives XPDL files as inputs, with the extensions
explained in the previous section, and provides options to verify the different
kinds of correctness.

The primary purpose of the experimental evaluation is to determine the
execution time from start to completion of a correctness checking process
over workflow data graphs with different control flows and dataflows.

With the aim of performing the execution time measurements, the algo-
rithms are executed over different extended XPDL files, getting test cases
with different number of activities, control nodes and data.

The test cases are measured using a Windows 7 machine, with an Intel
Core I7 processor, 3.4GHz and 8.0GB RAM.

6.2. Performance results

In this subsection, the execution time of the correctness checking algo-
rithms is measured.

Solving CSPs takes exponential time due to the dependency of their com-
plexity on the number of values each variable can take [28][29][30]. However,
in practice, since CSP solvers run very fast, this does not limit the applica-
bility of our approach, as we will show next.

Since both algorithms for checking may and must-correctness have a sim-
ilar structure, a while-loop which processes every activity by solving a com-
bined IP and CSP model for the activity, they also have the same time
complexity. Since the algorithms check all the activities in the workflow to
find the ones which are not may or must-executable, the performance results
depend on the size of the workflow data graph being analyzed.

Figure 9 shows the performance results of the may-correctness-check al-
gorithm in terms of the workflow size (number of activities), including the
range of the Control-flow Complexity metric (CFC, [31]) in brackets. That
metric is used to quantify the presence of control nodes in a workflow W,
defined as follows:

CFC(W ) =
∑

n∈SXOR

CFCSXOR
(n) +

∑
n∈SAND

CFCSAND
(n)

where CFCSXOR
(n) = |outedge(n)| and CFCSAND

(n) = 1. The results
obtained for both the may-correctness-check and the must-correctness-check
algorithms are shown in the same chart since they present the same execution
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time. For both algorithms, the execution time appears to scale linearly with
respect to the number of activities checked by the algorithm. Therefore, the
time it takes to diagnose even large workflow data models with the algorithms
is acceptable.
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Figure 9: Performance results

7. Related work

As stated in the introduction, most of the previous works in the liter-
ature [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13] only take into account the control
flow to check the correctness of workflows. Nevertheless, to guarantee the
correctness of a workflow model in practice, it is necessary to cover other
perspectives as well, in particular the dataflow including the effects that the
execution of the different activities has on the data (postconditions) as well
as the conditions established at each activity which should be satisfied to
make that execution possible (preconditions).

Only recently, researchers started considering verification of workflow
models with dataflows. Sun et al. [14] define a dataflow perspective on work-
flows and identify several types of errors, based on earlier work by Sadiq
et al [8]. Similarly, Trčka et al. [15] define some dataflow anti-patterns ir
order to identify this kind of errors between data. The workflow models are
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abstract: they specify variables read and written per activity, but do not
specify the effect of each activity by means of pre and postconditions.

Sidorova et al. [17] verify correctness for a subclass of Petri nets, workflow
nets, extended with data operations. The workflow models they consider are
abstract and need to be refined to be executable. The verification procedure
checks whether the abstract workflow models can be refined into correct,
concrete workflow models that have no deadlocks. The check sometimes
results in a ”yes, if ...” answer, indicating that only under certain conditions
a correct refinement exists. Along the same lines, the work by van der Aalst
et al. [18] performs the verification of the correctness of configurable process
models, taking into account the data dependencies between activities.

Main difference with our approach is that their workflow models do not
use pre and postconditions for the activities, not even the refined workflow
models [17]. Consequently, according to their approach the example workflow
in Figure 1 is correct, because it is always possible to reach a final state from
any reachable state if pre and postconditions are abstracted from. On the
other hand, our approach detects an error in the workflow, as explained in
Section 4.6.

Borrego et al. [32] consider post-mortem diagnosis of business processes
in which a particular execution of a business process is checked against com-
pliance constraints. Also the execution of individual activities can be diag-
nosed. In this paper, we study diagnosis of business processes at design-time.
Rather than considering one specific execution, we have to take into account
all possible executions.

Weber et al. [16] consider verification of semantic business processes, in
which activities are annotated with pre and postconditions. They detect
conflicts between preconditions and postconditions of parallel activities and
next study the reachability and executability of the activities, but only if
the activities are conflict free. In their contribution, pre and postconditions
are considered as CNF formulas with only boolean variables. Therefore, the
approach by Weber et al. [16] cannot diagnose the correctness of workflows
whose activities count on pre and postconditions involving other kinds of
data (i.e., example in Figure 1). Moreover, they focus on analyzing the
complexity of several verification tasks for semantic process models and do
not focus on diagnosis of errors. Moreover, workflow graphs must be analyzed
in two fixed sequential steps, while the approach we defined does not have
this restriction. They study the general complexity of verifying semantic
business process and present an algorithm for verifying whether an activity is
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executable. However, the algorithm does not consider the possible valuations
of the data to determine an inconsistency. So, just as Sidorova et al. [17], the
approach by Weber et al. [16] would diagnose example in Figure 1 as sound,
without considering that under certain conditions (i.e., some valuations of
the variables) the process may get stuck.

There exist modeling languages like Colored Petri nets [33] that combine
control flow and data. However, these modeling languages are not targeted
towards a specific application domain, while the approach in this paper is
specific to workflows. Consequently, the notion of must and may correctness
proposed in this paper is specific to workflows, but not used for these general
purpose languages. For instance, using CPN Tools a state space graph of
Colored Petri net can be constructed, but the resulting report only provides
general statistics.

To the best of our knowledge, this paper presents the first verification
approach for executable workflow models that integrates both process and
numerical data verification. The approach can detect errors not detectable
with other approaches. The approach builds on research done in the field
of Constraint Programming and workflow verification, combining the best
of both worlds to deliver advanced yet efficient verification and diagnosis of
complex workflow models with dataflows.

8. Conclusions

To engineer workflow models with dataflows in a dependable way, diag-
nosis of correctness is of utmost importance. To that end, we have proposed
workflow data graphs as formalization of semantic workflow models together
with two correctness notions, may and must-correctness, that can be verified
for workflow data graphs. Workflow data graphs model semantic workflows
by extending workflow graphs with pre and postconditions for the activities.
We also proposed two correctness notions, may and must-correctness, for
workflow data graphs.

Next, we have presented a diagnosis approach to check may and must-
correctness, which consists of several phases. First, preprocessing is applied
to detect basic data anomalies. Then, the workflow data graph is translated
into an IP formulation that models the executable instances, and into a
CSP formulation that models the data states acceptable according to the pre
and postconditions of the activities. The combined IP and CSP model can
be efficiently solved using Constraint Programming techniques. In case of
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an error, feedback is provided in the form of an error path showing where
the workflow gets stuck under certain conditions over the dataflow. Such
feedback provides valid information for the workflow designer to fix future
errors before the workflow is deployed. The approach is complete, so it always
generates accurate feedback in case of an error.

The approach has been implemented by extending the DiagFlow tool [1].
The tool diagnoses workflow models in an extended XPDL format. The
XPDL extension is needed to store the semantic information of each work-
flow, adding the dataflow with the pre and postconditions in the activities.
Performance evaluation of the tool shows that the algorithms scale well for
large workflow models with dataflows, despite the high worst-case complexity
of solving constraints satisfaction programs.

As future work, we plan to extend the workflow data graph model with
OR gateways. Likewise, we would also like to offer additional feedback to the
end user in case of a violation, making easier the job of fixing the problem
which causes the abnormal behavior. Another interesting extension is to
consider stochastic behavior or timing behavior of activities, to improve the
accuracy of the analysis.
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