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ABSTHACT 
In engineering applications inany models arc based on constraints with interval pararncters and 
variables. The model is based on the knowledge ofthe behavior of the system to diagnose. Inputs 
and outputs of components are represented as variables in the constraints, arid they can be 
observable and non-observable depending on the situation oftlie sensors in the system. 
I n  this work, we propose a new approach to aukmate Ihc dctcrmination ofrhc ininiinal diagnosis. 
This approach has two phases. In the first pliase. we detennine components clusters in tlie system 
in ordcr to reduce drastically the number o f  components to consider. This is specially necessary in  
high density systems where components compose independent sets in thcinselves. In the sccond 
phase, we construct a constraint saiisfaction diaposis problem. In ihis phase we use interval 
variables (based on the domain of the variables). The results obtained in the slitdied cases are 
very promising. 
KEYWORDS: constraint satisfaction problem, constraints, clusters, diagnosis, interval models. 

I .  INTRODUCTION 

Diagnosis allows to determine why n system correctly designed does not work like i t  was 
expected. It i s  based o n  the monitoring ol' a system, using sensors which are intcgraled and 
supposed to work correctly. The diagnosis aim is to detect and to idcntify the reason of the 
unexpected behavior, or In other words, IO identiry the parts which fail in a systein. I n  order to 
explain a wrong behavior, the diagnosis process uses a determilied set or observations and a 
modet of the system. Tlicse faults lias to be avoided il' we want 10 keep n syslcm withiti the 
desired production and security level. Two soinmimities works in  parallel arid usually separated 
in diagnosis: FDI (Automatic Control) and DX (Artificial Intelligence). Neverthelcss,  he 
integration of FDI and DX theories (BRIDGE Task Group) has been shown in recent works (as 
[CordicrOO] and [GascaU3]). 

Both communilies arc based on the use of modds. I n  Ihc area of DX, tlic tirst work relatcd to 
diagnosis was presented with the aim of'identifying faults in  the componcnt systcms. hascd 011 thc 
stnictiiie and its behavior [Reitcr84]. DART [C~cneserellt84] and t i D E  [de Kleer871 wcrc l l ic first 
implementations to perform diagnosis, holh detect possible fatilts using different inference 
mechanisms. In [Rei1er87] and {de KleerYZ] a general theory was proposed Ibr the prohlcin of 
explaining the discrepancies hetween [he observed and correct behavior that the mechanisms 
subiect to the diagnosis process (togical-based diagnosis) have. These t\vo papcr prescntcd rhe 
diagnosis formalization. 

In this work. wc propose a new approach to automate and to improve the dctctmiiintitm of 
interval model-bascd diagnosis . This work is based i i i  two stcps: 
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- A structural pre-ireatment in  order to reduce drastically the computational complexity, 
specially in high density systems where components compose independent sets in 
themselves. 
A Maxiiniratiun Constraint Satisfaction Problem (CSP) for inodelling and solving the 
diagnosis problem as a sct o f  constraints among inrerval variablcs. The diagnosis aim is 
In find what conwainis are noi satisfied and therefore must he modified. Consrraint 
programming has the capability to solve syslems of linear and polynomial equations and 
ineqtialities. 

- 

Many rechiiiques exploit the topological structure of the system using a problem's constraint 
graph. For cxamplc, in [KrysanderOZ], in order to reduce the computational complexity, they 
proposes a two-step approach: Firsi, the system is analysed to find ovcrdctcrmincd subinodols, 
and thcn, all of these submodels are transfoimed to consistency relations. 

A Constraint Satishction Probtem (CSP) is a framework for modelling and solving real-problems 
as ;I set of constraints ainong variables. A CSP is defined by a set of variables X-(XI,X 2....X,,) 

ociated with a set of discrete-valued, D=(DI,D2, ..., D.) (where every element of 13, is 
represented hy set of v)), and a set o f  constraints C={Cl,C2, ..., C,,,}. Each constraint Ci is a pair 
(W,,Ki], where K, is a relation Iti r l>,lx~..xD,k defined i n  a subset of variables Wi r X. If we have 
a CSP, rltc Max-CSP aim is 10 find an assignment that satisfies must constraints, and minimizes 
the number of violated constraints. The diagnosis aim is lo find what consiraints art  not sarislicd 
and rhercforc must be modiiied. The solutions searched with Max-CSP techniques is very 
complex. Some investigations have tried to improve the efficiency of this problem, [KaskOO) and 
[ Lafirm991 ~ 

The constraint proprnmtning(CP) is a paradigm with thc capability IO sulvc CSP. CP h a s  been 
proposed In order to diagnose analog circuit [Mozetic93]. They show how analog circuits can be 
modelled using tliis px'adigin. Thc tool uscd was CLP(3). One of tlie restrictions ofttiis approach 
is the single fault assumpion. this is due t(1 the limitation of the CLP(3)  to linear constraints. 
Another approach Ibr diagnosis of analog circtiits is presented using the CP and interval 
ariihmctic [Fucnies03]. They uses combined information fmm tests at different frequencies 

Our paper has been organized as follows. In seclion 2 we will show two cxamplss, the simple 
problem example and thc six heat exchangers example. In section 3 it appears definitions and 
notation in order to clariry conccpis Tor our approach. In section 4, we present the structirral 
preircatmeni and hc i r  uscfiilncss. Then in  section 5, we give a description of die constraint 
satislaciton problem and how to salve it .  Finally, conclusIoiis and future works are presented. 

2. EXAM P I X S  
In order to explsiii the mettiodology, we will use the lollowing systems that are very often-used 
examples in the bibliography concerning model-based diagnosis. 

2.1 A Wcll-Known Example: Simple problem 
A very olien used example i n  tlie bibliography concerning model-based diagnosis [Keiter84] and 
[dc KlwflZ] is ihc one formed by three multipliers and two adders, as it i s  presented in figure I .  
Thc mdtiplicrs are represented in figure 1 as MI, Mz and M,, and the adders as A, and ,A2, In this 
system, the compoiierit or components that arc failing have to he identilied, taking into account 
that ilic cmly obsclvahlc values are the ones represented as a, h, c, d ,  e,  rand g. 
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2.2 A System of Heat Exchangers 
This system proposed in [GuernezY7], consists of six heat exchangers, thrce llows f, come in  a1 
different temperatures I,. This example defines three difrerent subsystems, each one fonnrd by 
two exchangers: E,, E2, E,, E4. Er and Ea. Each o f  ilic six exchangers and each of the eight nodcs 
o f  the system are considered as componcnts to verify their correct functioning. The normal 
fiinctioning o f  the sysrcm can be described by incans o f  polynomial constminis, coming from 
three kinds o f  balances: 

E,{; =O: inass balance at each node, 

1.1; .I. = O  : thermal balance 31 each node. 

E,",/;. t, f, .I, = U :  enthalpic balance for each heat exchanger. 

3. DEFIN1I'IC)NS AND NOTA'I'ION 
In order to clarify the diagnosis process we need to expose some detiiiitiotis and notation. Modcl- 
based diagnosis requires a system inodel which represents tlie behaviur of the system and each 
model component. In our case, we will only deal witti !lie CBSC which has a model nl' system 
constraints that derives from its own structure. aitd which has IInks between coinpoiients 
(structural model) and the bchavior o f  each model component. 
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Definition 1.  A System of Componcnts (COMPS): I t 's the set o f  all the components of the 
system. 

Definition 2. blonitored Precision (+ AMONIT~RED): It's the accuracy that we have whcn we 
monitored inputs or o u t p u ~  ofcomponcnts. If we know exactly the value o f a  monitored point, 
then &,~ON~roK&.). but this is very difficult in real systems. 

Definition 3. Component Precision (+&oUPoNENT): It's the accuracy of the behaviour of a 
systcrn component. If the component works exactly like it's supposed iii its model, then 
& ~ ~ I " E N T  SO, but this is vcry difficult in real components. 

Definition 4. The System Description (SD): It  can be defined as a finite set of polynomial 
equality constraints (P) which determine the system behaviour. This is donc by inearis of the 
relations herwecn the system non-observable variables (Vmb) and the system observable variables 
(Vab) which are directly obtairied from sensors tliar arc supposed to work correctly. Then, the 
following tuple for a system description isobtained SD (P ,  V,,h ,V,,,,,,). 

Some pdynomial equality constraint has assigned a component precision, depending on the type 
of component. For example, in the example proposed in section 2.1 we have supposed that the 
components work correctly bur with a component precision. In this example we studied two 
dilfcrcni kind o f  component precision, for the multipliers the component precision is named &. 
M V L ~ .  and Ibr the adders the component pwcision is named &.ADD. In the example proposed in 
section 2.2 we suppased that i t  is not necessary anyone component prwision. In tables I and 2 
appcars the sysxem description for tile examples proposed in seclion 2. 

Definition 5. Observational Model (OM): A iuple that assigns values to ihe observable variables. 
Every observable variable has assigned a monitored precision (* A M O N , ~ O ~ E O )  which represent the 
accuracy that we have when wc monitored this variable. If we know exactly the value of a 
inonitured point, theii AMONITOREEO, but this is very difficult in real systems. In the first example 
there exists only one kind of component precision, for monitorcd signal(Ahi.slG,) at each input or 
output of every component. In the Heat Exchangers example $here exists two different kind of 
component precision, for monitored tumperature (AMTEMP) at each node or heat exchanger, and 
for monitored tlaw (AM-FL~u') 31 each node or  heat exchanger. 

Component. Constraints Component, 
Mi x-a*c 5 4.y.l"LT A I  
MI y-b*d I S  AL.MuI.T A2 

MI z-C*e 5 &.-MULT 

I Svstrm Descrini ion I 
Constrains 

if-x+y 15 A, 

Ig-ysz I S  &..*,,I) 

Viih 
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\',,h 

4. STRUC'I'URAI, PRE'IHEATMENI': lDENTlPlCATlON OF COMPONENTS 
C1,US"RS 

The first step is to isolate independent subsystems. This structural pretreatment will give us a 
partition of the system in to  independcnt subsyslcms. The independence betwcen subsystems 
guarantees us that the ininirnal diagnosis of' the system can he obtained with the ininimal 
diagnosis of  all independent subsystems. The suhsystcms obtained are much smaller than the 
whole system. and ttiercrore the computational complexity to dclect conflicts thin each 
subsystem is lower compared to the whole system. The panilion of the system guaranices a 
smaller computational cost. 

f71 4 7 2  = 0 1'?& = 0 
f2n*tln-f21*127+f31*t31 -lj2*t,:- 0 f , " * t lh  - f ~ l * l l , + f ~ 2 * t l ? - f i 3 * t l J  = 0 

f lx-f ,  Io= 0 E* fI0 4-1 I1 = 0 
i.r &10= 0 r.v,-f21: = 0 

rlx*tlx -rlln*t,lll+f2a*t2x -f210*tzlll= o f l " * ~ l 0 - f l l l * t l l l  +f?,*~l"- f21I* t?, ,  = o 
fl,,f12, f13. c,. f17. j;x,f,p, f,,,. fil. L. r?,. f212. ril. f,,.ill~ t12, ili. 117. tlN. tlO. tlIzr tz1. tZh. t2?. tzlI. t l l . t 31  
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Ikfinition 9. Compunents cluster (CC); A sct ol'cninpnnents C belong to thc total system is a 
components cluskr, i f  the following predicates are true: 
- For all non-observable inputs and outputs of each component of C, these inputs and outputs are 
always linked with only components ofC. 
- I t  d ~ c s  iiot exist anorhcr sct ofcomponents C'wilh Icss clt'metits than C which validates the first 
predicate and it is include iii C. 

With the lirst predicate we look for the independence between conflicts of dil'ferent components 
clusters. This predicate guaranices us that we fire ablc to detect a minimal diagnosis in a 
components cluster withouL in  fonnation about oilier components clusters. This is possible 
hecause in a components cluster all 1hc non-ohscrvable inputs and outputs are between 
components of the same cluster, and therefore, there is not anyone connection with other 
coinponelit which I s  not monitored. Each components cluster is a set of components where we 
can detect conflicts. 

We look for to divide our system in the biggest possible numher al'subsystems in order to obtain 
3 sinaller computational cost. The second pimlicate guarantces LIS that the sets will be as small as 
it is possible, because i t  pivveiits that a set of components (components cluster) i s  coinposcd of 
two or more independent srts ofcomponents. In this predicate we guaranlee that a set C'will not 
exist inside C, because il'c'exists, then another independent set C"with components C \(?could 
exisi. 

Example: For example in  tlie heat exchangers probletn the component E3 is not completely 
monitored because wc are nor able to know the value of outputs I& and t32. Likewisc, B q  is not 
c~mpletely monitored because we are not able to know the value of inputs f3? and t32. But we can 
monitored thcse two componcnt if we think in thcsc two coinponents as i f  they were a subsystcm, 
with thc  same observable inputs and outputs thal they have separately. 

Algorithm: The following pseudoxode (see figure 3 )  defines the function 
chrsre,:sf~e~e,rr~/ifirarion(CI which takes C ,  the set of componcnt o f  a l l  the system, and mums  A,  the 
sei 01' coinponents clustcrs. The algorithm previously will store into the set E a11 pairs of 
components which have an in common non-observable variablc. The algorithm begins creating as 
many sets as n, whei'e n is the number of coinponetits of thc system. All these sets have one 
coinptriicnt. Then, for each clement of E,  which is a connection between two components x E SI 
and y E S L ,  whei.e Sa and SI E A, tlie algorilhm merges sets S1 and S I .  When the process is 
h i s h e d  nll compoiwnts have assigncd one components cluster. 

Auxiliary function of  the algorithm: 
- non(3BsVar(x): This fiinctioti returns the set o f  non-observable variables of a component 

s. 

Far the example presented in section 2.2, we obtained five components clusters, which are 
A={ { N I  I 1, i N 13 1 ,t N ~ ~ J % I  ,NZ:,EI,G 1, { N I ~ , N ~ L ~ , E s , E L J  ,{ E& 1 1. And, for the exalnple 
prcscnted i n  section 2.1, we ohraincd only one components clusters. which is 
A 3  {MI,M:,M~,AI,AI~ 1 
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Fi:,?tw 3. Cliuter.l~c~itI~ic(icnliu,l .4lgor.irA1a 

5. SOLVING THE CSDP 
For everyone subsystem obtained if section 4, we huild a differcnt and independent CSDP. This 
structural pretreatmciit guarantees a smaller computational cost, hecause the subsystems ohtaiiied 
are much smaIler than the wholc system. 

In a CSP problem the goal is to satisfy all constraints. But in many problems this is impossible. 
The goal in this kind of prohlems (Max-CSP, Maximization Constraint Satisfaction Problem) i s  
to satisfy the mosi biggcr nuinher of constraints. To obtain this goal, we Ilave to define a goal 
functioii that a solver havc to maximize wliile is looking for a solution for the CSP plahlein. 

In order to obtain the goal function, wc have tu define all the constraint t h n t  can be not satisfied 
like reified constraints. A reitied constiairit has associated B boolean value (called rciiied 
variable) which stored ifthc constraint is satislied or not. The number ot'reitied variables that are 
true will he the goal function that wc want to maximise. We will use thc prcdicated AH(c) as  a 
reilied variabte that stored i f  the coinponenl c work correctly. 

In [able 3 appears the CSDP for the example presented in scctioii 2. I .  and iii litble 4 appears the 
CSDP for the componcnts cluster 3 ({NI*, N2,,  Nz2, E l ,  El}) of the examplc presented in section 
2.2. Like i t  appcars in  tables 3 and 4, a coinpoiitlit hik if someoiic of its constminis is not 
satisfied. Wirh the OM we c m  define thc domains o f  observable variables. but non-observable 
variables arc free (like the predicate AB applied to coinponents). 

Our objective is to find minimal diagnosis. This implies that our objective is to maximize the 
numbur of predicatcs AB(c) which appear as true, where c are components of the components 
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cluster. The CSP problem have many solutions, but we are interesting in the solutions which 
implies to change the minimal number ofcoinponents. For example, iti the example of the scction 
2. I ,  firstly we look lor solutions that allow us to obtain a correctly work ofthe system with only 
one coinponcnt change. In order to find firstly thuse solutions, we solve this problem like a Max- 
CSP prohlem. Both o f  them, CSDP and function to maximize, coosiitute a Max-CSP problem. 
Solving these Max-CSI' problem we will obtain the values of the predicate AB(c) for evcry 
component c. The false value ofthese predicates define the set of components that constitutes the 
diagnosis, and also, this set has the ininilnal cardinality. Then we look for the diagnosis changing 
two components, three components ... or mom components. To implement lhis search of solutions 
we used [LOG-Solver TM tool (Constraint Library of commercial C H  [llogO2j) 

Domains k 
Ciuol 

i 
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For the two obscrvational models, we verivy the satisfaclion of tlie constraints described i n  tablcs 
3 and 4. Thc minimal diagnosir appears in table 5. We detect 6rsL[y simple faults and then 
multipte faults using the mentioned CSDP and the ftinction to maximize. 

0.M 

a=3, b-2. c=2. d=3, e=3, 
f=10.g=12 

1 Simple Problem I I k n t  Exchangers I 
Minimal Diagnosis 0 . M  Minimal Diagnosis 

! M I ! , { A ~ I ,  (M?, flh=95,f~i=10O. f,,=lOO, IN,,]. IEi!, IEi l ,  
M,], I M:, All f12=.50. f,3=50. I Nri. N?I 1 ,  

t,,=45, t,,=(iO. t2,=45, 
t12=30, 113=30 

This paper shows that constraint programming can be a good solution in order to obtain de 
minimal diagnosis in a system which use intcrval variables. The determination of cnmpvnents 
clusters of the system reduces drastically tlie computational complexity IO detect conllicts. The 
use ofcomponents clusters allow us to reduce ttir set o f  minimal possible contlict. 

As future works we want to improve our methodology using a constraint database i n  order to 
store polynomial constraints. A constraint database allow us to use the power of SOL in order to 
query thc database. Wc have used only one observational model to cnrry out thc diagnosis, hut we 
think that the use of a greater number of observational models will iinprovc our methodology tu 
obtain minimal diagnosis. 
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