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MPC for tracking periodic references
D. Limon, M. Pereira, D. Muñoz de la Peña, T. Alamo, C. N. Jones, M. N. Zeilinger

Abstract—In this paper a new model predictive controller for trackin g
arbitrary periodic references is presented. The proposed controller is
based on a single layer that unites dynamic trajectory planning and
control. A design procedure to guarantee that the closed loop system
converges asymptotically to the optimal admissible periodic trajectory
while guaranteeing constraint satisfaction is provided. In addition, the
constraints of the optimization problem solved by the controller do not
depend on the reference, allowing for sudden changes in the reference
without loosing feasibility. The properties of the proposed controller are
demonstrated with a simulation example of a ball and plate system.
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I. I NTRODUCTION

Model predictive control (MPC) is one of the most important con-
trol techniques used in industry to operate multivariable constrained
systems. The problem of designing stabilizing model predictive
control (MPC) schemes to regulate a system to a certain equilibrium
point, typically the origin, has been widely studied, see e.g. [1], [2].

In this paper, we focus on the problem of tracking periodic
references, which appear naturally in important control problems
such as repetitive control [3], periodic systems [4], [5] oreconomic
operation of complex systems [6]. In [7] a class of output feedback
MPC for nonlinear discrete-time systems is proposed to solve the
problem of tracking exogenous signals (and asymptoticallyrejecting
disturbances) generated by systems with known dynamics. In[8] a
predictive controller for the offset-free tracking of reference signals
generated by arbitrary dynamics is proposed. This controller ensures
that the tracking error tends to zero, but recursive feasibility and
stability of the closed-loop system is not ensured in case ofchanging
references. In [9] it is shown that the reference look-aheadaction of
the MPC plays an important role in the periodic reference tracking
problem.

One relevant issue in tracking is that the reference trajectory may
not be reachable by the constrained system. In order to deal with
this problem, a hierarchical architecture is often adopted: a trajectory
planner decides the optimal reachable trajectory, which isprovided to
an MPC controller as a trajectory target. In order to guarantee closed-
loop stability, a terminal constraint that depends on this reference
signal is added. This constraint may lead to a loss of feasibility if a
sudden change in the reference takes place [10].

In this paper we propose a different strategy based on a single layer
that unites dynamic trajectory planning and control and is able to
take into account arbitrary references. The proposed scheme extends
the method presented in [11], [12] for tracking constant set-points to
periodic references and is based on augmenting the decisionvariables
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with a set of auxiliary variables that describe a future, periodic and
admissible trajectory. The cost function penalizes both the tracking
error of the predicted trajectory to the planned reachable one, and the
deviation of the planned reachable trajectory to the targetperiodic
reference. A design procedure to guarantee that the closed loop system
converges asymptotically to the optimal reachable periodic trajectory
while guaranteeing constraint satisfaction and recursivefeasibility is
provided. In addition, the constraints of the optimizationproblem
solved by the controller do not depend on the reference, allowing
for sudden changes in the reference without loosing feasibility.
The properties of the proposed controller are demonstratedwith a
simulation example of a ball and plate system.

Notation

Bold letters are used to denote a sequence ofT values of a
trajectory, i.e.z = {z(0), · · · , z(T − 1)}. z(θ) denotes the sequence
z(θ) = {z(0; θ), · · · , z(T − 1; θ)}. If the cardinality of a sequence
is not T , then the sequence is denoted aszN (θ) whereN is the
cardinal. I[a,b] denotes the set of integer numbers contained in the
interval [a, b], that isI[a,b] = {a, a+ 1, · · · , b}.

II. PROBLEM FORMULATION

Consider a discrete time linear system described by the following
state-space model

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(1)

wherex(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp are the state, input
and output of the system at time stepk.

Assumption 1: It is assumed that the pair(A,B) is controllable
and (C,A) is observable.
From this assumption it can be proved that there exists an integer
nc ≥ n such that the following matrices

[Anc−1B, . . . , AB,B]

[CT , (CA)T , . . . , (CAnc−1)T ]

are full row rank.
The controller must ensure that the closed-loop system satisfies

the hard constraints(x(k), u(k)) ∈ Z where setZ is a convex and
compact polyhedron that contains the origin.

The control objective is to steer the outputy as close as possible
to an exogenous periodic referencer with period T . Since no
assumptions on the provided reference signal are made, there may not
exist a control law capable of steering the system to this reference
signal. This can be a consequence of the limits imposed by the
constraints and/or by the dynamics. In this case the reference is said
to beunreachable.

If the reference is unreachable, then the controller cannotsteer the
output signal to the given reference. In this case the control goal is
to steer the output to a reachable periodic trajectory that optimizes
a certain criterion, which is referred to as the optimal reachable
trajectory. In this paper, the optimal reachable trajectory is chosen
such that the sum of the weighted squared error in a periodT is
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minimized. This trajectory is defined by the following optimization
problem:

min
yr,xr,ur

Vp(r;x
r,ur)

s.t. xr(j + 1) = Axr(j) +Bur(j)
yr(j) = Cxr(j) +Dur(j)
(xr(j), ur(j)) ∈ Zc

xr(T ) = xr(0)

(2)

where the setZc is a closed polyhedron contained into the relative
interior of Z1 and

Vp(r;x
r,ur) =

T−1
∑

j=0

‖yr(j)− r(j)‖2S

The solution to this optimization problem defines the initial state and
sequence of inputs of the optimal reachable trajectory(x◦,u◦). If
the signalr is known and periodic with periodT , then the solution
of the optimization problem (2) does not depend on the time instant
in which the periodic reference is evaluated. The optimal reachable
trajectory(y◦,x◦,u◦) is obtained from the periodic extension of the
solution of (2).

Note that if the referencer is unreachable, there exists an error
between the optimal reachable trajectory and the referenceto be
tracked. We denote this cumulative error as

V ◦

p (r) = Vp(r;x
◦,u◦) (3)

Assumption 2: The optimization problem (2) is strictly convex.
Assumption 2 implies that the solution of the optimization problem

is unique. Strict convexity can be checked easily since thisis a
quadratic programming problem.

The control objective is to design a state feedback trackingcontrol
law u(k) = κ(x(k), r(k)) such that given a periodic reference
r(k), the closed-loop system satisfies the constraints, is stable and
converges to the optimal reachable trajectory. At each timestepk,
the periodic reference signalr(k) used to define the controller is
different because the initial time of the sequence changes.With a
slight abuse of notation, we definer as the target periodic reference,
andr(k) the reference fed to the controller which takes into account
the time shift.

Standard tracking schemes are usually based on a hierarchical
architecture in which a trajectory planner computes the optimal
reachable trajectory which is then used by a MPC as a target
reference. This implies that the MPC controller depends on this
optimal trajectory and that two different optimization problems have
to be solved.

III. PROPOSED CONTROLLER

The proposed controller combines the trajectory planner and the
MPC for tracking in a single optimization problem in which the
decision variables are a planned reachable trajectory defined by its
initial state xr and the corresponding sequence of inputsu

r as
well as the sequence of future control inputsuN . The optimization
problem minimizes the cost functionVN(x, r; xr,ur,uN ), where the
parameters(x, r) stand for the current state and expected reference
signal respectively.

VN (x, r; xr,ur,uN ) = Vt(x;x
r,ur,uN) + Vp(r; x

r,ur)

1The reason for considering a tighter constraint setZc is to avoid the
possible loss of controllability when the constraints are active [13].

where

Vt(x;x
r,ur,uN ) =

N−1
∑

i=0

‖x(i)− xr(i)‖2Q + ‖u(i) − ur(i)‖2R

Vp(r; x
r,ur) =

T−1
∑

i=0

‖yr(i)− r(i)‖2S

with N ≤ T . The termVt(x;x
r,ur,uN ) penalizes the tracking

error of the open-loop predicted trajectory with respect tothe
planned reachable reference along the prediction horizonN . The
termVp(r;x

r,ur) penalizes the error between the planned reachable
trajectory and the reference to be tracked predicted for oneperiodT .

In order to evaluate the MPC for tracking periodic references, the
following optimization problemPN (x, r) is solved at each sampling
time:

min
xr,ur ,uN

VN (x, r; xr,ur,uN ) (4a)

s.t. x(0) = x (4b)

x(i+ 1) = Ax(i) +Bu(i) i ∈ I[0,N−1] (4c)

y(i) = Cx(i) +Du(i) i ∈ I[0,N−1] (4d)

(x(i), u(i)) ∈ Z i ∈ I[0,N−1] (4e)

xr(0) = xr (4f)

xr(i+ 1) = Axr(i) +Bur(i) i ∈ I[0,T−1] (4g)

yr(i) = Cxr(i) +Dur(i) i ∈ I[0,T−1] (4h)

(xr(i), ur(i)) ∈ Zc i ∈ I[0,T−1] (4i)

xr(0) = Axr(T − 1) +Bur(T − 1) (4j)

x(N) = xr(N) (4k)

The optimal solution of this optimization problem is denoted
(xr∗,ur∗,u∗

N ). The variablesx∗

N(x, r),y∗

N(x, r) denote the optimal
predicted trajectories of the states and outputs of the system and
x
r∗(x, r),yr∗(x, r) denote the optimal planned reachable trajectories

of the states and outputs of the system. The control law is given
by the first input of the optimal reachable predicted trajectory,
κN (x(k), r(k)) = u∗

N (0; k).
Constraints (4b-4d) define the predicted trajectories of the system

starting from the current state. Constraints (4f-4h) definethe planned
reachable reference starting from the free initial statexr. Constraints
(4e) and (4i) include the state and input constraints for both the
predicted states and the planned reachable reference. In addition, two
terminal constraints are included to guarantee closed-loop conver-
gence to the optimal reachable trajectory. Constraint (4j)is added
to enforce that the reachable trajectory is periodic, whileconstraint
(4k) guarantees that the terminal state of the predicted trajectory of
the plant reaches the planned reachable trajectory at the end of the
prediction horizon.

It is important to point out that the set of constraints of this
optimization problem does not depend on the reference signal r.
The domain of attractionXN is defined as the set of states that can
admissibly reach any reachable periodic trajectory inN steps, and in
general is large if compared with the set of states that can admissibly
reach a particular reachable periodic trajectory. The controller can be
used to track any target reference, including high frequency signals.

IV. STABILITY ANALYSIS

In this section we study the closed-loop properties of the proposed
control law. In particular we prove that the output converges asymp-
totically to the optimal reachable trajectory and that the controller
maintains feasibility even in the presence of sudden changes in the
target reference. To this end, we make use of the following slightly
modified Lyapunov theorem, see [1]:
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Theorem 1: Consider an autonomous systemz(k + 1) = f(z(k))
wherez(k) ∈ R

n. Let Γ be a positive invariant set andΩ ⊆ Γ be
a compact set, both including the origin as an interior point. If there
exists a functionW : Rn → R

+ and suitableK∞-class functions
α1, α2, α3 such that

(i)W (z(k)) ≥ α1(‖z(k)‖), ∀z(k) ∈ Γ
(ii)W (z(k)) ≤ α2(‖z(k)‖), ∀z(k) ∈ Ω
(iii)W (z(k + 1))−W (z(k)) ≤ −α3(‖z(k)‖), ∀z(k) ∈ Γ

then W (·) is called a Lyapunov function inΓ and the origin is
asymptotically stable for all initial states inΓ.

In the following theorem, we will use this result to prove the
existence of a Lyapunov function and then derive the asymptotic
stability of the optimal trajectory.

Theorem 2: Assume that system (1) satisfies Assumptions 1 and
2, the weighting matricesQ and R are positive definite and the
prediction horizon is such thatN ≥ nc. Then system (1) controlled
by the proposed control law is recursively feasible and the optimal
reachable trajectoryx◦ given by (x◦,u◦) is asymptotically stable
with region of attractionXN , i.e. the closed loop system is stable
andx(k) converges asymptotically tox◦(k) for all x(0) ∈ XN .

Proof: Asymptotic stability will be proved by demonstrating that
for the system that models the error between the state of the reachable
optimal trajectory and the closed loop trajectory of the system,z(k) =
x(k)− x◦(k), the function

W (z(k)) = W (x(k)− x◦(k)) = V ∗

N (x(k), r(k)) − V ◦

p (r)

satisfies the conditions of Theorem 1 in the regionXN and provides a
Lyapunov function. This function is defined as the difference between
the optimal cost of the MPC problem at timek ,V ∗

N(x(k), r(k)), and
the cost value of the optimal reachable trajectory defined in(3). To
simplify the notation, we have dropped the dependence of function
W (·) on the target referencer. In addition, we will not use the error
z(k) in the following derivations, but its definition,x(k)− x◦(k).

In what follows,y(i;k), x(i;k) are the output and state predicted
at time i applyingu(k) from the initial statex(k); yr(i; k), xr(i; k)
are the output and state of the planned reachable reference at time i
applyingur(k) from the initial statexr(k); y◦(i; k), x◦(i; k) are the
output and state of the optimal reachable referencei applyingu◦(k)
from the initial statex◦(k).

First, we will prove that the regionXN is a positive invariant set
for the system in closed-loop with the proposed controller,and hence,
also forx(k)− x◦(k). Consider the shifted sequences

u
s
N(k) = {u∗

N (1; k − 1), · · · , u∗

N (N − 1; k − 1), ur∗
N (N ; k − 1)}

xrs(k) = xr∗(1; k − 1)
u
rs(k) = {ur∗(1; k − 1), · · · , ur∗(T − 1; k − 1), ur∗(0; k − 1)}

Taking into account that the optimal solution at timek−1 is feasible
by definition, it is easy to prove that the shifted sequences are also
feasible at timek. Note that the constraints of problem (4) do not
depend on the reference, so this is true even in the presence of
arbitrary changes ofr.

Next, we will prove that the proposed Lyapunov function satisfies
the conditions of Theorem 1.

Condition (i): From the definition ofW (·) we have that

W (x(k)− x◦(k)) =
N−1
∑

i=0

‖(x∗(i; k)− xr∗(i; k))‖2Q

+ ‖(u∗(i; k)− ur∗(i; k))‖2R

+ Vp(r(k), x
r∗(k),ur∗(k))− V ◦

p (r)

≥ ‖x(k)− xr∗(k)‖2Q

+ Vp(r(k), x
r∗(k),ur∗(k))− V ◦

p (r)

From the strictly convexity of optimization problem (2), there exists
a π1 > 0 such that

Vp(r(k), x
r∗(k),ur∗(k))− V ◦

p (r) ≥ π1‖(x
r∗(k)− x◦(k))‖2

and therefore, sinceQ is positive definite,

W (x(k)− x◦(k)) ≥ λmin(Q)‖(x(k)− xr∗(k))‖2

+ π1‖(x
r∗(k)− x◦(k))‖2

≥ α1(‖(x(k)− xr∗(k))‖2

+ ‖(xr∗(k)− x◦(k))‖2)

≥
α1

2
‖(x(k)− x◦(k))‖2

with α1 = min{λmin(Q), π1} > 0.
Condition (ii): Since the optimal reachable trajectory is contained

in the relative interior of the set of constraintsZ, there exists a suffi-
ciently small neighborhoodΥ such that for all(x(k)− x◦(k)) ∈ Υ,
the dead-beat control law (providing thatx(k +N) = x◦(k +N))

u(k) = K(x(k)− x◦(k)) + u◦(k)

provides a feasible solution for(xr(k),ur(k)) = (x◦(k),u◦(k)),
resulting in an admissible predicted trajectory. Notice that the dead-
beat control law exists sinceN ≥ nc and the system is controllable
as stated in Assumption 1.

Therefore, taking into account the optimality of the solution, for all
x(k) such that(x(k)− x◦(k)) ∈ Υ , there exist a constantcw > 0
such that

W (x(k)− x◦(k)) ≤

N−1
∑

i=0

‖x(i; k)− x◦(i; k)‖2Q

+ ‖u(i; k)− u◦(i; k)‖2R

which is less or equal to

N−1
∑

i=0

cw‖(x(i; k)− x◦(i; k), u(i; k)− u◦(i; k))‖2

Then taking into account the linearity of the system controlled with
the dead-beat control law, there exists a constantwc > 0 such that
N−1
∑

i=0

‖(x(i; k)−x◦(i; k), u(i; k)−u◦(i; k))‖2 ≤ wc‖x(k)−x◦(k)‖2

Then we have that

W (x(k)− x◦(k)) ≤ cwwc‖x(k)− x◦(k)‖2

for all (x(k)− x◦(k)) ∈ Υ.
Condition (iii): From standard arguments [1] and periodicity of

r,yr∗(k),ur∗(k), the following inequalities follow:

V ∗

N (x(k), r(k)) − V ∗

N (x(k − 1), r(k − 1))

≤ VN (x(k), r(k); xrs(k),urs(k),us
N (k))

−V ∗

N (x(k − 1), r(k − 1))

≤ −‖x∗(0; k − 1) − xr∗(k − 1)‖2Q

−‖u∗

N (0; k − 1)− ur∗(0; k − 1)‖2R

+Vp(r(k);x
rs(k),urs(k))

−Vp(r(k − 1); xr∗(k − 1),ur∗(k − 1))

≤ −‖x∗(0; k − 1) − xr∗(k − 1)‖2Q

−‖u∗

N (0; k − 1)− ur∗(0; k − 1)‖2R

From lemma 1 we have that there existxr(k),ur(k),uN (k) such
that

VN(x(k), r(k);xr(k),ur(k),uN (k))− V ∗

N(x(k − 1), r(k − 1))
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is lees or equal to−γ‖x(k−1)−x◦(k−1)‖2 for all x(k−1) ∈ XN

and someγ > 0.

Lemma 1: If Problem PN(x(k − 1); r(k − 1)) is feasible, then
there exists a positive constantγ > 0 such that

V ∗

N(x(k), r(k))−V ∗

N(x(k−1); r(k−1)) ≤ −γ‖x(k−1)−x
◦(k−1)‖2

for all x(k − 1) ∈ XN .
Proof: Consider that for x(k) and the shifted reference

(xrs(k),urs(k)) the sequences introduced in Lemma 2 are defined.
By feasibility we have that

(xrs(i; k), urs(i; k)) ∈ Zc

and then there exists anǫ > 0 such that if‖x(k)−xrs(k)‖ ≤ ǫ then
(ua

N (k), xrs(k),urs(k)) is a feasible solution ofPN (x(k), r(k)).
Take the constantΓk = ‖xr∗(k − 1)− x◦(k − 1)‖2 and letβk ∈

(0, 1) be a positive constant satisfying the conditions in Lemma 2.
Take aβ ∈ (βk, 1) such that(1 − β)‖xrs(k) − x◦(k)‖ ≤ ǫ and
defineξk = (1−β)‖xrs(k)−x◦(k)‖. Then the following two cases
are studied:

Case 1:‖x(k)− xrs(k)‖ ≥ ξk.
By the definition ofx(k) and sincexrs(k) = xr∗(1; k − 1) we

obtain

ξk ≤ ‖x(k)− xr∗(1; k − 1)‖

= ‖A(x(k − 1)− xr∗(k − 1))

+B(u∗(0; k − 1) − ur∗(0; k − 1))‖

≤ ρ‖(x(k − 1)− xr∗(k − 1))‖

+ρ‖(u∗(0; k − 1) − ur∗(0; k − 1))‖

whereρ = max{‖A‖, ‖B‖, 1}.
Consider the case that‖(u∗(0; k−1)−ur∗(0; k−1))‖ ≤ ξ

2ρ
, then

from the last inequality we have that

‖(x(k − 1)− xr∗(k − 1))‖ ≥
ξ

2ρ

and then

‖(x(k − 1) − xr∗(k − 1))‖2Q

+‖(u∗(0; k − 1) − ur∗(0; k − 1))‖2R

≥ λmin(Q)‖x(k − 1)− xr∗(k − 1)‖2 ≥
λmin(Q)ξ2

4ρ2

On the other hand, if we consider the case that

‖(u∗(0; k − 1)− ur∗(0; k − 1))‖ ≥
ξ

2ρ

then

‖(x(k − 1) − xr∗(k − 1))‖2Q

+‖(u∗(0; k − 1)− ur∗(0; k − 1))‖2R

≥ ‖(u∗(0; k − 1) − ur∗(0; k − 1))‖2R

≥ λmin(R)‖(u∗(0; k − 1)− ur∗(0; k − 1))‖2 ≥
λmin(R)ξ2

4ρ2

Let ξ̄ := max{λmin(Q)ξ2

4ρ2
, λmin(R)ξ2

4ρ2
} and choose

γ =
ξ̄

max{‖x − x◦‖2|x ∈ XN , (x◦, u) ∈ Zc}

Notice that constantγ is positive and bounded since setZ is assumed
to be compact.

Then,

‖(x(k − 1)− xr∗(k − 1))‖2Q

+‖(u∗(0; k − 1)− ur∗(0; k − 1))‖2R

≥ ξ̄ = γmax{‖x− x◦‖2, x ∈ XN , (x◦, u) ∈ Zc}

≥ γ‖(x(k − 1)− x◦(k − 1))‖2

Case 2:‖x(k)− xrs(k)‖ ≤ ξk.
Consider the sequences defined in lemma 2 atx(k), for the feasible

shifted reference trajectory(xrs(k),urs(k)) and taking the optimal
unconstrained control law gain as the stabilizing control law gainK.

Since ‖x(k) − xrs(k)‖ ≤ ξk ≤ ǫ and since the solution
(ua

N (k), xrs,urs(k)) is a feasible solutions ofPN (x(k), r(k)), the
solution (ûa

N (k), x̂r, ûr(k)) is also feasible by convexity.
For the givenΓk andβ, since

‖x(k)− xrs(k)‖ ≤ ξk = (1− β)‖xrs(k)− x◦(k)‖

we derive from lemma 2 that

V̂N (x(k), r(k)) ≤ VN(x(k), r(k))−(1−β)2‖xr∗(k−1)−x◦(k−1)‖2

SinceK is the optimal unconstrained control law, we have that

VN(x(k), r(k)) ≤ VN (x(k), r(k); xrs(k),urs(k),us
N (k))

and then we have that

V̂N (x(k), r(k)) − V ∗

N (x(k − 1), r(k − 1))

≤ VN (x(k), r(k)) − (1− β)2‖xr∗(k − 1)

−x◦(k − 1)‖2 − V ∗

N(x(k − 1), r(k − 1))

≤ VN (x(k), r(k); xrs(k),urs(k),us
N (k))

−V ∗

N (x(k − 1), r(k − 1))

−(1− β)2‖xr∗(k − 1)− x◦(k − 1)‖2

≤ −‖(x(k − 1)− xr∗(k − 1))‖2Q

−‖(u∗(0; k − 1)− ur∗(0; k − 1))‖2R

−(1− β)2‖xr∗(k − 1)− x◦(k − 1)‖2

≤ −λmin(Q)‖(x(k − 1)− xr∗(k − 1))‖2

−(1− β)2‖xr∗(k − 1)

−x◦(k − 1)‖2

≤ −γ‖(x(k − 1)− x
◦(k − 1))‖2

with γ = 1
2
min{λmin(Q), (1− β)2}.

Lemma 2: Let x(k) be a given state and let(xr(k),ur(k)) be such
that the associated trajectory is admissible. Let(xa

N(k),ua
N (k)) be

a sequence of states and control inputs derived from the control law
κa(x(i), xr(k),ur(k)) = K(x(i) − xr(i; k)) + ur(i; k) such that
xa(N ; k) = xr(N ; k). Let VN (x(k), r(k)) be the cost associated to
this solution, that is

VN(x(k), r(k)) = VN(x(k), r(k);ua
N (k), xr(k),ur(k))

Let (x̂r(k), ûr(k)) be defined as

(x̂r(k), ûr(k)) = β(xr(k),ur(k)) + (1− β)(x◦(k),u◦(k))

and letûa
N (k) be a sequence of control inputs derived from the dead-

beat control lawκa(x(i), x̂r(k), ûr(k)) = K(x(i) − x̂r(i; k)) +
ûr(i; k). Let V̂N (x(k), r(k)) be the cost associated to this solution,
that is

V̂N(x(k), r(k)) = VN(x(k), r(k); ûa
N (k), x̂r(k), ûr(k))
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Then, for any positive constantΓ > 0, there exists a constant
β ∈ (0, 1) such that

‖x(k)− xr(k)‖ ≤ (1− β)‖xr(k)− x◦(k)‖

implies thatV̂N (x(k), r(k)) − VN (x(k), r(k)) ≤ −(1− β)2Γ.
Proof: We denoteAcl = A + BK. From the definition of the

dead-beat control law we obtain

ua(i; k) = KAi
cl(x(k)− xr(k)) + u

r(i; k) (5a)

xa(i; k) = Ai
cl(x(k)− xr(k)) + xr(i; k) (5b)

and similarly for ûa
N (k) x̂

a
N(k). Taking into account (5), we can

show that
N−1
∑

i=0

‖x̂a(i; k)− x̂r(i; k)‖2Q + ‖ûa(i; k) − ûr(i; k)‖2R

−

N−1
∑

i=0

(

‖xa(i; k)− xr(i; k)‖2Q − ‖ua(i; k)− ur(i; k)‖2R

)

= ‖x(k)− x̂r(k)‖2H − ‖x(k)− xr(k)‖2H

= ‖x(k)− xr(k) + (1− β)(xr(k)− x◦(k))‖2H

−‖x(k)− xr(k)‖2H

= (1− β)2‖xr(k)− x
◦(k)‖2H

+2(1− β)(x(k)

−xr(k))TH(xr(k)− x◦(k)))

≤ (1− β)2‖xr(k)− x◦(k)‖2H

+2(1− β)‖H‖‖x(k) − xr(k)‖‖xr(k)− x◦(k)‖

≤ (1− β)2λH‖xr(k)− x◦(k)‖2

+2(1− β)λH‖x(k)− xr(k)‖‖xr(k)− x◦(k)‖

≤ (1− β)2λH‖xr(k)− x◦(k)‖2

+2(1− β)2λH‖xr(k)− x◦(k)‖2

= 3(1− β)2λH‖xr(k)− x◦(k)‖2

whereH is defined as

H =

N−1
∑

i=0

AiT

cl (Q+KTRK)Ai
cl

which is positive definite. The constantλH = λmax(H). Convexity
of Vp(·) provides that

Vp(r(k), x̂
r(k), ûr(k)) ≤ βVp(r(k), x

r(k),ur(k)) + (1− β)V ◦

p

Using these results, it can then be seen that for anyΓ > 0

V̂N (x(k), r(k)) − VN (x(k), r(k)) + (1− β)2Γ

≤ (1− β)2Γ + 3(1− β)2λH‖xr(k)− x◦(k)‖2

−(1− β)(Vp(r(k), x
r(k),ur(k))− V ◦

p )

SinceVp(r(k); x
r(k),ur(k)) > V ◦

p by optimality of the optimal
reachable reference, for anyΓ > 0 there exists aβ ∈ (0, 1), such
that

V̂N (x(k), r(k))− VN (x(k), r(k)) + (1− β)2Γ ≤ 0

V. EXAMPLE

In this section we apply the proposed controller to a linear approx-
imation of a ball and plate system. The system consists of a plate
pivoted at its center such that the slope of the plate can be manipulated
in two perpendicular directions. A servo system consistingof motors
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Optimal reachable trajectory B

Fig. 1. Trajectories ofz1, z2 for the closed loop system (dash-dotted blue),
the trajectory planner (solid magenta) and the target reference (dashed red)
(scenario 2).

is used for tilting the plate and control the two angles of rotation
θ1, θ2. An appropriate sensor for measurement of the ball position
z1, z2 is assumed to be available, for example an intelligent vision
system. The basic control task is to control the position of aball
freely rolling on a plate. This system is a dynamic system with two
inputs and two outputs.

To carry out the simulations a discrete time linear system is
obtained taking as equilibrium point the origin for all the states
and inputs and a sampling timeTm = 0.05 seconds, see details
in [14],[15]. This system satisfies Assumption (1). The inputs of the
ball and plate system are the accelerations applied in each rotation
axis and they are denoted asU = [u1, u2]

t = [θ̈1, θ̈2]
t. The state

x ∈ R8 is defined as follows

xT = [z1, ż1, θ1, θ̇1, z2, ż2, θ2, θ̇2]
T

The system must satisfy|zi| ≤ 6cm, |θi| ≤ π
2
rad and |θ̈i| ≤

110rad/s2.
In the simulation a short prediction horizonN = 5 is chosen

to demonstrate that the proposed controller has a large domain of
attraction that has a low dependence on the prediction horizon N .
The number of decision variables isnu · (N + T ) + nx = 74. In
addition, in order to prove that recursive feasibility is not lost even in
the presence of a sudden change in the target reference, the reference
switches between two geometric figures. First the ball must draw a
rectangle of size6× 4cm that is centered in(4, 5)cm with a speed
of 11.43 cm

s
. At time 2.8 seconds the reference changes in order to

draw a circumference with center(−4,−4)cm and a radius of1cm.
The target speed of the second trajectory is2.3 cm

s
. The period length

of both references is the same, that isT = 28. The initial state of
this scenario is the ball in equilibrium at(z1, z2) = (−5, 5)cm.

The simulation shows that when the reference changes suddenly,
the trajectory of the ball converges to the new trajectory ofthe
planner satisfying the constraints and without losing feasibility even
when the prediction horizon is much lower than the period length.
Figure 1 shows the trajectories ofz1, z2 for the closed loop system
(dash-dotted blue), the trajectory planner (solid magenta) and the
target reference (dashed red) in thez1, z2 plane. Figures 2,3 show
the trajectory of the ball on each axis. In these figures, it can be
seen that the trajectory of the closed-loop system converges to the
optimal reachable reference trajectories with zero error,first to the
trajectory planner of the rectangle, and then to the trajectory planner
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(scenario 2).
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the trajectory planner (solid magenta) and the target reference (dashed red)
(scenario 2).
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of the circle. All these figures show a sudden change in when the
reference switches from the rectangle to the circle. It can be seen
that there exists a deviation between the trajectory of the planner and
the target reference for the rectangle, but that the error iszero for
the circle reference, which is reachable. For this reason the optimal
cost of the optimization problem (2) is non-zero for the rectangle
and zero for the circle. Figure 4 shows that the cost of the proposed
controller converges to the cost of the trajectory plannersin a non-
increasing manner, demonstrating that the difference between both
values increases suddenly when the reference changes, but that then
it converges again to the new optimal trajectory planner cost. It is
important to remark, that when the target reference changes, all the
state variables are far away from the optimal reachable reference, and
that they take more than 5 time steps to reach it, however, theMPC
maintains feasibility as proved in Theorem 2.
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