MPC for tracking periodic references
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Abstract—In this paper a new model predictive controller for tracking
arbitrary periodic references is presented. The proposed antroller is
based on a single layer that unites dynamic trajectory planmg and
control. A design procedure to guarantee that the closed Igp system
converges asymptotically to the optimal admissible period trajectory
while guaranteeing constraint satisfaction is provided. h addition, the
constraints of the optimization problem solved by the contoller do not
depend on the reference, allowing for sudden changes in theeference
without loosing feasibility. The properties of the propose controller are
demonstrated with a simulation example of a ball and plate sstem.
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I. INTRODUCTION

Model predictive control (MPC) is one of the most importanhe
trol techniques used in industry to operate multivariatdastrained
systems. The problem of designing stabilizing model ptadic
control (MPC) schemes to regulate a system to a certainilequih
point, typically the origin, has been widely studied, seg 1], [2].

In this paper, we focus on the problem of tracking periodic:

references, which appear naturally in important contrabfgms
such as repetitive control [3], periodic systems [4], [5]emonomic
operation of complex systems [6]. In [7] a class of outpudfseck
MPC for nonlinear discrete-time systems is proposed toestihe
problem of tracking exogenous signals (and asymptotia&ligcting
disturbances) generated by systems with known dynamic§8]la
predictive controller for the offset-free tracking of reface signals
generated by arbitrary dynamics is proposed. This coetrehsures
that the tracking error tends to zero, but recursive fekitsiband
stability of the closed-loop system is not ensured in casghafhging
references. In [9] it is shown that the reference look-aheaitbn of
the MPC plays an important role in the periodic referencekiray
problem.

One relevant issue in tracking is that the reference trajganay

with a set of auxiliary variables that describe a future,iquéc and

admissible trajectory. The cost function penalizes both ttlacking
error of the predicted trajectory to the planned reachab& and the
deviation of the planned reachable trajectory to the tapgetodic

reference. A design procedure to guarantee that the clospdslystem
converges asymptotically to the optimal reachable peritdijectory
while guaranteeing constraint satisfaction and recurfgesibility is

provided. In addition, the constraints of the optimizatiproblem

solved by the controller do not depend on the referencewaltp
for sudden changes in the reference without loosing fdagibi
The properties of the proposed controller are demonstrafiéd a

simulation example of a ball and plate system.

Notation

Bold letters are used to denote a sequencelofalues of a
trajectory, i.ez = {2(0),--- ,2(T —1)}. z(6) denotes the sequence
z(0) = {z(0;0),--- ,2(T — 1;0)}. If the cardinality of a sequence
is not T, then the sequence is denoted zas(f) where N is the
cardinal. I}, ;) denotes the set of integer numbers contained in the
interval [a, b], that isj, ;) = {a,a +1,--- ,b}.

Il. PROBLEM FORMULATION

Consider a discrete time linear system described by theviolly
state-space model

z(k+1) =
y(k) =
wherez(k) € R", u(k) € R™ andy(k) € RP are the state, input

and output of the system at time step
Assumption 1: It is assumed that the pa{, B) is controllable

Az(k) + Bu(k)
Ca(k) + Du(k) (@)

not be reachable by the constrained system. In order to dihl w and (C, A) is observable.

this problem, a hierarchical architecture is often adaptetiajectory
planner decides the optimal reachable trajectory, whighrdsided to
an MPC controller as a trajectory target. In order to guamictosed-
loop stability, a terminal constraint that depends on tkiference
signal is added. This constraint may lead to a loss of fdéyilifi a
sudden change in the reference takes place [10].

In this paper we propose a different strategy based on aesiagér
that unites dynamic trajectory planning and control and bk do
take into account arbitrary references. The proposed setextends
the method presented in [11], [12] for tracking constantpsents to
periodic references and is based on augmenting the desiara@ables
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From this assumption it can be proved that there exists agént
n. > n such that the following matrices

[A"'B,..., AB, B]
(€T (CA)T,... (CA™ ]

are full row rank.

The controller must ensure that the closed-loop systensfieti
the hard constraintéz(k), u(k)) € Z where setZ is a convex and
compact polyhedron that contains the origin.

The control objective is to steer the outputas close as possible
to an exogenous periodic refereneewith period 7. Since no
assumptions on the provided reference signal are made, itiegy not
exist a control law capable of steering the system to thisresice
signal. This can be a consequence of the limits imposed by the
constraints and/or by the dynamics. In this case the referensaid
to be unreachable.

If the reference is unreachable, then the controller castasr the
output signal to the given reference. In this case the cbgwal is
to steer the output to a reachable periodic trajectory tiptinmzes
a certain criterion, which is referred to as the optimal hede
trajectory. In this paper, the optimal reachable trajgctisr chosen
such that the sum of the weighted squared error in a péefiod



minimized. This trajectory is defined by the following opiration
problem:

yTr,IacliTI,luT Vp(r;2",u")
s.t. z"(j + 1) = Az"(j) + Bu"(j)
Y (j) = Ca" (j) + Du" (j) @
(z"(§),u"(4)) € 2°
«"(T) = z"(0)

where
5 i) o @l + () - ()
T; ly"(6) — (012

with N < T. The termV;(z;z",u",un) penalizes the tracking
error of the open-loop predicted trajectory with respect the
planned reachable reference along the prediction horiXonThe

Vi(z; 2", u" un) =

VP(r; 1,1"7 uT‘) =

where the seZ° is a closed polyhedron contained into the relative term V,(r; ", u") penalizes the error between the planned reachable

interior of Z* and

Vp(r;z",u")

Z ly" (4 ”S

The solution to this optimization problem defines the ihisitate and
sequence of inputs of the optimal reachable trajectary, u®). If

the signalr is known and periodic with period’, then the solution
of the optimization problem (2) does not depend on the tinséaint
in which the periodic reference is evaluated. The optimathable

trajectory(y°,x°, u®) is obtained from the periodic extension of the

solution of (2).

Note that if the reference is unreachable, there exists an error

between the optimal reachable trajectory and the refereocke
tracked. We denote this cumulative error as
Vy (r) = Vp(r;2°,u) 3

Assumption 2: The optimization problem (2) is strictly convex.

Assumption 2 implies that the solution of the optimizationlgem
is unique. Strict convexity can be checked easily since thia
quadratic programming problem.

The control objective is to design a state feedback trackorgrol
law u(k) =
r(k), the closed-loop system satisfies the constraints, is etz
converges to the optimal reachable trajectory. At each Stee &,

trajectory and the reference to be tracked predicted forpemed T
In order to evaluate the MPC for tracking periodic referendhe
following optimization problemPx (z,r) is solved at each sampling

time:

Lmin - V(ara,ulu) “2)
7 s.t. z(0) = (4b)
z(i+ 1) Ax(i) + Bu(i) i€lpon-_1 (4C)

y(i) = Cx(i) + Du( i) i€l N1 (4d)

(@), u(D) € Z i€lon y (4e)

2"(0) = o (4f)

z (i + 1) =Az"(i)+ Bu"(i) i€ Tjo,7—1 (49)

y (i) = Ca" (i) + Du"(3) i €lpr_q (4h)

(2" (0), u%)) €2° i€lory (49

2"(0) = Az"(T — 1) + Bu' (T — 1) ()

z(N) =2z"(N) (4k)

The optimal solution of this optimization problem is derbte
(z™*,u"*,u}y). The variablex} (x,r), yx (z,r) denote the optimal
predicted trajectories of the states and outputs of theesysind

w(x(k),r(k)) such that given a periodic reference x"*(z,r),y"*(x,r) denote the optimal planned reachable trajectories

of the states and outputs of the system. The control law isngiv
by the first input of the optimal reachable predicted trajpct

the periodic reference signal(k) used to define the controller is ky(z(k),r(k)) = uy (0; k).

different because the initial time of the sequence changéth a

Constraints (4b-4d) define the predicted trajectories efsystem

slight abuse of notation, we defimeas the target periodic reference, starting from the current state. Constraints (4f-4h) defireeplanned
andr(k) the reference fed to the controller which takes into accountreachable reference starting from the free initial steteConstraints

the time shift.

(4e) and (4i) include the state and input constraints forh bibie

Standard tracking schemes are usually based on a hierarchicpredicted states and the planned reachable referenceditioag two

architecture in which a trajectory planner computes theinogt

terminal constraints are included to guarantee closep-loanver-

reachable trajectory which is then used by a MPC as a targejence to the optimal reachable trajectory. Constraint igljadded

reference. This implies that the MPC controller depends lua t
optimal trajectory and that two different optimization ptems have
to be solved.

IIl.  PROPOSED CONTROLLER

The proposed controller combines the trajectory planner the
MPC for tracking in a single optimization problem in whicheth
decision variables are a planned reachable trajectory etkfiy its
initial state " and the corresponding sequence of inpufs as
well as the sequence of future control inputs. The optimization
problem minimizes the cost functidrv (z, r; ", u", uyx), where the

parametergz, r) stand for the current state and expected reference

signal respectively.

Vn(z,r;2", 0" un) = Vi(z; 2", 0" un) + Vp(r; 2", u”)

1The reason for considering a tighter constraint &t is to avoid the
possible loss of controllability when the constraints actva [13].

to enforce that the reachable trajectory is periodic, whoestraint
(4k) guarantees that the terminal state of the predictgdctay of
the plant reaches the planned reachable trajectory at theofethe
prediction horizon.

It is important to point out that the set of constraints ofsthi
optimization problem does not depend on the reference Isigna
The domain of attractionty is defined as the set of states that can
admissibly reach any reachable periodic trajectoryirsteps, and in
general is large if compared with the set of states that camssibly
reach a particular reachable periodic trajectory. Therotiet can be
used to track any target reference, including high frequesignals.

IV.  STABILITY ANALYSIS

In this section we study the closed-loop properties of tleppsed
control law. In particular we prove that the output convergsymp-
totically to the optimal reachable trajectory and that tlatooller
maintains feasibility even in the presence of sudden clanyehe
target reference. To this end, we make use of the followirghty
modified Lyapunov theorem, see [1]:



Theorem 1: Consider an autonomous systettk + 1) = f(z(k)) From the strictly convexity of optimization problem (2)etle exists
wherez(k) € R™. LetT" be a positive invariant set ard C T" be am > 0 such that
a compact set, both including the origin as an interior pdinthere - . o - o 2
exists a function : R® — R and suitable..-class functions Vp(r(k), 2™ (k), (k) = V' (r) 2 mll(@™ (k) — 2" (k)|

a1, az, as such that and therefore, sincé is positive definite,
(i))W(Z(éf))))z ““”ﬁ(f)i'ﬁ; Vz(k))e r W(z(k) —z°(k)) > Amin(Q)|[(z(k) — 2" (k))|”
GEO)W(z(k)) < az(||z(k)|]), Vz(k) € Q +omE (k) — 22 (k)
(@)W (z(k + 1)) — W (2(k)) < —as(|lz(k)]), Vz(k) €T .
then 1W(-) is called a L function i and the origin i 2 alfalk) —a" ()
en -) is called a Lyapunov function it an e origin is ™CEY — 20 (k) |12
asymptotically stable for all initial states in. + Ha(f (k) — = g DI )2
In the following theorem, we will use this result to prove the > 7|\(x(k) -z (K))l

existence of a Lyapunov function and then derive the asytgpto | ... a1 = min{Amin (Q), 11} > 0

stability of tr_]e optimal trajectory. - . Condition (ii): Since the optimal reachable trajectory is contained
Theorem 2: Assume that system (1) satisfies Assumptions 1 and, y,q rejative interior of the set of constraings there exists a suffi-

2, the weighting matrices) and R are positive definite and the ciently small neighborhood™ such that for all(z (k) — z°(k)) € T,

prediction horizon is such thd_V > ne. Then syst.em 1) con'_[rolled the dead-beat control law (providing thatk + N) = z°(k + N))
by the proposed control law is recursively feasible and thenwal

reachable trajectorik® given by (z°,u°) is asymptotically stable u(k) = K(z(k) — 2°(k)) + v’ (k)
ith i f attractionYy, i.e. the closed | t is stabl : : ; r r o °
\élvrl1dggr(e;cg)lc::rc])nc\)/e‘r’jl ergcals? mNtotIiCGaII ;E(Zﬁor Zﬁpm(sal)ssr; oS provno_les a fea5|ble_ sqlut|on fo(rx (k)’u. (k) = (m_ (k), u”(K)),
Y ymp Y N resulting in an admissible predicted trajectory. Noticattthe dead-

Proof: Asymptotic stability will be proved by demonstrating that oo+ control law exists sincd > n. and the system is controllable
for the system that models the error between the state ottiwhable -

optimal trajectory and the closed loop trajectory of theeysz (k) =
x(k) — 2°(k), the function

as stated in Assumption 1.
Therefore, taking into account the optimality of the sautifor all
z(k) such that(z(k) — z°(k)) € T , there exist a constant, > 0

W (z(k)) = W (x(k) — 2°(K)) = V& (z(k),x(k)) = Vi (r) such that
—1
satisfies the cor\dltlons_ of The_ore_m lin the regitin gnd provides a W(z(k) — 2°(k)) < Z ll(is k) — 2° (i k)%
Lyapunov function. This function is defined as the differehetween =0
the optimal cost of the MPC problem at time Vy, (z(k), r(k)), and iy k) — u® (i k)%

the cost value of the optimal reachable trajectory define(B)n To
simplify the notation, we have dropped the dependence aftifom
W (-) on the target referenae In addition, we will not use the error which is less or equal to

z(k) in the following derivations, but its definition;(k) — z° (k). No1
In what follows, y(7; k), z(i; k) are the output and state predicted Z cwll(z(i; k) — 2°(i5 k), u(is k) — u® (4 k))||2
at time< applyingu(k) from the initial statex(k); y" (i; k), 2" (¢; k) im0

are the output and state of the planrned reoaghableorgferQHRBeai Then taking into account the linearity of the system coterbwith
applyingu’ (k) from the initial statez” (k); y°(i; k), 2°(i; k) are the  he dead-beat control law, there exists a constant> 0 such that
output and state of the optimal reachable referenapplyingu® (k) N1
from the initial statez®(k). ) — 2 (i e LY — (i B2 < k) — 2° (k)12
First, we will prove that the regioiy is a positive invariant set Z:; I (@s k) =27 (s k), w(@s k) = @G DI < wella (k) =2 (R)]
for the system in closed-loop with the proposed controdad hence,
Th h h
also forz(k) — 2°(k). Consider the shifted sequences en we have that

o o 2
uy (k) = {uy(Lk—=1),- - ,ul(N =1,k —1),ui(N;k— 1)} W(z(k) — 2°(k)) < cowe|lz(k) —z° (k)|
z™(k) =z (1;k — 1) for all (z(k) —z°(k)) € Y.
u?(k)={u*(L;k=1),- - ,u™(T - 1;k—1),u"(0;k — 1)} Condition (jii): From standard arguments [1] and periodicity of

Taking into account that the optimal solution at tifne- 1 is feasible r,y"" (k), u (k), the following inequalities follow:

by definition, it is easy to prove that the shifted sequencesatso Vn (z(k),r(k)) — Vi (z(k —1),r(k — 1))
feasible at timek. Note that the cpn_straints of prqblem (4) do not < Vn(z(k), r(k): 2 (k), u™ (k), ui (k)
depend on the reference, so this is true even in the presence o V(= 1), x(k — 1)

arbitrary changes of. N ’

Next, we will prove that the proposed Lyapunov function sfas < a0k — 1) — a2 (k - 1|5
the conditions of Theorem 1. —|lun 05k — 1) —u"*(0;k — 1)||%
Condition (i): From the definition ofi’(-) we have that FV, (e(k); 27 (k), u”* (k)
o = s - —Vp(r(k —1);2"" (k= 1),u""(k — 1))
W) —a W) = 3 1@k —a” Gl € koD -2k DR
+ (w5 k) — u" (i k) |7 —[lun 03k = 1) =™ (0; k = )|
+  Vp(r(k),z""(k),u"™ (k) — V, (r) From lemma 1 we have that there exist(k), u” (k), un (k) such
> le(k) =" (R that
+ Vol(r(k), 2" (k), 0" (k) = V() Vn (z(k),x(k); 2" (k), 0" (k), un (k) — Vi (z(k — 1), x(k — 1))



is lees or equal to-v||lz(k —1) —z°(k—1)|)* for all z(k—
and somey > 0.

]

Lemma 1: If Problem Py (z(k — 1);r(k — 1)) is feasible, then

there exists a positive constapt> 0 such that
Vi (@(k), r(k)) -V (z(k—1);

for all z(k — 1) € Xn.
Proof: Consider that for (k)

1)€XN

r(k—1)) < —7llz(k—1)—x°(k-1)|*

and the shifted

By feasibility we have that
(2" (is k),

and then there exists an> 0 such that if||z(k) — 2" (k)|| < e then
(uk (k),z"°(k),u"*(k)) is a feasible solution oPy (z(k),r(k)).
Take the constarlty, = |lz"*(k — 1) — 2°(k — 1)||* and letB; €

u" (i k)) € 2°

reference
(z"*(k),u"*(k)) the sequences introduced in Lemma 2 are defined

Then,
[€3 —1)— ™ (k= 1)I5
(w0 k — 1) —u"™ (0 k — 1))||%
> £=qmax{||z —z°|* 2z € Xn, (z°,u) € Z°}
> (k1) —2°(k— 1)
Case 2i|z(k) — " (k)| < &.

Consider the sequences defined in lemmad2(&), for the feasible

shifted reference trajectorfe™*(k), u"*(k)) and taking the optimal

unconstrained control law gain as the stabilizing contael bain K.
Since ||z(k) — 2™ (k)] < & < € and since the solution
(uy(k),z"°,u"*(k)) is a feasible solutions aPy (z(k),r(k)), the

solution (4%, (k), 2", 0" (k)) is also feasible by convexity.

For the givenl', and g, since

l2(k) — 2™ ()] < & = (1= B)[|2"(k) — z°(K)]|

(0,1) be a positive constant satisfying the conditions in Lemma 2. we derive from lemma 2 that

Take af € (Bk,1) such that(l —
defineg,. = (1— 8)[|a" (k) — o

B)ll="*(k) —

z°(k)|| < e and

are studied:
Case Li|x(k) — 2™ (k)|| > &.
By the definition ofz(k) and sincex™ (k) = =™ (1;k — 1) we
obtain
& < le(k) — 2" (1 k= 1)
= [JA(z(k—1) -2 (k- 1))
+B(u(0;k —1) —u""(0;k — 1))||
< pl((k—1) =2 (k= 1))
+pll(w (0 k — 1) —u""(0; & — 1))
wherep = max{|| A || B, 1}.
Consider the case thifu" (0;k—1) —u""(0;k—1))|| < 55 then

from the last inequality we have that

% f
NS

[(z(k—1) - ;

and then

1) —a™ (k= 1)II5

u™ (0:k = 1)|%
T* 2 )\mzn(Q)£2
(= ) 2 A

l[(z(k =
+l(u 0k — 1) -

> Amin(Q)||z(k = 1)

On the other hand, if we consider the case that

[(w" (0% = 1) =™ (0 = 1))]| > 26_/)
then
(k= 1) — 2" (k= 1)|I5
(" Ok — 1) = 7 (05K — )
>l Ok—l) U0k — 1)|% 2
> Ain (B (0 (03 — 1) — u"*(0; & — D) > 2min(BDE

4p?

_ ) 2 ) 2
Let £ := max{2mal@E Anin(UE} and choose

3

z°|?lx € Xn, (2,

7= u) € 27}

Notice that constant is positive and bounded since s&tis assumed
to be compact.

max{||lx —

°(k)||. Then the foIIowmg wo cases Vv (z(k),r(k)) < Vi (a(k), r(k))—(1—

B)ll=" (k=1)—2° (k=1)|”

Since K is the optimal unconstrained control law, we have that

Vi (z(k),x(k)) < VN (2(k), r(k); " (k), u"* (k), uk (k)

and then we have that

N (@(k), v (k) = Vi (a(k —1),r(k — 1))
< Vn(z(k),r(k) — (1= B)%||lz" (k — 1)
x"(k 1>||2—VN< (k—1),r(k — 1))
< Vn(z(k), (k) 2" (k), u" (k), ui (k)
Vi (z(k = 1),x(k — 1))
—(1=B)?[lz"" (k = 1) = 2°(k = 1)||?
< @k —1) 2™ (k= 1)|I5
—[(w 05k — 1) = u"™ (0;k — 1)1 %
—(1=B)?[lz"" (k = 1) = 2°(k = 1)||?
< D@l @k — 1) — 2™ (k- 1))
-1 =Bl (k - 1)
k—1)|?
< ik —1) —x°(k - 1)
with v = 2 min{\nin (Q), (1 — 8)*}.

|

Lemma 2: Letxz (k) be a given state and lét" (k), u” (k)) be such
that the associated trajectory is admissible. et (k), u% (k)) be
a sequence of states and control inputs derived from theatdaw
k*(z(i), 2" (k),u" (k) = K(z(i) — 2" (i;k)) + u" (4; k) such that
2®(N;k) = a"(N; k). Let Vi (z(k),r(k)) be the cost associated to
this solution, that is

Vn(z(k),x(k)) = Vi (x(k),x(k); uy (k), 2" (k), u" (k))
"(k),0"(k)) be defined as
(@"(k), 0" (k)) = B(z" (k),u" (k) + (1 = B)(z°(k), u’ (k)

Let (&

and leta
beat control lawx®(z(i),2"(k), 0" (k)) = K(z(i) — 2"(3;k)) +
4" (i; k). Let Vi (z(k),r(k)) be the cost associated to this solution,
that is

Vi (z(k),x(k)) = Vi (2(k), r(k); ax (), " (k), @" (k))

% (k) be a sequence of control inputs derived from the dead-



Then, for any positive constarit > 0, there exists a constant
B € (0,1) such that
lz(k) —z" (k)| < (1= B)|lz" (k) — z°(k)|l
implies thatVi (z(k),r(k)) — Vi (z(k),r(k)) < —(1 — 8)°T.
Proof: We denoteA.,, = A + BK. From the definition of the
dead-beat control law we obtain
u(ik) = KAy(x(k)— 2" (k) +u'(i; k) (5a)
z®(is k) Ag(a(k) — 2" (k) + 2 (i k) (5b)
and similarly fora%; (k) %% (k). Taking into account (5), we can
show that

N—-1
> 186 k) — 27 (i k) IG + (4 (5 k) — a” (5 k)| %

=3 (a6 h) = 27 G R = [lu k) = " Gis k)R

(k) = &" (k)5 — llz(k) — 2" (k)[4
(k) = x"(k) + (1 = B) (" (k) — «°(K)) Il

)
= (1-8)lz"(k) = x(K)Il%
+2(1 = B)(=(k)
—a" (k) H(a" (k) — 2°(k)))

< (1= B)7lla" (k) — 2 ()&
+2(1 = BH|[lx(k) — =" (K)[[[l2" (k) — 2° (k)|
< (=B Anlla" (k) — (k)|
+2(1 = B)Au|z(k) — 2" (k)| [l«" (k) — 2° (k)|
< (1= B)"Aullz" (k) — 2° (k)]

+2(1 = B)*Aullz" (k) — 2° (k)|
= 3(1-B)"ullz" (k) —2°(k)|”

where H is defined as
N-—1 .
H=Y A4 (Q+K"RK)

which is positive definite. The constatty = Amaz (H). Convexity
of V() provides that

Vo(r(k),2"(k), " (k)) < BVp(x(k), z"(k),u" (k) + (1 = )V
Using these results, it can then be seen that forlany 0

Viv(@(k),x(k)) = Vv (2 (k),x(k)) + (1 = 6)°T
< (1=B)°T+3(1 - B)"Aulla” (k) —a° (k)|
—(1=B)(Vp(x(k), 2" (k),u" (k) = V)

Since V,(r(k); 2" (k),u"(k)) > V,) by optimality of the optimal
reachable reference, for ady > 0 there exists & € (0,1), such
that

Vn(z(k),r(k)) — Va (z(k),r(k)) + (1 — B)°T <0

V. EXAMPLE

In this section we apply the proposed controller to a linggorax-
imation of a ball and plate system. The system consists ofate pl
pivoted at its center such that the slope of the plate can ingpulated
in two perpendicular directions. A servo system consistihgiotors
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Fig. 1. Trajectories ok, z2 for the closed loop system (dash-dotted blue),
the trajectory planner (solid magenta) and the target eafer (dashed red)
(scenario 2).

is used for tilting the plate and control the two angles ofation
01,02. An appropriate sensor for measurement of the ball position
z1, z2 IS assumed to be available, for example an intelligent wisio
system. The basic control task is to control the position dfad
freely rolling on a plate. This system is a dynamic systenhwito
inputs and two outputs.

To carry out the simulations a discrete time linear system is
obtained taking as equilibrium point the origin for all thtates
and inputs and a sampling tiniBm = 0.05 seconds, see details
in [14],[15]. This system satisfies Assumption (1). The itspof the
ball and plate system are the accelerations applied in eatatian
axis and they are denoted & = [u1,us]' = [01,0:]'. The state
x € R® is defined as follows

l’T = [21,él,el,él,ZQ,ég,eg,ég]T
The system must satisfyz;| < 6¢m, |0:] < Frad and 6:] <
110rad/s>.

In the simulation a short prediction horizaN = 5 is chosen
to demonstrate that the proposed controller has a large idoaia
attraction that has a low dependence on the prediction drori¥.
The number of decision variables ig, - (N + T') + n, = 74. In
addition, in order to prove that recursive feasibility ig fast even in
the presence of a sudden change in the target referencefénence
switches between two geometric figures. First the ball musivch
rectangle of sizé x 4cm that is centered irf4, 5)cm with a speed
of 11.43==. At time 2.8 seconds the reference changes in order to
draw a circumference with centér4, —4)cm and a radius ollcm.
The target speed of the second trajectorg.i=. The period length
of both references is the same, thatlis= 28. The initial state of
this scenario is the ball in equilibrium &ti, z2) = (—5,5)cm.

The simulation shows that when the reference changes siydden
the trajectory of the ball converges to the new trajectorythuf
planner satisfying the constraints and without losing ifelty even
when the prediction horizon is much lower than the periodytien
Figure 1 shows the trajectories of, z> for the closed loop system
(dash-dotted blue), the trajectory planner (solid mageatad the
target reference (dashed red) in the 22 plane. Figures 2,3 show
the trajectory of the ball on each axis. In these figures, it ba
seen that the trajectory of the closed-loop system consetgehe
optimal reachable reference trajectories with zero effist to the
trajectory planner of the rectangle, and then to the traiggblanner



Trajectory of the ball z, () of the circle. All these figures show a sudden change in when th
reference switches from the rectangle to the circle. It canséen
that there exists a deviation between the trajectory of therer and
the target reference for the rectangle, but that the erraeis for
the circle reference, which is reachable. For this reasenofttimal
cost of the optimization problem (2) is non-zero for the aadie
and zero for the circle. Figure 4 shows that the cost of thpgsed

0.06

0.04

0.02

= : : controller converges to the cost of the trajectory planmera non-
= + |---Reference (rectangle) ' . . . .
N' OFi|---Reference (circ.) e ~ 1 increasing manner, demonstrating that the difference detwboth
e Closed-loop trajectory (N:5 T:28 ) : values increases suddenly when the reference changedabuhéen
002 | | Opiimal reachable rajectony 8| | ] it converges again to the new optimal trajectory plannet. doss
: ' Py important to remark, that when the target reference charajethe
—0.04 : ] state variables are far away from the optimal reachableaeée, and
! N N4 that they take more than 5 time steps to reach it, howevernv\R€
~0.06 ‘ | | v | maintains feasibility as proved in Theorem 2.
0 1 2 3 4 5
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