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Abstract—This work presents insights on the application of the
Bayesian information criterion (BIC) to fix the optimum number
of coefficients in Volterra series applied to the modeling and
linearization of power amplifiers. The BIC is transformed from
a rule to be applied after selection techniques to a stopping
criterion, that enables the halting of the algorithm when a
condition is reached. This study reveals that the BIC is equivalent
to allow a certain identification normalized mean square error
(NMSE) decrease after the inclusion of a model component.
Experimental results of the digital predistortion of a class J power
amplifier are provided, demonstrating the proposal applicability
in the attaining of the optimum number of coefficients. A
comparison is made between the results obtained when the
stopping rule is applied to the hill climbing (HC) and the doubly
orthogonal matching pursuit (DOMP) algorithms.

Index Terms—Bayesian information criterion, Digital pre-
distortion, Doubly orthogonal matching pursuit, Hill climbing
algorithm, Order reduction, Power amplifier.

I. INTRODUCTION

In a practical situation of model fitting, the model order is
generally unknown. Many order selection methods have been
proposed, each one of them following a different approach.
The Akaike Information Criterion (AIC) [1] estimates the
information lost by a model, providing a means for model
selection through the trade-off between the goodness of the fit
and the penalty because of the number of estimated param-
eters. Another popular method is the Bayesian information
criterion (BIC) [2] that selects the best model by maximizing
the value of the likelihood function. Despite the extensive
literature on model selection techniques, the most common
order selection criteria remain the AIC and the BIC [3].

Regarding the compressed-sensing recovery of the coeffi-
cients of the model, there are a variety of algorithms that have
been used in practical applications [4]. There exist multiple
scenarios in which the dependence on just a certain number of
regressors is desired. This tuning can be achieved by applying
model selection techniques, which aim at choosing one model
from a set of candidate models.
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In the context of behavioral modeling and digital predis-
tortion (DPD) of power amplifiers (PAs), the use of Volterra
series as the underlying model poses a serious drawback
because of their rapid grow in number of coefficients with
the nonlinear order and memory depth. Coefficient selection
techniques enable their use by reducing their computational
complexity. Recently, the BIC has been applied to fix the
optimum number of coefficient [5]–[9] and there exist a vast
literature on order reduction techniques that can benefit from
its features, such as the hill climbing (HC) [10] algorithm and
the doubly orthogonal matching pursuit (DOMP) [11].

In this letter, we focus on the application of the BIC to
iterative selection techniques by transforming the BIC cost
function to a stopping criterion in order to provide an optimal
upper bound for the number of coefficients from information
theory perspective. Considering that the BIC was previously
used after the DOMP run, here we enable the algorithm halt
in the corresponding iteration, which produces remarkable
savings in execution time. Also, we give formalism to the
ad-hoc rule that was applied to the HC, providing a unique
model-selection scheme. The remaining of this communication
continues with the notation and prerequisites in Section II. The
transformation of the BIC into a stopping rule is provided in
Section III. Section IV deals with experimental design and
results and Section V concludes this work.

II. NOTATION AND PREREQUISITES

The recovery of unknown model parameters h ∈ CN after a
spatial transformation is usually modeled by the measurement
equation

y = Xh + e, (1)

where y ∈ CM is the output of the system, X ∈ CM×N is the
measurement matrix that holds one of the N model regressors
in each of its columns, e is the measurement error and M is
the number of sample points. A common approach to obtain an
estimation ĥ is the minimization of the quadratic error ‖e‖22,
that leads to the normal equation and to the least-squares (LS)
solution

ĥ =
(
XHX

)−1
XHy, (2)

where XH stands for the Hermitian transpose of matrix X.
The estimation of the output signal is attained with ŷ = Xĥ.
Although this well-established procedure provides a unique
solution to the regression, it also finds a dependence of the
system output with the whole set of model regressors. The
application of compressed-sensing techniques to this scheme
allows a sparse recovery of the solution.
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Selection techniques aim at obtaining an ordered support
set S which contains the indices of the measurement matrix
columns sorted by importance. In each iteration the algorithm
adds one component —or a set of them, depending on the
technique— to the support set, an estimation of h is performed
and the residual error r is calculated. This loop is repeated
until a stopping criterion is achieved. Order selection suppose
that there exists a set of candidate models, amongst which the
minimum of a cost function will define the optimal model.
Since sorting algorithms select one or more components per
iteration, that is, they are incremental, it is reasonable to
transform the criterion that has to be evaluated after the loop
of the algorithm to a stopping rule that breaks the execution
once the condition is fulfilled.

III. THE BIC AS A STOPPING RULE

The BIC is defined as the sum of a term that depends on
the error and a penalty that is related to the number of model
components n [5]

BIC = 2M ln σ̂2
e + 2n ln 2M, (3)

where σ̂2
e is the error variance and M is the number of samples

used for the model identification. The BIC in (3) acts as a
trade-off between the error and the number of components. In
an iterative sorting algorithm, the modeling error is commonly
known as the residual error r, therefore

σ̂2
e = Var[e] = Var[y − ŷ] = Var[r] = E[|r|2]− |E[r]|2, (4)

where Var[·] represents the variance of its argument, E[·] is
the expected value and | · | stands for its module. Since it is a
common practice to center the variables, without any loss of
generality E[r] = 0 can be assumed. Therefore,

E[|r|2] =
1

M

M∑
i=0

|ri|2 =
1

M
‖r‖22, (5)

where ‖·‖2 stands for the `2 norm of its argument.
Combining the above results with (3) and adding an explicit

dependence with the iteration k ∈ N, the BIC can be rewritten
as

BIC(k) = 2M ln

(
1

M
‖r(k)‖22

)
+ 2n(k) ln 2M, (6)

where n(k) denotes the number of components at iteration k.
This cost function is composed of two terms. The first term
is dependent on ‖r(k)‖22. Since this magnitude measures the
modeling error —or equivalently the amount of output power
left to be captured by the model—, as more regressors are
added to the model, the basis space in which the output is
going to be expressed is richer and the residual decreases. The
second term in (6) is a penalty that increases linearly with the
number of components and also depends on a fixed number
of samples M . Therefore, the BIC is initially decreasing, and
a minimum will be found when its increment is not negative.

Assuming that there is no collinearity in the measurement
matrix, i.e., all the regressors are different, the BIC is a
monotonically decreasing function. As the BIC is initially
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Fig. 1. Evolution of the allowed NMSE increment per iteration and component
with the identification size for the BIC.

decreasing, a minimum will be found when it starts to increase,
thus ∆BIC(k) > 0. The BIC increment in one iteration follows

ln

(
1

M
‖r(k)‖22

)
− ln

(
1

M
‖r(k−1)‖22

)
+ ∆n(k) ln 2M

M
> 0,

(7)
where ∆n(k) = n(k) − n(k−1) stands for the increment in
number of components at iteration k, and rearranging the
terms,

‖r(k)‖22
‖r(k−1)‖22

> (2M)−
1
M ∆n(k)

. (8)

The normalized mean square error (NMSE) at iteration k is
defined as NMSE(k) = 10 log10

‖r(k)‖22
‖y‖22

, therefore

∆NMSE(k)

∆n(k)
> − 10

M
log10 2M. (9)

This relationship is plotted in Fig. 1. The stopping rule in
(9) supports the following procedure: “continue running the
algorithm until it is not able to discard a certain amount of
error per iteration and component”. This error threshold is
dependent on the number of samples used for the identification
of the model, which balances the error evolution shape with
the number of model components and allows order selection
with a reduced risk of overfitting [12].

A. Generalization of the BIC Stopping Rule and Relation with
Other Proposals in the Literature

From (8), the definition of a general stopping rule follows

‖r(k)‖22
‖r(k−1)‖22

> α∆n(k)

, (10)

which is expressed as inequality considering that there does
not exist regressor repetition. As the stopping rule is expected
to be triggered when the model shows good accuracy, we can
also state that the residual decrement will be slow, that is,
‖r(k−1)‖22 ≈ ‖r(k)‖22. From (9) and (10),

∆NMSE(k)

∆n(k)
> 10 log10 α, (11)

where α < 1, and its value in decibels can be interpreted as
the NMSE tolerance per coefficient.

In (6) of [10] —and, equivalently, (10) of [13]— a cost
function J was defined as the trade-off between model accu-
racy and model complexity,

J (k) = NMSE(k) + µn(k), (12)
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Fig. 2. Empirical identification NMSE of the HC and DOMP algorithms
versus the number of coefficients. The BIC stopping rule indicates the moment
in which the error difference decreases below a given threshold.

where µ represents the NMSE tolerance per coefficient, and
the minimum of J (k) indicates the optimum model. Consid-
ering (13) of [14], which states that

nBIC = arg min
n

[
NMSE(k) +

n(k)

M
10 log10 2M

]
, (13)

and following the same rationale, the optimum is found when

∆NMSE(k)

∆n(k)
> µ, (14)

therefore µ = 10 log10 α and µBIC = − 10
M log10 2M.

IV. EXPERIMENTAL DESIGN AND RESULTS

In order to validate the proposal, a generalized memory
polynomial (GMP) model [15] was regressed for the indirect-
learning DPD of a PA working on its nonlinear regime.
The testbench was composed by a SMU200A vector signal
generator (VSG) from Rohde & Schwarz, a PXA-N9030A
vector signal analyzer (VSA) from Keysight Technologies and
a dc power supply. The device under test (DUT) was the
cascade of two Mini-Circuits TVA-4W-422A+ preamplifiers
and the continuous mode class J PA [16] operating at a center
frequency of 850 MHz. The output power was set to +31 dBm
characterized by 3.5 dB of gain compression.

The signal under test was designed according to a 5G-NR
scheme with 20 MHz of bandwidth, 30 kHz carrier separation
and a sampling rate of 92.16 MHz. The signal segment used
for identification was composed of 5500 samples, that through
(9) corresponds to a minimum-allowable NMSE decrement of
µ = −0.0073 dB or, equivalently, α = 0.998.

The proposed BIC stopping rule was applied to two different
selection techniques, the HC and the DOMP algorithms, and
their results were compared. According to the BIC applied
to the HC algorithm, the optimum GMP model presented a
set of parameters given by Ka = 5, La = 7, Kb = 3,
Lb = 2, Mb = 2, Kc = 4, Lc = 4, Mc = 7. For the
sake of comparison, the DOMP was applied to the neighbour
with maximum number of coefficients in the HC iterations to
obtain a set of sorted regressors by importance, to which the
BIC defined an optimum set. Fig. 2 shows the identification
NMSE evolution with the number of coefficients. Note that the
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Fig. 3. Normalized power spectral density of the PA output without DPD and
with DPD regressed with the number of coefficients indicated by the BIC.

TABLE I
MEASURED PERFORMANCE IN TERMS OF NMSE, ACPR, EVM AND
NUMBER OF COEFFICIENTS FOR THE PA WITH AND WITHOUT DPD

NMSE ACPR -1/+1 EVM Number
Experiment (dB) (dBc) (%) of coef.

w/o DPD -19.5 -29.1 / -27.0 8.6 -
HC DPD -41.4 -53.4 / -52.8 1.0 206
DOMP DPD -41.5 -53.8 / -53.1 1.1 137

BIC was applied to both techniques independently, attaining
an optimum number of coefficients of 137 and 206 in the
DOMP and the HC techniques, respectively. This difference
is justified by the shape of the error evolution, which reaches
a steady state sooner in the DOMP case. Note that the DOMP
curve does not match with the HC convex hull because the
first selects the model coefficients while the latter selects
the optimal GMP model parameters, i.e., the HC produces
a complete GMP-model regressors matrix while the DOMP
produces a subset of it, namely a sparse regressors matrix.

The optimum models for both HC and DOMP were used
to generate a predistorted signal, whose linearization perfor-
mance and power spectral density (PSD) are shown in Table I
and Fig. 3, respectively. The effect of both techniques is
evidenced by a reduction of the in-band distortion, achieving
an enhancement of over 20 dB in NMSE and an error
vector magnitude (EVM) of about 1% in the linearized signal.
The adjacent channel power ratio (ACPR) improvement is
illustrated by the decrease in spectral regrowth, achieving a
level of below −52 dB in all the linearized cases.

V. CONCLUSION

A transformation of the BIC into a stopping rule for iterative
algorithms has been presented in this letter. This modification
allows to extract information about how the optimum model
is selected amongst the set of candidates, that follows the rule
of stop adding components to the support set once the new
selection is not able to discard a certain amount of error. The
result has been related to other forms of cost functions in the
literature, providing a unique framework. Measurement results
show the effect of the error evolution on the optimum number
of coefficients and its applicability to techniques such as the
HC and the DOMP.
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