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Neutrino-nucleus quasielastic scattering is studied in the plane-wave impulse approximation for three nuclear
models: the relativistic Fermi gas (RFG), the independent-particle shell model (IPSM), and the natural orbitals
(NO) model with Lorentzian dependence of the excitation energy. A complete study of the kinematics of the
semi-inclusive process and the associated cross sections are presented and discussed for 40Ar and 12C. Inclusive
cross sections are also obtained by integrating the semi-inclusive expressions over the outgoing hadron. Results
are consistent with previous studies restricted to the inclusive channel. In particular, a comparison with the
analytical results for the RFG model is performed. Explicit expressions for the hadronic tensor and the 10 semi-
inclusive nuclear responses are given. Theoretical predictions are compared with semi-inclusive experimental
data from T2K experiment.
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I. INTRODUCTION

In recent years neutrino physics has become one of the
most flourishing fields in nuclear and particle physics. In
particular, physicists have devoted a great effort in pursuing
the physics responsible for neutrino masses. As stated in the
NuSTEC White Paper [1], accelerator based neutrino scatter-
ing experiments have been identified as the highest priority
intermediate-future effort by the world physics community.
This explains the high interest in international projects like
the Deep Underground Neutrino Experiment (DUNE) [2], to
be hosted by Fermilab, and the Tokai-to-HyperKamioKande
(T2HK) in Japan [3]. The main goal of these experiments
is focused on the analysis of the oscillations that neutrinos
undergo in traveling from a near to a far detector. The aim is
not only to improve our present knowledge on the oscillation
mixing angles, but also to explore the CP-violating phase, that
is related to the matter-antimatter asymmetry in the Universe,
assess the neutrino mass hierarchy, and investigate possible
physics beyond the standard model [1,4,5].

The analysis of neutrino properties, due to the smallness of
the weak cross sections, requires the use of large amounts of
target material. In fact, most of the presently running (T2K,
NoVA) and planned (T2HK, DUNE) neutrino oscillation ex-
periments use different complex nuclei as targets, such as
carbon, oxygen, argon and iron. Thus, a precise enough de-
scription of the interaction between neutrinos and nuclei is

needed. Only by having an excellent control of the nuclear
effects in the weak scattering process, will it be possible to
access without ambiguity to the real nature of neutrinos and
their properties. This clearly shows that only a close collabo-
ration between theoretical and experimental groups from both
the nuclear and high energy physics communities will make it
possible to overcome the challenges we face.

In past years a great effort has been devoted to the de-
scription of neutrino-nucleus observables with high accuracy.
Very different models, initially designed to describe electron
scattering reactions where there exist a large amount of data
to compare with, have been extended to neutrino processes.
As a general constraint any nuclear model aiming to describe
neutrino-nucleus interaction should be first tested against elec-
tron scattering data. Starting with the simple relativistic Fermi
Gas (RFG), still widely used in the analysis of neutrino os-
cillation data, models with different levels of complexity have
been applied to weak interaction processes: nuclear spectral
function [6–9], relativistic mean field [10–15], relativistic
Green’s function (RGF) [16–19], random phase approxima-
tion (RPA) [20–22], scaling-based approaches [10,13,23–27],
and ab initio Green’s function Monte Carlo (GFMC) [28–30].

A basic difference between electron and neutrino scattering
processes, in addition to the weak versus electromagnetic in-
teraction, concerns the beam energy. Whereas for electrons the
energy is perfectly known, the situation is clearly different for
neutrinos where the energy is distributed along the neutrino
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flux that can be extended from a few MeV up to several GeV.
This makes a crucial difference between the two scattering
reactions that affects not only the particular description of
the interaction between the lepton and the nuclear target, but
also the analysis of oscillation experiments and the specific
information on the inner properties of neutrinos.

At present most of the studies related to neutrino-nucleus
scattering have concerned inclusive measurements where only
the scattered lepton is detected in the final state. This corre-
sponds to (ν�, �) processes where � refers to the lepton in the
final state. Note that this process is kinematically equivalent
to inclusive electron scattering (e, e′). However, contrary to
(e, e′) processes where the momentum (q) and energy (ω)
transferred to the nucleus are perfectly known, for (ν�, �)
this is not so because of the neutrino beam energy distri-
bution (flux). As a consequence, in the analysis of (ν�, �)
reactions very different reaction mechanisms can contribute
significantly to the cross sections for a given kinematics of the
final lepton. Not only the quasielastic (QE) region should be
carefully evaluated but also nucleon resonances, two-particle
two-hole (2p-2h) effects, deep inelastic scattering and even
the region at very low momentum/energy transfer where the
impulse approximation is not applicable. This makes the the-
oretical description of neutrino-nucleus scattering processes
more demanding than the one corresponding to electrons. An
illustrative example of this came with the first neutrino-carbon
cross sections published by the MiniBooNE collaboration
[31]. It was found that data were largely underestimated by
all theoretical predictions based on the impulse approximation
unless the value of the axial mass was increased by more than
∼30% compared with the standard value, MA � 1 GeV. This
was known as the “MA-puzzle.” It was soon realized that nu-
clear effects beyond the impulse approximation, in particular,
the excitation of 2p-2h states, could remedy significantly the
discrepancy between theory and data without need to modify
the value of MA (see Refs. [32–36] for details).

The determination of oscillation mixing angles, CP-
violating phase and neutrino mass ordering from neutrino-
nucleus scattering data requires to know precisely the neutrino
energy. Since the neutrino beams are not monochromatic, the
incoming neutrino energy should be reconstructed from the
final states in the reaction. Up to present this determination
has been based on the analysis of inclusive (ν�, �) reactions
assuming that the neutrino interacts with a neutron in the
nucleus at rest (likewise for antineutrinos and protons). This
is a very crude approximation that allows to determine the
neutrino energy from the variables of the lepton in the final
state, but with high uncertainty due to the effects associated
to the nuclear dynamics and the different channels involved in
the reaction. The reader interested in a study of the impact of
nuclear effects on the neutrino energy reconstruction can go
to [1] and references therein.

A way to improve significantly the analysis, constraining
the incident neutrino energy much better, is to consider events
in which not only the final-state charged lepton is detected
but some hadron as well. In fact, a proper description of the
hadrons and mesons in the final-state will be essential for the
next-generation of neutrino experiments. This is connected to
the fact that modern experimental studies of neutrino-nucleus

reactions rely on the use of data simulations to determine
the behavior of the detectors involved. This requires having
a reasonable control on the reconstruction of the energy neu-
trino which can be achieved more precisely by analyzing the
kinematics of the final particles. This clearly shows the impor-
tance to have realistic theoretical predictions corresponding
to more exclusive processes where, in addition to the final
lepton, other particles are detected. Although the theoretical
prediction of semi-inclusive reactions is much harder than
modeling inclusive processes, the richer structure of the cross
sections allows one to better discriminate among different
models. The extension of nuclear models to semi-inclusive
reactions is one of the main challenges to be faced by nuclear
theorists working in the field.

In this work we present a detailed study of semi-inclusive
charged-current (CC) processes: (ν�, �

− p) and (ν�, �
+ n). We

follow the seminal works developed in [37–40] and restrict
ourselves to the plane-wave impulse approximation (PWIA)
in which the semi-inclusive cross section factorizes in a term
dealing with the neutrino-nucleon interaction, namely, the
single-nucleon cross section, and the spectral function that
incorporates the whole dependence on the nuclear dynamics.
The whole formalism is presented in the paper by writing the
explicit expressions of all the semi-inclusive weak responses
entering in the cross section. Moreover, the consistency of the
calculations is proved by comparing the inclusive cross sec-
tion obtained by integrating the corresponding semi-inclusive
one over the emitted nucleon variables with the inclusive
results already presented in the literature [5,10,24,41]. This
is shown for different nuclear models. Although being aware
of the oversimplified description of the scattering process pro-
vided by PWIA, a comparison with some semi-inclusive data
recently measured by the T2K collaboration is performed. In
forthcoming work we will extend our study to all available
semi-inclusive data, and will include in our analysis the role
played by the final state interactions (FSI) treated within
the framework of the relativistic distorted wave impulse ap-
proximation (RDWIA), exploiting our past experience on the
description of semi-inclusive (e, e′N ) reactions within a fully
relativistic microscopic approach.

To conclude, in our present investigation we have re-
stricted our interest to the kinematics corresponding to T2K
(using carbon in the near detector) and DUNE (argon). Semi-
inclusive cross sections for both cases have been shown for
selected kinematics as functions of the ejected nucleon vari-
ables (momentum and angle) for the different nuclear models.
The development and implementation in experimental event
generators of a complete semi-inclusive formalism for neu-
trino reactions will have a huge impact in the analysis of new
experiments more sensitive to hadron detection.

The paper is organized as follows: In Sec. II we present
the general formalism for semi-inclusive neutrino-nucleus
scattering reactions. We discuss the general kinematics and
evaluate the cross section in both the semi-inclusive and
inclusive regimes. The discussion on the nuclear models is
presented in Sec. III: here we show the cross sections obtained
for the relativistic Fermi gas (RFG), independent particle shell
model (IPSM), and natural orbitals (NO). Explicit expres-
sions for the flux-averaged semi-inclusive cross sections are
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FIG. 1. Schematic representation of the process analyzed in this
work in the Born approximation.

provided for the three cases. In Sec. IV we present our results
for different kinematics corresponding to T2K and DUNE ex-
periments. Section IV A contains a detailed discussion on the
semi-inclusive cross sections, while in Sec. IV B we compare
our predictions with some data taken by the T2K collabo-
ration [42]. The case of inclusive responses is considered in
Sec. IV C proving the consistency of the calculations. Finally,
in Sec. IV D we discuss the effects associated to the use of
different descriptions of the weak current operator, i.e., off-
shell effects. This is discussed for the semi-inclusive cross
sections as well as for the inclusive ones considering the RFG
and IPSM. In Sec. V we summarize our conclusions.

II. GENERAL FORMALISM

In this section we define the kinematics of the quasielastic
neutrino-nucleus reaction and set up the general formalism for
the corresponding differential cross section in both the semi-
inclusive and inclusive channels.

A. Kinematics

We start by defining the kinematic variables entering into
the reaction represented in Fig. 1. The four-momenta of the
initial neutrino and final lepton are

Kμ = (ε, k), K ′μ = (ε′, k′), (1)

where

ε =
√

k2 + m2
ν ≈ k, ε′ =

√
k′2 + m2

l , (2)

with ml the mass of the final lepton.
The four-momentum transfer is defined as

Qμ = (ω, q) = (ε − ε′, k − k′). (3)

We work in the laboratory system, where the four-momentum
of the target nucleus is

Pμ
A = (MA, 0), (4)

with MA the rest mass of the nucleus. The four-momentum of
the outgoing nucleon is

Pμ
N = (EN , pN ), (5)

FIG. 2. Feynman diagram for neutrino-nucleus quasielastic scat-
tering in the plane-wave impulse approximation.

where EN =
√

p2
N + m2

N is the on-shell energy, and the four-
momentum of the residual nucleus, having invariant mass
WA−1 and momentum −pm, is

Pμ
A−1 = (√

p2
m + W 2

A−1,−pm
)
. (6)

In the above, we have introduced the missing momentum

pm = k′ + pN − k = pN − q, (7)

which, in the PWIA approximation represented in Fig. 2, is
simply the momentum of the hit nucleon. We also introduce
the missing energy

Em =
√

p2
m + W 2

A−1 + mN − MA. (8)

For fixed values of pN and q, the allowed values of the missing
momentum are

p−
m � pm � p+

m, (9)

with

p±
m = |pN ± q|. (10)

Next, it is convenient to introduce the variable

E =
√

p2
m + W 2

A−1 −
√

p2
m + M2

A−1 � 0, (11)

the excitation energy of the residual nucleus. It is related to
the missing energy and momentum by the expression

E = Em − Es − (√
p2

m + M2
A−1 − MA−1

)
, (12)

where we have introduced the nuclear separation energy

Es = MA−1 + mN − MA, (13)

namely, the minimum energy necessary to remove a nucleon
from a nucleus of mass A. The last term in Eq. (12) represents
the nuclear recoil energy and can be neglected for medium-
heavy nuclei (pm << MA−1). In this case we can write

E � ω − Es + mN − EN

= ω − Es + mN −
√

q2 + p2
m + 2pmq cos θm + m2

N , (14)

where θm is the angle between pm and q. At given values of ω,
q and pm, the boundary limits of the variable E are obtained
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FIG. 3. Planes defined by the excitation energy E and the missing momentum pm. The allowed region for the quasielastic reaction is the red
area between the curves E± defined in Eqs. (15)–(17). In these plots we take Es = 0. (a) q = 0.5 GeV and ω = 0.06 GeV (below quasielastic
peak), (b) q = 0.5 GeV and ω = 0.12 GeV (at the quasielastic peak), and (c) q = 0.5 GeV and ω = 0.19 GeV (above quasielastic peak).

when cos θm = ±1, namely,

max(E+, 0) � E � E−, (15)

with

E+ = ω − Es + mN −
√

q2 + p2
m + 2pmq + m2

N , (16)

E− = ω − Es + mN −
√

q2 + p2
m − 2pmq + m2

N . (17)

By exploiting Eq. (14), the limits Eq. (10) can be written in
terms of E as

p+
m =

√
(ω − Es − E )(ω − Es − E + 2mN ) + q, (18)

p−
m = |

√
(ω − Es − E )(ω − Es − E + 2mN ) − q|. (19)

The region of the plane (E, pm) kinematically allowed for the
quasielastic reaction is represented in Fig. 3 for fixed q and for
three values of ω around the quasielastic peak value ωQE =√

q2 + m2
N − mN + Es.

Finally, let us fix the axes direction. We consider that the
three-momentum k defines the direction of the z axis. We
choose this frame—referred to as the k system—because the
direction of the neutrino beam is known in experiments, so
we can directly compare our results with experimental data.
All the kinematic variables are represented in Fig. 4. To make
clear the discussion we distinguish between the scattering

FIG. 4. Kinematical variables in the k system where the beam
direction is chosen as the z axis. The plane formed by the neu-
trino beam and the outgoing nucleon [reaction plane, (k, pN )] is
represented in blue and the plane identified by the incident neu-
trino and scattered lepton [scattering plane, (k, k′)] is represented
in pink. The unit vectors defining the axes x and y are given by
ey = (k × k′)/|k × k′| and ex = ey × ez with ez = k/|k|.

plane and the reaction one. The former, represented in pink,
is defined by the neutrino beam momentum k (z axis) and the
ejected lepton momentum k′. The reaction plane, represented
in blue, contains k and the ejected nucleon momentum pN .
Thus, the three-momenta defined in the x, y, z frame (see
Fig. 4) are

k = kez,

k′ = k′(sin θlex + cos θlez ),

pN = pN
(

cos φL
N sin θL

N ex + sin φL
N sin θL

N ey + cos θL
N ez

)
,

(20)

where φL
N is the angle formed by the two planes. Note that the

transferred momentum, q, is contained in the scattering plane
(xz) and θq represents the angle between q and k whereas θl is
the scattering angle, i.e., the angle between k and k′. Finally,
θL

N represents the polar angle that defines the direction of the
ejected nucleon momentum pN with respect to the z axis (k
direction).

It is important to distinguish between the k system defined
above and the q system usually considered in the analysis of
semi-inclusive electron scattering processes. In the latter the z
axis is chosen to be along the momentum transfer q. Hence,
the two systems are simply related by a rotation of an angle
θq within the scattering plane. In Sec. II C and the Appendix
we will use the q system to evaluate the response functions
because of its special symmetries.

B. Semi-inclusive cross section

In this work we restrict our attention to the plane wave
impulse approximation (PWIA) where, neglecting the con-
tribution of the lower components in the relativistic bound
nucleon wave function, the cross section factorizes into a term
dealing with the weak interaction of a single nucleon in the
nucleus and the nuclear spectral function that embodies the
nuclear dynamics in the process. The “factorized” ansatz has
been shown to work properly in the case of inclusive processes
providing good agreement with experiment. In the future we
will extend our study by including the role of final state inter-
actions (FSI) that break in general the factorizable form. The
sixth-differential semi-inclusive cross section with respect to
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the momenta k′ and pN and the solid angles �k′ = (θl , φl ) and
�L

N = (θL
N , φL

N ) in the factorization approximation is given by
[37]

dσ

dk′d�k′d pN d�L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

∫ ∞

0
dE

×
∫

d3 pmυ0F2
χS[pm, Em(E, pm)]

× δ
(
MA + k − ε′ − EN −

√
p2

m + M2
A−1 − E)

× δ(k − k′ − pN + pm), (21)

where GF is the Fermi constant, θc is the Cabibbo angle, F2
χ

(χ = +1 for neutrinos and χ = −1 for antineutrinos) is a
reduced single nucleon cross section and υ0 is a kinematic
factor. Those are defined in the Appendix. The spectral func-
tion S[pm, Em(E, pm)], which describes the possibility to find
a nucleon in a nucleus with given momentum and excitation
energy of the residual nuclear system, embodies the nuclear
model dependence. It will be discussed in Sec. III in differ-
ent models. In the case of relativistic nuclear models, as the
relativistic Fermi gas, an extra factor mN/

√
p2

m + m2
N must be

inserted inside the integral, according to the Feynman rules
[43].

The integrals over E and pm can be performed using the
δ functions, and the following analytical expression for the
cross section results:

dσ

dk′d�k′d pN d�L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

× υ0F2
χS[pm, Em(E, pm)] θ (E ), (22)

where the missing momentum and excitation energy in the
previous expression are fixed by the following conditions:

pm = |k′ + pN − k|, (23)

E = MA + k − ε′ − EN −
√

p2
m + M2

A−1

� k − ε′ − EN + mN − Es, (24)

and υ0F2
χ is meant to be evaluated at the values of pm and E

given by Eqs. (23) and (24).
Equations (21) and (22) depend on the variables of the final

lepton and the outgoing nucleon and assume that the neu-
trino energy k, and therefore the transferred four-momentum
(ω, q), are fixed. However, in comparing the results obtained
using this equation with experimental data it is necessary to
take into account that in long-baseline oscillation experiments
the neutrino beam does not have a well-defined energy: a
particle accelerator boosts protons which collide with a target,
for instance graphite or beryllium, producing charged pions
and kaons. Then, these positive (negative) hadrons decay to
produce a flux usually highly dominated by νμ (ν̄μ): de-
pending of the specific experiment, there is a more or less
extended range of initial neutrino energies that participate in
the reaction. As a consequence one needs to average over all
the possible energies to compare with the experimental data.

FIG. 5. Muonic neutrino flux with total area normalized to 1 for
the DUNE and T2K experiments.

As already mentioned, in this work we will concentrate our
attention on two of these experiments, namely T2K [44] and
DUNE [2]. The corresponding fluxes for the muonic neutrinos
are presented in Fig. 5 [45,46].

After including an integration over the initial neutrino
energy in Eq. (22) we get the following flux-averaged semi-
inclusive cross section:〈

dσ

dk′d�k′d pN d�L
N

〉
= (GF cos θck′ pN )2mN

8ε′EN (2π )6

∫ ∞

0
dk

P(k)

k

× υ0F2
χS[pm, Em(E, pm)]θ (E ), (25)

where P(k) is the normalized experimental neutrino flux.

C. From semi-inclusive to inclusive

Starting from the above expression one can recover the
inclusive cross section by integrating over the variables of
the outgoing nucleon. In this case we use the q system (see
Fig. 22) where the transfer momentum determines the z axis.
This frame presents some special symmetries that simplify
significantly the calculation of the various response functions
that enter in the scattering process. In the Appendix we present
in detail the connection between the variables defined in the k
and q systems and show the explicit calculation of all the weak
hadronic responses. In the q system the outgoing nucleon
momentum is given by

pN = pN (cos φN sin θN e1 + sin φN sin θN e2 + cos θN e3),
(26)

where we have introduced the unit vectors e1, e2, and e3

that define the reference frame (see Fig. 22). Note that the
connection between these unit vectors and the ones introduced
in the k system is simply given by a rotation of the angle
θq contained in the scattering plane. The angle between the
scattering and reaction planes is given by φN while θN deter-
mines the direction of the ejected nucleon momentum pN with
respect to q.

Obviously the use of the k or q systems does not affect the
result for the inclusive cross section since the differential of
the solid angle is the same in all frames connected to each
other by a rotation:

d�L
N = d�

q
N ≡ d�N . (27)
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By integrating Eq. (22) over pN we get

dσ

dk′d�k′
= (GF cos θck′)2mN

8kε′(2π )6

∫ ∞

0
d pN

∫
d�N

p2
N

EN

× υ0F2
χS[pm, Em(E, pm)] θ (E ). (28)

Since the only dependence upon the angle φN occurs in the
single-nucleon function υ0F2

χ , we define the φN -averaged
quantity ∫ 2π

0
dφNυ0F2

χ = 2πυ0F2
χ . (29)

Then we change the integral over cos θN into an integral over
E . The energy conservation relation

MA + ω = E + EN +
√

p2
N + q2 + m2

A−1 − 2pN q cos θN

(30)
implies

d cos θN = MA + ω − EN − E
pN q

dE . (31)

Then

dσ

dk′d�k′
= (GF cos θck′)2mN

8kε′q(2π )5

∫ ∞

0
d pN

∫ ∞

0
dE pN

EN

× (MA + ω − EN − E )υ0F2
χS[pm, Em(E, pm)].

(32)

Next we change the integral over pN into an integral over the
missing momentum pm using again the energy conservation
written as√

p2
N + m2

N = ω + MA − E −
√

p2
m + M2

A−1, (33)

which entails
pN

EN
d pN = pm√

p2
m + M2

A−1

d pm = pm

MA + ω − EN − E d pm.

(34)
This yields the inclusive cross section as an integral over the
(E, pm) plane previously introduced:

dσ

dk′d�k′
= (GF cos θck′)2mN

8kε′(2π )5

∫ ∞

0
dE

∫ p+
m

p−
m

d pm
pm

q

× υ0F2
χS[pm, Em(E, pm)], (35)

where p+
m and p−

m are the kinematic limits given in Eqs. (18)
and (19). Note that the same expression is obtained by inte-
grating Eq. (21) by exploiting the δ function to integrate over
pN .

The inclusive cross section can be also expressed in terms
of nuclear responses [24]

dσ

dε′d cos θl
= σ0(VCCRCC+2VCLRCL+VLLRLL+2χVT ′RT ′ ),

(36)
where

σ0 = G2
F cos θc

2

4π

k′

ε′ υ0, (37)

VK are the inclusive leptonic responses given in the Appendix
and RK are the weak nuclear response functions. These em-
body the whole dependence on the nuclear model and are
given by taking the appropriate charge (C), longitudinal (L),
and transverse (T ) components of the weak nuclear tensor
[24].

As for the semi-inclusive case, before comparing the theo-
retical predictions with experimental data an average over the
neutrino flux must be performed:〈

dσ

dk′d�k′

〉
=

∫ ∞

0
dkP(k)

dσ

dk′d�k′
. (38)

It is worth mentioning that, although this work only deals
with the charged-current reaction, by integrating the semi-
inclusive cross section over the final lepton variables one
obtains the “u-inclusive” cross section [47] that only depends
on the variables of the outgoing nucleon:

dσ

d pN d�N
=

∫ ∞

0
dk′

∫
d�k′

dσ

dk′d�k′d pN d�N
. (39)

This is the measured cross section in neutral current reactions,
where the outgoing neutrino cannot be detected.

In the next section we describe the spectral function
S(pm, Em) within different nuclear models.

III. NUCLEAR MODELS: THE SPECTRAL FUNCTION

The lepton-hadron cross section is proportional to the con-
traction of the leptonic and hadronic tensors. However, the
hadronic tensor, W μν , for a complex nucleus is in general
a complicated object and can be evaluated only under some
approximations. Equation (21) for the cross section is based
on the assumption that it can be factorized as [39]

W μν = 1

8π
Wμν (PA − PA−1, Q)S(pm, Em), (40)

where Wμν (PA − PA−1, Q) is the off-shell single-nucleon re-
sponse tensor [48], corresponding to the scattering with a
moving off-shell nucleon, and S(pm, Em) is the nuclear spec-
tral function, which describes the joint probability of finding
a nucleon with given momentum pm in a nucleus and of
reaching a final state with excitation energy (or, equivalently,
missing energy Em) of the residual nuclear system [49]. The
off-shell single-nucleon tensor will be analyzed in the Ap-
pendix for the case of charged-current reactions.

The spectral function is normalized as [40]

n(pm) =
∫ ∞

0
dEmS(pm, Em), (41)

where n(pm) is the proton or neutron momentum distribution.
Therefore, S is correctly normalized if the relation

N = 1

(2π )3

∫ ∞

0
d pm p2

mn(pm) (42)

is fulfilled. Here, N is the number of nucleons that are active
in the scattering, i.e., the number of neutrons, N , for the case
of neutrino scattering (CCν) and the number of protons, Z , for
antineutrinos (CCν̄).
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FIG. 6. Schematic representation of an electroweak reaction
within the independent-particle shell model.

We shall now provide the explicit expression for the spec-
tral function in three simple nuclear models: the independent-
particle shell model (IPSM), the natural orbitals shell model
(NO), and the relativistic Fermi gas (RFG).

A. Independent-particle shell model (IPSM)

In the IPSM the nucleons are bound by a potential and
occupy discrete energy levels −Enl j . The scattering process
for this model is represented in Fig. 6: A nucleon absorbs
energy from the probe and produces an on-shell nucleon with
relativistic kinetic energy

√
p2

N + m2
N − mN , leaving a hole in

the residual nucleus. The spectral function of this model is
[40]

SIPSM (pm, E ) =
∑
n,l, j

(2 j + 1)nnl j (pm)δ(E + Es − Enl j ),

(43)
where nnl j (pm) is the momentum distribution of a single nu-
cleon in the nl j shell. Energy conservation implies that

E = Enl j − Es. (44)

Since E � 0, the separation energy in the IPSM model is the
energy of the highest shell, as shown in Fig. 6.

By inserting Eq. (43) into Eq. (22) we obtain the semi-
inclusive cross section for the IPSM:

dσ

dk′d�k′d pN d�L
N

= (GF cos θck′ pN )2mN

8(2π )6ε′EN

∑
n,l, j

(2 j + 1)

× υ0F2
χ

k
nnl j (pm)δ(k − k0nl j ), (45)

where

k0nl j = ε′ + EN − mN + Enl j, (46)

and the missing momentum is given by [see Eq. (23)]

p2
m = k2

0nl j + k′2 + p2
N − 2k0nl jk

′ cos θl − 2k0nl j pN cos θL
N

+ 2k′ pN
(

cos θl cos θL
N + sin θl sin θL

N cos φL
N

)
. (47)

From Eq. (46) we see that a nucleon sitting in the shell nl j
can only interact, at given ε′ and EN , with a neutrino of energy
k0nl j . Therefore, when we average over the flux [Eq. (25)], we
get〈

dσ

dk′d�k′d pN d�L
N

〉
= (GF cos θck′ pN )2mN

8(2π )6ε′EN

∑
n,l, j

(2 j + 1)

× P(k0nl j )

k0nl j
υ0F2

χnnl j (pm). (48)

The inclusive cross section [see Eqs. (35) and (38)] be-
comes in this case〈

dσ

dk′d�k′

〉
= (GF cos θck′)2mN

8(2π )5ε′
∑
n,l, j

(2 j + 1)
∫ ∞

0
dk

P(k)

qk

×
∫ p+

m

p−
m

d pm pmυ0F2
χ nnl j (pm)θ (ω − Enl j ),

(49)

where, from Eqs. (18), (19), and (44),

p+
m = √

(ω − Enl j )(ω − Enl j + 2mN ) + q, (50)

p−
m = |√(ω − Enl j )(ω − Enl j + 2mN ) − q|, (51)

and the last θ function, θ (ω − Enl j ), corresponds to the con-
dition that the transferred energy must be equal or higher than
the selected subshell level.

B. Natural orbitals shell model (NO)

This model takes into account nucleon-nucleon correla-
tions and the smearing of the energy eigenstates. It employs
natural orbitals, ψα (r), which are defined as the complete
orthonormal set of single-particle wave functions that diag-
onalize the one-body density matrix (OBDM) [50]:

ρ(r, r′) =
∑

a

Naψ
∗
a (r)ψa(r′), (52)

where the eigenvalues Nα (0 � Nα � 1,
∑

α Nα = A) are the
natural occupation numbers.

The NO single-particle wave functions, that include short-
range nucleon-nucleon (NN) correlations, are used to obtain
the occupation numbers and the wave functions in momentum
space, i.e., the momentum distributions, and from them the
spectral function that is given by [51]

SNO(pm, E ) = 1

2πA

∑
i

(2 ji + 1)Ni|ψi(pm)|2L�i (E − Ei ),

(53)
where A is the mass number and the dependence upon the
energy is given by the Lorentzian function:

L�i (E − Ei ) = 1

2π

�i

(E − Ei )2 + (�i/2)2
, (54)

where �i is the width for a given single-particle state and Ei is
the energy eigenvalue of the state.
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The semi-inclusive cross section in this model is given by〈
dσ

dk′d�k′d pN d�L
N

〉

=
∫

dE (GF cos θck′ pN )2mN P(k)

8kε′EN (2π )7A

×
∑

i

(2 ji + 1)Ni|ψi(pm)|2L�i (E − Ei )υ0F2
χ , (55)

where the neutrino momentum is

k = Es + EN + ε′ − mN + E (56)

and

p2
m = k2 + k′2 + p2

N − 2kk′ cos θl − 2kpN cos θL
N

+ 2k′ pN
(

cos θl cos θL
N + sin θl sin θL

N cos φL
N

)
. (57)

Note that in this case the integral over E has to be performed
numerically because, unlike in the IPSM model, the single-
particle energies are not discrete.

The inclusive cross-section is〈
dσ

dk′d�k′

〉

= (GF cos θck′)2mN

8Aε′(2π )6

∫ ∞

0
dE

∫ ∞

0
dk

∫ p+
m

p−
m

d pm

× P(k)pm

kq
υ0F2

χ

∑
i

(2 ji + 1)Ni|ψi(pm)|2L�i (E − Ei ),

(58)

where the limits in the missing momentum are given by
Eqs. (18) and (19).

C. Relativistic Fermi gas (RFG)

This model consists in describing the nucleus as an infinite
gas of free relativistic nucleons that, in the nuclear ground
state, occupy all the levels up to the Fermi momentum kF

while the levels above that are empty. The Fermi momentum
is the only free parameter of the model. It is usually fitted to
the width of the quasielastic peak in electron scattering data
[52] and varies with the nucleus. Since in the pure RFG the
nucleons are unbound, the separation energy in this model is
negative [38]:

ERFG
s = −TF ≡ −EF + mN , (59)

being EF =
√

k2
F + m2

N the Fermi energy and TF the corre-
sponding kinetic energy. To cure this problem and to be more
consistent with the other models considered in this work, we
adopt the prescription of Ref. [40]: We shift the RFG energies
by a constant in such a way that the last occupied level in
the Fermi sea coincides with −Es, as shown in Fig. 7. This
amounts to putting the nucleons off-shell by changing their
free energy as

E =
√

p2 + m2
N −→ E − (EF + Es). (60)

In the scattering process, illustrated in Fig. 7, a nucleon with
momentum pm absorbs enough energy to leave the Fermi sea,

FIG. 7. Schematic representation of an electroweak reaction
within the relativistic Fermi gas model.

EF + Es −
√

p2
m + m2

N , and to be knocked out with positive
kinetic energy

√
p2

N + m2
N − mN , namely,

ω = TF + Es +
√

p2
N + m2

N −
√

p2
m + m2

N . (61)

The missing energy is then

Em = EF + Es −
√

p2
m + m2

N , (62)

and the excitation energy of the residual nucleus,

E = Em − Es = EF −
√

p2
m + m2

N . (63)

The normalized spectral function is [40]

SRFG(pm, E ) = 3(2π )3N
k3

F

θ (kF −pm)δ
(E−EF +

√
p2

m+m2
N

)
,

(64)
with N the number of neutrons (protons) for incoming neutri-
nos (antineutrinos).

By inserting this spectral function in Eq. (22) we get the
semi-inclusive RFG cross section at fixed neutrino energy k:

dσ

dk′d�k′d pN d�L
N

= 3N (GF cos θck′ pN mN )2

8kε′EN (2πkF )3
√

p2
m + m2

N

υ0F2
χ

× θ (kF − pm)θ (pN − kF )δ
(E − EF +

√
p2

m + m2
N

)
,

(65)

where, as mentioned in Sec. II B, the relativistic factor
mN (

√
p2

m + m2
N )−1 has been introduced, and the values of

pm and E entering in the previous expression are given by
Eqs. (23) and (24). The θ function θ (pN − kF ) represents the
Pauli-blocking restriction on the momentum of the ejected
nucleon, which must be larger than kF .
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The flux-averaged semi-inclusive cross section for the RFG
model is then〈

dσ

dk′d�k′d pN d�L
N

〉

= 3N (GF cos θcmN k′ pN )2

8(2πkF )3ε′EN

∫ ∞

0
dk

P(k)

k

× υ0F2
χ√

(pB − k)2 + m2
N

δ
(
k − EB +

√
(pB − k)2 + m2

N

)

× θ (kF − |pB − k|)θ (pN − kF ), (66)

where for brevity we have defined the following variables:

pB = k′ + pN , (67)

EB = ε′ + Es + TF + EN . (68)

The δ function can be recast as

δ
(
k − EB +

√
(pB − k)2 + m2

N

)

=
√

(pB − k)2 + m2
N

EB − pB cos θB
δ(k − k0), (69)

with

k0 = E2
B − p2

B − m2
N

2(EB − pB cos θB)
, (70)

cos θB = k′ cos θl + pN cos θL
N

pB
, (71)

and used to perform the integral over k. Finally, the flux-
averaged semi-inclusive cross section is〈

dσ

dk′d�k′d pN d�L
N

〉

= 3N (GF cos θcmN k′ pN )2

8(2πkF )3ε′EN

P(k0)

k0

× υ0F2
χ

EB − pB cos θB
θ (kF − pm)θ (pN − kF ), (72)

with the missing momentum given by

p2
m = k2

0 − 2k′k0 cos θl + k′2 + p2
N − 2k0 pN cos θL

N

+ 2k′ pN
(

cos θl cos θL
N + sin θl sin θL

N cos φL
N

)
. (73)

If we integrate Eq. (66) over pN and exploit the δ function
to perform the integral over θL

N , then we obtain the flux-
averaged inclusive cross section Eqs. (35) and (38),〈

dσ

dk′d�k′

〉
= 3N (GF cos θcmN k′)2

8ε′k3
F (2π )2

∫ ∞

0
dk

P(k)

qk

∫ kF

p−
m

d pm

× pm√
p2

m + m2
N

υ0F2
χ θ (pN − kF ), (74)

where [40]

p−
m =

∣∣∣∣∣∣
√

(ω − Es − TF )2η
(
η + 4m2

N

)
2η

− q

2

∣∣∣∣∣∣ (75)

and

η = q2 − (ω − Es − TF )2. (76)

These kinematic limits can be recast in the form

pmin
m � pm � pmax

m , (77)

with

pmin
m =

∣∣∣∣∣q

2
− ω

2

√
1 + 4m2

N

η

∣∣∣∣∣, (78)

pmax
m = kF , (79)

where we have introduced the quantity

ω = ω − Es − TF , (80)

and we have used the condition pm � kF . The corresponding
limits on the momentum of the ejected nucleon, pN = |pm +
q|, are

Max

{
kF ,

q

2
+ ω

2

√
1 + 4m2

N

η

}
� pN � kF + q, (81)

where we have imposed the Pauli blocking condition
pN � kF .

One advantage of using the RFG model for the description
of the neutrino-nucleus inclusive cross section is that the inte-
gral over pm in Eq. (74) can be performed analytically leading
to relatively simple expressions [5,23]. In particular, the weak
response functions in the RFG can be written as

RK = N�0UK f (ψ ′). (82)

The expressions for UK and the factor �0 can be found in Ap-
pendix C of Ref. [23] and f (ψ ′) is the RFG scaling function

f (ψ ′) = 3
4 (1 − ψ ′2)θ (1 − ψ ′2), (83)

where the scaling variable ψ ′ is the minimum kinetic energy
of the bound nucleon in units of the nucleon mass, i.e. [53],

ψ ′2 = 1

ξF

⎛
⎝

√
p−

m
2 + m2

N

mN
− 1

⎞
⎠. (84)

These expressions allow us to check the reliability of the
results presented in the next section.

IV. RESULTS

In this section we present and discuss semi-inclusive and
inclusive results for the IPSM, NO and RFG models illustrated
in the previous section, considering two different neutrino
fluxes (DUNE and T2K) and two nuclear targets, 40Ar and
12C.

Let us briefly summarize the main features of each model.
For the IPSM we describe the bound nucleon states as
self-consistent Dirac-Hartree solutions, derived within a rel-
ativistic mean-field (RMF) approach using a Lagrangian
containing ρ, σ, and ω mesons [54,55]. These relativistic
single-particle wave functions are used to obtain the momen-
tum distribution of each shell for both types of nucleons in
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FIG. 8. Top panel: IPSM and RFG momentum distributions nor-
malized according to Eq. (42) for 40Ar using kF = 0.241 GeV.
Bottom panel: Same as in the top panel but for 12C and including
also the NO momentum distribution. The Fermi momentum in this
case is fixed to 0.228 GeV.

the nucleus. In the NO approach the single-particle wave
functions are nonrelativistic, but they include short-range
NN correlations. They are used to generate the momentum
distributions for the different shells. In this case the en-
ergy δ functions corresponding to each shell are replaced
by Lorentzian distributions (see Refs. [51,56] for details).
The RFG is the simplest among the three models and does
not account for the shell structure of the nucleus, because
the nucleons are noninteracting. However the model is fully
relativistic and is still employed in most event generators used
in experiments.

In the discussion that follows we focus on the RFG and
IPSM in the case of argon (DUNE experiment), whereas for
carbon (T2K experiment) we explore in addition the results
provided by NO. Momentum distributions for 40Ar and 12C
are presented in Fig. 8 showing the complex dependence upon
the missing momentum for the IPSM and the NO models,
whereas the RFG distribution is basically a step function. As
we will see later, under some fixed kinematics, the shape and

magnitude of the semi-inclusive cross section will be strongly
dependent on the momentum distribution, hence the results
for the RFG model will be quite different from the other two.

A. Semi-inclusive cross sections

In Secs. III A, III B, and III C we deduced the semi-
inclusive cross sections for the IPSM, NO, and RFG models
using the spectral function defined for each case. Since we
want to shed some light on the discrepancies between the
models, in what follows we select some specific kinematics
where the dependence of the momentum distribution with the
missing momentum is particularly relevant.

We begin considering the semi-inclusive cross sections for
IPSM and RFG with muon momentum k′ = 1.5 GeV, muon
scattering angle θl = 30◦ and two different values for the
azimuthal angle defined in the k system, namely, φL

N = 180◦
and φL

N = 165◦, as function of the ejected nucleon momentum
pN and the angle θL

N . We consider 40Ar as the target and use
the neutrino flux corresponding to DUNE. Results for the
RFG model are presented in Fig. 9 using kF = 0.241 GeV
for two different points of view, namely “side” (top panels)
and “hawk” (bottom) views. The graphs on the left correspond
to φL

N = 180◦ while the ones on the right to φL
N = 165◦. In

both cases the shape of the cross section is simple being only
different from zero in a very well-defined area given by the
condition pm � kF . Note that the region where the cross sec-
tion exists for φL

N = 165◦ is significantly reduced compared
with the case at φL

N = 180◦. In the former kinematics, only
a few points in the plane (pN , θL

N ) fulfill the condition that
the corresponding missing momentum defined in Eq. (73) is
smaller than kF .

Figure 10 shows the semi-inclusive cross section for the
IPSM model. For φL

N = 180◦ (left panels), the shape is not as
simple as for the RFG model because the contour is more dif-
fuse and the maximum is approximately located in the center
of the region where the cross section exists, although with a
distribution that clearly differs from the results corresponding
to φL

N = 165◦ (right panels). Here the cross section shows a
more symmetric shape with a very well-defined maximum
located in the center of the projected contour and its magni-
tude decreasing uniformly in all directions as one moves away
from the center. It is important to point out that the maximum
value of the cross section at φL

N = 165◦ is reduced by ∼70%
compared with the corresponding value at φL

N = 180◦. On the
contrary, note that for the RFG model (Fig. 9) the reduction is
only ∼15%. This is clearly illustrated in Table I where we
present the specific values, denoted by ( p̃N , θ̃L

N ), for which
the semi-inclusive cross section reaches its maximum (also
given in the table) for the two φL

N -angles considered and both,
IPSM and RFG, models. The origin of these features is further
investigated in the next plots.

Figure 11 shows the semi-inclusive cross sections for the
IPSM (red dashed) and the RFG (blue solid) models and the
two values of φL

N . The graphs on the left present the semi-
inclusive cross section as a function of the ejected nucleon
momentum pN evaluated at the values of θ̃L

N where the maxi-
mum in the cross section occurs in each model. The panels on
the right show the corresponding cross sections against θL

N at
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FIG. 9. Semi-inclusive cross section for 40Ar and DUNE flux using k′ = 1.5 GeV, θl = 30◦, φL
N = 180◦ (left panels), and φL

N = 165◦ (right
panels) for the RFG model.

FIG. 10. Semi-inclusive cross section for 40Ar and DUNE flux using k′ = 1.5 GeV, θl = 30◦, φL
N = 180◦ (left panels) and φL

N = 165◦ (right
panels) for the IPSM.
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TABLE I. Values of pN and θL
N that give the maximum cross sections in Figs. 9 and 10, i.e., ( p̃N , θ̃N ). Cross sections in cm2/GeV2. (See

text for details).

φL
N = 180◦ φL

N = 165◦

p̃N θ̃L
N Cross section p̃N θ̃L

N Cross section

RFG 1.43 GeV 43.50◦ 4.62 × 10−37 1.24 GeV 42.89◦ 3.95 × 10−37

IPSM 1.00 GeV 49.54◦ 7.56 × 10−37 1.00 GeV 48.33◦ 2.32 × 10−37

fixed p̃N . Not only the shapes in the two models completely
disagree but also the region in (pN , θL

N ) where the cross section
is defined differs very significantly.

The specific contribution of the various shells in the IPSM
model to the semi-inclusive cross section in the case of 40Ar
is shown in Fig. 12. Here we present a cut in the plane
θL

N = θ̃L
N of the semi-inclusive cross section shown in Fig. 10.

Top (bottom) panel in Fig. 12 corresponds to φL
N = 180◦

(φL
N = 165◦). In both graphs we also display the behavior and

allowed values of the missing momentum pm (dotted line).
According to the 40Ar momentum distribution (see Fig. 8),
the s-shell contribution is dominant for very low missing
momentum. For the kinematics considered in the top panel of
Fig. 12 this very low-pm region corresponds to values of the
ejected nucleon momentum in the vicinity of pN = 1.0 GeV
(pm ∼ 40–50 MeV). The other shells give a smaller contri-
bution, originating the secondary peaks observed in Fig. 10
at φL

N = 180◦. These peaks disappear at φL
N = 165◦ being

also the cross section significantly smaller. As shown in the
bottom panel of Fig. 12, the missing momentum gets also its
minimum value in the region of pN close to 1 GeV. However,
here pm ∼ 200 MeV, i.e., much larger than the corresponding
value in the previous case. As clearly illustrated by the 40Ar
momentum distribution (Fig. 8), at pm � 200 MeV the shells
that contribute the most are the d and p-ones. This is con-

FIG. 11. Semi-inclusive cross sections as function of pN (θL
N ) for

the two values considered of the azimuthal angle φL
N (see text for de-

tails). In each case the cross section is evaluated at the corresponding
values θ̃L

N ( p̃N ) that give the maximum cross section in Figs. 9 and
10. The values of p̃N and θ̃L

N are summarized in Table I.

sistent with the more symmetric shape of the semi-inclusive
cross section shown in Fig. 10 for φL

N = 165◦ (left panels)
with only one peak visible.

According to the general energy and momentum conser-
vation given by Eqs. (14) and (7), it is possible to deduce an
expression for E , or equivalently Em, as function of pm for a
selected set of semi-inclusive variables: (k′, θl , pN , θL

N , φL
N ).

This relation is

E (pm) = ω − Es − EN + mN , (85)

FIG. 12. Contributions to the semi-inclusive cross section by
each shell in the IPSM for 40Ar. The value of θ̃L

N is given in Table I
and the lepton variables are fixed to k′ = 1.5 GeV and θl = 30◦.
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FIG. 13. Trajectories for two values of φL
N . The outgoing nucleon

variables pN and θL
N are those that give the maximum value of the

cross section for each φL
N given in Table I. Also included Em(pm ) for

RFG and IPSM.

where the neutrino momentum k is the solution of the equation

k2 − 2k(k′ cos θl + pN cos θL
N ) + k′2 + p2

N

+ 2k′ pN
(

cos θl cos θL
N + sin θl sin θL

N cos φL
N

) − p2
m = 0,

(86)

and it defines trajectories in the (E, pm) plane allowed by
energy conservation at each kinematics.

By plotting the trajectories E (pm), likewise Em(pm), for
a set of semi-inclusive variables, we can observe that the
RFG (IPSM) semi-inclusive cross section is different from
zero only if the corresponding trajectory crosses the curve
ERFG(pm) (Enl j), where the RFG (IPSM) spectral function
lives. This is illustrated in Fig. 13 where we show the trajecto-
ries Em(pm) for the set of variables that gives the maximum
cross sections in Figs. 9 and 10 together with the support
of the spectral function for the two models. In the case of
the IPSM (dashed curves) the two trajectories corresponding
to the two φL

N values cross the specific missing energies for
the different shells at very different values of the missing
momentum. Whereas for φL

N = 180◦ the crossing occurs in
the region of low-pm, i.e., pm � 50 MeV/c, the situation is
clearly different for φL

N = 165◦ where the crossing takes place
at larger pm values (pm � 200 MeV/c), a region where the
momentum distribution has dropped very significantly. This
explains the great reduction observed in the maximum of the
semi-inclusive cross section when going from φL

N = 180◦ to
φL

N = 165◦.
The situation is clearly different for the RFG model. Here

the trajectories for the two φL
N values (dot-dashed lines)

are very close to each other and they cross the value of the
RFG missing energy at pm � 240 MeV/c, i.e., just below the
Fermi level. As known, the RFG momentum distribution is
constant and different from zero up to pm = kF . Thus, the
15% reduction observed in the maxima of the semi-inclusive
cross sections for the two φL

N values cannot be connected
with the momentum distribution but with the specific kine-

FIG. 14. Semi-inclusive cross section for 40Ar and DUNE flux
taking k′ = 1.5 GeV, θl = 30◦ and φL

N = 180◦ using IPSM spectral
function including all shells (top panel) and removing the s-shells
(bottom). Cross sections in 10−37cm2/GeV2.

matical factors (evaluated at the particular allowed values for
the remaining kinematical variables) that enter in the cross
section.

Using the general expression for the trajectory Em(pm) we
can also analyze the origin of the high peak in the cross section
shown in Fig. 10 for φL

N = 180◦. Since this result is not present
in the case of the RFG (Fig. 9), we assume its origin is linked
to the complex, nonconstant, structure shown by the global
momentum distribution in the IPSM. As already shown in
Fig. 13, the IPSM trajectory corresponding to φL

N = 180◦ is
consistent with significant contribution in the momentum dis-
tribution at low missing momentum values. This is the region
where the various s-shells entering in 40Ar clearly dominate,
giving rise to the maximum in the cross section observed
in Fig. 10. In fact, if one excludes the s-shell contributions
the semi-inclusive cross section decreases significantly. This
is illustrated in Fig. 14 that shows the contour graph of the
semi-inclusive cross section including all shells in 40Ar (top
panel) and removing the contribution of the s-shells (bottom
panel). Note the global reduction in the cross section, but also
how importantly the strength in the cross section is modified in
the (pN , θL

N ) plane. The peak presented in the top panel located
in the vicinity of pN � 1.0 GeV and θL

N � 50◦, due to the
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FIG. 15. Semi-inclusive cross section for 12C with k′ = 0.55
GeV, θl = 50◦, and φL

N = 180◦ using the experimental T2K flux
shown in Fig. 5 (top panel) and using a Gaussian fit (bottom). Cross
sections are in 10−37cm2/GeV2 and both results correspond to the
RFG model.

s-shell contributions, has completely gone in the bottom graph
leaving a hole where the cross section is very small (close to
zero).

All previous results correspond to the case of 40Ar, the
target that will be used in DUNE detector. In what follows
we extend our study to the case of 12C, used in past and
on-going experiments. We present semi-inclusive results for
muon neutrinos on 12C with muon variables fixed to k′ =
0.55 GeV and θl = 50◦ for φL

N = 180◦ using the T2K flux. In
addition to the RFG and IPSM nuclear models already used in
the case of DUNE (40Ar), here we also provide predictions
for NO. The kinematics is fixed to explore the impact of
the neutrino flux on the shape of the semi-inclusive cross
section. More specifically, we analyze how the shape of the
semi-inclusive cross sections changes with the experimental
neutrino flux that is given in bins as shown in Fig. 5. Results
for the RFG (projected cross section in the (pN , θL

N ) plane) are
presented in Fig. 15 using the experimental flux (top panel)
and making use of a Gaussian fit of the flux (bottom panel).
As shown, the use of the experimental flux (with the bins)
leads to the appearance of some discontinuities or jumps in
the cross section that are distributed along the pN axis as
the value of θL

N changes. This occurs because the neutrino

energy is also a function of pN and θL
N and it increases when

we move to higher values of pN . Hence, it is simply a direct
consequence of the change of bin in the experimental neutrino
flux. This is clearly seen in the bottom panel of Fig. 15 where
we present again the semi-inclusive cross section for the same
kinematics but using a continuous function fitted to the neu-
trino flux. As observed, the discontinuities are not present and
the colors in the cross section present a smooth and gradual
change.1

For completeness, we show in Fig. 16 the semi-inclusive
cross section for the kinematics defined above and the two
remaining nuclear models: IPSM (left panel) and NO (right
panel). In both cases we have used the T2K flux presented
in Fig. 5. The shapes of the semi-inclusive cross sections
for both models are highly correlated with the shapes of the
momentum distributions (see bottom panel in Fig. 8). Notice
that the cross section for the IPSM in Fig. 16 (left) shows a
small hole in the center of the region that is not present in the
case of the NO model (right). An analysis of the trajectory
curves shows that this particular region in the (pN , θL

N ) plane
corresponds to very small values of the missing momentum
pm. Note that the behavior of the momentum distribution for
the two models, IPSM and NO, differs at low-pm: The for-
mer decreases as pm approaches zero, whereas the latter does
not.

B. Comparison with semi-inclusive experimental data

In this section we compare our predictions with some
recent data from the T2K collaboration [42] corresponding
to neutrino scattering on 12C with a muon and an ejected
proton measured in the final state. We only present some
preliminary results based on the PWIA and the three nu-
clear models considered in this work. A more complete
analysis including a systematic comparison with all avail-
able semi-inclusive data will be presented in a forthcoming
publication. The role played by the final state interactions
(FSI) will be also considered in the future within the gen-
eral scheme of the distorted wave impulse approximation
(DWIA).

Starting from the general semi-inclusive cross section as
function of the final lepton and nucleon variables, we can
integrate over different variables to get the cross section to
be compared with the experiment. In the case of the T2K
semi-inclusive data we define two different cross sections,
namely,〈

dσ

d cos θL
N

〉
= 2π

A

∫ ∞

0
dk′

∫ 2π

0
dφL

N

∫ ∞

pmin
N

d pN

×
〈

dσ

dk′d�k′d pN d cos θL
N dφL

N

〉
� cos θl ,

(87)

1A similar study could also be applied to the DUNE flux, although
here being aware of the larger size of the bins.
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FIG. 16. Semi-inclusive cross section for 12C and T2K flux setting k′ = 0.55 GeV, θl = 50◦ and φL
N = 180◦ for the IPSM (left panel) and

the NO model (right). Cross sections in 10−37cm2/GeV2.

and 〈
dσ

d pN

〉
= 2π

A

∫ ∞

0
dk′

∫ 2π

0
dφL

N� cos θl� cos θL
N

×
〈

dσ

dk′d�k′d pN d cos θL
N dφL

N

〉
, (88)

where � cos θi is the experimental bin length. Note that in
Eq. (87) the integral over pN is performed from a minimum
value pmin

N up to infinity. Since in the T2K experiment only
ejected protons with momentum greater than pmin

N = 0.5 GeV
were detected, in the theoretical calculation we apply the
same cut pN � 0.5 GeV. T2K data compared with theoretical
predictions using the three nuclear models are presented in
Fig 17. As shown, the uncertainty connected with the nuclear
model is tiny. Only the NO prediction departs slightly from
the IPSM and RFG results. Although the theoretical predic-
tions overestimate the data by some amount, great caution
should be drawn on this analysis. The present model is entirely
focused on the quasielastic regime and based on the plane
wave impulse approximation (PWIA). This is obviously an
oversimplified description of both the reaction mechanism and
the final state dynamics. FSI and ingredients beyond the IA
like meson exchange currents (MEC) can play a significant
role in describing the data. This is consistent with the anal-
ysis presented in Ref. [42] based on results obtained using
different event generators. However, it is not yet entirely clear
how precisely the event generator transport mechanisms can
reproduce the effects ascribed to the final state interactions.

C. Inclusive cross sections

Although the main objective of this work is the analysis of
semi-inclusive CCν reactions, in what follows we consider the
case of inclusive reactions where only the final lepton is de-
tected. This topic has been studied in detail by several groups
using very different models that incorporate not only diverse
descriptions of the nuclear dynamics but also FSI, two-particle
two-hole (2p-2h) contributions, nucleon resonances and deep
inelastic scattering [1]. Moreover, extensive studies of inclu-
sive neutrino scattering processes based on scaling arguments
have been developed by our group in the past [5,13,23–
25,57,58]. In all the cases a systematic comparison with data

has been provided. Hence, in this section our aim is simply
to prove the consistency of the present calculations, originally
developed for semi-inclusive processes, when applied to in-
clusive reactions.

As we discussed in Sec. II C, the inclusive results can be
recovered from the semi-inclusive ones by integrating over the
kinematical variables corresponding to the nucleon detected
in coincidence with the lepton in the final state. In Fig. 18
we show the flux-averaged double-differential inclusive cross
sections for 12C evaluated for the three nuclear models, RFG
(red dashed line), IPSM (blue solid), and NO (green dot-
dashed). Comparison with T2K experimental data [59] is also
provided. In spite of the very different momentum distribu-
tions for the three nuclear models, particularly in the case of
the RFG, the inclusive cross sections are very similar, except
for θμ angles close to zero (i.e., small energy transfer) where
the IPSM and the NO results deviate very significantly from
the RFG ones being much higher than data. As discussed in
Refs. [27,60], the PWIA approach fails in describing lepton-
nucleus scattering reactions at low values of the momentum
and energy transfers. This is a consequence of the lack of
orthogonality between the bound and free nucleon wave func-
tions, and the extremely large effects associated to the overlap
between the nonorthogonal initial and final states in the near-
threshold region. In the case of the RFG, the cross section
at very forward scattering angles is significantly reduced and
more in accordance with data. This result is largely due to the
Pauli blocking effects included in the model. Notice that IPSM
and NO lead to similar semi-inclusive responses (see Figs. 9
and 10), being very different from the predictions provided by
RFG (Fig. 16).

In the previous sections we have worked in the q sys-
tem to get the inclusive responses. A similar analysis can be
performed working in the k system. In this case, the neutrino-
averaged inclusive cross section can be written as〈

dσ

dk′d�k′

〉
=

∫ 2π

0
dφL

N

∫ +1

−1
d cos θL

N

∫ ∞

0
d pN

×
〈

dσ

dk′d�k′d pN d cos θL
N dφL

N

〉
, (89)

i.e., integrating over the outgoing nucleon variables in the k
system. Note that the integral over φL

N is not as trivial as in the
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FIG. 17. Flux-averaged single-differential cross section per tar-
get nucleon for muon neutrinos on 12C as function of cos θL

N in a bin
of cos θl (top panel) and as function of pL

N in bins of cos θl and cos θL
N

(bottom). Data taken from Ref. [42].

q system because the rotation that relates the two systems in-
troduces extra terms in F2

χ that do not vanish after performing
the integral. The special symmetry shown by the responses
in the q system is lost when expressed with respect to the k
system. Although this introduces additional complexities in
the problem, one can test the consistency of the calculations
by solving numerically the integrals in Eq. (89).

For the three models considered in this work the semi-
inclusive cross sections in the k system to be integrated are
Eqs. (72), (48), and (55). The results obtained should be con-
sistent with the ones corresponding to Eq. (74) for the RFG,
Eq. (49) for the IPSM, and Eq. (58) for the NO, respectively.
This is illustrated in Fig. 19 where the inclusive cross sections
for 12C using the T2K flux are presented. No difference is ob-
served between the calculations performed in the two systems
for the three models. Although not shown here for simplicity,
a further test of the consistency of the calculations has been
performed using the RFG model. The simplicity of this model

makes it possible to solve the problem in an analytical way
getting closed expressions for the observables of interest. We
have checked that these analytical results coincide with the
corresponding ones obtained by solving the integrals numeri-
cally in any of the two, q or k, systems considered.

D. Off-shell effects

To conclude, in what follows we discuss the effects in the
cross sections associated to the use of different descriptions
of the weak current operator. As shown in the Appendix, the
semi-inclusive responses contained in F2

χ are given by specific
components of the hadronic tensor, that is a bilinear combina-
tion of the current operator matrix elements between the initial
and final nucleon wave functions. As known, the weak current
of the nucleon consists of a vector and an axial-vector terms.
Following previous studies on electron scattering reactions
[61–64], different options can be considered for the vector
term. By analogy with the electromagnetic case, these are
denoted as CC1 and CC2 prescriptions (see the Appendix
for explicit expressions). The two operators are equivalent for
free on-shell nucleons and are connected to each other by the
Gordon transformation. However, the IPSM and NO models
deal in general with off-shell bound nucleons, whereas ejected
nucleons are on-shell in the PWIA. Hence the two opera-
tors lead to different results. The particular case of the RFG
model requires some discussion. The RFG uses relativistic
free wave functions, solutions of the free Dirac equation, for
all nucleons. Hence, no difference between results obtained
with the two prescriptions of the vector current should exist.
However, the use of a value of the separation energy fitted to
the experiment in addition to the Fermi kinetic energy breaks
the equivalence between the two currents, introducing at some
level off-shell effects. These are linked to the energy shift

δ = ω − ω = −Es − TF , (90)

with ω defined in Eq. (80). In the pure RFG the separation
energy is negative and equal to minus the Fermi kinetic energy
[see Eq. (59)], hence δ = 0 and no off-shell effects are present.
In the general case in which Es is fitted to experiment, the
value of δ differs from zero and the election of the particular
version of the vector current, CC1 or CC2, leads to different
results. The Appendix contains the detailed calculation of all
the weak single-nucleon responses. The case δ = 0 leads to
the on-shell result.

The role played by off-shell effects is illustrated in Fig. 20.
Here we present the inclusive neutrino-12C cross section as a
function of the muon energy at different kinematical situations
defined by the scattering angle and the neutrino energy. Each
panel contains five curves that correspond to the RFG and
IPSM models. In the former three options are considered:
(i) the on-shell limit, i.e., RFG with δ = 0 (solid blue line),
(ii) RFG with off-shell effects and the CC1 prescription for
the vector current (red solid), and (iii) same as in the previous
case but for the CC2 current (cyan dot-dashed). For the IPSM
we show the results corresponding to the CC2 (green dashed)
and CC1 (black dotted) currents. Comparing the results for
the RFG with the two currents and δ fixed by separation
energy, we observe a minor, almost negligible, discrepancy.
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FIG. 18. Flux-averaged double-differential inclusive cross section per target nucleon for 12C in bins of cos θl as function of the momentum
of the muon k′ for RFG model [Eq. (74)], IPSM [Eq. (49)], and NO model [Eq. (58)]. Data taken from Ref. [59].

The same comment applies to the two IPSM results. This is
consistent with previous studies for electron scattering where
it was shown that the use of CC1 or CC2 current operators is
almost irrelevant for inclusive responses in the PWIA limit

FIG. 19. Inclusive cross section integrated over the neutrino en-
ergy weighted by the T2K flux for 12C as function of the muon
momentum for θl = 35◦ for the three models using Eq. (74) for the
RFG model, Eq. (49) for the IPSM, and Eq. (58) for the NO model
(labeled “q-system”) and using Eq. (89) (labeled “k-system”).

[41,61,62]. On the contrary, the pure on-shell RFG result
deviates significantly from the other models. As shown, the

FIG. 20. Inclusive neutrino-12C cross section as function of the
muon energy for a fixed neutrino energy and muon scattering angle.
Results are presented for the pure, on-shell, RFG model (blue solid),
the off-shell (δ �= 0) RFG with the CC1 (red solid) and CC2 (cyan
dot-dashed) currents. IPSM results correspond to CC1 (black dotted)
and CC2 (green dashed).
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FIG. 21. Top panel: the CC1/CC2 cross section ratio ρoff defined
in Eq. (91) for 40Ar in the IPSM. Bottom panel: missing momentum
pm in GeV averaged over all 40Ar shells as function of pN and θL

N .
The kinematics is k′ = 1.5 GeV, θl = 30◦, and φL

N = 180◦.

role of δ �= 0 is to shift the RFG cross section to smaller
values of the muon energy by an amount that depends on
the particular kinematics considered. Also the maximum in
the cross section varies slightly (increasing or diminishing).
Notice that the position of these maxima for the two off-shell
RFG calculations coincides with the IPSM. Furthermore, the
inclusive cross sections are similar except for the tails present
in the IPSM due to the bound nucleon momentum distribution.

The analysis of the off-shell effects in semi-inclusive cross
sections is illustrated in Fig. 21. Results in the top panel
correspond to the ratio between the difference and the sum
of the semi-inclusive cross sections evaluated with the two
current prescriptions in the IPSM applied to 40Ar:

ρoff =
∣∣∣∣dσ CC1 − dσ CC2

dσ CC1 + dσ CC2

∣∣∣∣. (91)

The ratio is presented as a function of the ejected nucleon
variables pN and θL

N for the same kinematics as in previous

figures and φL
N = 180◦. As observed, off-shell effects become

larger as pN and θL
N increase. The uncertainty introduced by

the current is of the order of ∼12–14% at pN � 1.8 GeV and
θL

N � 80◦. To understand better this result we present in the
bottom panel the variation of the missing momentum pm in the
(pN , θL

N ) plane for the same kinematics. As shown, pm is max-
imum in the region where the off-shell effects are the largest,
i.e., at high values of pN , θL

N (left-upper corner). This is
consistent with previous studies presented for semi-inclusive
(e, e′N ) reactions in which off-shell effects were proved to
be larger as the missing momentum increases. However, note
that the momentum distribution drops very quickly as pm in-
creases. As already shown in Fig. 10, the semi-inclusive cross
section gets its maximum value at very low pm, as illustrated
in the bottom panel by the darker blue color in the center of the
contour graph. Notice that this region coincides with the one
where the semi-inclusive cross sections is visible (Fig. 10).
The percent ratio in this region (top panel) is very small, below
∼2–3%. This implies that off-shell effects are very minor in
the region where the semi-inclusive cross section gets most
of its strength. However, some caution should be drawn on
this general conclusion as only a specific kinematics has been
explored, and more importantly, the addition of final state
interactions could modify significantly these results.

V. CONCLUSIONS

In this paper we have presented the general formalism for
semi-inclusive charged-current neutrino-nucleus reactions,
i.e., processes where an incident neutrino (antineutrino) inter-
acts with a nucleus and a final lepton (antilepton) is detected
in coincidence with some other particle. We have restricted
our attention to the quasielastic kinematic regime and have
assumed the impulse approximation, namely, only one-body
current operators are considered. The final particle detected
in coincidence with the lepton is a single nucleon: proton
(neutron) for neutrino (antineutrino) scattering. Three differ-
ent models have been considered to deal with the nuclear
dynamics involved in the problem: the relativistic fermi gas
(RFG), the independent particle shell model (IPSM), but with
fully relativistic wave functions solutions of the Dirac equa-
tion, and the natural orbitals (NO) shell model that accounts
for NN correlations.

The whole analysis has been performed assuming fac-
torization in the cross section and the plane-wave limit for
the final nucleon state. Although being aware of the over-
simplified description of the reaction and, particularly, the
significant modifications that FSI may introduce in the analy-
sis, we are confident that the present results help in improving
our understanding on the dynamical properties of semi-
inclusive cross sections. This will have an important impact
in determining the neutrino beam energy with more precision,
an essential requirement in the analysis of neutrino oscillation
experiments.

Flux-averaged semi-inclusive cross sections corresponding
to DUNE (argon) and T2K (carbon) experiments have been
presented. The results show that RFG differs completely from
the two shell-based models, IPSM and NO. Not only the
shape of the semi-inclusive cross section is totally different,
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without any subshell structure, but also its magnitude and
behavior with the kinematic variables, particularly, with the
azimuthal angle of the outgoing nucleon φL

N . On the contrary,
IPSM and NO lead to rather similar results showing only
some discrepancies in the low-pm region because of the effects
of NN correlations. We have checked the consistency of all
calculations by recovering the inclusive observables from the
semi-inclusive ones (integrating over the ejected nucleon vari-
ables) and comparing them with those already published in
the literature. It is important to point out that the three models
produce similar results for the inclusive cross sections, even
being dramatically different for the semi-inclusive ones (RFG
compared to IPSM and NO). The richer structure of the semi-
inclusive cross section will help to better discriminate among
different models, providing also a more reliable method to
reconstruct the incident neutrino energy.

Theoretical predictions for the cross section against the
ejected nucleon momentum have been compared with some
of the recent T2K data. In spite of the above mentioned
approximations considered, all the three models are capable
of reproducing the data, with the theoretical curves contained
within the experimental error bars. A more systematic analysis
including all available data will be presented in a forthcoming
work.

Off-shell effects have been studied in the past in the case
of inclusive and semi-inclusive electron scattering processes.
Here we have extended this analysis to neutrino-nucleus reac-
tions. Using for the vector part of the weak current the two
usual prescriptions, CC1 and CC2, we have shown results
for inclusive as well as semi-inclusive cross sections. In the
latter it is shown that the region where off-shell effects are
larger corresponds to high pm values, a region where the cross
section is almost negligible. A similar comment applies to the
inclusive cross section when comparing results for a specific
model and the two prescriptions, CC1/CC2. A particular case
emerges for the RFG in the on-shell limit where the inclusive
cross section is shifted by a significant amount to larger values
of the final lepton energy.

To conclude, this work represents a first step towards a
more sophisticated description of the semi-inclusive reaction,
where all the formalism is settled and some basic models for
the nuclear initial state are applied and tested. Some caution
should be drawn on the numerical results presented, as fi-
nal state interactions may introduce significant modifications.
Work along this line is in progress.
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APPENDIX: THE REDUCED SINGLE-NUCLEON
CROSS SECTION

This Appendix contains the detailed calculation of all the
reduced single-nucleon weak responses that enter in the semi-
inclusive cross section introduced in previous sections. The
CC neutrino (antineutrino)-nucleon scattering reactions to be
considered are

νμ + n → μ− + p,

ν̄μ + p → μ+ + n.

The cross section for the previous processes can be con-
structed from the single-nucleon tensor that is given from
the single-nucleon current matrix elements. These contain the
weak charged-current operators and the wave functions for
the initial (bound) and emitted nucleons. As known, the weak
current operator consists of a vector and an axial-vector parts,
i.e., Ĵμ

weak = Ĵμ
V − Ĵμ

A . The axial current reads

Ĵμ
A =

[
GAγ μ + GP

2mN
Qμ

]
γ 5, (A1)

with GA (GP) the axial-vector (pseudoscalar) form factors (see
Ref. [5] and references therein for the specific parametriza-
tions used).

Following the general analysis of electron scattering reac-
tions [41,61,62], here we consider two prescriptions for the
vector contribution to the weak current. These are denoted as
CC1 and CC2, and are given by

[
Ĵμ

V

]
CC2 = F1γ

μ + iF2

2mN
σμνQν, (A2)

[
Ĵμ

V

]
CC1 = (F1 + F2)γ μ − F2

2mN
(P + PN )μ, (A3)

where P
μ

is the on-shell four-momentum corresponding to
the bound nucleon and F1 (F2) the isovector nucleon Dirac
(Pauli) form factor. Note that the two CC1 and CC2 currents
are equivalent for free on-shell nucleons.

The above decomposition of the weak current into its vec-
tor and axial-vector parts leads to the weak hadronic tensor
expressed in the form2

W μν = W μν
VV + W μν

AA + W μν
VA . (A4)

In what follows we present the explicit expression of the
tensor obtained for the two prescriptions of the vector current.

2In what follows we use the notation W μν for the off-shell single-
nucleon tensor.
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For the CC1 case we have

m2
NW μν

VV = (F1 + F2)2

(
P

μ
Pν

N + P
ν
Pμ

N + Q̄2

2
gμν

)
−

[
F2(F1 + F2) − F 2

2

2

(
1 − Q

2

4m2
N

)]
(P + PN )μ(P + PN )ν, (A5)

m2
NW μν

VA = −2iGA(F1 + F2)εαβμνPNαPβ, (A6)

while for the CC2 current the tensor results

m2
NW μν

VV = F 2
1

(
P

μ
Pν

N + P
ν
Pμ

N + Q
2

2
gμν

)
+ F1F2

(
Q · Qgμν − QμQ

ν + QνQ
μ

2

)

+ F 2
2

4m2
N

{
PN · Q(P

μ
Qν + P

ν
Qμ) + P · Q(Pμ

N Qν + Pν
N Qμ) − Q2(Pν

N P
μ

+ Pμ
N P

ν
) −

(
2m2

N − Q
2

2

)
QμQν + gμν

[
2m2

N Q2 − Q2Q
2

2
− 2(PN · Q)(P · Q)

]}
, (A7)

m2
NW μν

VA = i

{
GAεμναβ[−2F1PnαPβ + F2(PN + P)αQβ] + GpF2

4m2
N

(Qμεναβσ − Qνεμαβσ )PnαQβPσ

}
. (A8)

Finally, the axial-axial tensor, common to the two prescrip-
tions, is given by

m2
NW μν

AA = G2
A

[
Pμ

N P
ν + Pν

N P
μ − gμν

(
2m2

N − Q
2

2

)]

− G2
p

8m2
N

Q
2
QμQν − GAGP

2
(Q

μ
Qν + Q

ν
Qμ).

(A9)

Figure 22 shows the scattering and reaction planes in the
q system, that is, with the z axis (here denoted as 3) chosen
along the momentum transfer q. Using the reference frame
given by the three orthogonal axes, 1, 2, and 3, with (1,2)
defining the scattering plane, the different kinematical vari-
ables introduced in the previous expressions of the tensor are
given by

Pμ
N = (EN , pN sin θN e1 + pN cos θN e3), (A10)

Q
μ = (EN − E , qe3), (A11)

Qμ = (ω, qe3), (A12)

P
μ = (E , p⊥e1 + p‖e3), (A13)

FIG. 22. Kinematic variables in the q system where the q direc-
tion is chosen as the z axis (here denoted as 3-axis). The plane of
the outgoing nucleon (reaction plane) is represented in blue and the
scattering plane in pink.

where

p⊥ = |pm × q|
q

= pN sin θN , (A14)

p‖ = pm · q
q

= pN cos θN − q, (A15)

E =
√

p2
m + m2

N , (A16)

P · Q = −Q2

2
− δ2

2
− δ(E + ω), (A17)

PN · Q = Q2

2
− δ2

2
− δE , (A18)

Q
2 = Q2 + δ2 + 2ωδ, (A19)

δ =
√

p2
N + m2

N −
√

p2
m + m2

N − ω

= EN − E − ω. (A20)

The different weak hadronic responses are given by taking
the appropriate components of the single-nucleon tensor

RCC
VV = W 00

VV , (A21)

RCC
AA = W 00

AA , (A22)

RCL
VV = W 03

VV , (A23)

RCL
AA = W 03

AA, (A24)

RLL
VV = W 33

VV , (A25)

RLL
AA = W 33

AA, (A26)

RT
VV = W 11

VV + W 22
VV , (A27)

RT
AA = W 11

AA + W 22
AA , (A28)

RT T
VV = W 22

VV − W 11
VV , (A29)

RT T
AA = W 22

AA − W 11
AA, (A30)

RTC
VV = 2

√
2W 01

VV , (A31)

RTC
AA = 2

√
2W 01

AA, (A32)
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RT L
VV = 2

√
2W 31

VV , (A33)

RT L
AA = 2

√
2W 31

AA, (A34)

RT ′
VA = 2W 12

VA, (A35)

RTC′
VA = 2

√
2W 02

VA, (A36)

RT L′
VA = 2

√
2W 32

VA. (A37)

Concerning the leptonic tensor, it is given by

Lμν = KμK ′
ν + KνK ′

μ − K · K ′gμν − iχεμναβKαK ′β, (A38)

where χ = 1 (χ = −1) for neutrinos (antineutrinos). The
neutrino and muon four-momenta in the q system are written
as

Kμ =
(

k,
−kk′ sin θl

q
e1 − k(k − k′ cos θl )

q
e3

)
, (A39)

K ′
μ =

(
ε′,−kk′ sin θl

q
e1 + k′(k′ − k cos θl )

q
e3

)
, (A40)

and the kinematic leptonic factors are defined as [37]

VCC = 2

υ0
L00, (A41)

VCL = 2

υ0
L03, (A42)

VLL = 2

υ0
L33, (A43)

VT = L11 + L22

υ0
, (A44)

VT T = L22 − L11

υ0
, (A45)

VTC = 2√
2υ0

L01, (A46)

VT L = 2√
2υ0

L31, (A47)

VT ′ = 2

υ0
L12, (A48)

VTC′ = 2√
2υ0

L02, (A49)

VT L′ = 2√
2υ0

L32. (A50)

Finally, the reduced single-nucleon cross section that en-
ters in the general expressions for the semi-inclusive cross
sections given in previous sections is defined as

F2
χ = 2

v0
LμνW μν

= VCC
(
RCC

VV + RCC
AA

) + 2VCL
(
RCL

VV + RCL
AA

)
+ VLL

(
RLL

VV + RLL
AA

) + VT
(
RT

VV + RT
AA

)
+ VT T

(
RT T

VV + RT T
AA

) + VTC
(
RTC

VV + RTC
AA

)
+ VT L

(
RT L

VV + RT L
AA

)
− χ

(
VT ′RT ′

VA + VTC′RTC′
VA + VT L′RT L′

VA

)
. (A51)

The different single-nucleon responses given above in the q
system present a special symmetry with respect to the relative
orientation between the scattering and reaction planes. The
whole dependence with φN only enters through cos φN for the
interference responses: RTC

VV , RTC
AA , RT L

VV , RT L
AA , RTC′

VA , and RT L′
VA ,

and through cos 2φN in RT T
VV and RT T

AA . Then, after integration
over the azimuthal angle, φN , one gets

F2
χ = VCC

(
RCC

VV + RCC
AA

) + 2VCL
(
RCL

VV + RCL
AA

)
+ VLL

(
RLL

VV + RLL
AA

) + VT
(
RT

VV + RT
AA

) − χVT ′RT ′
VA

(A52)

for the function defined in Eq. (29) entering in the inclusive
cross section.

After some algebra, the leptonic kinematic factors can be
written in the following form [39]:

VCC = 1 − �1

υ0
, (A53)

VCL = −1

q

(
ω + �4κ

υ0

)
, (A54)

VLL = ω2

q2
+ �1

υ0
+ �2

4

υ0q2
+ 2�4κω

q2υ0
, (A55)

VT = |Q2|
(

1

2q2
+ 1

υ0

)
+ �1

(
1

2q2
+ 1

υ0

)

− �2
1 − �3 + �1|Q2|

2υ0q2
, (A56)

VT T = −
[
�1 + |Q2|

2q2

(
1 − �1

υ0

)
+ �3

2q2υ0

]
, (A57)

VTC = − 1√
2υ0

√
1 + υ0

q2

√
�3 + (�1 + |Q2|)(υ0 − �1),

(A58)

VT L = 1√
2q2υ0

√
�3 + (�1 + |Q2|)(υ0 − �1)(�4 + ωκ ),

(A59)

VT ′ = 1

υ0

(
|Q2|

√
1 + υ0

q2
− �4ω

q

)
, (A60)

VTC′ = − 1√
2υ0

√
�3 + (�1 + |Q2|)(υ0 − �1), (A61)

VT L′ = ω√
2qυ0

√
�3 + (�1 + |Q2|)(υ0 − �1), (A62)

with

�1 = m2
ν + m2

l = m2
l , (A63)

�2 = 2kε′ − 2kk′, (A64)

�3 = 4k2k′2 − 4k2ε′2, (A65)

�4 = m2
l − m2

v = m2
l , (A66)

κ = k + ε′, (A67)

υ0 = (k + ε′)2 − q2 = �2 + �1 + 4kk′ cos2 θl

2
. (A68)
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As already mentioned, the q and k systems are related by a
rotation in the scattering plane of an angle θq that defines the
direction of the neutrino momentum, k, with respect to the
momentum transfer, q. Thus, we can write

cos θq = k − k′ cos θl

q
. (A69)

The connection between the angular variables of the
ejected nucleon momentum in the k system, θL

N , φL
N , and the

corresponding ones in the q system, θN , φN , is as follows:

cos θN = cos θL
N cos θq − cos φL

N sin θL
N sin θq, (A70)

sin θN =
√

1 − cos2 θN , (A71)

cos φN = cos φL
N sin θL

N cos θq + cos θL
N sin θq

sin θN
, (A72)

sin φN = sin φL
N sin θL

N

sin θN
. (A73)

Using these general results to evaluate the VV, AV and
AA components of the single-nucleon tensor Eqs. (A7),
(A8), and (A9), and taking the appropriate components, the
single-nucleon responses in terms of the several kinemat-
ical variables and the off-shell term δ, can be written as
(for simplicity, we only show the responses for the CC2
prescription)

8m4
N RCC

VV = 4E
2(

4F 2
1 m2

N + F 2
2 |Q2|) + 4Eω

(
4F 2

1 m2
N + F 2

2 |Q2|) − 4F 2
1 m2

N |Q2|
− 8F1F2m2

N (ω2 + |Q2|) + F 2
2 (ω2|Q2| − 4m2

N (ω2 + |Q2|))
− 2δ(2E + ω)(F 2

2 (2Eω + ω2 − |Q2|) − 4F 2
1 m2

N ) + δ2(−4F 2
2 E

2

− 12F 2
2 ωE + 4F 2

1 m2
N + F 2

2 (|Q2| − 5ω2)) − 4δ3F 2
2 (E + ω) − δ4F 2

2 , (A74)

8m4
N RCC

AA = 16E
2
G2

Am2
N + 16EG2

Am2
Nω − 8GAGpω

2m2
N − 4G2

Am2
N

(
4m2

N + |Q2|) + G2
pω

2|Q2| + δ
(
16EG2

Am2
N

+ 8G2
Am2

Nω − 8GAGpm2
Nω − 2G2

pω
3
) + δ2

(
4G2

Am2
N − G2

pω
2
)
, (A75)

8m4
N RCL

VV = 2E (2p‖ + q)
(
4F 2

1 m2
N + F 2

2 |Q2|) + ω
[
8F 2

1 m2
N p‖ − 8F1F2qm2

N + F 2
2

( − 4m2
N q + 2p‖|Q2| + q|Q2|)]

+ δ
(
F 2

2 {−[4E
2
q + Eω(4p‖ + 6q) + 2ω2(p‖ + q) − |Q2|(2p‖ + q)]}

+ 8F 2
1 m2

N p‖ − 4F1F2qm2
N

) − δ2F 2
2 (4Eq + 2ωp‖ + 3ωq) − δ3F 2

2 q, (A76)

8m4
N RCL

AA = 8EG2
Am2

N (2p‖ + q) + ω
(
8G2

Am2
N p‖ − 8GAGpqm2

N + G2
pq|Q2|)

+ δ
(
8G2

Am2
N p‖ − 4GAGpm2

N q − 2G2
pω

2q
) − δ2G2

pωq, (A77)

8m4
N RLL

VV = F 2
1

[
16m2

N p‖(p‖ + q) + 4m2
N |Q2|] − 8F1F2m2

Nω2 + F 2
2

{
4p‖q[ω(E + ω)

− q(p‖ + q)] + |Q2|[(2p‖ + q)2 + 4m2
N − |Q2| + 2Eω] − 4m2

N q2
}

+ δω
{ − 8F 2

1 m2
N − 8F1F2m2

N + F 2
2 [2q(2p‖ + q) − 4ω2 − 8ωE − 4E

2
]
}

− δ2
{
4F 2

1 m2
N + F 2

2 [6ω(E + ω) − ω2]
} − 2F 2

2 δ3ω, (A78)

8m4
N RLL

AA = G2
A

[
16m2

N p‖(p‖ + q) + 16m4
N + 4m2

N |Q2|] + G2
pq2|Q2| − δ

(
2G2

pq2ω

+ G2
A8m2

Nω
) − δ2

(
4G2

Am2
N + G2

pq2
) − 8m2

N GAGpq2, (A79)

8m4
N RT

VV = 16F1F2m2
N |Q2| + 4F 2

2

(
2m2

N + p2
⊥
)|Q2| + 8F 2

1 m2
N (2p2

⊥ + |Q2|)
− 16δF1(F1 + F2)m2

Nω + δ2(8F 2
2 E

2 + 8F 2
2 ωE

− 8F 2
1 m2

N − 2F 2
2 |Q2|) + 4δ3F 2

2 (2E + ω) + 2δ4F 2
2 , (A80)

8m4
N RT

AA = 8G2
Am2

N

(
4m2

N + 2p2
⊥ + |Q2|) − 16δG2

Am2
Nω − 8δ2G2

Am2
N , (A81)

8m4
N RT T

VV = −4p2
⊥(4F 2

1 m2
N + F 2

2 |Q2|), (A82)

8m4
N RT T

AA = −16G2
Am2

N p2
⊥, (A83)

8m4
N RTC

VV = 4
√

2p⊥(2E + ω)
(
4F 2

1 m2
N + F 2

2 |Q2|) + 4
√

2δp⊥
(
F 2

2 (−2Eω − ω2 + |Q2|) + 4F 2
1 m2

N

) − 4δ2
√

2F 2
2 ωp⊥, (A84)

8m4
N RTC

AA = 16
√

2G2
Am2

N p⊥(2E + ω) + 16
√

2δG2
Am2

N p⊥, (A85)

8m4
N RT L

VV = 4
√

2p⊥(2p‖ + q)
(
4F 2

1 m2
N + F 2

2 |Q2|) − 4
√

2δF 2
2 p⊥q(2E + ω) − 4

√
2δ2F 2

2 p⊥q, (A86)

8m4
N RT L

AA = 16
√

2G2
Am2

N p⊥(2p‖ + q), (A87)

8m4
N RT ′

VA = 32GAm2
N (F1 + F2)(ωp‖ − Eq) + 16δGAm2

N (2F1 p‖ − F2q), (A88)
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8m4
N RTC′

VA = −32
√

2GAm2
N p⊥q(F1 + F2) − 4

√
2δF2Gpωp⊥q, (A89)

8m4
N RT L′

VA = −32
√

2GA p⊥ωm2
N (F1 + F2) − 4

√
2p⊥δ

(
8GAF1m2

N + GpF2q2
)
. (A90)

The isovector nucleon form factors, F1 and F2, can be expressed in terms of the proton and neutron electric and magnetic form
factors [65,66],

F1 = 1

1 + τ

[
Gp

E − Gn
E + τ

(
Gp

M − Gn
M

)]
, (A91)

F2 = 1

1 + τ

(
Gp

M − Gn
M − Gp

E + Gn
E

)
(A92)

with τ ≡ |Q2|/(4m2
N ) = (q2 − ω2)/(4m2

N ).
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