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Dispersive optical model description of nucleon scattering on Pb and Bi isotopes
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A recently derived dispersive optical model potential (DOMP) for 208Pb is extended to consider the nonlocality
in the real potential and the shell gap in the definition of the nuclear imaginary potentials near the Fermi energy.
The modified DOMP improves the simultaneous description of nucleon scattering on 208Pb and of the 208Pb
particle-hole bound states. This potential is shown to give a very good description of nucleon scattering data on
near-magic targets 206,207Pb and 209Bi.
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I. INTRODUCTION

The nuclear optical model has been comprehensively ap-
plied to analyze the elastic scattering of pions, nucleons, and
heavier particles by nuclei over a wide range of energies [1–3].
The requirement of causality, namely that the scattering wave
is not emitted before the incident wave arrives [4], led to the
need to consider dispersion effects in the nuclear scattering,
and allowed the combination of the optical model potential
and the shell model potential into a dispersive optical model
potential (DOMP) [5]. The DOMP combined both nuclear
reaction (E > 0) and nuclear structure (E < 0) information
to minimize the number of parameters and improve the pre-
dictive capabilities of relevant observables.

Pioneering work on DOM potentials for strongly deformed
nuclei was the contribution of Romain and Delaroche [6], who
analyzed the nucleon scattering data on 181Ta and tungsten
isotopes. An explicit treatment of the nonlocality of the sur-
face imaginary potential and the Hartree-Fock (HF) potential
was introduced following Perey-Buck recipes [7].

Mahaux and Sartor suggested in 1991 [8,9] that the ab-
sorptive potential will be asymmetric at large positive and
negative energies with respect to the Fermi energy EF . The
DOM analysis of neutron scattering on 27Al [10] showed
the importance of the asymmetry of the volume absorptive
potential and the corresponding dispersive contributions to
describe σT data for energies above 100 MeV.

Many studies have also dealt with nucleon scattering on
near-magic nuclei. A global spherical potential for nucleon-
induced reactions derived by Koning and Delaroche [11] used
local dispersive OMPs as a starting point [12]. Recently,
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a global dispersive spherical potential for neutron-induced
reactions was derived by Morillon and Romain [13], where
an explicit nonlocal HF-like potential was used; bound-state
data were also studied [14].

Dispersive optical model has been extensively developed
by Washington University (St. Louis) researchers to study nu-
cleon scattering on magic and near-magic nuclei as reviewed
recently by Dickhoff and Charity [15]. The need to introduce
asymmetric imaginary volume potentials far from the Fermi
energy was confirmed in Ref. [16] and led to an improved de-
scription of spectroscopic factors of the bound states [17]. An
energy gap called EP near the Fermi energy was introduced in
Ref. [17] to describe elastic nucleon scattering data on magic
nuclei. Additionally, the importance of the spatial nonlocality
in the DOM potential, including both the real and imaginary
parts, was highlighted in Refs. [17–22] to describe both the
nucleon scattering as well as bound-state data. Nonlocality in
the DOM was also shown to have a large impact on calculated
(p, d) transfer cross sections [23].

Phenomenological local DOM potentials following the
Lane formulation [24,25] have been developed by authors
[26–32] and mostly applied to describe nucleon scattering on
well-deformed target nuclei using a coupled-channel formal-
ism. Calculated scattering cross sections included quasielastic
(p, n) scattering data; e.g., see Ref. [33]. Those potentials very
accurately describe available experimental data of nucleon
scattering from keV up to 150–200 MeV of incident nucleon
energy. However, deformed nuclei do not have bound-state
experimental data available as the bound states are very frag-
mented due to the deformation.

The analysis of nucleon scattering of 208Pb by DOMP was
recently undertaken [32]. The DOMP from Ref. [32] was also
used to test the derived DOMP at negative energies using
our methodology [34]. Calculated DOMP energies of the
particle-hole bound states were compared to other calculated
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TABLE I. Dispersive optical-model potential parameters for nucleon induced reactions on lead and bismuth isotopes.

Volume Surface Spin-orbit Coulomb

V0 = 81.5 + 0.0292(A − 208) MeV VSO = 7.61 MeV CCoul = 1.288 MeV
Real β = 0.912 fm Dispersive λso = 0.006 MeV−1

Potential Cviso = 29.35 MeV (�Vs) + dispersive (�Vso)
+ dispersive (�Vv)

Av = 12.81 MeV W0 = 19.66 MeV WSO = −3.1 MeV
Imaginary Bv = 65.56 MeV Bs = 8.99 MeV Bso = 160 MeV
Potential Ea = 56 MeV Cs = 0.025 MeV−1

α = 0.12 MeV1/2 Cwiso = 50.71 MeV

Potential rHF = 1.226 − 0.00176(A − 208) rs = 1.1858 + 0.03418(A − 208) rso = 1.194 rc = 1.27
Geometry aHF = 0.647 + 0.002417(A − 208) as = 0.6195 aso = 0.6426 ac = 0.671
(fm) rv = 1.321

av = 0.6267 − 0.00658(A − 208)

values [13,14] as well as to the existing experimental data
[35]. Some inconsistencies in the data description were found
in Ref. [34] including problems to describe accurately the total
cross sections in the region from 5 up to 10 MeV and, at the
same time, achieve a nice description of the bound-state data.
A very recent publication from the Washington University (St.
Louis) group also studied the nucleon scattering on 208Pb by
DOMP using their own methodology [36].

In this work, some of the physical ideas advanced by
Mahaux and Sartor [8], the CEA Bruyères-le-Châtel group
[6,13,14], and the Washington University (St. Louis) group
[16,17] will be tested using our phenomenological DOMP
framework to study the impact on calculated observables. Our
main goal is to derive a Lane consistent potential for lead and
bismuth isotopes that reproduces very well both scattering and
bound-state data.

II. DISPERSIVE SPHERICAL OPTICAL
MODEL POTENTIAL

A dispersive optical model is defined by energy-dependent
real Vi (i = HF, v, s, C, so) and imaginary Wi (i = v, s, so)
functionals for the so-called Hartree-Fock (HF), volume (v),
surface (s), Coulomb (C) and spin-orbit (so) potentials, re-
spectively and also by the corresponding dispersive contri-
butions to the real potential �Vv, �Vs, and �Vso, which
are calculated analytically from the corresponding imaginary
potentials [31,37,38]. The general formulation of the Lane-
consistent spherical dispersive optical potential has been pub-
lished previously (e.g., see Eqs. (1)–(3) in Ref. [34]) and
is not repeated here. Note that our formulation considers
the Coulomb corrections in all orders through an effective

TABLE II. The average particle (hole) single-particle energies EP

(for neutrons and protons) in MeV for nucleon-induced reaction on
selected targets.

206Pb 207Pb 208Pb 209Bi

EP(n) −6.75 −6.74 −3.95 −4.62
EP(p) −3.57 −3.72 −3.81 −3.81

energy shift in the potential definition; i.e., the effect of
Coulomb interaction on the nuclear interaction is not an
averaged energy-independent constant as usually done (e.g.,
see Koning-Delaroche potential definition [11]).

It is well known (see, e.g., Ref. [15]) that the real mean-
field potential VHF(r, r′) is nonlocal and energy independent.
A parametrization of such nonlocal potential was postulated
by Perey and Buck to be of Gaussian type [7]:

VHF(r, r′) = V (r) exp (−|r − r′|2/β2), (1)

where the parameter β is a nonlocality range given in fermi.
The local energy approximation of such nonlocal potential [7]
then results in the following implicit equation:

VHF(E ) = AHF exp

{
− μβ2

(h̄c)2
[E + VHF(E )]

}
. (2)

Note that both AHF and the potential VHF(E ) in Eq. (2) are
assumed to be positive. To obtain the potential depth VHF(E )
at a given energy E it is necessary to solve the Eq. (2) by
iterations.1 Note that both AHF and β are independent of
iterations on VHF for a given energy E . The reduced mass μ

in the formula is calculated using relativistic kinematics and,
therefore, is also a function of the incident nucleon energy
E . The isospin dependence of the potential (the Lane term
[24,25]) was considered in real VHF(E ) and imaginary surface
Ws(E ) potentials as follows:

AHF = V0

[
1 + (−1)Z ′+1 Cviso

V0

N − Z

A

]
, (3)

As = W0

[
1 + (−1)Z ′+1 Cwiso

W0

N − Z

A

]
, (4)

where V0, Cviso, W0, and Cwiso are undetermined constants.
Many authors found that the imaginary volume potential does
not depend on the isospin. The isospin constants Cviso and
Cwiso should be determined mainly using quasielastic (p, n)
scattering data.

1Solution of Eq. (2) can be expressed explicitly through the spe-
cial function Lambert W (as known as the product logarithm) as
VHF(E ) = W [AHFλ exp (−λE )]

λ
, where λ ≡ μβ2

(h̄c)2 .
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FIG. 1. DOMP depths and dispersive contributions as a function of E for the n+208Pb reaction between −50 and 200 MeV. (a) Potential
depths for real spin-orbit Vso (top panel), imaginary spin-orbit Wso, volume Wv, and surface Ws potentials (middle panel), and corresponding
dispersive contributions �Vso, �Vv, and �Vs (bottom panel) and (b) “Hartree-Fock” potential depth from Ref. [34] (previous, solid) compared
to the present one (dashed) given by Eq. (2).

The energy dependencies for the imaginary volume term
Wv, the imaginary surface term Ws, and the spin-orbit imag-
inary term Wso are taken as the ones suggested by Brown
and Rho [39], Delaroche et al. [40], and Koning et al. [11],
respectively. The imaginary potentials used in all our studies
so far are local ones. Some groups advocate the need to
consider nonlocal imaginary potentials [6,19,20], but this is
deferred to future works. In this work, following Mahaux
et al. [8] and Molina et al. [10], a modified definition for the
imaginary part of the OMP is taken as follows:

Wv(E ) =
{

0 EF < E < EP

Av
(E−EP )2

(E−EP )2+(Bv )2 E > EP
, (5)

Ws(E ) =
⎧⎨
⎩

0 EF < E < EP

As
(E−EP )2

(E−EP )2+(Bs )2

× exp (−Cs|E − EP|) E > EP

, (6)

Wso(E ) =
{

0 EF < E < EP

WSO
(E−EP )2

(E−EP )2+(Bso )2 E > EP
. (7)

The imaginary part of the DOM potential is assumed to be
zero inside the shell gap �, which is related to the average
energy of the single-particle (single-hole) states EP as � =
2(EP − EF). Obviously, there are no states in the shell gap,
and therefore we have to set the absorption to zero. A similar
definition of the shell gap was employed in Refs. [16,17].
Both EP and EF are different for neutron- and proton-induced
reactions. For nuclei far from magic EP is approximately equal
EF, and therefore the shell gap is zero and can be neglected.
The symmetry condition W (2EF − E ) = W (E ) is used to
extend the imaginary part of the OMPs for energies below
the Fermi energy. This analytical extension is needed for the
calculation of the dispersive corrections.

Asymmetric absorptive potentials were used in many anal-
ysis of DOMPs derived on different targets [26–32]. Follow-
ing Mahaux and Sartor [9], the assumption that the imaginary
potential Wv(E ) is symmetric about E = EF [according to

equation W (2EF − E ) = W (E )] is modified above some fixed
energy Ea, which is expected to be close to 60 MeV, but it is
treated as a parameter.

FIG. 2. Energy dependence of the imaginary potential depths
(solid curve) and corresponding dispersion correction terms (dashed
curve) near the Fermi energy EF calculated for the n+208Pb reaction.
The effect of the assumed shell gap � = 2(EP − EF ) = 3.4 MeV
on the imaginary potentials is clearly seen. (a) Volume imaginary
potential (left Y-axis) and corresponding dispersive correction (right
Y-axis) and (b) Surface imaginary potential (left Y-axis) and corre-
sponding dispersive correction (right Y-axis).
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FIG. 3. Comparison of the calculated total cross section for
the n+208Pb reaction with measurements. Calculations using the
Koning-Delaroche potential [11], the DOMP from our previous work
[34], and the current DOMP are shown. Experimental data are taken
from EXFOR [45] and Refs. [46–49].

Optical model code OPTMAN [41–43] that includes
the calculation of (p, n) quasielastic scattering [33] was
used for cross-section calculations for positive energies.

The parameters of the dispersive optical model potential
were searched for by minimizing the quantity χ2 in the
usual way [44]. All experimental data used in the fit-
ting process are taken from the EXFOR database [45]
which is exactly the same database used to derive the
DOMPs describing scattering on 208Pb target and published
in Refs. [32,34].

Additionally, the calculation of 208Pb bound states that
depends on the real potential [34] is also used in the
DOMP optimization using the experimental data quoted in
Ref. [35]. Newly derived DOMP parameters are listed in
Table I and corresponding average particle (hole) energies
EP(n) and EP(p) that define the imaginary potentials are listed
in Table II.

Figure 1(a) shows the obtained energy dependence of the
real spin-orbit potential, of the imaginary (absorptive) poten-
tials, and of the corresponding dispersive correction terms
near the Fermi energy for the n+208Pb reaction. A comparison
of the energy dependence of the Hartree-Fock VHF potential is
shown in Fig. 1(b). “Previous” refers to the VHF potential from
Ref. [34] which is compared to the local approximation of the
nonlocal potential used in this work [see Eq. (2) labeled as
“Present”].

The depth of Hartree-Fock VHF potential given by Eq. (2)
is lower below the Fermi energy, falls more slowly up to
100 MeV and decreases faster above that energy as compared

FIG. 4. Comparison of calculated total cross section for (a) n+206Pb, (b) n+207Pb, (c) n+208Pb, and (d) n+209Bi reactions with
measurements, as well as the results of Koning-Delaroche calculations [11]. Experimental data are taken from Refs. [46–57].
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FIG. 5. Neutron single-particle (hole) energies in 208Pb, the first and second columns display the results from Ref. [14], the third column
shows those of Ref. [34], and the fifth column contains those of the current work. In the fourth column, the experimental values taken from
Ref. [35] are shown. Note that EF ≈ −5.6 MeV and it defines the N = 126 shell. Levels below −5 MeV are hole levels; above that are particle
levels.

to the exponentially decreasing potential used in Ref. [34].
A shallower potential well at negative energies given by the
Perey-Buck nonlocal approximation [7] improved the descrip-
tion of the bound states as well as scattering data, as will be
shown below.

Figure 2 shows the energy dependence of the imagi-
nary (absorptive) potentials and corresponding dispersive-
correction terms near the Fermi energy for the n+208Pb
system. The figure clearly shows that the imaginary po-
tentials vanish from the energy (2EF − EP) up to the en-
ergy EP reflecting the shell gap. However, the dispersive
correction remains nonzero in that region, as discussed
in Refs. [37,38].

III. RESULTS AND DISCUSSION

The calculation of neutron total cross section for the 208Pb
target using our DOMP is compared with the results of
Koning-Delaroche [11] and our previously derived DOMP
[34] in Fig. 3 in the energy range from 6 up to 16 MeV. The
potential from Ref. [34] was worse than Koning-Delaroche
description [11] in this region. Results from the current work
shows a clear improvement over our previous work, and these
DOMP results are in good agreement with data as well as with
Koning-Delaroche potential calculations in this energy region.

The calculation of neutron total cross sections for 206Pb,
207Pb, 208Pb, and 209Bi are compared in Fig. 4 with the results

TABLE III. Spectroscopic factors of valence-neutron-particle states (denoted by quantum numbers in bold) and valence-neutron-hole states
in 208Pb.

3d3/2 2g7/2 4s1/2 3d5/2 1 j15/2 1i11/2 2g9/2 3p1/2 2 f 5/2 3p3/2 1i13/2 2 f 7/2 1h9/2

This work 0.90 0.89 0.92 0.90 0.73 0.74 0.78 0.83 0.77 0.86 0.70 0.93 0.97
Ref. [35] 0.90 0.86 0.91 0.88 0.82 0.82 0.81 0.80 0.81 0.81 0.81 0.85 0.85
Ref. [61] 0.72 0.80 0.61 0.77 0.55 0.73 0.67 0.79 0.73 0.71 0.62 0.53 0.51
Ref. [62] 0.79 0.79 0.81 0.78 0.79 0.79 0.88 0.78 0.74 0.82 0.83 0.70 0.81
Ref. [63] 0.80 0.82 0.86 0.83 0.71 0.75 0.86 0.73 0.82 0.76 0.72 0.59 0.44
Ref. [64] 0.72 0.76 0.80 0.78 0.66 0.86 0.94 0.94 0.91 0.94 0.92 0.75 0.82
Ref. [65] 0.88 0.92 0.83 0.90 0.62 0.89 0.97 0.95 0.92 0.94 0.87 0.70 0.84
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FIG. 6. Comparison of nucleon elastic scattering angular distributions with measurements at different incident nucleon energies. (a) 206Pb
(n,n) angular distributions, (b) 207Pb (n,n) angular distributions, (c) 209Bi (n,n) angular distributions, and (d) 209Bi (p,p) angular distributions.

of Koning-Delaroche potential [11] from 500 keV up to
200 MeV of incident neutron energy. The calculated total
cross section using this DOMP is in fair agreement with
Koning-Delaroche results above 5 MeV, but reproduces better
the experimental data below that energy for all targets.

The real part of our derived DOM potential is the shell
model potential, which can be used to calculate the energies
of the bound single-particle states of the magic nuclei 208Pb.
This potential includes the sum of the Hartree-Fork term
VHF(Enlj ), the real spin-orbit term Vso(Enlj), and all dispersive
correction terms �Vv(Enlj), �Vs(Enlj), and �Vso(Enlj) with the
corresponding geometry form factors.

The experimental values of the neutron single-particle
energies of the various single-particle and hole states for
208Pb were taken from Ref. [35]. The predicted single-
particle (single-hole) energies are compared with the exper-
imental data in Fig. 5. Results labeled “DOM(MR)” and
“DOM(MR+35%)” represent the Morillon and Romain cal-
culations from Ref. [14]; the label “DOMprevious” corresponds
to calculations from our previous publication [34], and the la-
bel “DOMpresent” represents the current work. The description
of the single-particle bound states is significantly improved
compared to Ref. [14], and slight improvement can be seen
relative to our previous work. The order of both particle and
hole states agrees with the experimental one; the particle
energies agree well for the five single-particle levels near the
Fermi energy; the agreement deteriorates for more unbound
states. A similar situation is observed for hole states: better
agreement near the Fermi energy, worse for deeper hole states.

The neutron single-particle energies for last single-particle
state and first single-hole state were calculated for the 208Pb
target; the absolute values of these two energies define
the neutron separation energies Sn(A) and Sn(A + 1). The
calculated values of Sn(A) and Sn(A + 1) are 7.47 and 3.85
MeV, respectively. These results are in excellent agreement
with the corresponding experimental data 7.37 and 3.94 MeV
[58,59]. The root mean square (rms) radii for each orbit and

single-particle densities were also calculated and the agree-
ment with results from Ref. [35] is similar to what we already
published for 208Pb [34].

The spectroscopic factor is given by the following expres-
sion:

Snlj =
∫

ū2
nlj(r)[m/m̄(r; Enlj )]dr

=
∫

u2
nlj(r)

[m∗
H(r; Enlj )/m]

[m̄(r; Enlj )/m]
dr

=
∫

u2
nlj(r)

[
1 − d

dE VHF(r; E )
∣∣
E=Enlj

]
[
1 − d

dE �V (r; E )
∣∣
E=Enlj

]dr. (8)

where ūnlj is the eigenstate of the full microscopic mean
field, and unlj is the eigenstate of its local equivalent that
we use. Normalized eigenstates were used in spectroscopic
factor calculations; details of the definition can be found in
Refs. [35,60]. The spectroscopic factors of valence neutron
particle and hole states in 208Pb are compared in Table III
with previous calculations from Refs. [35,61–65] (values were
taken from Ref. [8], except Johnson et al. values [35]). A
reasonable agreement is observed.

Figure 6 shows calculated elastic scattering angular distri-
butions of neutrons and protons incident on 206Pb, 207Pb, and
209Bi for different incident nucleon energies. Results for 208Pb
are similar to those presented in Ref. [34] and are not shown
in this paper. The results for both neutron and proton elastic
scattering describe the experimental data rather well over the
entire energy and angular range. Slight underestimation of
data below 5 MeV of neutron incident energy is probably
associated with the missing compound-elastic contribution.

Figure 7 shows elastic scattering analyzing powers of
neutrons and protons incident on 208Pb and 209Bi for different
incident nucleon energies. Results for 208Pb are similar to
those presented in Ref. [34] in the regions where data are
available; the agreement is reasonable but not perfect. A
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FIG. 7. Nucleon elastic scattering analyzing powers compared with the experimental data at different incident nucleon energies. (a) 208Pb
(n,n) analyzing powers, (b) 208Pb (p,p) analyzing powers, (c) 209Bi (n,n) analyzing powers, and (d) 209Bi (p,p) analyzing powers.

similar level of agreement is observed for nucleon scattering
on 209Bi.

The newly fitted DCCOM potential has not been tested
on quasielastic (p, n) scattering to the isobaric analog states
(IAS) of the target nucleus, which represent the best test of
the isovector part of the optical potential.

Figures 8 and 9 show the calculated quasielastic (p, n)
angular distribution for scattering on 208Pb, and on 206Pb
and 209Bi targets, respectively. Reasonable agreement with
data is achieved showing the Lane consistency of the derived
DOMP, i.e., the same potential describes both neutron and
proton scattering indistinctly, including the quasielastic (p, n)
scattering which is defined by the isovector potential. How-
ever, additional work is needed to clarify a potential improve-
ment of the quasielastic data description by introducing a
shift of the isovector and isoscalar geometries as recently
proposed by Danielewicz et al. [66]. In fact, our calcula-

FIG. 8. Calculated angular distributions of the quasielastic (p, n)
scattering on 208Pb target.

tions underestimate the oscillations in data as observed in
Ref. [66].

IV. CONCLUSIONS

In order to improve the description of the nucleon scat-
tering data and the bound-state energies using a dispersive
potential, this work considered the nonlocality of the real
potential as suggested by Perey and Buck [7] and extensively
used in papers by CEA Bruyères-le-Châtel and Washington
University (St. Louis) groups, and the impact of the large
shell gap in magic nuclei on the definition of the imaginary
potential [8,10]. The improved physical model allowed to
derive a Lane-consistent dispersive optical model potential
that accurately describes scattering data for nucleon-induced
reactions on the double-magic target 208Pb. The real part of the
same DOMP, which corresponds to the shell potential, gives

FIG. 9. Calculated angular distributions of the quasielastic (p, n)
scattering on 206Pb and 209Bi targets.
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a good description of the bound-state data. Newly derived
potential is also shown to give a good description of nucleon
scattering on near-magic lead and Bi isotopes, which is very
important for applications.
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