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A B S T R A C T

Distributed model predictive control (DMPC) schemes have become a popular choice for networked control
problems. Under this approach, local controllers use a model to predict its subsystem behavior during a certain
horizon so as to find the sequence of inputs that optimizes its evolution according to a given criterion. Some
convenient features of this method are the explicit handling of constraints and the exchange of information
between controllers to coordinate their actuation and minimize undesired mutual interactions. However, we
find that schemes have been developed naively, presenting flaws and vulnerabilities that malicious entities
can exploit to gain leverage in cyber-attacks. The goal of this work is to raise awareness about this issue by
reviewing the vulnerabilities of DMPC methods and surveying defense mechanisms. Finally, several examples
are given to indicate how these defense mechanisms can be implemented in DMPC controllers.
. Introduction

The last years have witnessed a growing interest in distributed con-
rol methods due to their superior scalability in large-scale applications
uch as smart grids (Qi, Liu, & Christofides, 2011; Yazdanian & Mehrizi-
ani, 2014), water systems (Negenborn, van Overloop, Keviczky, &
e Schutter, 2009), and traffic control (De Oliveira & Camponogara,
010). This approach considers the overall system as an aggregation of
maller pieces, i.e., subsystems, which are locally managed by control
nits referred to as agents (Kordestani, Safavi, & Saif, 2021; Scattolini,
009), whose combined decisions determine the overall performance
ue to the subsystems’ coupling, e.g., in the control objectives and
he system constraints. Moreover, this decomposition may be the only
hoice regarding the control architecture in applications where the im-
lementation of a centralized controller becomes unfeasible due to the
roblem size or the existence of multiple independent decision-making
ntities.

From the multiple distributed control approaches, we are specially
nterested in distributed model predictive control (DMPC) (Christofides,
cattolini, de la Pena, & Liu, 2013; Negenborn & Maestre, 2014),
hich presents several advantages for networked control applications.

n particular, predictive controllers employ a model of the system to
redict its evolution over a given horizon and build an optimization
roblem to find the most appropriate sequence of control actions to
teer its evolution according to a given criterion (Camacho & Alba,
013). Being a computer-based approach, the method is constantly
ncreasing the size of the problems it can handle due to the advances
n information and communication technologies. In addition, it is pos-
ible to handle constraints, transport delays, and other complicating
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issues in an explicit fashion, which are very convenient features for
industrial applications (Qin & Badgwell, 2003). Another remarkable
characteristic of the DMPC family is that there are methods available
to cluster controllers (Baldivieso-Monasterios & Trodden, 2021; Fele,
Maestre, & Camacho, 2017; Maxim & Caruntu, 2021; Riverso, Boem,
Ferrari-Trecate, & Parisini, 2016), thus providing a useful mechanism
to group healthy agents. See Chanfreut, Maestre and Camacho (2021)
for a survey on clustering methods where it can be seen that the
interaction between controllers can be exploited to boost scalability and
flexibility, and also to deal with unpredicted changes in the inter-agents
communication network.

A critical issue in DMPC and any other distributed systems is that of
the coordination of the agents’ decisions (Rawlings & Stewart, 2008). It
is well known that the controllers’ attitude, which may not be willing
to cooperate, and their knowledge of the overall system have a high
influence on the local decisions, and hence, on the global perfor-
mance (Farina & Scattolini, 2012; Mc Namara, Negenborn, De Schutter,
& Lightbody, 2012; Worthmann, Kellett, Braun, Grüne, & Weller, 2015).
In particular, the information available to each agent is often restricted
to a local level, which implies some degree of uncertainty regarding
the impact of their own and their neighbors’ actions. The latter can
be alleviated through communication among controllers, which allows
negotiating the control actions and even attaining optimal (centralized)
performance (Doan, Keviczky, & De Schutter, 2011; Giselsson, Doan,
Keviczky, De Schutter, & Rantzer, 2013; Venkat, Hiskens, Rawlings,
& Wright, 2008). To this end, agents interact with their physical
environment, communicate local data, and update their neighboring
Please cite this article as: T. Arauz, Annual Reviews in Control, https://doi.or
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information, therefore requiring connectivity, reliability and security of
their local equipment and the communication network. Regarding the
latter, three different security goals are often defined (Zeldovich, 2014):
confidentiality, i.e., to maintain the secrecy of the important data,
integrity, i.e., to guarantee the fidelity of the data, and availability,
i.e., to ensure the accessibility of the data at the right time.

Nevertheless, as stated by Peter Deutsch in the eight fallacies of
istributed computing (Rotem-Gal-Oz, 2006), the above-mentioned re-
uirements are likely to fail at some point in the long-term. For this
eason, numerous distributed control applications that rely on a set
f cyber–physical components, including hardware and software units,
an become contributing factors to faults and attacks (Ding, Han, Wang,

Ge, 2019; Ding, Han, Xiang, Ge, & Zhang, 2018; Sánchez, Rotondo,
scobet, Puig, & Quevedo, 2019). On the one hand, networked systems
ay suffer unpredicted non-malicious faults, leading to intermittent

ommunication and information losses. For example, Olfati-Saber and
urray (2004) and Savino et al. (2015) analyze multi-agent consen-

us problems where the data exchange is affected by communication
elays and switching topologies; Schiffer, Dörfler, and Fridman (2017)
ddresses the frequency control problem in a power network operating
n presence of links failures, packet losses, and delays; and Li, Bian, Li,
u, and Wang (2020) deal with a multi-vehicle system connected by
ireless channels which dynamically form and break. Also, the number
nd configuration of the agents may experience changes in time, as a
onsequence of the possible incoming and outgoing subsystems and the
urning on/off of certain system processes (Riverso et al., 2016; Riverso,
arina, & Ferrari-Trecate, 2014), resulting in changes of topology that
hould be handled by the controller.

On the other hand, the vulnerabilities of distributed systems make
hem potential targets for cyber-attackers, thus introducing further
ecurity concerns. See for example Mo et al. (2011), which discusses
ecurity challenges and advances in smart grids, and emphasizes that
here exists a wide variety of motivations to launch an attack in this
ype of applications, from economic reasons, e.g., when the attacker
eeks to reduce its costs at the expense of others subsystems, to black-
ailing users by controlling their access to electricity. Additionally, as
ointed out in Humayed, Lin, Li, and Luo (2017), attacks may origi-
ate at different system components and propagate within the system,
hich renders their detection and identification difficult. In this regard,
ttackers can alter measurement and actuation signals, and corrupt
he information transmitted through the network, hence threatening
oth the interactions of local controllers with their physical subsystems
nd with other controllers. The risks involved by the presence of
ttackers compromising any of these properties go beyond the system
erformance, because they can bring stability issues, thus highlighting
he need of control structures able to detect and mitigate the effect
f possible attacks. Finally, note that these treats and their harmful
onsequences are very real. Well-known malicious cyber-attacks such as
tuxnet (Kushner, 2013) and Crash Override (Bindra, 2017) are powerful
eminders in this regard. Other common environments and situations
here cyber-attacks are very present are industrial systems (Bhamare
t al., 2020; Schwab & Poujol, 2018; Thames & Schaefer, 2017) and
omputer networks (Lavrov, Volosiuk, Pasko, Gonchar, & Kozhevnikov,
018; Wu & Irwin, 2016). In this respect, Jang-Jaccard and Nepal
2014) also provide an overview of potential vulnerabilities in hard-
are, software, and network systems, while discussing new threats and
ttacks patterns associated with emerging technologies such as social
edia and cloud computing.

For all the above-mentioned reasons, cyber-security has become a
ecent field of interest for DMPC, and different algorithms have already
een developed to deal with cyber-attacks within this framework.
or example, Velarde, Maestre, Ishii, and Negenborn (2018) consider
nsider attacks and present a resilient DMPC negotiation procedure.
imilarly, Ananduta, Maestre, Ocampo-Martinez, and Ishii (2020) pro-
ose an active method to deal with adversarial agents within the
2

MPC algorithm. Attacks on communication channels have also been
addressed. For instance, Liu and Bai (2018) presented an iterative
DMPC where data injection attacks are considered.

Despite their sources of vulnerability, DMPC schemes also possess
some unique features to deal with cyber-attacks. To begin with, robust
MPC formulations can enhance safety margins even in case of cyber-
attacks, e.g., the tree-based MPC presented by Pierron, Arauz, Maestre,
Cetinkaya, and Maniu (2020) computes the input sequence consider-
ing all possible jamming attacks scenarios. Likewise, the calculation
of a sequence of inputs can also be used to mitigate issues such
as losses in the information packages exchanged between controllers
and actuators (Quevedo & Nešić, 2010; Sun, Zhang, & Shi, 2019).
Another relevant feature of the MPC framework comes from the model
employed to generate the controller’s predictions, which establishes
clear analytical relationships between the problem variables that can
be used to detect anomalies, e.g., by exploiting analytical redundancy.
Likewise, there is a recent bloom of predictive control methods where
learning algorithms play a significant role. This feature is particularly
interesting in this context because it enhances the set of detection and
identification tools that agents can employ to trigger their defensive
countermeasures (Chen, Wu & Christofides, 2020; Wu et al., 2018).
Finally, being a computer-based approach, DMPC algorithms can be
easily extended to incorporate defense mechanisms that already exist
in the literature for other control methods.

The rest of the paper is organized as follows. Section 2 presents
a general description of the structure of distributed systems and its
underlying communication network, along with two widely used DMPC
approaches. Section 3 summarizes the cyber attacks that can be found
in the DMPC framework. In Section 4, different defense mechanisms
that DMPC can use are outlined distinguishing between prevention,
detection, and mitigation actions. Finally, concluding remarks and
future research prospects are indicated in Section 5.

2. Problem setting

The overall system is generally controlled by a set of 𝑀 local agents,
hereafter  = {1,… ,𝑀}, which correspondingly manage a set of
coupled subsystems  = {1,… ,𝑀}, i.e., subsystem 𝑖 is assigned to
control agent 𝑖, for all 𝑖 ∈ [1,… ,𝑀]. In this regard, it is assumed that
𝑖 measures the local variables and manages the inputs of subsystem
𝑖. In turn, the local controllers in  are interconnected by a data
network that allows them to communicate and perform coordinated
tasks. As shown in Fig. 1, the overall structure can be modeled as the
combination of two graphs, one associated with the network of the
agents, i.e., a = (, a), another with the system dynamics, i.e., s =
( , s). The edges in a represent communication links that allow the
agents to exchange data and coordinate their actuation, whereas the
edges in s model the coupling between subsystems. That is, an edge in
s from subsystems 𝑗 to 𝑖 is associated with the coupling effect that 𝑗
has on 𝑖, i.e., 𝐴𝑖𝑗𝑥𝑗 + 𝐵𝑖𝑗𝑢𝑗 . Therefore, whenever sets a and s do not
coincide, not all coupled controllers can communicate, which restricts
the coordination capacity of the distributed system. Finally, notice that
we have implicitly assumed that there exist additional communication
connections that allow the agents to acquire information from the
system and to send commands to the corresponding actuators.

The system dynamics are modeled mathematically to predict the
overall behavior as an aggregation of the subsystems’ evolution. In
particular, for state-space representations, the dynamics of each 𝑖 are
commonly described by a model of the form:

𝑥𝑖(𝑘 + 1) = 𝑓𝑖
(

𝑥𝑖(𝑘), 𝑢𝑖(𝑘), [𝑥𝑗 (𝑘), 𝑢𝑗 (𝑘)]𝑗∈𝑖
, 𝑑𝑖(𝑘)

)

, (1)

here 𝑥𝑖(𝑘), 𝑢𝑖(𝑘) denote respectively the state, and input of subsys-
em 𝑖, 𝑥𝑖(𝑘 + 1) is its successor state, 𝑑𝑖(𝑘) represents the external
tate-disturbances on 𝑖, and 𝑓𝑖(⋅) is a function defined accordingly.1

1 Note that  refers to subsystem 𝑖 and, analogously,  denotes agent 𝑖.
𝑖 𝑖
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Fig. 1. Scheme of a distributed system composed of 6 subsystems that are assigned to
a set of distributed MPC agents. The network of agents, whose links are represented in
black solid lines, is modeled by graph a = (, a), while the subsystems interactions
can be described by another graph s = ( , s), where the edges in s connect
dynamically coupled subsystems. In addition, the communication connections allowing
the interaction between agents and their corresponding subsystems are indicated with
dotted lines.

Likewise, 𝑖 contains the set of neighbors whose states and inputs
affect the dynamics of subsystem 𝑖. In case of linear representations,
model (1) can be rewritten as

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘) +𝑤𝑖(𝑘),

𝑤𝑖(𝑘) =
∑

𝑗∈𝑖

[

𝐴𝑖𝑗𝑥𝑗 (𝑘) + 𝐵𝑖𝑗𝑢𝑗 (𝑘)
]

+ 𝑑𝑖(𝑘), (2)

where 𝑤𝑖 is a vector of disturbances that captures both the possible ex-
ternal perturbations and the coupling effect of neighboring subsystems,
i.e., ∑𝑗∈𝑖

[

𝐴𝑖𝑗𝑥𝑗 (𝑘) + 𝐵𝑖𝑗𝑢𝑗 (𝑘)
]

, where 𝑖 = {𝑗 ∈  ⧵ {𝑖} ∣ [𝐴𝑖𝑗 , 𝐵𝑖𝑗 ] ≠
𝟎}.

However, system states may be unavailable for controllers, requir-
ing the presence of observers to provide an estimate of the state from
the system outputs. Hence, system dynamics may also include an extra
equation:

𝑦(𝑘) = 𝐶𝑥(𝑘), (3)

that relates the measurement received by the controller from the sen-
sors 𝑦(𝑘) with system state 𝑥(𝑘). In addition, as will be seen in Sec-
tions 3 and 4 , these observers can become the target of cyber-attackers
(e.g., Sahoo, Mishra, Peng, & Dragičević, 2018), but also provide
means to detect them (e.g. Barboni, Rezaee, Boem, & Parisini, 2020).
Nevertheless, it can also be assumed that 𝐶 = 𝐼 (identity matrix of
corresponding dimensions) in (3), meaning that the system states can
be perfectly measured, i.e., 𝑦(𝑘) = 𝑥(𝑘), so that observers are not
required. Indeed, this assumption is followed in this work to provide a
clearer exposition of the problem, but notice that results can be directly
extended to the general case just including the extra equation (3) and
the corresponding observer.

2.1. DMPC algorithms

Predictive controllers repeatedly solve a constrained optimization
problem based on a model of the system to find the sequence of inputs
that minimizes a performance index (Camacho & Alba, 2013). Also, the
agents can handle different constraints and objectives while accessing
to different sets of data (Christofides et al., 2013; Negenborn & Maestre,
2014). For simplicity, let us consider that the overall objective 𝐽 (𝑥,𝐮)
adds subsystem’s goals regarding their state and input trajectories, e.g.,

𝐽 (𝑥,𝐮) =
∑

𝑖∈[1,𝑀]

𝑁h−1
∑

𝑛=0

(

‖𝑥𝑖(𝑛) − 𝑥ref ,𝑖‖
2
𝑄𝑖

+ ‖𝑢𝑖(𝑛)‖2𝑅𝑖

)

, (4)

where 𝑥 = [𝑥𝑖]𝑖∈[1,𝑀] represents the global state, 𝑁h is the prediction
horizon, 𝑥 denotes the state reference for subsystem 𝑖, and 𝑄 ≥
3

ref ,𝑖 𝑖
0 and 𝑅𝑖 > 0 are weighing matrices. Additionally, 𝐮 represents the
sequence of global inputs for a prediction horizon of 𝑁h time steps,
i.e., 𝐮 = [𝐮]𝑖∈[1,𝑀], with 𝐮𝑖 = [𝑢T𝑖 (0), 𝑢

T
𝑖 (1),… , 𝑢T𝑖 (𝑁h − 1)]T. Also, let us

assume the centralized MPC problem is given by

min
𝐮

𝐽 (𝑥,𝐮)

s.t. 𝐶in𝐮 ≤ 𝑐in, (5a)

𝐶eq𝐮 = 𝑐eq, (5b)

where 𝐶in, 𝐶eq, 𝑐in, and 𝑐eq are respectively matrices and vectors defin-
ing affine constraints on the optimization variable 𝐮. Note (5a) and
(5b) respectively include inequality and equality constraints that can
bound both the inputs and the states, possibly coupling the local inputs
trajectories 𝐮𝑖.

For their further use throughout this survey, this subsection in-
troduces two popular distributed MPC algorithms, which attain the
optimal centralized MPC solution by performing iterative distributed
negotiations.

2.1.1. Dual decomposition
Dual decomposition methods separate global optimization problems

into smaller components by using Lagrange multipliers to enforce the
coupling constraints satisfaction (Boyd, Parikh, & Chu, 2011; Cheng,
Forbes, & Yip, 2007; Rantzer, 2009; Zhu & Martínez, 2015). Let us
consider a simplification of problem (5), i.e.,

min
[𝐮𝑖]𝑖∈[1,𝑀]

∑

𝑖∈[1,𝑀]
𝐽𝑖(𝑥𝑖,𝐮𝑖)

s.t. 𝐶in𝐮 =
∑

𝑖∈[1,𝑀]
𝐶𝑖,in𝐮𝑖 ≤ 𝑐in, (6a)

𝐶eq𝐮 =
∑

𝑖∈[1,𝑀]
𝐶𝑖,eq𝐮𝑖 = 𝑐eq, (6b)

where the objective function is separable. Notice that constraints (5a)
and (5b) have been rewritten as a summation on variables 𝐮𝑖, being 𝐶𝑖,in
and 𝐶𝑖,eq matrices computed accordingly. By forming the Lagrangian of
problem (6), i.e.,

𝐿(𝑥,𝐮, 𝜆) =
∑

𝑖∈[1,𝑀]
𝐽𝑖(𝑥𝑖,𝐮𝑖) + 𝜇

(

∑

𝑖∈[1,𝑀]
𝐶i,in𝐮𝑖 − 𝑐in

)

+ 𝜆

(

∑

𝑖∈[1,𝑀]
𝐶𝑖,eq𝐮𝑖 − 𝑐eq

)

,
(7)

where 𝜇 ≥ 0 and 𝜆 are Lagrange multipliers, constraints (6a) and (6b)
can be relaxed, allowing for the distribution of the problem among the
set of local agents. In this regard, sub-gradient based methods where
the agents iteratively optimize inputs sequences 𝐮𝑖 and exchange their
solutions to update 𝜇 and 𝜆 are extensively used. In particular, let
superscript 𝑝 denote any iteration, and consider some initial prices 𝜆0

and 𝜇0. Then, at each 𝑝, any agent 𝑖 computes sequence 𝐮𝑝𝑖 by solving
the following local problem

𝐮𝑝𝑖 = argmin
𝐮𝑖

𝐽𝑖(𝑥𝑖,𝐮𝑖) + 𝜇𝑝𝐶𝑖,in𝐮𝑖 + 𝜆𝑝𝐶𝑖,eq𝐮𝑖 (8)

Subsequently, the Lagrange multipliers are updated in the direction of
the sub-gradient of the dual problem, i.e.,

𝜇𝑝+1 = 𝜇𝑝 + 𝛾𝑝eq

(

∑

𝑖∈[1,𝑀]
𝐶i,eq𝐮𝑖 − 𝑐eq

)

,

𝜆𝑝+1 = max

(

𝟎, 𝜆𝑝 + 𝛾𝑝in

(

∑

𝑖∈[1,𝑀]
𝐶i,in𝐮𝑖 − 𝑐in

))

,

(9)

where 𝛾𝑝in, 𝛾
𝑝
eq > 0 are the step sizes of the 𝑝th iteration. Note that

outcome of this procedure relies on continuous and reliable communi-
cation among agents, since the variables associated with the coupling
constraints need to be shared to evaluate (9).

Considering the above, dual decomposition methods can be used to
coordinate a set of agents with coupled dynamics (Farokhi, Shames,
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& Johansson, 2014; Ma, Anderson, & Borrelli, 2011). In particular,
consider a set of input-coupled linear agents that seek to solve (5), with
𝐽 (𝑥,𝐮) being the quadratic index in (4). Also, notice that, in this case,
(4) admits the following decomposition:

𝐽 (𝑥,𝐮) =
∑

𝑖∈[1,𝑀]
𝐽𝑖(𝑥𝑖,𝐮𝑖, [𝐮𝑗 ]𝑗∈𝑖

). (10)

That is, there may be shared optimization variables that prevents the
objective function from being separable as in (6), e.g., 𝐮𝑗 for 𝑗 ∈ 𝑖
is both present in 𝐽𝑖(⋅) and 𝐽𝑗 (⋅). To this end, assume that any agent
𝑖 optimizes an augmented vector 𝐮a𝑖 =

[

𝐮𝑖; [𝐮𝑖𝑗 ]𝑗∈𝑖

]

, where [𝐮𝑖𝑗 ]𝑗∈𝑖
represents a local duplicate of sequences [𝐮𝑗 ]𝑗∈𝑖

. Overall coordination
is achieved if all agents reach a consensus on their corresponding
coupled inputs, which is translated into a set of equality constraints

𝐮𝑖 − 𝐮𝑗𝑖 = 0, ∀𝑖 ∈ [1,𝑀], 𝑗 ∈ 𝑖. (11)

Since (5a), (5a) and (11) can be rewritten as inequality and equality
constraints on variables 𝐮a𝑖 , i.e., ∑𝑖∈[1,𝑀] 𝐶

a
𝑖,in𝐮

a
𝑖 ≤ 0, ∑𝑖∈[1,𝑀] 𝐶

a
𝑖,eq𝐮

a
𝑖 = 0,

and the objective (10) equals 𝐽 (𝑥,𝐮) = ∑

𝑖∈[1,𝑀] 𝐽𝑖(𝑥𝑖,𝐮a𝑖 ), the overall op-
timization can be formulated as the class of problems (6). In particular,
each agent 𝑖 would iteratively optimize sequence 𝐮a𝑖 , and the Lagrange-
prices update equations become functions on the augmented vectors of
all the agents. The update of the Lagrange prices can be performed by
a central coordinator, which transmits the new values to the agents
for the inputs’ optimization. Note that in this case the optimization
problems still need to be solved in parallel by the agents at a local level;
hence, the algorithm implementation retains a significant distributed
nature. Likewise, this update can also be performed directly by the
local agents as long as each one knows the neighbors that it needs to
coordinate with, i.e., starting from common 𝜆0 and 𝜇0, all agents could
iteratively compute (9) after receiving all their neighbors’ optimized
input sequences, and then use the resulting prices in their optimization
problems.

This approach has been widely used in the literature and it is possi-
ble to find several relevant modifications with respect to the formula-
tion presented above. For example, an augmented Lagrangian approach
is employed by Mc Namara, Negenborn, De Schutter, Lightbody, and
McLoone (2016) for frequency regulation in power grids. Also, authors
as Hammami, Maraoui, and Bouzrara (2020) have extended the method
to consider nonlinear dynamics. Finally, other authors like Giselsson
et al. (2013) explore how to improve the convergence rate by using
accelerated gradient methods.

2.1.2. Cooperation-based MPC
In cooperation-based MPC (Stewart, Venkat, Rawlings, Wright, &

Pannocchia, 2010; Venkat et al., 2008), centralized behavior is attained
by the use of a plant-wide performance function as control objective
for all the agents. That is, all agents 𝑖 optimize their inputs sequences
𝐮𝑖 so as to minimize global index 𝐽 (𝑥,𝐮), thus taking into account the
effect of the local actions on the neighboring subsystems. As described
in Stewart et al. (2010) and Venkat et al. (2008), the distributed
optimization is of the Gauss–Jacobi type and is performed through
an iterative procedure where the controllers adapt their local input
sequences to the expected neighboring actions. In particular, consider
problem (5) and note that the objective function can be rewritten as
𝐽 (𝑥,𝐮𝑖, [𝐮𝑗 ]𝑗∈[1,𝑀]⧵{𝑖}) by simply considering the definition of 𝐮, i.e., 𝐮 =
[𝐮𝑖]𝑖∈[1,𝑀]. Then, at each iteration 𝑝 of the distributed optimization,
each agent 𝑖 solves the following problem

𝐮∗𝑖 = argmin
𝐮𝑖

𝐽 (𝑥,𝐮𝑖, [𝐮𝑗 ]
𝑝−1
𝑗∈[1,𝑀]⧵{𝑖})

s.t. 𝐶𝑖,in𝐮𝑖 +
∑

𝑗∈[1,𝑀]⧵{𝑖}
𝐶𝑗,in𝐮

𝑝−1
𝑗 ≤ 𝑐in, (12a)

𝐶𝑖,eq𝐮𝑖 +
∑

𝑗∈[1,𝑀]⧵{𝑖}
𝐶𝑗,eq𝐮

𝑝−1
𝑗 = 𝑐eq, (12b)
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where neighboring inputs obtained at iteration 𝑝 − 1 are considered as
constant parameters, i.e., the only variable in (12) is the local input
sequence 𝐮𝑖, which optimizes the global evolution. Notice that the most
recent values of neighboring inputs available for each agent correspond
to the previous iteration step solutions 𝐮𝑝−1𝑗 because all agents compute
𝐮∗𝑖 simultaneously. Once all agents have solved (12), the solution of the
(𝑝+1)th iteration is obtained as a convex combination of 𝐮∗𝑖 and 𝐮𝑝𝑖 , i.e.,

𝐮𝑝+1𝑖 = 𝑤𝑖𝐮∗𝑖 + (1 −𝑤𝑖)𝐮
𝑝
𝑖 , (13)

where 0 < 𝑤𝑖 ≤ 1 for all 𝑖 ∈ [1,𝑀], and ∑

𝑖∈[1,𝑀] 𝑤𝑖 = 1. Subsequently,
the intended local actions 𝐮𝑝+1𝑖 are shared, and the process is iteratively
repeated until convergence is attained, or until a maximum number of
iterations is reached.

See Venkat et al. (2008) for a detailed presentation of the above-
described algorithm and for illustrative results on a power system appli-
cation. Additionally, Stewart, Wright, and Rawlings (2011) extend this
optimization method to nonlinear systems, and in Ferramosca, Limón,
Alvarado, and Camacho (2013) it is used to implement in a distributed
manner the MPC for tracking described in Limón, Alvarado, Alamo,
and Camacho (2008). Other application examples are given in Sub-
ramanian, Rawlings, Maravelias, Flores-Cerrillo, and Megan (2013),
which exploits the results in Stewart et al. (2011) for supply chain
optimization; and in Jia, Meng, Wu, Sun, and Dong (2020), which
introduces a cooperative economic MPC inspired in Venkat et al. (2008)
for optimal load frequency control in large-scale power networks.

2.2. Main elements of DMPC approaches and cyber-security

Distributed predictive controllers comprise different elements,
which also represent sources of vulnerability. The main ones are
summarized as follows:

• Vulnerabilities in the problem formulation: here, we list weak spots
in the problem setup that can disrupt DMPC algorithms:

- Optimization function: controllers compute input actions by
optimizing the previously defined overall objective (4). In-
deed, when no constraints are active, it is this cost func-
tion that governs the response of the controller. Therefore,
any modification at a local level in the cost function may
steer the negotiation and alter the resulting input sequences
optimized by the agents.

- Constraints: states and inputs are usually restricted either by
physical limits or by safety conditions. Also, coupling con-
straints are also relevant in this context. These constraints
define the domain of the feasible input sequences and there-
fore any manipulation in this regard has the potential to
modify the result of the distributed optimization. Likewise,
the convergence of the algorithm can be endangered if
agents perform local optimizations using incompatible sets
of constraints.

- Negotiation process between agents: agents are required to ex-
change information following a certain negotiation process.
This process is also a vulnerable spot of the system. In par-
ticular, attackers can use the knowledge of the negotiation
process to gain advantage with respect to agents that are
complying with the DMPC algorithm.

• Vulnerabilities in the communication process: two main weak spots
can be identified regarding the process of data exchange:

- Communication network: distributed agents need to exchange
information to coordinate their input sequences. Likewise,
controllers can use a network to send input values and
receive measurements. This is a clear source of vulnerability
and the target of cyber-threats such as replay attacks and
jamming attack.



Annual Reviews in Control xxx (xxxx) xxxT. Arauz et al.
Fig. 2. Representation of the vulnerabilities to cyber-attacks in a distributed system
with 3 MPC agents. Inter-controller communication is threatened by malicious and
infected agents ((a) and (b)) that may corrupt the shared data and perform disruptive
and/or deceptive actions ((c) and (d)). Likewise, the interactions of the network of
agents with their physical subsystems can be attacked ((e) and (f)), thus affecting the
control decisions and the system performance. Also, the system can suffer the effects
of external attackers that may jeopardize both the inter-agent communication and the
local operations (g). For the sake of clarity, controllers’ interactions with sensors and
actuators are only represented for agent 2.

- Protocols: inter agent communication is carried out follow-
ing a common protocol. Again, this is another weak spot
that can be exploited, disrupting normal communications,
and hence, the operation of the system.

• Vulnerabilities in the physical components: sensors, actuators, and
even the controller itself are vulnerable elements, because they
can be physically manipulated. Moreover, their normal operation
can also be disrupted via software, e.g., by viruses.

Finally, note that cyber-attacks can cause different consequences
as their effect spread: performance degradation, violation of the con-
straints, loss of recursive feasibility, etc. Therefore, in this study, we
focus on the classification of the attack types rather than on their
consequences.

3. Cyber attacks in DMPC

Many DMPC methods have been developed, but insufficient atten-
tion has been paid to their vulnerabilities, e.g., against malicious agents
and external attacks. The aim of this section is to survey different
types of cyber-attacks considering their corresponding source of vul-
nerability from a physical viewpoint. Fig. 2 illustrates this criterion
and clearly shows different weak spots for DMPC algorithms in the
control infrastructure. Special attention is paid to communication links
because they are required for inter-agent communication and they may
be used as well by local controllers to exchange information with
sensors and actuators. Other vulnerable spots are the software that runs
in the agents, which may be corrupted due to viruses and malicious
software, and the hardware of the controllers and the instrumentation.
Nevertheless, we consider that the last case is out of the scope of this
work because attacks to hardware require the physical presence of the
attacker, and therefore they can be considered acts of sabotage rather
than cyber-attacks. Also, their consequences are similar to the attacks
considered in the other categories. Therefore, we will focus on the
malicious behavior that stems from software and communication links.

3.1. The communication network

The communication network is required to share information be-
tween different agents and system components, representing a signifi-
cant source of vulnerability. In particular, the channel attacked can be
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inter-agent (for coordination purposes as (c) in Fig. 2) and intra-agent
(to exchange data between the controller and its actuators and sensors
such as (e) and (f) in Fig. 2). While there are many examples of intra-
agent attacks in the MPC literature, e.g., Qin et al. (2020), Sun and
Yang (2019) and Wang, Gao and Qiu (2016) ((e) in Fig. 2) and Chen,
Wu et al. (2020), Liu and Bai (2018) and Yang et al. (2019) ((f) in
Fig. 2), inter-agent attacks are less common and may appear presented
as insider attacks (Feng & Ishii, 2020; Kikuchi, Cetinkaya, Hayakawa,
& Ishii, 2017).

Also, most cyber-attacks in communication networks can be cate-
gorized depending on the effect produced in the system (Dibaji et al.,
2019; Teixeira, Shames, Sandberg, & Johansson, 2015). In the first
place, there are deception attacks, which corrupt the data transmitted
through the communication channel, e.g., false-data injection and re-
play attacks. The second category is that of disruption attacks, which
interrupt the regular network operation either by blocking the channel
or by capturing the signals, e.g., denial of service (DoS) and jamming
attacks. These attacks compromise different security goals: integrity is
violated by deception attacks, and availability by disruption attacks.
However, note that these two categories are not mutually exclusive,
i.e., attacks can have multiple consequences and be included in both
categories.

Deception and disruption attacks are presented below along with
the corresponding attack model definitions for each of them and exam-
ples of the literature. In addition, some MPC works are summarized in
Table 1 and classified according to this criterion.

Remark 1. Another type of malicious behavior is that of eavesdropping,
for it compromises the confidentiality in the communication channel
without altering the data. This category has been omitted because
eavesdropping does not affect system performance.

3.1.1. Deception attacks
Deception attacks modify the data transferred via the communica-

tion network and are also known as false data injection (FDI) attacks
(e.g., Barboni et al., 2020; Braun et al., 2020; Kushal, Lai, & Illindala,
2018; Li, Zhou, Li, Li, & Lu, 2019; Tian & Peng, 2020; Wu et al.,
2018). They can also be distinguished considering the signal corrupted,
e.g., state and input signals.

Regardless of the signal attacked, deception attacks can be modeled
as (Chamanbaz et al., 2019; Dibaji et al., 2019; Gallo, Turan, Boem,
Parisini, & Ferrari-Trecate, 2020):

𝑔DecAtt (𝑘) = 𝑔(𝑘) + 𝛾(𝑘)𝑎𝑔(𝑘) (14)

where 𝑔(𝑘) represents either the state (𝑥(𝑘)) or the input (𝑢(𝑘)), and
𝑔DecAtt (𝑘) is the complete signal including the data injected by the at-
tacker, i.e., 𝑥DecAtt (𝑘) or 𝑢DecAtt (𝑘). Here, 𝑎𝑔(𝑘) is the data injected from
the attacker (𝑎𝑥(𝑘) or 𝑎𝑢(𝑘)), and 𝛾(𝑘) = {0, 1} denotes if an attack occurs
(𝛾(𝑘) = 1) or not (𝛾(𝑘) = 0). The precise definition of 𝛾 leads to slightly
different models. For example, 𝛾(𝑘) can be a Bernoulli-distributed white
sequence (Wang, Song, Liu & Zhang, 2016), and it can be extended
in a diagonal matrix 𝛤 (𝑘) = 𝑑𝑖𝑎𝑔{𝛾1(𝑘), 𝛾2(𝑘),… 𝛾𝑚(𝑘)} to model a
different effect for each signal element in case of attack (Qin et al.,
2020). Finally, some studies employ a simpler model that ignores the
probability of occurrence of the attacks (Braun et al., 2020; Chamanbaz
et al., 2019), so that model (14) becomes:

𝑔DecAtt (𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔(𝑘) In case of no attack,

𝑔𝑎(𝑘) (or ≠ 𝑔(𝑘)) In case of attack.
(15)

Some examples of state signals being attacked ((f) in Fig. 2) are given
by Chen, Wu et al. (2020) and Wu et al. (2018), in which the closed-
loop system is destabilized via cyber-attacks on sensor measurements.
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Table 1
Classification of MPC-based schemes working in presence of different types of cyber-attacks and faults. Note that the letters between brackets in the right column refers to the
attacks illustrated in Fig. 2.

Insider attacks Ananduta, Maestre, Ocampo-Martinez, and Ishii (2018, 2019), Ananduta et al. (2020),
Chanfreut, Maestre, and Ishii (2018), Maestre, Trodden, and Ishii (2018), Maestre, Velarde,
Ishii, and Negenborn (2021), Tanaka and Gupta (2016), Tiwari et al. (2017), Velarde, Maestre,
Ishii, and Negenborn (2017), Velarde et al. (2018), Wang and Ishii (2019)

(a), (b)

Communication
attacks

Deception

Input signal Barboni, Boem, and Parisini (2018), Braun, Albrecht, and
Lucia (2020), Chamanbaz, Dabbene, and Bouffanais (2019),
Franze, Lucia, and Tedesco (2021), Qin, Zhao, Huang, Tian,
and Zhou (2020), Xu, Yuan, Yang, and Zhou (2021)

(e)

Measurements Abdelwahab, Lucia, and Youssef (2020), Bagherzadeh and
Lucia (2019), Chamanbaz et al. (2019), Chen, Wu et al.
(2020), Chen, Zhang, Ni and Wang (2020), Franze et al.
(2021), Franzè, Tedesco, and Famularo (2020), Franzè,
Tedesco, and Lucia (2019), Liu and Bai (2018), Liu, Chen
and Li (2020), Liu, Chen, Li and Wan (2020), Liu, Song,
Wei, and Huang (2017), Wang, Song, Liu and Zhang (2016),
Wu et al. (2018), Xu et al. (2021)

(f)

Disruption

Input signal Liu, Wang and Geng (2020), Lješnjanin, Quevedo, and Nešić
(2014), Mishra, Chatterjee, and Quevedo (2017), Mishra,
Quevedo, and Chatterjee (2016), Pierron et al. (2020), Qiu,
Yang, and Zhu (2021), Quevedo, Mishra, Findeisen, and
Chatterjee (2015), Quevedo and Nešić (2010, 2012), Sun and
Yang (2019), Sun et al. (2019), Wang, Gao and Qiu (2016)

(e)

Measurements Qiu et al. (2021), Quevedo and Ahlén (2008), Yang, Li, Dai,
and Xia (2019)

(f)

Other system faults Boem, Gallo, Raimondo, and Parisini (2019), Boem, Riverso, Ferrari-Trecate, and Parisini (2018),
Ferranti, Wan, and Keviczky (2019), Jiang and Yu (2012), MacGregor and Cinar (2012), Moradmand,
Ramezani, Nezhad, and Sardashti (2019), Naghavi, Safavi, and Kazerooni (2014), Raimondo, Marseglia,
Braatz, and Scott (2013), Riverso et al. (2016), Zafra-Cabeza, Maestre, Ridao, Camacho, and Sánchez
(2011), Zarei, Gupta, Ramirez, and Martinez-Rodrigo (2019), Zhang, Xie, and Lian (2020)
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Also, Wang, Song, Liu and Zhang (2016) assume that the signal re-
ceived by the controller is corrupted by randomly occurring deception
attacks. On the other hand, similar attacks against input signal (type
(e) of Fig. 2) are reported by Braun et al. (2020) and Qin et al. (2020).
Finally, attacks to state and input signals are considered by Chamanbaz
et al. (2019), who only assumes that both types of attack cannot happen
simultaneously.

Replay attacks can be considered as a particular case of deception
attacks because they also alter the data. In these attacks, there is an
initial period where the attacker gains access to a system component
to record data during a certain amount of time (Yaghooti, Romagnoli,
& Sinopoli, 2021). Next, the attack is carried out by injecting the previ-
ously stored data in the communication channel (Mo & Sinopoli, 2009).
Thus, data confidentiality and integrity are compromised. These attacks
can also be modeled using (14) and (15) considering the attacked data
equals to previous values. For example, Franzè et al. (2020) consider
replay attacks on state measurements where a state value sequence is
recorded during a time interval.

Other important types of deception attacks are the so-called covert
and stealth attacks (Ferrari & Teixeira, 2020; Pasqualetti, Dörfler, &
Bullo, 2013; Sánchez et al., 2019). The former type has been studied
by authors like de Sá, da Costa Carmo, and Machado (2017), and
requires to perform a system identification to gain knowledge about
the target system, e.g., by eavesdropping, in order to attack using FDI.
For example, as described by Smith (2011), the covert attacker can
inject false data on the control commands received by the actuators and
simultaneously modify the system output feedback in order to make
the attack undetectable for the controller. Similarly, in stealth attacks,
the attacker corrupts the system measurements using data compatible
with the system equations to avoid the triggering of detection mecha-
nisms (Dán & Sandberg, 2010; Pasqualetti et al., 2013). See for example
the work of Sahoo et al. (2018), who introduces a cooperative strategy
for distributed microgrids applications working in presence of stealthy
attackers. Stealth attacks also depend on the information the attackers
have on the system to mimic its signals. In this regard, besides using
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a model of the system as in Smith (2011), attackers can intercept the t
measurements and control signals and use deep learning techniques to
generate stealthy attacks able to deceive the anomaly detectors (Feng,
Li, Zhu, & Chana, 2017).

3.1.2. Disruption attacks
Disruption attacks disturb the system performance by blocking

or capturing signals, e.g., by performing DoS and jamming attacks
(Cetinkaya, Ishii, & Hayakawa, 2019; Peng & Sun, 2020; Pierron et al.,
2020; Wakaiki, Cetinkaya, & Ishii, 2019; Wang, Gao & Qiu, 2016; Xiao,
Ge, Han, & Zhang, 2020).

Similarly to deception attacks, disruption attacks can be classified
according to the signal attacked. However, the attack model can always
be defined as:

𝑔DisAtt (𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔(𝑘) In case of no attack,

0 In case of attack,
(16)

here 𝑔(𝑘) represents state (𝑥(𝑘)) or input (𝑢(𝑘)), and 𝑔DisAtt (𝑘) is the
omplete signal (i.e., 𝑥DisAtt (𝑘) or 𝑢DisAtt (𝑘)).

Another possibility for defining the attack model is to consider a
oolean/binary indicator 𝜈(𝑘) for attacks:

DisAtt (𝑘) = 𝜈(𝑘)𝑔(𝑘), (17)

here 𝜈(𝑘) can be formulated as a stochastic process where 𝜈(𝑘) = 0 in
ase of attack and 𝜈(𝑘) = 1 otherwise. For instance, Sun et al. (2019)
se this approach to indicate the status of the communication channel
f the controller–actuator network (ON or OFF). Yang et al. (2019) also
onsider the probability distribution of the attacks.

The duration of these attacks has to be also taken into account. In
articular, it may be convenient to consider limits on the consecutive
ime steps that the communication channel can be blocked (Quevedo

Nešić, 2012). For example, it can be assumed that the attacker is
nly capable of disrupting the channel a limited number of times due

o its finite power energy, and thus the prediction horizon can be set
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greater than that limit as proposed by Sun et al. (2019). Also, Feng,
Cetinkaya, Ishii, Tesi, and De Persis (2020) and Sun and Yang (2019)
constrain the action of the attacker in frequency. To this end, a new
variable is defined to account for the starting instant of a sequence of
the DoS attacks based on the work of De Persis and Tesi (2015). Sun
et al. (2019) consider an attacker that launches adversarial jamming
signals blocking the communication channel between the controller and
the actuator ((e) in Fig. 2). Likewise, Yang et al. (2019) assume the
channel between the controller and actuators to be reliable, but not
the feedback channels between sensors and the controller, which are
subject to DoS attacks ((f) in Fig. 2).

Additionally, note that packet losses can also be due to unreliable
transmissions, and not only due to malicious attacks. Indeed, 𝜈(𝑘)
in (17) can also be used to describe packet dropouts (Pierron et al.,
2020; Quevedo & Nešić, 2010; Wang, Gao & Qiu, 2016). For example,
authors as Cetinkaya, Ishii, and Hayakawa (2015) present a probabilis-
tic characterization for packet exchange failures from random losses
and jamming attacks by defining an overall packet drop ratio.

Finally, notice that these deception and disruption attacks, which
compromise the interactions between the controller and the system,
may equally affect DMPC schemes (Chen, Zhang et al., 2020; Yang
et al., 2019). In the DMPC context, these attacks in turn lead to a threat
to the reliability and availability of the information exchanged between
agents, and thus to the overall coordination. For example, in Chen,
Zhang et al. (2020), the authors consider a power system composed of
four locally managed generation units that may suffer FDI attacks on
the measurement signals and DoS attacks on the communication links
between units. See also Tiwari et al. (2017), which formulates a control
problem as a game between two players, one representing a reliable
MPC controller and the other an attacker, where both implement
actions by using randomized strategies.

Example 1. The goal of this example is to illustrate the effect of
basic deception and disruption attacks within a dual-decomposition
DMPC scheme. To this end, we consider the four-tanks system of
Fig. 3 (Johansson, 2000), and assume that it is partitioned into two
subsystems i.e., 1 and 2, that are locally managed by a corresponding
controller, i.e., agents 1 and 2 (Alvarado et al., 2011). In particular,
these agents can act respective on pumps 𝑢1 and 𝑢2, which, along with
the three-way valves, regulate the flows between the storage tank and
the 4 smaller tanks that comprise the system. Additionally, the tanks at
the top discharge water into the tanks at the bottoms, thus coupling the
evolution of their water levels. The subsystems dynamics are described
by a model of the form of (2) with matrices:

𝐴11 =
[

0.9705 0.0205
0 0.9792

]

, 𝐴22 =
[

0.9961 0.0195
0 0.9802

]

,

𝐵11 =
[

0.0068
0

]

, 𝐵12 =
[

0.0011
0.0137

]

,

𝐵21 =
[

0.0002
0.0160

]

and 𝐵22 =
[

0.0091
0

]

,

(18)

where the state of each subsystem is defined by the relative water levels
(ℎ𝑗) of its corresponding tanks to height ℎ0𝑗 = 0.65 m for all 𝑗 = 1, 2, 3, 4.

Every time step, the agents negotiate their actions to minimize a
quadratic global function as (4) with weighting matrices

𝑄1 = 𝑄2 =
[

1 0
0 5

]

, 𝑅1 = 𝑅2 = 0.01, (19)

prediction horizon 𝑁h = 5, and the origin as state reference. In
particular, at each iteration of the negotiation procedure, both agents
optimize the augmented input vectors 𝐮a1 = [𝐮1;𝐮12] and 𝐮a2 = [𝐮21;𝐮2],
while constraint 𝐮a1 − 𝐮a2 = 0 is enforced by the introduction of the
Lagrange multipliers (see Section 2.1.1). Additionally, the following
constraints on the state and inputs must be satisfied: −0.45 ≤ 𝑥𝑖 ≤ 0.71,
for 𝑖 = 1, 2, −3.26 ≤ 𝑢 ≤ 3.26, and −4 ≤ 𝑢 ≤ 4.
7

1 2
Fig. 3. Diagram of the four-tank system.

Fig. 4. State evolution of the four-tank system under different disruption and deception
attacks. As a reference, the top-left subplot shows the behavior when both agents follow
duly the distributed optimization. While the DoS attack (bottom-left) only generates a
small deviation from the optimal evolution, the replay attacks (top-right and bottom-
right) cause a much greater impact, specially in the water levels of tanks 2 and
4.

For the introduction of the attacks, let us consider the following
assumptions on the agents communication. At each iteration, after
optimizing their variables 𝐮a1 and 𝐮a2, agents 1 and 2 communicate
their solutions to a coordinator, which updates the Lagrange prices
according to (9). Then, the coordinator communicate to the agents
the new multipliers, which again optimize the input sequences. The
process is repeated until convergence is attained or a maximum of
100 iterations is reached. The impact on the state evolution caused
by different deception and disruption attacks can be seen in Fig. 4. In
particular, Fig. 4-(bottom, left) illustrates the effect of a DoS attack,
where agent 1 disrupts the distributed negotiation from time instant
10 to 50. During this period, the input sequence received by the
coordinator is 𝐮a1 = 𝟎, with 𝟎 being a null vector of corresponding
dimensions. Note that the effect of the DoS attack strongly depends on
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Fig. 5. Cumulative performance cost for the four-tank system under the effect of the
ttacks in Fig. 4. In accordance with Fig. 4, the DoS attack causes a slight increase of
he cumulative costs, with respect to the no-attacks simulation. However, a significant
oss of performance is observed for the replay attacks on the input communicated by
gent 1 and on the Lagrange price transmitted by the coordinator.

he time period in which it is active. Indeed, if it is performed when the
ystem has reached the steady state and the optimal input 𝐮1 is null or

close to be null, then its effect can be negligible. By contrast, if there
is a notable mismatch between corrupted signal, i.e., 𝟎, and the real
one, its impact on the system performance is greater. In this regard,
notice that we have not performed any exhaustive or analytic search
on the period that maximizes the consequences of the implemented DoS
attack. Additionally, Fig. 4-(top, right) shows the results when agent 1
also acts maliciously and implements a replay attack on 𝐮a1. We assume
that agent 1 records its communicated input sequences at any iteration
performed during the first 5 time steps. Then, from that step on, with a
probability of 0.3, it selects randomly certain instants in which it alters
the optimization by, instead of communicating a reliable 𝐮a1, sharing a
false input sequence that was previously transmitted. Similarly, Fig. 4-
(bottom, right) shows the state evolution when a replay attack on the
communicated Lagrange prices is introduced. In this case, we assume
that any of the agents act maliciously, but that there exists an external
attacker that alters the prices that go from the coordinator to the agents.
Fig. 5 provides the corresponding global cumulative costs, which are
calculated as the sum of 𝓁(𝑘) =

∑

𝑖=1,2

(

‖𝑥𝑖(𝑘 + 1)‖2𝑄𝑖
+ ‖𝑢𝑖(𝑘)‖2𝑅𝑖

)

, for
all time steps 𝑘 of the simulation. Note that all of these attacks threaten
the Lagrange prices update and the local optimizations, thus altering
the implemented actions and hence the system performance. Finally,
notice also that the DoS attack is easier to achieve even though it may
not have a big impact on cost.

3.2. The software

The software that each agent runs to control its corresponding
subsystem also represents a source of vulnerability for the system. In
particular, the software can be corrupted due to any external virus
causing the unexpected behavior of the attacked agent. Insider attacks
are also grouped in this category. In this situation, the attacker is one
of the system agents that becomes malicious, and its identification is
usually more difficult than when the attack comes from an external
agent. To illustrate this issue, consider the special case of a Byzantine
agent, which sends different information to its neighbors, so it can
appear as both compliant and non-compliant to their corresponding
detection systems.

In Fig. 2, these attacks happen at (a) and (b). Besides, attacks at
(c) and (d) can be originated by any external attacker such as (g)
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that strikes out at the data in the communication channel, or any
internal agent whose software has been attacked such as (a) or (b) that
exchanges wrong data with the rest of the agents. Likewise, it is also
common to make some assumption regarding the number of malicious
entities in the network. To this end, the concepts of f-local and f-global
are frequently used to set an upper bound on the number of attackers.
In particular, an f-local assumption establishes that there are at most f
malicious agents in the neighborhood of an agent. Likewise, the f-global
assumption sets an analogous bound for malicious agents in the overall
network.

In this context, attackers can have rational incentives to send false
information to the rest of agents affecting the overall coordination.
For example, this is the case presented in Tanaka and Gupta (2016),
where a socially efficient implementation of MPC for load frequency
control in the presence of self-interested power generators is addressed.
Particularly, the system operator tries to implement an MPC searching
an aggregated social cost minimization. However, it has to deal with
the fact that every participant has its own strategy that may affect the
future state of other participants. Therefore, they consider as attackers
one or many adversarial agents that misreport their private parameters
to maximize their own profits. The same type of motivation is studied
by Velarde et al. (2017) and Velarde et al. (2018) who consider a
Lagrange-based DMPC scheme where malicious agents modify their
local optimization problems (objective functions and constraints) to
steer the distributed negotiation according to their self-interest. In
particular, instead of (4), the optimization problem objective for the
attacked agent becomes

𝐽malicious(𝑥,𝐮) =
∑

𝑖∈[1,𝑀]⧵{𝑎}

𝑁h−1
∑

𝑛=0

(

‖𝑥𝑖(𝑛) − 𝑥ref ,𝑖‖
2
𝑄𝑖

+ ‖𝑢𝑖(𝑛)‖2𝑅𝑖

)

+ 𝛼
𝑁h−1
∑

𝑛=0

(

‖𝑥𝑎(𝑛) − 𝑥ref ,𝑎‖
2
𝑄𝑎

+ ‖𝑢𝑎(𝑛)‖2𝑅𝑎

)

.

(20)

In the so-called selfish attack, the malicious agent (agent a) seeks to
promote only its local control goals, by introducing the false weighting
coefficient 𝛼 > 1 in the objective function minimized by the attacker, so
that the terms associated with its local benefit receive a greater weight.
A similar effect can be attained if the attacker applies a coefficient
to the Lagrangian prices of its coupled variables. In addition, the
attacker (agent a) can set a false reference 𝑥ref ,𝑎 to steer the negoti-
ation process and improve its original cost function, which contains
its true preferences. Also, in the so-called fake constraints attack, the
malicious agent alters the constraint sets used in its local optimizations.
Remarkably, Chanfreut et al. (2018) extend these attacks within the
cooperative distributed MPC algorithm of Venkat et al. (2008). The
transversality of these attacks between the previously DMPC methods
suggests that it should be possible to transpose them to other algorithms
with ease. Deep down, the vulnerability boils down to the inherent
assumption that there are guarantees regarding the integrity of the local
optimization problems and the compliance of the agents regarding the
DMPC algorithm.

Maestre et al. (2018) also deal with non-compliant controllers within
the distributed tube-based MPC scheme introduced in Trodden and
Maestre (2017). In this context, the agents share data to dynamically
adjust the size of coupling uncertainty, and commit themselves to
implement local actions that do not exceed certain limits on their
mutual disturbances. The non-compliant controllers represent malicious
or faulty agents that violate this commitment, thus endangering theo-
retical properties of robustness and stability. Similarly, Ananduta et al.
(2018, 2019, 2020) consider liar agents that unilaterally deviate from
coordinated action values, e.g., by recalculating its control signal after
the consensus in the dual-decomposition DMPC is attained (Velarde
et al., 2018).

Remark 2. From a communication viewpoint, these attacks can also be
considered as deception attacks. Indeed, the consequences of the liar
agents of Ananduta et al. (2018, 2019, 2020) are modeled using (15)

which corresponds to deception attacks.
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Fig. 6. Effect of a false reference attack (Chanfreut et al., 2018; Velarde et al., 2017)
on the negotiation procedure described in Section 2.1.2. The figure shows the inputs
computed by agents 1 and 2 at each iteration, until an agreement is reached. The blue
dashed lines represent the level curves of the global objective function, whose minimum
is reached when there are no attackers (blue solid line). Additionally, the colored level
curves correspond to the local objective functions of agents 1 and 2. Note that in case
of agent 1, this function is given by (23), whereas for agent 2 it is defined analogously.
Finally, the red solid line illustrates the impact of the attack on the negotiation, which
shows a deviation of the inputs towards points of lower local cost for the attacker,
i.e., agent 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Finally, there are other attacks that are applicable in this context
although they have not been directly considered in the DMPC literature
yet. That is the case of Trodden, Maestre, and Ishii (2020), who con-
sider that the attacker can hijack a portion of the input set of an agent.
Also, Romagnoli, Griffioen, Krogh, and Sinopoli (2020) and Romagnoli,
Krogh, and Sinopoli (2019a, 2019b) consider the situation where the
controller’s software can be infected by a virus that disrupts its behavior
so becoming it unpredictable within a certain bounded set.

Table 1 provides a classification of references that consider the
above-mentioned types of attacks in the context of MPC. Additionally,
a list of works that deal with system faults, such as faulty subsys-
tems (e.g., Boem et al., 2019; Riverso et al., 2016) and sensors and
actuators faults (e.g., Ferranti et al., 2019; Raimondo et al., 2013), is
also given.

Example 2. This example is devoted to illustrate the effects of the
software-based attacks presented in Chanfreut et al. (2018) and Velarde
et al. (2017). In particular, we focus on the false reference attack and
consider a cooperative MPC framework where the agents negotiate by
implementing the algorithm in Venkat et al. (2008) (see Section 2.1.2).
Consider an academic example with two input-coupled subsystems
defined by (2) with

𝐴11 =
[

1 0.5
0 1

]

, 𝐴22 =
[

1 0
−0.5 1

]

, 𝐵11 =
[

−1
1

]

, 𝐵22 =
[

1
1

]

,

𝐵12 =
[

0.3
−0.2

]

and 𝐵21 =
[

0.1
−0.5

]

.
(21)

dditionally, let the objective function be defined as in (4), with
1 = 𝑄2 = 𝐈2 and 𝑅1 = 𝑅2 = 0.5, being 𝐈2 the identity matrix of
imensions 2 × 2. In case of a false reference attack, the attacker, say
gent 1, alters its own objective function such that instead of (4) it
9

ptimizes (20), which particularized to the current system becomes the
ollowing index:

𝐽falseRef (𝑥,𝐮) =
𝑁h−1
∑

𝑛=0

(

‖𝑥1(𝑛) − 𝑥fref ,1‖
2
𝑄1

+ ‖𝑢1(𝑛)‖2𝑅1

)

+
𝑁h−1
∑

𝑛=0

(

‖𝑥2(𝑛) − 𝑥ref ,2‖
2
𝑄2

+ ‖𝑢2(𝑛)‖2𝑅2

)

(22)

here 𝑥fref ,1 denotes the false reference. This misleading variable can be
ptimized by the attacker to benefit from its neighbors. In particular,
ig. 6 shows the impact on the negotiation procedure when the agent
iteratively optimizes 𝑥fref ,1 to minimize its local costs, i.e.,

𝐽1(𝑥,𝐮) =
𝑁h−1
∑

𝑛=0

(

‖𝑥1(𝑛) − 𝑥ref ,1‖
2
𝑄1

+ ‖𝑢1(𝑛)‖2𝑅1

)

, (23)

here 𝑥ref ,1 remains being its real reference. Considering a prediction
orizon of 𝑁h = 1, this figure illustrates the solutions obtained for 𝐮𝑝1
nd 𝐮𝑝2 along the iterations when the system state is 𝑥1 = [0.5, 0]T and
2 = [−0.5, 0]T, the initial solutions are 𝐮01 = 0 and 𝐮02 = 1, and the
onstraints are defined as −5 ≤ 𝑥1, 𝑥2, 𝑢1, 𝑢2 ≤ 5.

Note that, if 𝑥ref ,1 is a new variable, then, the solution 𝐮𝑝1 at any
teration 𝑝 (see problem (12) and Eq. (13)) can be formulated as
𝑝
1 = 𝜅(𝑥,𝐮𝑝−11 ,𝐮𝑝−12 , 𝑥fref ,1), (24)

here 𝜅 is a function defined accordingly. For the sake of clarity,
et us omit the dependence on the state and input trajectories and
se 𝐮𝑝1(𝑥

f
ref ,1). To obtain the optimal false reference, agent 1 first com-

utes the neighbor’s action 𝐮𝑝2, so that the global solution can be written
s 𝐮𝑝(𝑥fref ,1) = [𝐮𝑝1(𝑥

f
ref ,1);𝐮

𝑝
2], and solves the following optimization

problem:

min
𝑥fref ,1

𝐽1(𝑥,𝐮(𝑥fref ,1)) (25)

subject to state constraints of subsystem 1. Subsequently, the attacker
optimizes (22) using as false reference the solution of (25). That is, the
attacker tries to gain advantage by computing a false reference that
leads to an input sequence 𝐮𝑝1 to minimize further local cost 𝐽1(𝑥,𝐮

𝑝
1,𝐮

𝑝
2).

Once sequence 𝐮𝑝1 is computed, it is exchanged with its neighbor, which
will use it to find 𝐮𝑝+12 . The latter is repeated at each iteration of
the negotiation, which deviates the agents from the optimal global
performance expected from the algorithm in Venkat et al. (2008). Note
that this situation is similar to that of Stackelberg games, where there is
a leader and a follower, and the leader anticipates and takes advantage
of the reactions of the follower.

3.3. Cyber-attacks consequences in DMPC

The aforementioned attacks translate into different consequences
for the DMPC controllers, especially depending on the specific elements
attacked (recall Section 2.2).

• Vulnerabilities in the problem formulation:

- The optimization function can be manipulated by a self-
ish insider attacker causing an increase of overall costs.
However, a purely malicious external attacker can pro-
voke worse consequences leading to a loss of theoretical
properties such as recursive feasibility.

- Constraints can be easily violated in case of attack. For
instance, deception attacks on input signals can steer the
system out of admissible states, and the same holds for
disruption attacks. Similarly, malicious agents may attain
constraint violations as well.

- The negotiation process can be altered mainly by insider at-
tackers, causing consequences such as the loss of optimality
or convergence in the distributed optimization.
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Table 2
Classification of MPC-based methods according to whether they describe detection, identification and/or mitigation mechanisms to counteract the effect of attacks.

Detection Abdelwahab et al. (2020), Ananduta et al. (2018, 2019, 2020), Barboni et al. (2018), Boem et al. (2019),
Chamanbaz et al. (2019), Chen, Wu et al. (2020), Chen, Zhang et al. (2020), Franzè et al. (2020, 2019),
Maestre et al. (2018), Mo, Weerakkody, and Sinopoli (2015), Mo et al. (2015), Qiu et al. (2021), Riverso
et al. (2016), Sun and Yang (2019), Sun et al. (2019), Wang, Gao and Qiu (2016), Wu et al. (2018), Xu
et al. (2021)

Identification Abdelwahab et al. (2020), Ananduta et al. (2018, 2019, 2020), Boem et al. (2019), Braun et al. (2020),
Chen, Wu et al. (2020), Chen, Zhang et al. (2020), Franzè et al. (2020, 2019), Maestre et al. (2018), Qiu
et al. (2021), Riverso et al. (2016), Wu et al. (2018)

Mitigation

Active Abdelwahab et al. (2020), Ananduta et al. (2018, 2019, 2020), Boem et al. (2019), Chen,
Zhang et al. (2020), Franzè et al. (2020, 2019), Liu, Wang and Geng (2020), Lješnjanin et al.
(2014), Mishra et al. (2017), Pierron et al. (2020), Qiu et al. (2021), Quevedo and Ahlén
(2008), Quevedo and Nešić (2010, 2012), Riverso et al. (2016), Sun and Yang (2019), Sun
et al. (2019), Wang, Gao and Qiu (2016), Xu et al. (2021), Yang et al. (2019)

Passive Ananduta et al. (2018, 2019, 2020), Braun et al. (2020), Chamanbaz et al. (2019), Chen, Wu
et al. (2020), Liu and Bai (2018), Liu, Chen, Li and Wan (2020), Liu et al. (2017), Maestre
et al. (2018, 2021), Mishra et al. (2016), Pierron et al. (2020), Qin et al. (2020), Quevedo
et al. (2015), Romagnoli et al. (2019b), Sun et al. (2019), Tanaka and Gupta (2016), Tiwari
et al. (2017), Velarde et al. (2017, 2018), Wang and Ishii (2019), Wang, Song, Liu and Zhang
(2016), Wu et al. (2018), Xu et al. (2021), Zafra-Cabeza et al. (2011)
• Vulnerabilities in the communication process: the communication
network is the target of deception and disruption attacks. Like-
wise, communication protocols can be altered by external and
insider attackers. In both cases, the consequences can be loss of
optimality, degradation of system performance, constraints viola-
tion, and loss of theoretical properties such as recursive feasibility
and robustness.

• Physical components and their software: they can also be cyber-
attacked by malicious external and insider programs, and also
directly manipulated. The consequences can be any of the above
mentioned ones.

Finally, note that cyber-attacks in a given element of the DMPC
an be originated by different types of attacks causing diverse conse-
uences. Besides, note that the same type of attacks can cause distinct
onsequences depending on the particular attack point. Moreover, an
ttack can provoke many consequences as its effect propagates through-
ut the system due to the close connection between all DMPC elements.
n the other hand, consequences also depend on the features of the

pecific system, e.g., the more unstable system is, the more harmful
onsequences can be.

. Cyber-defense mechanisms

Mechanisms for managing cyber-attacks can be organized in three
ategories, namely, prevention, detection and mitigation measures (Car-
enas et al., 2009). These three categories are presented in the next
ubsections, along with some examples of algorithms from the litera-
ure. MPC-based strategies are also summarized in Table 2 and Fig. 7.
owever, before introducing the corresponding subsections, some com-
ents should be made regarding the close relationship between fault

olerant control (FTC) methods and cyber-defense mechanisms. Both
pproaches share a common objective because FTC also tries to pre-
erve the stability of the system and maintain an acceptable level of
erformance in the event of system component malfunctions (Jiang

Yu, 2012). Since cyber-attacks generate non-compliant behavior
n system components, it is not surprising that there are significant
verlappings in the methods employed in both frameworks. As a matter
f a fact, Wang, Gao and Qiu (2016) consider both random failures
nd packet dropouts, which can be the result of faults and attacks,
ithin a fault-tolerant predictive control scheme that uses a double

ayer architecture. Also, both attacks and faults can be dealt with robust
ontrol methods, e.g., Naghavi et al. (2014) presented a decentralized
ault tolerant MPC to address unknown interconnection effects and
hanges in model dynamics. Likewise, the distributed MPC strategy
f Riverso et al. (2016) integrates a distributed fault detection archi-
10

ecture to unplug faulty subsystems that can be easily extrapolated for
isolated malicious agents. Another interesting work is that of Raimondo
et al. (2013), who propose the use of active isolation mechanisms by
modifying the input sequence. In addition, Ferranti et al. (2019) deal
with actuator jamming faults and Zarei et al. (2019) with switching
issues in power grids. Therefore, the reader is also referred to the rich
FTC literature to find other methods that can be suitable for cyber-
defense. See for example the surveys of Jiang and Yu (2012) and
MacGregor and Cinar (2012).

4.1. Prevention measures

Prevention measures aim to guarantee confidentiality, integrity and
availability of the data exchanged by discouraging and hindering the
attackers’ attempts to penetrate in the control system. The category
is broad and ranges from good practices (promoting the rational use
of passwords, installing and update firewalls, antivirus and any other
relevant software, etc.) to other more advanced methods such as cryp-
tography and cloud-based MPC (Darup, 2020). Regarding the latter,
it is worth to mention that the risk introduced from the use of an
external communication channel may be compensated by the ease of
update of cloud-based software. Also, encrypting the data helps to
preserve confidentiality and becomes essential in this context. For ex-
ample, Alexandru, Morari, and Pappas (2018), Darup, Redder, Shames,
Farokhi, and Quevedo (2017) employ a cloud-based MPC architec-
ture using a homomorphic cryptosystem. Likewise, Darup, Redder,
and Quevedo (2018) transform the controller using homomorphic en-
cryption so that the MPC computes encrypted actions based on en-
crypted system states without intermediate decryption. This is useful,
for example, to discourage replay attacks.

Another relevant technology in this context is blockchain (Wei,
Wu, Long, & Lin, 2019), which generates a chain of data packages
known as blocks that comprise multiple transactions. These blocks can
be validated by the network, so that the integrity of data can be ensured
discouraging malicious entities (Nofer, Gomber, Hinz, & Schiereck,
2017). Indeed, blockchain has been used in distributed algorithms. For
instance, Wu, Zhang, and Sun (2021) present a blockchain-based multi-
time-scale autonomous system within energy distribution networks
where MPC is employed for trading. In particular, blockchain was used
for recording transactions of the clearing process in a time sequence of
blocks based on the consensus and encryption mechanism. Blockchain
has also been applied to rate agents in distributed systems. For example,
reputation is defined by Kang et al. (2019) and Lei, Zhang, Xu, and Qi
(2018) in terms of credibility to decide who is responsible to append
the next block. It is straightforward to extend this idea in the context

of DMPC to detect and isolate malicious controllers.
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Fig. 7. Diagram of prevention (purple), detection (orange) and mitigation (blue) mechanisms that can be used to protect DMPC schemes. Note that the methods included in the
coordination layer or supervisor can also be implemented at the controllers level, and thus they could also be integrated within the 𝑀𝑃𝐶𝑖 box. For this reason, the boxes associated
with the supervisor and the control agents overlap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Finally, it is worth analyzing whether the DMPC scheme imple-
mented offers incentives for misbehavior. For example, the two popular
schemes presented in Section 2 allow malicious entities to improve their
cost at the expense of other subsystems. In this regard, there may be
other alternatives within the literature that are naturally robust to this
type of misbehavior. For example, Maestre, Muñoz De La Peña and
Camacho (2011) and Maestre, De La Pena, Camacho and Alamo (2011)
propose DMPC methods based on game theory where agents make
proposals that can be accepted or rejected by neighboring subsystems.
Therefore, it is in the best interest of the proposer agent that the
proposal reflects its true preferences regarding the sequences for the
shared input signals. From this viewpoint, these schemes discourage
malicious behavior, although they do not yield optimal performance
because the coordination is attained in few communication rounds with
a much more restricted information exchange. The works of Maestre,
Muñoz De La Peña and Camacho (2011) and Maestre, De La Pena, Ca-
macho and Alamo (2011) were later enhanced by Francisco, Mezquita,
Revollar, Vega, and De Paz (2019) and Masero, Francisco, Maestre,
Revollar, and Vega (2021), who include an additional fuzzy layer so
as to merge proposal considering their impact on key performance
indicators. Again, this practice promotes that only input sequences
that lead to an improvement of the overall cost are actually taken
into consideration. In addition, the negotiation process can be rein-
forced to encourage agents to share information truthfully searching
the global optimization. Tanaka and Gupta (2016) present a real-
time monetary compensation schemes along with MPC-based for load
frequency control to promote self-interested power generators to report
their parameters truthfully.

4.2. Detection and isolation measures

Detection and isolation become relevant when the attacker has
overcome the prevention measures and the system is actually under
attack. Also, many algorithms rely on attack detection to trigger active
defensive strategies (Franzè et al., 2020; Maestre et al., 2018) and Qin
et al. (2020), although the isolation step is not always required (Sun &
Yang, 2019; Sun et al., 2019; Wang, Gao & Qiu, 2016).

Detection is always based in the occurrence of a measurable event
that allows the system to raise the under-attack flag. It must be noted
that detection mechanisms are not perfect, i.e., false (negative and
11
positive) detections will occur with a probability that depends on
how the corresponding thresholds are configured. Additionally, these
strategies can be broadly divided into two categories: active and pas-
sive (Chamanbaz et al., 2019). Active strategies manipulate the control
system, e.g., by including extra input signals, to observe the correspond-
ing state responses so as to learn more about the attack, whereas passive
strategies do not affect the system.

In their simplest form, the detection and isolation can be based on
exceptions returned by the control system, e.g., time-outs, absence of
acknowledgment frames (Sun & Yang, 2019), etc. Besides that simple
approach, two families of methods can be found in the literature,
namely, analytical and learning approaches.

4.2.1. Analytical detection approaches
Analytical approaches exploit the model of the system and the

bounds of its signals to find out whether an attack happened. Many
attack detection methods are based in observers that provide expected
state values for the plant. Expected and measured states and outputs
are then compared to form a residual, which is used by an anomaly
detector to determine whether there is an attack (Cui et al., 2012).
For instance, Chamanbaz et al. (2019) present an FDI attack detector
for non-linear systems along with an MPC controller. In particular,
an additional constraint is added to the MPC to force the system to
remain in a neighborhood of a properly designed reference trajectory.
The tracking error is then used as the residual, which feeds a nonpara-
metric cumulative sum anomaly detector. Barboni et al. (2020) design
a distributed covert attack detection algorithm of linear large-scale
interconnected systems, which is based on using for each subsystem
both a decentralized observer, whose state estimation is decoupled
from its neighbors, and a distributed observer, which computes a
state estimate based on the communicated neighboring estimations.
The possible inconsistencies in the measurements from neighbors are
revealed by exploiting the cooperation between the two observers.
Riverso et al. (2016) design a fault detector for faulty subsystems based
on residual computation which can also be used for attack detection.
Each subsystem is equipped with a local nonlinear estimator whose
estimation is used for computing the residual. If any component of
this residual exceeds a determined threshold, the subsystem is marked
as faulty. Similarly, Boem et al. (2019) present a fault detection and
isolation procedure for FTC, where the local passive fault detection is



Annual Reviews in Control xxx (xxxx) xxxT. Arauz et al.

w
k
s
i
(
m
a
S
f
o
L
t
m

i
t
a
t
t
i
I
a
F
i
a

4

c
e
I
b
b
o
o
d
w
n

f
b
a
c
D
d
F

E
o
(
r
a
e
e
e

a
(
a
a
m
t
a
a

e
t
f
a
p
a
R
o
t

n

𝑃

w
5
o

𝑃

w

h
p
𝐸
c
l
r

e
1
i

4

a
r
c
p
&
a
r

R
t
c

based on computing a residual error between a nominal or expected
state and the real state. Also, Braun et al. (2020) introduce a scalable
hierarchical attack identification method for systems of interconnected
nonlinear systems with coupled dynamics or constraints. After the
attack detection, its propagation through the network is approximated
and used to formulate a quadratic program that determines the attack
signal that best explains the observed network evolution.

These residual tests can be complemented with set-membership
strategies to isolate malicious agents. Maestre et al. (2018) present
a DMPC approach with robustness against noncompliant controllers,
where agents exchange information regarding the bounds of their local
disturbance sets, which are optimized in each step to reduce mutual dis-
turbances. These exchanged sets are employed to perform noncompli-
ance detection and isolation bounds on expected and real disturbance
values. Similarly, Franzè et al. (2020, 2019) use set-membership tests
for attack detection in networked multi-agent systems and Qiu et al.
(2021) design a cyber-attack localization method using set-membership
estimation. Likewise, Raimondo et al. (2013) present an active fault de-
tection and isolation method based on observer design using residuals
computation.

Another control-theoretic method of active detection is physical
atermarking (Yaghooti et al., 2021), which consists on injecting a
nown noisy input to the system. If the corresponding effect in the
ystem dynamics is not found in the output, it is derived that there
s an attack (Cayre, Fontaine, & Furon, 2005). For example, Mo et al.
2015) present a watermarking algorithm where an optimal water-
arked signal is designed as a random noise of known distribution,

nd an anomaly detector based on residuals is used for attack detection.
imilarly, Abdelwahab et al. (2020) design a watermarking technique
or detecting replay attacks where watermarked control signals are
btained by randomly dropping the last computed command input.
ikewise, Ferrari and Teixeira (2020) propose a switching multiplica-
ive watermarking scheme for detection of stealthy attacks on sensor
easurements.

Finally, note that there are other detection and isolation methods
n the literature that have not been applied yet to DMPC schemes, but
hey could be transposed. For instance, Isozaki et al. (2015) present
detection algorithm for voltage control that considers multiple fea-

ures of the measured signal. Chakhchoukh and Ishii (2016) propose
o run multiple robust estimators with different breakdown points to
mprove the detection of cyber-attacks in state estimation. Nishino and
shii (2014) consider distributed detection methods of cyber-attacks
nd faults for power systems by grouping of buses in the system.
inally, Cetinkaya, Arcaini, Ishii, and Hayakawa (2020) present an
dentification method for jamming attacks based on a search-based
pproach that uses multi-objective genetic algorithms.

.2.2. Learning detection approaches
Learning methods can be fed with data such as performance indi-

ators and residuals. For example, the detection stages of Chen, Wu
t al. (2020) and Wu et al. (2018) are both based on machine learning.
n particular, a neural network (NN)-based detection system is built
y Wu et al. (2018), whereas Chen, Wu et al. (2020) develop data-
ased cyber-attack detectors using sensor data to identify the presence
f cyber-attacks as well as to differentiate between the different types
f cyber-attacks. In addition, Ananduta et al. (2018, 2019, 2020)
esign a local identification mechanism based on hypothesis testing
ith Bayesian inference that is used to decide the connections with
eighbors.

Finally, there are other learning approaches that can also be applied
or detection mechanism, such as the warm-start algorithm presented
y Chanfreut, Sánchez-Amores, Maestre, and Camacho (2021), where
n off-line database of the optimized pairs between states and their
orresponding Lagrange multipliers is created for a dual-decomposition
MPC scheme, and the machine learning outlier detection method
esigned by Chakhchoukh, Liu, Sugiyama, and Ishii (2016) for stealthy
DI attacks in state estimation.
12
xample 3. This example is presented to illustrate the performance
f an identification mechanism based on the work of Ananduta et al.
2020). The mechanism is designed independently of the MPC algo-
ithm, but the MPC optimization problem of each agent is accordingly
dapted to penalize neighbors with higher probability of being attack-
rs based on the results of the identification mechanism. Therefore,
ach agent learns over time which are the attackers and proceeds to
xclude them accordingly.

We consider a networked system composed of 5 interconnected
gents, and focus on agent 5, which is connected to all other agents
1 to 4). Also, it is assumed that the maximum number of malicious
gents in the neighborhood of an agent is 2. In particular, agents 1
nd 3 are malicious in this example. When an attack takes place, the
alicious neighbor deceives agent 5 and applies signals that differ from

he agreed value. Since agent 5 can only compute a residual of the
ggregate impact of its neighbors, isolating the attacks sources becomes
challenging issue.

The strategy used by agent 5 for attack isolation is based on testing
leven different hypotheses using Bayesian inference. The hypotheses
ested cover the different possibilities of insider attacks, which range
rom no malicious neighbors, to all the combinations where there
re one or two malicious agents. Initially, agent 5 considers that the
robability of receiving an attack from any of its neighbors is 0.2, and
ssigns uniform probability for all the hypotheses, i.e, 𝑃Hi

(0) = 1∕11.
egarding the detection stage, the anomaly detection has probability
f false positive of 0.05, and a probability of false positive of 0.1. Also,
he actual attack rate of malicious agents is 𝑃a = 0.25.

At each simulation step, agent 5 negotiates with a random subset of
eighbors, 𝑆(𝑘), for which the probability of attack is computed as

S(𝑘) = 1 − (1 − 𝑃a)𝑠m(𝑘) (26)

here 𝑠m(𝑘) represents the number of malicious agents in 𝑆(𝑘). Agent
computes whether it receives an attack and updates the probability

f all hypothesis using the Bayesian inference, which is defined as

(𝐻𝑖|𝐸) =
𝑃 (𝐸|𝐻𝑖)𝑃 (𝐻𝑖)

𝑃 (𝐸)
, (27)

here 𝐻𝑖 stands for hypothesis 𝑖 and 𝐸 denotes the detection/no
detection event. Also, 𝑃 (𝐻𝑖) is the estimate of the probability of the
ypothesis 𝐻𝑖, 𝑃 (𝐸) is the probability of observing 𝐸, 𝑃 (𝐻𝑖|𝐸) is the
robability of 𝐻𝑖 given 𝐸, and 𝑃 (𝐸|𝐻𝑖) is the probability of observing

given 𝐻𝑖. This way, the hypothesis probabilities are updated by
onsidering data from current and previous instants, and agent 5 can
earn to identify malicious agents and decide which neighbors can
emain for further negotiation rounds.

Fig. 8 presents the probability evolution of all hypotheses consid-
red in this example. As can be seen, hypothesis 𝐻6 reaches the value
while all the others become 0, indicating that agents 1 and 3 are

dentified as adversarial, just as expected.

.3. Mitigation measures

Different strategies can be implemented to mitigate the impact of
ttacks. Inspired by the FTC framework, we classify mitigation algo-
ithms as active and passive approaches. In particular, in active methods
ontrollers that respond to failures can change their setup, whereas
assive approaches are those that employ a failure-proof design (Jiang
Yu, 2012). In other words, active strategies implement extra actions

fter the attack occurrence whereas passive strategies are preconfigured
obust controllers against attacks.

emark 3. Passive control strategies can also be seen as preven-
ion measures. However, they have been introduced in the mitigation
ategory because that is their primary goal.
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Fig. 8. Evolution of the probabilities assigned to each of the different hypothesis 𝐻𝑖. The labels of the 𝑦-axis indicate between brackets which agents are considered as malicious
controllers in each of the hypothesis. Note that the probability of agents 1 and 3 being malicious reaches and remains at the value of 1 from time step 80, i.e., agent 𝑖 is able to
detect the attackers.
4.3.1. Active mitigation strategies
Active strategies react in case of attack and let the system work

in nominal conditions otherwise. Therefore, attack detection becomes
essential for them. Let us examine next how these methods can be used
to mitigate cyber-attacks.

Disruption attacks are simple and the most commonly used mech-
anism to deal with them takes advantage of the predictive features of
MPCs. In particular, a buffer can store the last successfully received
input sequence and, in case of attack, the corresponding input element
can be applied (Lješnjanin et al., 2014; Qiu et al., 2021; Quevedo
& Nešić, 2010, 2012; Sun et al., 2019; Wang, Gao & Qiu, 2016). In
addition, Sun and Yang (2019) combine this buffer with an event-
triggered process for transmission. In absence of DoS attacks, control
data is updated at each instant and an acknowledgment is received
by the controller to confirm that the transmission was successful.
If the acknowledgment is missing, it is assumed that a DoS attack
is present and retransmission attempts occur following the sampling
interval of the control unit until the controller receives an acknowl-
edgment that indicates lack of DoS. In addition, Quevedo and Nešić
(2012) assume that these acknowlegements can also be disrupted and
design a packetized MPC controller with an actuator buffer to deal
with DoS in input signals. Similarly, Pierron et al. (2020) compute
the input sequence by using a tree-based MPC strategy that considers
all possible scenarios for the prediction horizon. This way, the input
sequence is robustified against all possibilities of packet losses, and
in case of loss, the corresponding input signal is taken from the last
input tree received. In addition, Franzè et al. (2019) add an auxiliary
nominal MPC scheme in charge of keeping system dynamical behavior
at an admissible level until the communication channel is restored in
case of all input signals from the last sequence stored have already
been applied. Likewise, Mishra et al. (2017) consider a buffer in the
actuator side and present three transmission protocols depending upon
the availability of storage and computation facilities at the actuator.

Observers can also be used to mitigate attacks. For example, Qin
et al. (2020) use a Luenberger observer to estimate the states of
the plant with noisy sensor measurements, and after that, a resilient
Luenberger observer is designed using the invariant set theory in the
presence of attacks to input signals. Then, an output feedback MPC
strategy is presented to handle these attacks. Yang et al. (2019) design
a distributed stochastic MPC that uses an observer in the control side
to reconstruct the state signals when networks suffer from DoS attacks.
Also, a distributed nonlinear observer approach is designed in Cecilia,
Sahoo, Dragicevic, Costa-Castello, and Blaabjerg (2021) that estimates
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the system states even in the presence of false data. This estimation
is used to detect the attack presence and also to reconstruct the at-
tacked signal. Additionally, Hu et al. (2020) present an observer-based
dynamic event-triggered control under DoS attacks, where the observer
is constructed to deal with the unavailability of full-state information.
Quevedo and Ahlén (2008) design a state estimation method for wire-
less sensor networks over fading channels causing random packet loss
by using a time-varying Kalman Filter along with a controller endowed
with predictive control elements.

To mitigate deception attacks in measurement signals, some secure
back-up and redundant sensors can be designed. This is proposed, for
example by Wu et al. (2018), who present a Lyapunov-based MPC
method that utilizes state measurements from secure, redundant sen-
sors in case a sensor tamper cyber-attack is detected, and by Chen,
Wu et al. (2020), who replace the attacked sensors by secure back-up
sensors for an economic MPC.

In case of insider attackers, a possible strategy after their identifica-
tion is to disconnect them from the system, i.e., the Plug-and-Play (PnP)
architecture. Riverso et al. (2016) propose a DMPC strategy in a PnP
framework for faulty subsystems identification and unplugging to avoid
the propagation of the fault. Similarly, Boem et al. (2019) design a tube-
based MPC scheme that, after fault detection and isolation, allows the
possible disconnection of faulty subsystems and the local controllers
reconfiguration. Ananduta et al. (2018, 2019, 2020) also design a local
mechanism where each agent disconnects from neighbor agents after
their identification as attackers for its local optimization in a DMPC
scheme.

Other possible mitigation measures apply different predefined ac-
tions depending on the particular attack affecting in the system. This is
the case of Franzè et al. (2020), who define a resilient DMPC scheme
against replay attacks for multi-agent network systems. In particular,
the system is topologically described by a leader–follower digraph and
set-theoretic receding horizon control ideas are exploited to implement
specific control actions to avoid the possible domino effects from the
attack.

Finally, some maintenance and system enhancements can be per-
formed to mitigate the possible damage that attacks cause. For in-
stance, Zafra-Cabeza et al. (2011) present a hierarchical DMPC ap-
proach using a risk management strategy for irrigation canals where
mitigation actions are executed if risk occurrence are expected. The
considered risk factors are unexpected changes in demand, failures in
operation or maintenance costs, which can also be considered as caused
by attacks.

Other strategies that could also be extended to DMPC schemes are

presented by Cetinkaya et al. (2019), who provide an overview on the
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developed control and communication techniques to achieve resiliency
against DoS attacks. Similarly, Kikuchi et al. (2017) develop a new
consensus framework based on stochastic communication protocols to
deal with jamming attacks in the communication network between
agents.

4.3.2. Passive mitigation strategies
Passive strategies are based on a robust control designed to deal

with possible attacks ensuring system safety, usually without the ne-
cessity of attack detection and identification.

For instance, the consequences of attacks can be mitigated by using
scenario-based techniques in a DMPC, so that the input sequence is
computed accounting for scenarios of nominal operation (Maestre et al.,
2021). Similarly, Pierron et al. (2020) employ a tree-based MPC to deal
with jamming attacks where the robust input sequence is computed by
considering all possible scenarios of packet losses for the prediction
horizon. Additionally, Braun et al. (2020) design a robust nonlinear
MPC (NMPC) setup that integrates the contract-based distributed NMPC
along with a multi-stage NMPC for systems of interconnected nonlin-
ear subsystems with coupled dynamics or constraints. In particular,
local controllers exchange sensitivity information about their coupling
variables which is used to approximate the propagation of the attack
through the network. Reachable sets and resulting contracts are approx-
imated with multi-stage NMPC, but to decrease the size of the scenario
tree, branching is only applied up to some earlier stage.

Also, the MPC controller can be designed by including some extra
features. For example, in Wang, Song, Liu and Zhang (2016), a MPC-
based static output feedback controller is designed by using linear
matrix inequality constraints to consider randomly occurring deception
attacks. Chamanbaz et al. (2019) augment the MPC controller with
additional constraints to ensure the actual output trajectory remains
within a specified time-invariant neighborhood of the reference trajec-
tory to deal with FDI attacks on input and measurement channels. Liu
and Bai (2018) use an iterative DMPC algorithm to design distributed
controllers based on a cooperative control strategy to address time-
varying delayed input states. Mishra et al. (2016) and Quevedo et al.
(2015) present a stochastic MPC whose cost function explicitly accounts
for random packet dropouts. Sun et al. (2019) robustify the dual-
mode MPC by including a terminal constraint set which is designed
considering DoS attacks. Ananduta et al. (2018, 2019, 2020) robustify
the controllers via constraints with a stochastic method in which proba-
bilistic bounds are computed for possible disturbances and attacks. This
way, the decisions obtained for the DMPC are robustly feasible against
most of the attacks with high confidence.

In case of insider attacks, a mitigation measure is to reinforce the
negotiation process. Velarde et al. (2018) present a Lagrange-based
DMPC based on dual-decomposition where the two extreme control
actions are dismissed in the consensus approach. Similarly, Wang and
Ishii (2019) study the problem of resilient consensus in multi-agent
networks applying a DMPC scheme where the resilient update rules
consider the presence of malicious agents in the network. The total
number of malicious neighbors of an agent is bounded using the f-local

odel. Before the local update, each node removes the f largest and
smallest values from its neighbors, which are considered as possibly
alicious.

Other possibility to gain robustness is to readjust the system con-
traint sets by considering the possible effects of the attacks. For
xample, Qin et al. (2020) tighten the constraints of the nominal system
n the MPC optimization. Maestre et al. (2018) present a robust DMPC
or non-compliant agents where mutual disturbance sets are minimized
y local optimization to provide robustness.

Many other developed algorithms are based in strategies that could
lso be applied with MPC, e.g., software rejuvenation. This strategy
onsists on periodical resets of the control software to a secure version.
he software refresh frequency is established to guarantee system safety
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n case of attack (Aung & Park, 2004). This way, the control strategy
Fig. 9. State evolution and cumulative cost when the defense mechanism described in
Example 4 is introduced to reduce the impact of the replay attack on 𝜆 implemented
in Example 1. The figure shows how this neural-network-based defense allows to
practically avoid the impact of the attacker that alters the prices sent by the
coordinator. As can be seen, it leads to a cumulative cost similar to that of the optimal
performance, thus also reflecting that the multipliers provided by model (28) are close
to the optimal ones.

is robustly designed. In particular, Romagnoli et al. (2019a) design a
software rejuvenation strategy using invariant sets, and Arauz, Maestre,
Romagnoli, Sinopoli and Camacho (2021) present an extended version
for discrete-time systems. Besides, Griffioen, Romagnoli, Krogh, and
Sinopoli (2019) apply the software rejuvenation strategy for secure
networked control which differs from the previous works in the ne-
cessity of the network connection for the proper system recovery.
Another algorithm that could be used in DMPC is the approach pre-
sented by Feng and Ishii (2020) for searching consensus of multi-agent
systems under DoS attacks, which is based on dynamic quantization.
Finally, different strategies have been implemented in the literature to
mitigate the impact of attacks in the context of networked control. For
example, Farraj, Hammad, and Kundur (2017) propose an adaptative
cyber-enabled parametric feedback linearization control scheme to deal
with cyber-attacks on data integrity and availability. Yang, Xu, Xia,
and Zhang (2020) use a predictive control method to ensure system
stability under DoS and FDI attacks. Sharma, Singh, Lin, and Foruzan
(2017) propose a consensus based leader–follower distributed control
scheme and an agent-based distributed optimal control scheme, both
considering the presence of cyber-attacked misbehaving agents. In
addition, many works deal with packet losses in a general sense and
not only caused by attacks. For example, Arauz, Maestre, Cetinkaya
and Camacho (2021) use the strategy presented by Cetinkaya et al.
(2015) for packet dropouts due to unreliable transmissions and jam-
ming attacks to design a resilient feedback controller. Likewise, Alonso,
Ho, and Maestre (2021) present a distributed linear quadratic regulator
robust to communication dropouts.

Example 4. We introduce a defense mechanism that uses the predic-
tive ability of neural networks to provide an optimal warm start for
Lagrange prices (Chanfreut et al., 2021) to alleviate the effects of the
replay attack on the Lagrange multipliers implemented in Example 1
(see bottom-right subplot at Fig. 4). Note that the problem setting
remains the same as in Example 1, i.e., the subsystems are modeled
by (18), and the quadratic objective function defined by (19) with the
prediction horizon 𝑁h = 5 is optimized subject to the corresponding
state and input constraints. For this setting, we compute a model of
the form

𝜆NN = 𝑓NN(𝑥1, 𝑥2), (28)

where sub-index ‘NN’ stands for neural network. Function 𝑓NN(𝑥1, 𝑥2)

was trained from a database composed of a set of 1500 global states and



Annual Reviews in Control xxx (xxxx) xxxT. Arauz et al.
their associated optimal multipliers, which were generated simulating
a compliant dual-decomposition based negotiation on the four-tank
system. To this end, the function train from Matlab Deep Learning
Toolbox was used, with the Levenberg–Marquardt algorithm, and a
division of the data into 70% for training, 15% for validation and 15%
for testing.

Assuming the global state is known by the coordinator layer,
model (28) can be used as an oracle to detect the presence of attackers
and react to them (see Fig. 9). In particular, we consider that, after
implementing the negotiation procedure at each time instant, the
coordinator checks if the resulting Lagrange price, say 𝜆�̄�, where �̄�
is the index of the last performed iteration, differs significantly from
the forecast 𝜆𝑁𝑁 . For the results in Fig. 9, this condition has been
formulated as ‖𝜆�̄�−𝜆𝑁𝑁‖∞ > 𝛿, where 𝛿 has been set to 0.15. An attack
is detected if the previous inequality holds. As a mitigation mechanism,
both agents take 𝜆𝑁𝑁 , recalculate their solution 𝐮a1 and 𝐮a2 with the new
prices, and implement the corresponding actions.

5. Conclusions

The evolution of technology is leading towards a world of pervasive
connectivity where control systems are expected to play a major role.
In this context, DMPC algorithms are likely to become essential because
they enhance their capabilities with the progress of technology and they
offer a means to coordinate control actions in order to attain optimal
performance in a scalable manner. However, an interconnected world
will also offer significant opportunities for cyber-attacks, which may
have devastating consequences if they affect critical infrastructures.
Even nowadays we can find every now and then headlines in major
newspapers that show how severe cyber-threats can become, with some
notorious attacks disrupting applications such as nuclear plants, power
grids, smart buildings and autonomous cars, to make a few examples.

In this article we have reviewed the most vulnerable spots in the
control infrastructure that can be exploited to attack DMPC methods.
In addition, we have seen that the algorithms have inherent vulnera-
bilities because their design is usually based on the assumption that
every controller in the network will be compliant with the algorithm
employed. To deal with these issues, we have presented detection
and mitigation mechanisms that can be used to make these schemes
resilient. In particular, we have seen that learning methods can make
a difference in defensive tasks because of their superior flexibility to
adapt to the nominal operation conditions.

Future work on this area could focus on the following topics:

- Vulnerability assessment of DMPC protocols: the tens of
schemes in the DMPC literature should be inspected searching
for vulnerabilities. In particular, it should be explored whether
an abnormal behavior can be generated whenever one or more
agents are not following the method. Also, it should be ex-
plored whether the methods offer incentives for misbehavior,
i.e., whether one agent can improve its costs by manipulating
the information exchanged with other agents. In this way, it is
possible to build attack models that can help improve detection
and mitigation mechanisms. Additionally, MPC controllers can
collaborate with decision entities of different nature, such as
human beings (Van Overloop, Maestre, Sadowska, Camacho, &
De Schutter, 2015), which opens-up new vulnerabilities due to
the increased difficulty to characterize the attackers’ behavior.

- Theoretical properties: while properties such as robustness and
stability are always of interest, we believe that other properties
of interest can emerge in the context of cyber-security. To being
with, protection comes at a price and it is interesting to quantify
the loss of performance of cyber-defense methods. Likewise, it
can be interesting to obtain guarantees regarding the time that a
hijacked control system can resist before events such as constraint
15

violation or an irreversible stability loss can occur.
- Resilient and flexible control strategies: positive network ex-
ternalities are related to the possibility of failure and misbehavior.
While the predictive control framework possess strong theoretical
results regarding robustness, it needs to expand its toolbox for
dynamic networked environments where agents can be plugged
and unplugged, and possibly change their behavior due to cyber-
threats. How to isolate malicious agents and cluster healthy ones
so as to obtain the best achievable performance is an interest-
ing open problem for the DMPC community. Additionally, the
systems may integrate subsystems with heterogeneous dynam-
ics and agents with different computation and communication
equipment, leading to further challenges to detect and mitigate
attacks.

- Benchmarks and performance indicators: an essential task in
this context is the validation of strategies by using properly
designed testbeds. In particular, this is necessary to correctly com-
pare the impact of different attack models and the mitigation and
detection power of new cyber-defense mechanisms. To this end,
it is also necessary to define a set of standardized performance
indicators and properties of interest.

- Learning methods: As our examples have shown, the recent
bloom of learning methods for MPC can find multiple applications
here, hopefully with strong statistical guarantees that allow to
quantify their detection and mitigation power.

- Blockchain: the application of blockchain based technologies
seems an unstoppable trend that have penetrated in very close
fields such as consensus. For this reason, we believe that it is
a matter of time that blockchain DMPC methods are proposed.
A particularly relevant question here is whether the overhead
generated by the use of this technology can become an issue for
schemes that require hundreds of iterations before convergence is
attained.

Finally, we would like to stress some of the limitations of this
work. In the first place, our survey is by no means exhaustive be-
cause nowadays there are literally thousands of cyber-security articles
yearly published out there, not to mention that the methods that are
employed present relevant overlaps with other well established areas,
e.g., switching systems, game theory, and networked and fault tolerant
control. Likewise, the examples given are meant to be of academic use,
i.e., they intend to be illustrative enough to help the reader understand
how attacks can affect system performance and the extent to which
cyber-defense mechanisms can relieve these issues. Nevertheless, these
issues can become research opportunities for the predictive control
community because we have seen that some attack models and defense
methods have not been considered nor validated yet in DMPC methods.
In this regard, we hope to have given here a starting point and a
roadmap that can provide help and guidance for future works.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This paper has received funding from the Spanish Training Program
for Academic Staff under Grants (FPU19/00127 and FPU17/02653),
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (OCONTSOLAR,
grant agreement No 789051), the project GESVIP (ref. US-1265917),
and MCIN/AEI/ 10.13039/501100011033 under project C3PO-R2D2

(PID2020-119476RB-I00).



Annual Reviews in Control xxx (xxxx) xxxT. Arauz et al.

B

B

B

B

B

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

F

F

F

F

F

F

F

F

F

F

References

Abdelwahab, A., Lucia, W., & Youssef, A. (2020). Set-theoretic control for active
detection of replay attacks with applications to smart grid. In 2020 IEEE conference
on control technology and applications (pp. 1004–1009). IEEE.

Alexandru, A. B., Morari, M., & Pappas, G. J. (2018). Cloud-based MPC with encrypted
data. In 2018 IEEE conference on decision and control (pp. 5014–5019). IEEE.

Alonso, C. A., Ho, D., & Maestre, J. M. (2021). Distributed linear quadratic regulator
robust to communication dropouts. arXiv preprint arXiv:2103.03967.

Alvarado, I., Limon, D., De La Peña, D. M., Maestre, J. M., Ridao, M., Scheu, H., et
al. (2011). A comparative analysis of distributed MPC techniques applied to the
HD-MPC four-tank benchmark. Journal of Process Control, 21(5), 800–815.

Ananduta, W., Maestre, J. M., Ocampo-Martinez, C., & Ishii, H. (2018). Resilient
distributed energy management for systems of interconnected microgrids. In 2018
IEEE conference on decision and control (pp. 3159–3164). IEEE.

Ananduta, W., Maestre, J. M., Ocampo-Martinez, C., & Ishii, H. (2019). A resilient ap-
proach for distributed MPC-based economic dispatch in interconnected microgrids.
In 2019 18th European control conference (pp. 691–696). IEEE.

Ananduta, W., Maestre, J. M., Ocampo-Martinez, C., & Ishii, H. (2020). Resilient
distributed model predictive control for energy management of interconnected
microgrids. Optimal Control Applications & Methods, 41(1), 146–169.

Arauz, T., Maestre, J. M., Cetinkaya, A., & Camacho, E. F. (2021). Model-based PI
design for irrigation canals with faulty communication networks. In 2021 European
control conference. IEEE.

Arauz, T., Maestre, J., Romagnoli, R., Sinopoli, B., & Camacho, E. (2021). A linear
programming approach to computing safe sets for software rejuvenation. IEEE
Control Systems Letters, 6, 1214—1219.

Aung, K. M. M., & Park, J. S. (2004). Software rejuvenation approach to security
engineering. In International conference on computational science and its applications
(pp. 574–583). Springer.

Bagherzadeh, M., & Lucia, W. (2019). A set-theoretic model predictive control approach
for transient stability in smart grid. IET Control Theory & Applications, 14(5),
700–707.

Baldivieso-Monasterios, P. R., & Trodden, P. A. (2021). Coalitional predictive control:
Consensus-based coalition forming with robust regulation. Automatica, 125, Article
109380.

Barboni, A., Boem, F., & Parisini, T. (2018). Model-based detection of cyber-attacks in
networked MPC-based control systems. IFAC-PapersOnLine, 51(24), 963–968.

Barboni, A., Rezaee, H., Boem, F., & Parisini, T. (2020). Detection of covert cyber-
attacks in interconnected systems: A distributed model-based approach. IEEE
Transactions on Automatic Control, 65(9), 3728–3741.

Bhamare, D., Zolanvari, M., Erbad, A., Jain, R., Khan, K., & Meskin, N. (2020).
Cybersecurity for industrial control systems: A survey. Computers & Security, 89,
Article 101677.

indra, A. (2017). Securing the power grid: Protecting smart grids and connected power
systems from cyberattacks. IEEE Power Electronics Magazine, 4(3), 20–27.

oem, F., Gallo, A. J., Raimondo, D. M., & Parisini, T. (2019). Distributed fault-tolerant
control of large-scale systems: An active fault diagnosis approach. IEEE Transactions
on Control of Network Systems, 7(1), 288–301.

oem, F., Riverso, S., Ferrari-Trecate, G., & Parisini, T. (2018). Plug-and-play fault de-
tection and isolation for large-scale nonlinear systems with stochastic uncertainties.
IEEE Transactions on Automatic Control, 64(1), 4–19.

oyd, S., Parikh, N., & Chu, E. (2011). Distributed optimization and statistical learning via
the alternating direction method of multipliers. Now Publishers Inc.

raun, S., Albrecht, S., & Lucia, S. (2020). Hierarchical attack identification for
distributed robust nonlinear control. In Proc. of the 21st IFAC world congress (pp.
6191–6198).

amacho, E. F., & Alba, C. B. (2013). Model predictive control. Springer science &
business media.

ardenas, A., Amin, S., Sinopoli, B., Giani, A., Perrig, A., Sastry, S., et al. (2009).
Challenges for securing cyber physical systems. In Workshop on future directions in
cyber-physical systems security: Vol. 5, (1), Citeseer.

ayre, F., Fontaine, C., & Furon, T. (2005). Watermarking security: Theory and practice.
IEEE Transactions on Signal Processing, 53(10), 3976–3987.

Cecilia, A., Sahoo, S., Dragicevic, T., Costa-Castello, R., & Blaabjerg, F. (2021).
Detection and mitigation of false data in cooperative DC microgrids with unknown
constant power loads. IEEE Transactions on Power Electronics.

Cetinkaya, A., Arcaini, P., Ishii, H., & Hayakawa, T. (2020). A search-based approach
to identifying jamming attacks and defense policies in wireless networked control.
In 2020 59th IEEE conference on decision and control (pp. 5717–5724). IEEE.

Cetinkaya, A., Ishii, H., & Hayakawa, T. (2015). Event-triggered control over unreliable
networks subject to jamming attacks. In 2015 54th IEEE conference on decision and
control (pp. 4818–4823). IEEE.

Cetinkaya, A., Ishii, H., & Hayakawa, T. (2019). An overview on denial-of-service
attacks in control systems: Attack models and security analyses. Entropy, 21(2),
210.

Chakhchoukh, Y., & Ishii, H. (2016). Enhancing robustness to cyber-attacks in power
systems through multiple least trimmed squares state estimations. IEEE Transactions
on Power Systems, 31(6), 4395–4405.
16
Chakhchoukh, Y., Liu, S., Sugiyama, M., & Ishii, H. (2016). Statistical outlier detection
for diagnosis of cyber attacks in power state estimation. In 2016 IEEE power and
energy society general meeting (pp. 1–5). IEEE.

Chamanbaz, M., Dabbene, F., & Bouffanais, R. (2019). A physics-based attack detection
technique in cyber-physical systems: A model predictive control co-design approach.
In 2019 Australian & New Zealand control conference (pp. 18–23). IEEE.

Chanfreut, P., Maestre, J. M., & Camacho, E. F. (2021). A survey on clustering
methods for distributed and networked control systems. Annual Reviews in Control,
http://dx.doi.org/10.1016/j.arcontrol.2021.08.002.

Chanfreut, P., Maestre, J. M., & Ishii, H. (2018). Vulnerabilities in distributed model
predictive control based on Jacobi-Gauss decomposition. In 2018 European control
conference (pp. 2587–2592). IEEE.

hanfreut, P., Sánchez-Amores, A., Maestre, J. M., & Camacho, E. F. (2021). Distributed
model predictive control based on dual decomposition with neural-network-based
warm start. In 2021 European control conference. IEEE.

hen, S., Wu, Z., & Christofides, P. D. (2020). Cyber-attack detection and resilient op-
eration of nonlinear processes under economic model predictive control. Computers
& Chemical Engineering, 136, Article 106806.

hen, C., Zhang, K., Ni, M., & Wang, Y. (2020). Cyber-attack-tolerant frequency control
of power systems. Journal of Modern Power Systems and Clean Energy.

heng, R., Forbes, J. F., & Yip, W. (2007). Price-driven coordination method for solving
plant-wide MPC problems. Journal of Process Control, 17(5), 429–438.

hristofides, P. D., Scattolini, R., de la Pena, D. M., & Liu, J. (2013). Distributed model
predictive control: A tutorial review and future research directions. Computers &
Chemical Engineering, 51, 21–41.

ui, S., Han, Z., Kar, S., Kim, T. T., Poor, H. V., & Tajer, A. (2012). Coordinated
data-injection attack and detection in the smart grid: A detailed look at enriching
detection solutions. IEEE Signal Processing Magazine, 29(5), 106–115.

án, G., & Sandberg, H. (2010). Stealth attacks and protection schemes for state
estimators in power systems. In 2010 first IEEE international conference on smart
grid communications (pp. 214–219). IEEE.

arup, M. S. (2020). Encrypted model predictive control in the cloud. In Privacy in
dynamical systems (pp. 231–265). Springer.

arup, M. S., Redder, A., & Quevedo, D. E. (2018). Encrypted cloud-based MPC for
linear systems with input constraints. IFAC-PapersOnLine, 51(20), 535–542.

arup, M. S., Redder, A., Shames, I., Farokhi, F., & Quevedo, D. (2017). Towards
encrypted MPC for linear constrained systems. IEEE Control Systems Letters, 2(2),
195–200.

e Oliveira, L. B., & Camponogara, E. (2010). Multi-agent model predictive control of
signaling split in urban traffic networks. Transportation Research Part C (Emerging
Technologies), 18(1), 120–139.

e Persis, C., & Tesi, P. (2015). Input-to-state stabilizing control under denial-of-service.
IEEE Transactions on Automatic Control, 60(11), 2930–2944.

ibaji, S. M., Pirani, M., Flamholz, D. B., Annaswamy, A. M., Johansson, K. H., &
Chakrabortty, A. (2019). A systems and control perspective of CPS security. Annual
Reviews in Control, 47, 394–411.

ing, D., Han, Q.-L., Wang, Z., & Ge, X. (2019). A survey on model-based distributed
control and filtering for industrial cyber-physical systems. IEEE Transactions on
Industrial Informatics, 15(5), 2483–2499.

ing, D., Han, Q.-L., Xiang, Y., Ge, X., & Zhang, X.-M. (2018). A survey on security
control and attack detection for industrial cyber-physical systems. Neurocomputing,
275, 1674–1683.

oan, M. D., Keviczky, T., & De Schutter, B. (2011). An iterative scheme for distributed
model predictive control using Fenchel’s duality. Journal of Process Control, 21(5),
746–755.

arina, M., & Scattolini, R. (2012). Distributed predictive control: A non-cooperative
algorithm with neighbor-to-neighbor communication for linear systems. Automatica,
48(6), 1088–1096.

arokhi, F., Shames, I., & Johansson, K. H. (2014). Distributed MPC via dual decompo-
sition and alternative direction method of multipliers. In Distributed model predictive
control made easy (pp. 115–131). Springer.

arraj, A., Hammad, E., & Kundur, D. (2017). A distributed control paradigm for smart
grid to address attacks on data integrity and availability. IEEE Transactions on Signal
and Information Processing over Networks, 4(1), 70–81.

ele, F., Maestre, J. M., & Camacho, E. F. (2017). Coalitional control: Cooperative game
theory and control. IEEE Control Systems Magazine, 37(1), 53–69.

eng, S., Cetinkaya, A., Ishii, H., Tesi, P., & De Persis, C. (2020). Networked control
under DoS attacks: Tradeoffs between resilience and data rate. IEEE Transactions
on Automatic Control, 66(1), 460–467.

eng, S., & Ishii, H. (2020). Dynamic quantized consensus of general linear multi-agent
systems under denial-of-service attacks. IFAC-PapersOnLine, 53(2), 3533–3538.

eng, C., Li, T., Zhu, Z., & Chana, D. (2017). A deep learning-based framework for
conducting stealthy attacks in industrial control systems. arXiv e-prints, arXiv–1709.

erramosca, A., Limón, D., Alvarado, I., & Camacho, E. F. (2013). Cooperative
distributed MPC for tracking. Automatica, 49(4), 906–914.

erranti, L., Wan, Y., & Keviczky, T. (2019). Fault-tolerant reference generation
for model predictive control with active diagnosis of elevator jamming faults.
International Journal of Robust and Nonlinear Control, 29(16), 5412–5428.

errari, R. M., & Teixeira, A. M. (2020). A switching multiplicative watermarking
scheme for detection of stealthy cyber-attacks. IEEE Transactions on Automatic
Control.

http://refhub.elsevier.com/S1367-5788(21)00080-8/sb1
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb1
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb1
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb1
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb1
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb2
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb2
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb2
http://arxiv.org/abs/2103.03967
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb4
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb4
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb4
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb4
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb4
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb5
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb5
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb5
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb5
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb5
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb6
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb6
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb6
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb6
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb6
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb7
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb7
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb7
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb7
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb7
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb8
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb8
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb8
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb8
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb8
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb9
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb9
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb9
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb9
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb9
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb10
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb10
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb10
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb10
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb10
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb11
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb11
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb11
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb11
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb11
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb12
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb12
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb12
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb12
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb12
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb13
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb13
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb13
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb14
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb14
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb14
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb14
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb14
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb15
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb15
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb15
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb15
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb15
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb16
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb16
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb16
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb17
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb17
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb17
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb17
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb17
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb18
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb18
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb18
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb18
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb18
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb19
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb19
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb19
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb21
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb21
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb21
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb22
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb22
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb22
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb22
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb22
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb23
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb23
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb23
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb24
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb24
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb24
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb24
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb24
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb25
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb25
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb25
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb25
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb25
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb26
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb26
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb26
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb26
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb26
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb27
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb27
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb27
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb27
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb27
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb28
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb28
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb28
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb28
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb28
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb29
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb29
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb29
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb29
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb29
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb30
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb30
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb30
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb30
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb30
http://dx.doi.org/10.1016/j.arcontrol.2021.08.002
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb32
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb32
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb32
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb32
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb32
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb33
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb33
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb33
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb33
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb33
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb34
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb34
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb34
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb34
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb34
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb35
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb35
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb35
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb36
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb36
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb36
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb37
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb37
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb37
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb37
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb37
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb38
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb38
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb38
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb38
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb38
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb39
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb39
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb39
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb39
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb39
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb40
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb40
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb40
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb41
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb41
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb41
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb42
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb42
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb42
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb42
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb42
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb43
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb43
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb43
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb43
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb43
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb44
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb44
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb44
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb45
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb45
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb45
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb45
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb45
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb46
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb46
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb46
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb46
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb46
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb47
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb47
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb47
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb47
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb47
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb48
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb48
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb48
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb48
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb48
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb49
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb49
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb49
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb49
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb49
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb50
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb50
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb50
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb50
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb50
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb51
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb51
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb51
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb51
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb51
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb52
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb52
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb52
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb53
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb53
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb53
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb53
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb53
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb54
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb54
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb54
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb55
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb55
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb55
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb56
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb56
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb56
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb57
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb57
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb57
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb57
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb57
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb58
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb58
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb58
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb58
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb58


Annual Reviews in Control xxx (xxxx) xxxT. Arauz et al.

F

M

M

M

M

M

M

M

M

M

M

N

N

N

N

N

O

P

P

P

Q

Francisco, M., Mezquita, Y., Revollar, S., Vega, P., & De Paz, J. F. (2019). Multi-agent
distributed model predictive control with fuzzy negotiation. Expert Systems with
Applications, 129, 68–83.

ranze, G., Lucia, W., & Tedesco, F. (2021). Resilient model predictive control for
constrained cyber-physical systems subject to severe attacks on the communication
channels. IEEE Transactions on Automatic Control.

Franzè, G., Tedesco, F., & Famularo, D. (2020). Resilience against replay attacks: A
distributed model predictive control scheme for networked multi-agent systems.
IEEE/CAA Journal of Automatica Sinica, 8(3), 628–640.

Franzè, G., Tedesco, F., & Lucia, W. (2019). Resilient control for cyber-physical systems
subject to replay attacks. IEEE Control Systems Letters, 3(4), 984–989.

Gallo, A. J., Turan, M. S., Boem, F., Parisini, T., & Ferrari-Trecate, G. (2020). A
distributed cyber-attack detection scheme with application to DC microgrids. IEEE
Transactions on Automatic Control, 65(9), 3800–3815.

Giselsson, P., Doan, M. D., Keviczky, T., De Schutter, B., & Rantzer, A. (2013). Accel-
erated gradient methods and dual decomposition in distributed model predictive
control. Automatica, 49(3), 829–833.

Griffioen, P., Romagnoli, R., Krogh, B. H., & Sinopoli, B. (2019). Secure networked
control via software rejuvenation. In 2019 IEEE 58th conference on decision and
control (pp. 3878–3884). IEEE.

Hammami, D. E. H., Maraoui, S., & Bouzrara, K. (2020). Nonlinear distributed
model predictive control with dual decomposition and event-based communica-
tion approach. Transactions of the Institute of Measurement and Control, 42(15),
2929–2940.

Hu, S., Yue, D., Cheng, Z., Tian, E., Xie, X., & Chen, X. (2020). Co-design of dynamic
event-triggered communication scheme and resilient observer-based control under
aperiodic DoS attacks. IEEE Transactions on Cybernetics.

Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-physical systems security–A survey.
IEEE Internet of Things Journal, 4(6), 1802–1831.

Isozaki, Y., Yoshizawa, S., Fujimoto, Y., Ishii, H., Ono, I., Onoda, T., et al. (2015).
Detection of cyber attacks against voltage control in distribution power grids with
pvs. IEEE Transactions on Smart Grid, 7(4), 1824–1835.

Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity.
Journal of Computer and System Sciences, 80(5), 973–993.

Jia, Y., Meng, K., Wu, K., Sun, C., & Dong, Z. Y. (2020). Optimal load frequency
control for networked power systems based on distributed economic MPC. IEEE
Transactions on Systems, Man, and Cybernetics: Systems.

Jiang, J., & Yu, X. (2012). Fault-tolerant control systems: A comparative study between
active and passive approaches. Annual Reviews in Control, 36(1), 60–72.

Johansson, K. H. (2000). The quadruple-tank process: A multivariable laboratory
process with an adjustable zero. IEEE Transactions on Control Systems Technology,
8(3), 456–465.

Kang, J., Xiong, Z., Niyato, D., Ye, D., Kim, D. I., & Zhao, J. (2019). Toward secure
blockchain-enabled internet of vehicles: Optimizing consensus management using
reputation and contract theory. IEEE Transactions on Vehicular Technology, 68(3),
2906–2920.

Kikuchi, K., Cetinkaya, A., Hayakawa, T., & Ishii, H. (2017). Stochastic communication
protocols for multi-agent consensus under jamming attacks. In 2017 IEEE 56th
annual conference on decision and control (pp. 1657–1662). IEEE.

Kordestani, M., Safavi, A. A., & Saif, M. (2021). Recent survey of large-scale sys-
tems: Architectures, controller strategies, and industrial applications. IEEE Systems
Journal.

Kushal, T. R. B., Lai, K., & Illindala, M. S. (2018). Risk-based mitigation of load
curtailment cyber attack using intelligent agents in a shipboard power system. IEEE
Transactions on Smart Grid, 10(5), 4741–4750.

Kushner, D. (2013). The real story of Stuxnet. IEEE Spectrum, 50(3), 48–53.
Lavrov, E. A., Volosiuk, A. A., Pasko, N. B., Gonchar, V. P., & Kozhevnikov, G. K.

(2018). Computer simulation of discrete human-machine interaction for providing
reliability and cybersecurity of critical systems. In 2018 third international conference
on human factors in complex technical systems and environments (pp. 67–70). IEEE.

Lei, K., Zhang, Q., Xu, L., & Qi, Z. (2018). Reputation-based byzantine fault-tolerance
for consortium blockchain. In 2018 IEEE 24th international conference on parallel
and distributed systems (pp. 604–611). IEEE.

Li, K., Bian, Y., Li, S. E., Xu, B., & Wang, J. (2020). Distributed model predictive control
of multi-vehicle systems with switching communication topologies. Transportation
Research Part C (Emerging Technologies), 118, Article 102717.

Li, X.-M., Zhou, Q., Li, P., Li, H., & Lu, R. (2019). Event-triggered consensus control
for multi-agent systems against false data-injection attacks. IEEE Transactions on
Cybernetics, 50(5), 1856–1866.

Limón, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2008). MPC for tracking piecewise
constant references for constrained linear systems. Automatica, 44(9), 2382–2387.

Liu, A., & Bai, L. (2018). Distributed model predictive control for wide area measure-
ment power systems under malicious attacks. IET Cyber-Physical Systems: Theory &
Applications, 3(3), 111–118.

Liu, Y., Chen, Y., & Li, M. (2020). Dynamic event-based model predictive load frequency
control for power systems under cyber attacks. IEEE Transactions on Smart Grid,
12(1), 715–725.

Liu, Y., Chen, Y., Li, M., & Wan, Z. (2020). MPC for the cyber-physical system with
deception attacks. In 2020 Chinese control and decision conference (pp. 3847–3852).
IEEE.
17
Liu, S., Song, Y., Wei, G., & Huang, X. (2017). RMPC-based security problem for
polytopic uncertain system subject to deception attacks and persistent disturbances.
IET Control Theory & Applications, 11(10), 1611–1618.

Liu, F., Wang, C., & Geng, Q. (2020). Observer-based MPC for NCS with actuator
saturation and DoS attacks via interval type-2 T–S fuzzy model. IET Control Theory
& Applications, 14(20), 3537–3546.

Lješnjanin, M., Quevedo, D. E., & Nešić, D. (2014). Packetized MPC with dynamic
scheduling constraints and bounded packet dropouts. Automatica, 50(3), 784–797.

Ma, Y., Anderson, G., & Borrelli, F. (2011). A distributed predictive control approach
to building temperature regulation. In Proceedings of the 2011 American control
conference (pp. 2089–2094). IEEE.

MacGregor, J., & Cinar, A. (2012). Monitoring, fault diagnosis, fault-tolerant control and
optimization: Data driven methods. Computers & Chemical Engineering, 47, 111–120.

Maestre, J. M., Muñoz De La Peña, D., & Camacho, E. F. (2011). Distributed model
predictive control based on a cooperative game. Optimal Control Applications &
Methods, 32(2), 153–176.

aestre, J., De La Pena, D. M., Camacho, E., & Alamo, T. (2011). Distributed model
predictive control based on agent negotiation. Journal of Process Control, 21(5),
685–697.

aestre, J. M., Trodden, P. A., & Ishii, H. (2018). A distributed model predictive control
scheme with robustness against noncompliant controllers. In 2018 IEEE conference
on decision and control (pp. 3704–3709). IEEE.

aestre, J. M., Velarde, P., Ishii, H., & Negenborn, R. R. (2021). Scenario based defense
mechanism against vulnerabilities in Lagrange-based DMPC. Control Engineering
Practice.

asero, E., Francisco, M., Maestre, J. M., Revollar, S., & Vega, P. (2021). Hierarchical
distributed model predictive control based on fuzzy negotiation. Expert Systems with
Applications, 176, Article 114836.

axim, A., & Caruntu, C.-F. (2021). A coalitional distributed model predictive control
perspective for a cyber-physical multi-agent application. Sensors, 21(12), 4041.

Mc Namara, P., Negenborn, R. R., De Schutter, B., & Lightbody, G. (2012). Optimal
coordination of a multiple HVDC link system using centralized and distributed
control. IEEE Transactions on Control Systems Technology, 21(2), 302–314.

Mc Namara, P., Negenborn, R. R., De Schutter, B., Lightbody, G., & McLoone, S. (2016).
Distributed MPC for frequency regulation in multi-terminal HVDC grids. Control
Engineering Practice, 46, 176–187.

ishra, P. K., Chatterjee, D., & Quevedo, D. E. (2017). Stabilizing stochastic predictive
control under Bernoulli dropouts. IEEE Transactions on Automatic Control, 63(6),
1579–1590.

ishra, P. K., Quevedo, D. E., & Chatterjee, D. (2016). Dropout feedback parametrized
policies for stochastic predictive controller. IFAC-PapersOnLine, 49(18), 59–64.

Mo, Y., Kim, T. H.-J., Brancik, K., Dickinson, D., Lee, H., Perrig, A., et al. (2011). Cyber–
physical security of a smart grid infrastructure. Proceedings of the IEEE, 100(1),
195–209.

o, Y., & Sinopoli, B. (2009). Secure control against replay attacks. In 2009 47th annual
Allerton conference on communication, control, and computing (pp. 911–918). IEEE.

o, Y., Weerakkody, S., & Sinopoli, B. (2015). Physical authentication of control
systems: Designing watermarked control inputs to detect counterfeit sensor outputs.
IEEE Control Systems Magazine, 35(1), 93–109.

oradmand, A., Ramezani, A., Nezhad, H. S., & Sardashti, A. (2019). Fault tolerant
Kalman filter-based distributed predictive control in power systems under governor
malfunction. In 2019 6th international conference on control, instrumentation and
automation (pp. 1–6). IEEE.

aghavi, S. V., Safavi, A. A., & Kazerooni, M. (2014). Decentralized fault tolerant model
predictive control of discrete-time interconnected nonlinear systems. Journal of the
Franklin Institute, 351(3), 1644–1656.

egenborn, R. R., & Maestre, J. M. (2014). Distributed model predictive control:
An overview and roadmap of future research opportunities. IEEE Control Systems
Magazine, 34(4), 87–97.

egenborn, R. R., van Overloop, P.-J., Keviczky, T., & De Schutter, B. (2009).
Distributed model predictive control of irrigation canals. Networks & Heterogeneous
Media, 4(2), 359.

ishino, H., & Ishii, H. (2014). Distributed detection of cyber attacks and faults for
power systems. IFAC Proceedings Volumes, 47(3), 11932–11937.

ofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain. Business &
Information Systems Engineering, 59(3), 183–187.

lfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic Control,
49(9), 1520–1533.

asqualetti, F., Dörfler, F., & Bullo, F. (2013). Attack detection and identification in
cyber-physical systems. IEEE Transactions on Automatic Control, 58(11), 2715–2729.

eng, C., & Sun, H. (2020). Switching-like event-triggered control for networked control
systems under malicious denial of service attacks. IEEE Transactions on Automatic
Control, 65(9), 3943–3949.

ierron, T., Arauz, T., Maestre, J., Cetinkaya, A., & Maniu, C. S. (2020). Tree-based
model predictive control for jamming attacks. In 2020 European control conference
(pp. 948–953). IEEE.

i, W., Liu, J., & Christofides, P. D. (2011). A distributed control framework for
smart grid development: Energy/water system optimal operation and electric grid
integration. Journal of Process Control, 21(10), 1504–1516.

http://refhub.elsevier.com/S1367-5788(21)00080-8/sb59
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb59
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb59
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb59
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb59
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb60
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb60
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb60
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb60
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb60
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb61
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb61
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb61
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb61
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb61
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb62
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb62
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb62
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb63
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb63
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb63
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb63
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb63
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb64
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb64
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb64
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb64
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb64
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb65
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb65
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb65
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb65
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb65
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb66
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb67
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb67
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb67
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb67
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb67
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb68
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb68
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb68
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb69
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb69
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb69
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb69
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb69
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb70
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb70
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb70
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb71
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb71
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb71
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb71
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb71
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb72
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb72
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb72
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb73
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb73
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb73
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb73
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb73
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb74
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb75
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb75
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb75
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb75
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb75
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb76
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb76
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb76
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb76
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb76
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb77
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb77
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb77
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb77
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb77
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb78
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb79
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb80
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb80
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb80
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb80
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb80
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb81
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb81
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb81
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb81
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb81
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb82
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb82
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb82
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb82
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb82
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb83
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb83
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb83
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb84
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb84
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb84
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb84
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb84
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb85
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb85
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb85
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb85
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb85
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb86
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb86
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb86
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb86
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb86
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb87
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb87
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb87
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb87
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb87
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb88
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb88
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb88
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb88
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb88
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb89
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb89
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb89
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb90
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb90
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb90
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb90
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb90
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb91
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb91
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb91
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb92
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb92
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb92
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb92
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb92
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb93
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb93
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb93
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb93
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb93
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb94
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb94
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb94
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb94
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb94
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb95
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb95
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb95
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb95
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb95
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb96
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb96
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb96
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb96
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb96
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb97
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb97
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb97
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb98
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb98
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb98
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb98
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb98
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb99
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb99
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb99
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb99
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb99
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb100
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb100
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb100
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb100
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb100
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb101
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb101
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb101
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb102
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb102
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb102
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb102
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb102
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb103
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb103
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb103
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb104
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb104
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb104
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb104
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb104
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb105
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb106
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb106
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb106
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb106
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb106
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb107
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb107
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb107
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb107
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb107
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb108
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb108
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb108
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb108
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb108
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb109
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb109
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb109
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb110
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb110
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb110
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb111
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb111
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb111
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb111
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb111
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb112
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb112
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb112
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb113
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb113
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb113
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb113
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb113
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb114
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb114
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb114
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb114
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb114
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb115
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb115
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb115
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb115
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb115


Annual Reviews in Control xxx (xxxx) xxxT. Arauz et al.

Q

Q

Q

Q

T

W

W

W

W

W

W

X

X

Y

Y

Y

Y

Z

Z

Z
Z

Z

Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7), 733–764.

in, Y., Zhao, Y., Huang, K., Tian, Y.-C., & Zhou, C. (2020). Dynamic model
predictive control for constrained cyber-physical systems subject to actuator attacks.
International Journal of Systems Science, 1–11.

iu, Q., Yang, F., & Zhu, Y. (2021). Cyber-attack localisation and tolerant control
for microgrid energy management system based on set-membership estimation.
International Journal of Systems Science, 52(6), 1206–1222.

uevedo, D. E., & Ahlén, A. (2008). A predictive power control scheme for energy
efficient state estimation via wireless sensor networks. In 2008 47th IEEE conference
on decision and control (pp. 1103–1108). IEEE.

uevedo, D. E., Mishra, P. K., Findeisen, R., & Chatterjee, D. (2015). A stochas-
tic model predictive controller for systems with unreliable communications.
IFAC-PapersOnLine, 48(23), 57–64.

Quevedo, D. E., & Nešić, D. (2010). Input-to-state stability of packetized predictive
control over unreliable networks affected by packet-dropouts. IEEE Transactions on
Automatic Control, 56(2), 370–375.

Quevedo, D. E., & Nešić, D. (2012). Robust stability of packetized predictive control
of nonlinear systems with disturbances and Markovian packet losses. Automatica,
48(8), 1803–1811.

Raimondo, D. M., Marseglia, G. R., Braatz, R. D., & Scott, J. K. (2013). Fault-tolerant
model predictive control with active fault isolation. In 2013 conference on control
and fault-tolerant systems (pp. 444–449). IEEE.

Rantzer, A. (2009). Dynamic dual decomposition for distributed control. In 2009
American control conference (pp. 884–888). IEEE.

Rawlings, J. B., & Stewart, B. T. (2008). Coordinating multiple optimization-based
controllers: New opportunities and challenges. Journal of Process Control, 18(9),
839–845.

Riverso, S., Boem, F., Ferrari-Trecate, G., & Parisini, T. (2016). Plug-and-play fault
detection and control-reconfiguration for a class of nonlinear large-scale constrained
systems. IEEE Transactions on Automatic Control, 61(12), 3963–3978.

Riverso, S., Farina, M., & Ferrari-Trecate, G. (2014). Plug-and-play model predictive
control based on robust control invariant sets. Automatica, 50(8), 2179–2186.

Romagnoli, R., Griffioen, P., Krogh, B. H., & Sinopoli, B. (2020). Software rejuvenation
under persistent attacks in constrained environments. IFAC-PapersOnLine, 53(2),
4088–4094.

Romagnoli, R., Krogh, B. H., & Sinopoli, B. (2019a). Design of software rejuvenation
for CPS security using invariant sets. In 2019 American control conference (pp.
3740–3745). IEEE.

Romagnoli, R., Krogh, B. H., & Sinopoli, B. (2019b). Safety and liveness of software
rejuvenation for secure tracking control. In 2019 18th European control conference
(pp. 2215–2220). IEEE.

Rotem-Gal-Oz, A. (2006). Fallacies of distributed computing explained. URL http:
//www.rgoarchitects.com/Files/fallacies.pdf20.

de Sá, A. O., da Costa Carmo, L. F. R., & Machado, R. C. (2017). Covert attacks in
cyber-physical control systems. IEEE Transactions on Industrial Informatics, 13(4),
1641–1651.

Sahoo, S., Mishra, S., Peng, J. C.-H., & Dragičević, T. (2018). A stealth cyber-attack
detection strategy for DC microgrids. IEEE Transactions on Power Electronics, 34(8),
8162–8174.

Sánchez, H. S., Rotondo, D., Escobet, T., Puig, V., & Quevedo, J. (2019). Bibliographical
review on cyber attacks from a control oriented perspective. Annual Reviews in
Control, 48, 103–128.

Savino, H. J., dos Santos, C. R., Souza, F. O., Pimenta, L. C., de Oliveira, M., &
Palhares, R. M. (2015). Conditions for consensus of multi-agent systems with time-
delays and uncertain switching topology. IEEE Transactions on Industrial Electronics,
63(2), 1258–1267.

Scattolini, R. (2009). Architectures for distributed and hierarchical model predictive
control–A review. Journal of Process Control, 19(5), 723–731.

Schiffer, J., Dörfler, F., & Fridman, E. (2017). Robustness of distributed averaging
control in power systems: Time delays & dynamic communication topology.
Automatica, 80, 261–271.

Schwab, W., & Poujol, M. (2018). The state of industrial cybersecurity 2018: Trend study
kaspersky reports 33.

Sharma, D. D., Singh, S., Lin, J., & Foruzan, E. (2017). Agent-based distributed control
schemes for distributed energy storage systems under cyber attacks. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 7(2), 307–318.

Smith, R. S. (2011). A decoupled feedback structure for covertly appropriating
networked control systems. IFAC Proceedings Volumes, 44(1), 90–95.

Stewart, B. T., Venkat, A. N., Rawlings, J. B., Wright, S. J., & Pannocchia, G. (2010).
Cooperative distributed model predictive control. Systems & Control Letters, 59(8),
460–469.

Stewart, B. T., Wright, S. J., & Rawlings, J. B. (2011). Cooperative distributed model
predictive control for nonlinear systems. Journal of Process Control, 21(5), 698–704.

Subramanian, K., Rawlings, J. B., Maravelias, C. T., Flores-Cerrillo, J., & Megan, L.
(2013). Integration of control theory and scheduling methods for supply chain
management. Computers & Chemical Engineering, 51, 4–20.

Sun, Y.-C., & Yang, G.-H. (2019). Robust event-triggered model predictive control
for cyber-physical systems under denial-of-service attacks. International Journal of
Robust and Nonlinear Control, 29(14), 4797–4811.
18
Sun, Q., Zhang, K., & Shi, Y. (2019). Resilient model predictive control of cyber–
physical systems under dos attacks. IEEE Transactions on Industrial Informatics, 16(7),
4920–4927.

Tanaka, T., & Gupta, V. (2016). Incentivizing truth-telling in MPC-based load frequency
control. In 2016 IEEE 55th conference on decision and control (pp. 1549–1555). IEEE.

Teixeira, A., Shames, I., Sandberg, H., & Johansson, K. H. (2015). A secure control
framework for resource-limited adversaries. Automatica, 51, 135–148.

Thames, L., & Schaefer, D. (2017). Cybersecurity for industry 4.0. Springer.
Tian, E., & Peng, C. (2020). Memory-based event-triggering H∞ load frequency control

for power systems under deception attacks. IEEE Transactions on Cybernetics, 50(11),
4610–4618.

Tiwari, A., Smolka, S. A., Esterle, L., Lukina, A., Yang, J., & Grosu, R. (2017). Attacking
the V: On the resiliency of adaptive-horizon MPC. In International symposium on
automated technology for verification and analysis (pp. 446–462). Springer.

Trodden, P. A., & Maestre, J. M. (2017). Distributed predictive control with
minimization of mutual disturbances. Automatica, 77, 31–43.

rodden, P. A., Maestre, J., & Ishii, H. (2020). Actuation attacks on constrained linear
systems: A set-theoretic analysis. IFAC-PapersOnLine, 53(2), 6963–6968.

Van Overloop, P., Maestre, J., Sadowska, A. D., Camacho, E. F., & De Schut-
ter, B. (2015). Human-in-the-loop model predictive control of an irrigation canal
[applications of control]. IEEE Control Systems Magazine, 35(4), 19–29.

Velarde, P., Maestre, J. M., Ishii, H., & Negenborn, R. R. (2017). Scenario-based defense
mechanism for distributed model predictive control. In 2017 IEEE 56th annual
conference on decision and control (pp. 6171–6176). IEEE.

Velarde, P., Maestre, J. M., Ishii, H., & Negenborn, R. R. (2018). Vulnerabilities in
Lagrange-based distributed model predictive control. Optimal Control Applications &
Methods, 39(2), 601–621.

Venkat, A. N., Hiskens, I. A., Rawlings, J. B., & Wright, S. J. (2008). Distributed MPC
strategies with application to power system automatic generation control. IEEE
Transactions on Control Systems Technology, 16(6), 1192–1206.

Wakaiki, M., Cetinkaya, A., & Ishii, H. (2019). Stabilization of networked control
systems under DoS attacks and output quantization. IEEE Transactions on Automatic
Control, 65(8), 3560–3575.

Wang, T., Gao, H., & Qiu, J. (2016). A combined fault-tolerant and predictive control
for network-based industrial processes. IEEE Transactions on Industrial Electronics,
63(4), 2529–2536.

Wang, Y., & Ishii, H. (2019). A distributed model predictive scheme for resilient
consensus with input constraints. In 2019 IEEE conference on control technology and
applications (pp. 349–354). IEEE.

ang, J., Song, Y., Liu, S., & Zhang, S. (2016). Security in H2–sense for polytopic
uncertain systems with attacks based on model predictive control. Journal of the
Franklin Institute, 353(15), 3769–3785.

ei, L., Wu, J., Long, C., & Lin, Y.-B. (2019). The convergence of IoE and blockchain:
Security challenges. IT Professional, 21(5), 26–32.

orthmann, K., Kellett, C. M., Braun, P., Grüne, L., & Weller, S. R. (2015). Distributed
and decentralized control of residential energy systems incorporating battery
storage. IEEE Transactions on Smart Grid, 6(4), 1914–1923.

u, Z., Albalawi, F., Zhang, J., Zhang, Z., Durand, H., & Christofides, P. D. (2018).
Detecting and handling cyber-attacks in model predictive control of chemical
processes. Mathematics, 6(10), 173.

u, C.-H. J., & Irwin, J. D. (2016). Introduction to computer networks and cybersecurity.
CRC Press.

u, Y., Zhang, X., & Sun, H. (2021). A multi-time-scale autonomous energy trading
framework within distribution networks based on blockchain. Applied Energy, 287,
Article 116560.

iao, S., Ge, X., Han, Q.-L., & Zhang, Y. (2020). Distributed resilient estimator design
for positive systems under topological attacks. IEEE Transactions on Cybernetics.

u, Y., Yuan, Y., Yang, H., & Zhou, D. (2021). The safety region-based model predictive
control for discrete-time systems under deception attacks. International Journal of
Systems Science, 1–17.

aghooti, B., Romagnoli, R., & Sinopoli, B. (2021). Physical watermarking for re-
play attack detection in continuous-time systems. European Journal of Control,
0947–3580.

ang, H., Li, Y., Dai, L., & Xia, Y. (2019). MPC-based defense strategy for distributed
networked control systems under DoS attacks. Systems & Control Letters, 128, 9–18.

ang, H., Xu, H., Xia, Y., & Zhang, J. (2020). Stability analysis on networked control
systems under double attacks with predictive control. International Journal of Robust
and Nonlinear Control, 30(4), 1549–1563.

azdanian, M., & Mehrizi-Sani, A. (2014). Distributed control techniques in microgrids.
IEEE Transactions on Smart Grid, 5(6), 2901–2909.

afra-Cabeza, A., Maestre, J., Ridao, M. A., Camacho, E. F., & Sánchez, L. (2011). A
hierarchical distributed model predictive control approach to irrigation canals: A
risk mitigation perspective. Journal of Process Control, 21(5), 787–799.

arei, M. E., Gupta, M., Ramirez, D., & Martinez-Rodrigo, F. (2019). Switch fault
tolerant model-based predictive control (MPC) of a VSC connected to the grid.
IEEE Journal of Emerging and Selected Topics in Power Electronics.

eldovich, N. (2014). 6.858 computer systems security. In MIT lecture notes, Fall.
hang, L., Xie, W., & Lian, Y. (2020). Distributed fault detection of nonlinear process

systems with senor failures. IFAC-PapersOnLine, 53(2), 2544–2549.
hu, M., & Martínez, S. (2015). Distributed optimization-based control of multi-agent
networks in complex environments. Springer.

http://refhub.elsevier.com/S1367-5788(21)00080-8/sb116
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb116
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb116
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb117
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb117
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb117
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb117
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb117
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb118
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb118
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb118
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb118
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb118
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb119
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb119
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb119
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb119
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb119
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb120
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb120
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb120
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb120
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb120
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb121
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb121
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb121
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb121
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb121
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb122
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb122
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb122
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb122
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb122
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb123
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb123
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb123
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb123
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb123
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb124
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb124
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb124
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb125
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb125
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb125
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb125
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb125
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb126
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb126
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb126
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb126
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb126
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb127
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb127
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb127
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb128
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb128
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb128
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb128
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb128
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb129
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb129
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb129
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb129
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb129
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb130
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb130
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb130
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb130
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb130
http://www.rgoarchitects.com/Files/fallacies.pdf20
http://www.rgoarchitects.com/Files/fallacies.pdf20
http://www.rgoarchitects.com/Files/fallacies.pdf20
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb132
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb132
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb132
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb132
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb132
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb133
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb133
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb133
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb133
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb133
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb134
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb134
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb134
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb134
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb134
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb135
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb136
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb136
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb136
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb137
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb137
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb137
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb137
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb137
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb138
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb138
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb138
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb139
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb139
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb139
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb139
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb139
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb140
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb140
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb140
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb141
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb141
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb141
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb141
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb141
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb142
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb142
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb142
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb143
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb143
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb143
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb143
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb143
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb144
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb144
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb144
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb144
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb144
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb145
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb145
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb145
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb145
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb145
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb146
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb146
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb146
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb147
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb147
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb147
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb148
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb149
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb149
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb149
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb149
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb149
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb150
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb150
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb150
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb150
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb150
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb151
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb151
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb151
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb152
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb152
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb152
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb153
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb153
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb153
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb153
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb153
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb154
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb154
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb154
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb154
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb154
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb155
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb155
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb155
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb155
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb155
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb156
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb156
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb156
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb156
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb156
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb157
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb157
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb157
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb157
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb157
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb158
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb158
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb158
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb158
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb158
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb159
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb159
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb159
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb159
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb159
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb160
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb160
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb160
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb160
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb160
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb161
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb161
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb161
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb162
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb162
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb162
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb162
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb162
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb163
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb163
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb163
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb163
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb163
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb164
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb164
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb164
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb165
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb165
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb165
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb165
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb165
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb166
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb166
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb166
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb167
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb167
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb167
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb167
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb167
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb168
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb168
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb168
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb168
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb168
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb169
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb169
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb169
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb170
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb170
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb170
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb170
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb170
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb171
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb171
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb171
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb172
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb172
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb172
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb172
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb172
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb173
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb173
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb173
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb173
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb173
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb174
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb175
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb175
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb175
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb176
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb176
http://refhub.elsevier.com/S1367-5788(21)00080-8/sb176

	Cyber-security in networked and distributed model predictive control
	Introduction
	Problem setting
	DMPC algorithms
	Dual decomposition
	Cooperation-based MPC

	Main elements of DMPC approaches and cyber-security

	Cyber attacks in DMPC
	The communication network
	Deception attacks
	Disruption attacks

	The software
	Cyber-attacks consequences in DMPC

	Cyber-defense mechanisms
	Prevention measures
	Detection and isolation measures
	Analytical detection approaches
	Learning detection approaches

	Mitigation measures
	Active mitigation strategies
	Passive mitigation strategies


	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


