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Background: Nucleon-knockout reactions on proton targets (p, pN) have experienced a renewed interest due to
the availability of inverse-kinematics experiments with exotic nuclei. Various theoretical descriptions have been
used to describe these reactions, such as the distorted-wave impulse approximation, the Faddeev-type formalism,
and the transfer-to-the-continuum method.
Purpose: Our goal is to benchmark the observables computed with the Faddeev and transfer-to-the-continuum
formalisms in the intermediate energy regime relevant for the experimental (p, pn) and (p, 2p) studies.
Method: We analyze the 11Be(p, pn) 10Be reaction for different beam energies, binding energies, and orbital
quantum numbers with both formalisms to assess their agreement for different observables.
Results: We obtain a good agreement in all cases considered, within ≈10%, when the input potentials are taken
consistently and realistically.
Conclusions: The results of this work prove the consistency and accuracy of both methods, setting an indication
on the degree of systematic uncertainties applicable when using them to extract spectroscopic information from
(p, pN) reactions.
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I. INTRODUCTION

Thanks to the development of radioactive isotope beam fa-
cilities, experiments on unstable nuclei in inverse kinematics
have allowed us to explore nuclear structure far from the val-
ley of stability. In particular, nucleon-knockout experiments
with proton targets (p, pN) have regained popularity thanks
to their simple reaction dynamics, their capacity to remove
deeply bound nucleons [1–4], and the possibility of exploring
very rare isotopes using inverse kinematics.

Their ability to explore single-particle properties for
weakly and deeply bound nucleons renders (p, pN) reactions
an excellent candidate to clarify the ten-year-long puzzle of
the asymmetry dependence of the reduction factors (Rs), ra-
tios between experimental and theoretical cross sections, for
one-nucleon removal reactions. This puzzle arose from the
systematic study of nucleon knockout reactions on 9Be and
12C targets [5,6], which showed a strong dependence of Rs

on the difference between proton and neutron binding en-
ergies in the nucleus �S. This dependence was not found
in similar studies on transfer reactions [7–9], even though
very similar nuclear structure descriptions were used for both
nucleon knockout and transfer, contradicting the generalized
assumption that the Rs factors originate from the limitations of
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the structure models (usually the small-scale shell model), in
particular, their inability to describe short-range correlations
[10,11]. This has shed doubt on the description of the reaction
mechanism in these reactions, prompting careful analysis of
their uncertainties [12,13] and assumptions [14].

Although very recent results of (p, pN) reactions on iso-
topic chains for oxygen [1,3] and carbon [4] have found a
small dependence of the reduction factors on �S, in agree-
ment with the transfer results, for these results to be reliable,
the accuracy of the description of the reaction must be ascer-
tained. At present, multiple reaction models have been used
to describe the (p, pN) process: the distorted-wave impulse
approximation (DWIA) was extensively used in the 1960s and
1970s [15,16] and has recently been revisited in quantum-
mechanical [3,17] and eikonal [1,4,18] descriptions. The
Faddeev-Alt-Grassberger-Sandhas (Faddeev-AGS) [2,19–21]
and transfer-to-the-continuum [22–24] formalisms have also
been employed for the description of (p, pN) reactions, using
very different descriptions to the DWIA approach. Given the
variety of descriptions of the (p, pN) reaction, benchmarks
between the different formalisms provide a useful assessment
of their validity and limitations.

Following a previous benchmark between the DWIA and
transfer-to-the-continuum formalisms [25] in this work we
present a systematic benchmark between Fadddeev-AGS and
transfer-to-the-continuum for the 11Be(p, pn) 10Be reaction,
analyzing its dependence on multiple parameters, such as
optical potentials, beam energy, and the orbital quantum num-
ber and binding energy of the removed nucleon. The paper
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is structured as follows. In Sec. II both models are briefly
introduced. The results of the benchmark are presented in
Sec. III and discussed in Sec. IV. Finally, Sec. V summarizes
the main results of this work.

II. OUTLINE OF THEORETICAL FRAMEWORKS

A. The TC formalism

The transfer-to-the-continuum formalism [22] describes
the process

A + p → C(α) + p + N, (1)

in which an incident composite nucleus A = C + N collides
with a proton target, losing a nucleon (proton or neutron) and
giving rise to a residual core nucleus (C) in some definite state
α and two outgoing nucleons (p + n or p + p) by reducing
it to an effective three-body problem (p + N + C) using the
prior form of the transition amplitude:

T 3b
i f (α) = 〈

�
3b(−)
f φα

C (ξC )
∣∣VpN + UpC − UpA|φA(ξA)χ (+)

pA 〉,
(2)

where �
3b(−)
f is the exact solution of the three-body problem,

χ
(+)
pA is the incoming wave function distorted by the optical

potential UpA, φA,C are the wave functions of A and C, respec-
tively, and VpN and UpC are the two-body effective interactions
between p-N and p-C, respectively.

If the potentials are, as usual, taken to be independent of
the internal coordinates of C (ξC), one can perform the integral
over these internal coordinates, to give∫

dξCφα
C (ξC )φA(ξA) = √

Sα,�, jϕ
α
CA(�r), (3)

where
√

Sα,�, jφ
α
CA(�r) is an overlap wave function, with φα

CA(�r)
a unit normalized wave function depending on the relative
coordinate of the removed particle with respect to the core and
Sα,�, j the spectroscopic factor, resulting in a matrix element
that is proportional to the spectroscopic factor:

T 3b
i f (α) = √

Sα,�, j
〈
�

3b(−)
f

∣∣VpN + UpC − UpA

∣∣ϕα
CAχ

(+)
pA

〉
. (4)

To evaluate �3b(−), it is approximated by an expansion in
terms of p + N eigenstates using a discretization procedure
akin to that used in the continuum-discretized coupled-
channels (CDCC) method [26], in which the final p + N states
are grouped (binned) in energy or momentum intervals as

�
3b(−)
f ≈ �CDCC

f =
∑
n, j,π

φ jπ
n (kn, �r ′)χn, j,π ( �Kn, �R ′), (5)

where kn are some average values for the discretized p-N
energies, φ

jπ
n (kn, �r ′) the bin wave functions, with jπ their

angular momentum and parity and χ j,π ( �K, �R ′) are the func-
tions describing the relative motion of the p + N system with
respect to the residual nucleus, when the former is in a given
final state {k, jπ }. Details on the construction of these bins can
be found elsewhere [26,27]. Note also that Eq. (4) resembles
the transition amplitude for a transfer process, analogous to
that appearing in the standard coupled-channels Born approx-
imation method for binary collisions [28].

The angular differential cross section for a given final
discretized bin can be obtained from the matrix element in
a standard way, and the double differential cross section is
obtained at the discretized energies epN as

d2σ j,π (α)

depN d�c

∣∣∣∣
epN =en

pN

� 1

�n

dσn, j,π (α)

d�c
, (6)

where �n is the width of the bin to which the energy epN

belongs. Through energy conservation, it can be readily trans-
formed to a double differential cross section with respect to
the energy of the outgoing core in the center-of-mass frame,
and to its momentum distribution. Further details can be found
in [22].

B. The Faddeev-AGS formalism

Both Faddeev [29] and Alt-Grassberger-Sandhas (AGS)
equations [30] are equivalent to the Schrödinger equation and
yield an exact description of the three-body system. We work
with Faddeev equations for transition operators in the integral
AGS form

Uβα = δ̄βα G−1
0 +

3∑
γ=1

δ̄βγ Tγ G0Uγα, (7)

where δ̄βα = 1 − δβα , E is the energy in the three-particle
center-of-mass frame, and H0 is the free Hamiltonian, that
define the free resolvent G0 = (E + i0 − H0)−1. The two-
particle transition operator is obtained from the Lippmann-
Schwinger equation

Tγ = vγ + vγ G0Tγ , (8)

where vγ is the potential for the pair γ in the odd-man-out
notation. On-shell matrix elements of Uβα , i.e., 〈ψβ |Uβα|ψα〉,
are transition amplitudes leading directly to the scattering
observables, with |ψα〉 being the initial channel state, given by
the product of the bound-state wave function for pair α and the
plane wave for the relative motion of particle α and pair α. In
the case of the breakup β = 0 with the final channel function
〈ψ0| being a product of two free waves for the relative motion
of three particles. The equations are solved in the momentum-
space partial-wave representation; see Refs. [31,32] for more
details.

Being a rigorous three-body formalism, the Faddeev-AGS
method is more complicated and computationally demanding
as compared to the TC, with some additional limitations in
its applicability. First, the method of screening and renormal-
ization for including the Coulomb force [31] is restricted to
two charged and one neutral particle. Furthermore, the con-
vergence with the screening radius and the number of partial
waves becomes slower with increasing charge; in the present
implementation the converged results so far are restricted to
nuclei not heavier than nickel [32]. On the other hand, the
momentum-space integral equation framework offers more
flexibility in the employed interaction models, enabling the in-
clusion of nonlocal [33] or energy-dependent potentials [34].
Thus, the Faddeev-AGS method is suitable for the inclusion
of dispersive optical models [35], that should be interesting to
study in the future.
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III. RESULTS

A. Application to 11Be(p,pn)

In the following, we present the results of the bench-
mark calculation between Faddeev-AGS and transfer-to-the-
continuum (TC) applied to the reaction 11Be(p, pn) 10Be at
200 MeV/A. The masses of 11Be, 10Be, p, and n are assumed
to be respectively 11, 10, 1, and 1 average nucleon masses
(1 a.n.m. � 1.00797 amu). The subsystems p, n, and 10Be
are taken to have spin 0 and the final breakup channels are
restricted to channels where the angular momentum between
p and n is J = 0–3. Kinematics are computed nonrelativisti-
cally to avoid ambiguities in the relativistic prescriptions used
to obtain the nonrelativistic Schrödinger equation.

The p- 10Be interaction is taken from the Köning-
Delaroche parametrization [36] computed at 200 MeV/A and
the p-n interaction binding the deuteron is the Gaussian inter-
action from [26]. The interaction between n and 10Be is taken
in a Woods-Saxon shape with r0 = 1.39 fm and a = 0.52 fm,
with the depth adjusted to reproduce the binding energy of
11Be (0.5 MeV).

In Faddeev-AGS, the p- 11Be interaction does not appear
explicitly. Instead, it is a result of the interactions between
p, n, and 10Be, while in TC it is modeled through an opti-
cal potential. The choice of this optical potential adds some
ambiguity to the benchmark, since no optical potential can
model the p- 11Be interaction resulting from the Faddeev-AGS
equations. In order to assess the effects of this ambiguity, in
this work two prescriptions are presented: (i) the potential is
computed by folding the p-n and p- 10Be interactions over the
square of the wave function of the bound neutron in 11Be,
which in the following will be called the “fold” prescription,
and (ii) the potential is taken from the Köning-Delaroche
parametrization. This prescription will be referred to in the
following as “KD”.

Another difficulty in the benchmark arises from the n- 10Be
interaction in the final channel. In TC, this interaction is the
same for all angular momenta between n- 10Be but can be
different from that binding the 11Be. However, in Faddeev-
AGS calculations this interaction must be the same in the
channels which have the same angular momentum and par-
ity as the bound state, although it can be different in other
channels. We explore the effect of this interaction by using
two different n- 10Be interactions: (i) Real n- 10Be; i.e., we
consider the real interaction in all n- 10Be channels, with the
depth fitted to either 2s or 1p bound-state energy, depending
on the studied knockout reaction. In the 2s case this results
in also a bound p-wave state in Faddeev-AGS calculations,
which is removed through standard methods [37], and a d-
wave resonance around the relative n- 10Be energy of 1.3 MeV.
(ii) KD n- 10Be; i.e., we take the n- 10Be interaction from the
Köning-Delaroche parametrization, using it for all channels
in TC calculations and for all channels except the one with
the bound state in Faddeev-AGS calculations. Although this
results in a different treatment in TC and Faddeev-AGS, it
does not generate spurious bound states and gives a more
realistic absorption.

For the p-n interaction, we consider two prescriptions: (i)
attractive p-n, i.e., the Gaussian potential from [26] repro-

TABLE I. Representation of the potentials used in the prescrip-
tions presented in this work.

Vn10Be Vpn

leven Vpn < 0 leven Vpn < 0
Real KD lodd Vpn < 0 lodd Vpn > 0

I
√ √

II
√ √

III
√ √

IV
√ √

ducing the deuteron binding energy is applied for all waves;
(ii) parity-dependent p-n, i.e., the attractive p-n interaction is
applied for l = 0, 2 waves, while the same interaction with
opposite sign is applied for l = 1, 3 waves. This prescription
results in more realistic phase shifts for the p wave.

In the following, calculations with the real n- 10Be inter-
action and attractive p-n will be referred to as prescription I,
those with the real n- 10Be interaction and parity-dependent
p-n as prescription II, those with the KD n- 10Be interaction
and attractive p-n as prescription III, and those with the KD
n- 10Be interaction and parity-dependent p-n as prescription
IV. This is schematized in Table I.

Results are presented for a bound neutron in 11Be in a
2s (1 node) and a 1p (no nodes) state. The observables we
have chosen to explore are the transverse (px) and longitudinal
(pz) 10Be momentum distributions, and the 10Be energy and
angular distributions in the three-body center-of-mass frame.

1. 2s-state knockout

In Figs. 1 to 4, the results of the calculations are presented
for the case where the neutron is removed from a 2s state.
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FIG. 1. Observables for the 11Be(p, pn) 10Be reaction at
200 MeV removing a 2s neutron with prescription I. Top left
and top right correspond to the transverse and longitudinal 10Be
momentum distributions, while bottom left corresponds to the 10Be
center-of-mass energy distribution and bottom right to its angular
distribution. The black and red curves correspond to TC calculations
with the incoming channel potential following the “fold” and “KD”
prescriptions.
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FIG. 2. As Fig. 1 with prescription II.

In Figs. 1 and 2 results are presented for prescriptions I
and II, respectively, so spurious bound states appear for the
n- 10Be interaction while Figs. 3 and 4 correspond to the
prescriptions III and IV, so they do not present spurious bound
states. Among all of these, we find prescription IV to be the
more realistic.

In general the agreement is good for the four prescriptions,
although we find that overall, the Faddeev-AGS calculations
give a consistently higher cross section, and TC overestimates
the contribution at small angles. The greatest disagreement is
found for prescription I, where both TC calculations present
shoulders in momentum and energy distributions which are
far less pronounced in the Faddeev-AGS calculation.

The use of the parity-dependent p-n interaction leads to
a better agreement between Faddeev and TC, and also be-
tween TC with the two prescriptions for the incoming optical
potential. For a calculation in which the final wave function
� is exact, the TC calculation should be independent of the
choice of the incoming potential [28]. Therefore, we conclude
that for the parity-dependent calculation, the CDCC expan-
sion considered in TC is a better approximation of the full
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FIG. 3. As Fig. 1 with prescription III.
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FIG. 4. As Fig. 1 with prescription IV.

wave function. This could also explain the better agreement
between Faddeev-AGS and TC.

2. 1p-state knockout

In Figs. 5 to 8, we present the results for the removal from
a 1p state with prescriptions I to IV, respectively.

As in the case for 2s removal, the agreement is in general
good, with larger discrepancies when the fully attractive p-
n prescription is considered, while for the parity-dependent
potential the discrepancies are lower than 10%. For the lon-
gitudinal momentum distribution it is appreciable that the
Faddeev-AGS calculations present a tail at low momenta that
the TC calculation does not reproduce. This tail has been
found to originate from the interaction between the neutron
and 10Be, which, not being part of the prior form of the
transition amplitude, is not well described in TC.

3. Effect of binding energy

As a next evaluation of our benchmark, we proceed to
increase the binding energy of the removed neutron from
0.5 to 5 MeV in the calculation for p-wave removal, as we
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FIG. 5. As Fig. 1 for removal from a 1p state, with prescription I.

064613-4



BENCHMARKING FADDEEV AND … PHYSICAL REVIEW C 102, 064613 (2020)

-200 0 200
px (MeV/c)

0

0.05

0.1

0.15

0.2

0.25

dσ
/d

p x (m
b/

(M
eV

/c
))

200 400 600
pz (MeV/c)

0

0.05

0.1

0.15

0.2

0.25

dσ
/d

p z (m
b/

(M
eV

/c
))

Vp11Be FOLD σ=35 mb

Vp11Be KD σ=32 mb
Faddeev  σ=33 mb

0 10 20 30
E  (MeV)

0

1

2

3

4

5

dσ
/d

E
 (m

b/
M

eV
)

0 5 10 15 20
θ (deg)

0

100

200

300

400

500

dσ
/d
Ω

 (m
b/

sr
ad

)

FIG. 6. As Fig. 1 for removal from a 1p state with prescription II.

found it to present larger discrepancies between models. In
this case, since the neutron is bound to smaller distances to
the 10Be core, where absorption is more important, we find the
real n + 10Be to be too unrealistic, since it does not include
absorption in the outgoing n- 10Be potential. Therefore, in
the following we only present results using the KD n- 10Be
prescription.

Figure 9 shows the results for prescription III and Fig. 10
shows those for prescription IV. It must be noted that the
contribution of (p,d) has been removed. In previous calcula-
tions it was negligible, but here it accounted to around 2%
of the cross section. As in the previous cases, the agree-
ment between calculations is worse when using prescription
III, although it must be remarked that the differences are
much more important with this larger binding energy. How-
ever, for prescription IV the agreement is still very good,
with differences of less than 5% between Faddeev-AGS and
TC calculations, while TC calculations with different incom-
ing potentials show larger differences than in the case with
0.5 MeV. We can interpret these results as the reaction ex-
ploring deeper parts of the wave function for a more bound
nucleon, so it becomes more sensitive to the n- 10Be and
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FIG. 7. As Fig. 1 for removal from a 1p state with prescription III.
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FIG. 8. As Fig. 1 for removal from a 1p state with prescription IV.

p- 10Be interactions, which are described worse by the CDCC
wave function, thus resulting in a larger sensitivity to the
incoming optical potential.

B. Dependence on beam energy

To test the dependence of the agreement between both
formalisms on the beam energy, we present in the following
two calculations for the 11Be(p, pn) 10Be reaction removing
a 1p-state neutron at 100 and 400 MeV/A. We restrict the
calculations to prescription IV, which is the most realistic, as
mentioned above. The incoming potential is taken from the
KD parametrization, as that is the one giving best agreement
with Faddeev-AGS using this prescription. The potentials are
extracted from the Köning-Delaroche parametrization at the
same energy as before, to isolate the effect of the beam energy
from the possible change in the potentials.

Figures 11 and 12 correspond to the results for the re-
action at 100 MeV/A and 400 MeV/A, respectively. We
find a very good agreement between Faddeev-AGS and TC,
which seems to be rather insensitive to the beam energy.
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FIG. 9. As Fig. 1 for removal from a 1p state with 5 MeV binding
energy with prescription III.
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FIG. 10. As Fig. 1 for removal from a 1p state with 5 MeV
binding energy with prescription IV.

A small discrepancy can be seen in the low-energy and
low-longitudinal-momentum tail at 100 MeV/A which, as
mentioned before, can be related to the effect of the n- 10Be
interaction.

In Fig. 13, we present results for the removal of a 1p
neutron with 5 MeV binding energy at 400 MeV/A. The
agreement is somewhat worse for the higher binding energy.
We believe this worse disagreement originates from the same
reasons as the previous section.

C. Reid93 interaction

Given the marked differences we have found for the p-n
attractive and l-dependent prescriptions, we find it relevant to
study our benchmark for a realistic nucleon-nucleon interac-
tion. We use the Reid93 interaction [38], which can reproduce
the nucleon-nucleon (NN) phase shifts with high accuracy
up to energies of 350 MeV. Since this interaction includes
spin-orbit and tensor terms, we consider the intrinsic spins
the proton and neutron. Proton-neutron states are included for
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FIG. 11. As Fig. 1 for removal from a 1p state at 100 MeV/A
with prescription IV.
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FIG. 12. As Fig. 1 for removal from a 1p state at 400 MeV/A
with prescription IV.

angular momenta J = 0–3, including the 3G3 wave, but not
the 3F4 one. Due to the increase in the number of outgoing
channels, in the TC calculations the outgoing channels have
only been coupled to the initial channel and other outgoing
channels with the same angular momentum and parity, as in
previous works [22]. Results are presented at an energy of
200 MeV/A for the removal of a neutron with 0.5 MeV
binding energy from a 2s state in Fig. 14 and from a 1p state
in Fig. 15. The n- 10Be interaction for the final channels is
described using the KD potential in both cases. The incom-
ing interaction is considered both with the “fold” and “KD”
prescriptions.

We find a good agreement in this case, with differences
of less than 10% in both cases. Both incoming potential pre-
scriptions lead to almost identical results, which points to the
CDCC wave function being a good description of the three-
body final state. The Faddeev-AGS results still show a larger
low-energy and low-momentum tail, while also the peak of
the distribution is larger. Test calculations using plane waves
for the entrance and exit channels have been performed that
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FIG. 13. As Fig. 1 for removal from a 1p state with 5 MeV
binding energy at 400 MeV/A with prescription IV.
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FIG. 14. As Fig. 1 with the prescription KD n- 10Be and the
Reid93 interaction.

show an excellent agreement, which serves as a validation of
the description of the Reid93 interaction in both calculations.

IV. DISCUSSION

From the multiple cases studied in the previous section we
may conclude that the TC is able to reproduce with good ac-
curacy the more sophisticated Faddeev-AGS results provided
that the incident energy is not too low and the p-n interaction
is chosen realistically. For beam energies above 100 MeV/u
and up to 400 MeV/u, which are typical of nucleon knockout
experiments, the agreement between both methods is remark-
ably good, regardless of the orbital angular momentum of the
removed nucleon, as s- and p-wave removals lead to similar
results. An increase in binding energy seems to lead to a
moderate increase in the discrepancies between models, but,
in general, the prescription for the n- 10Be interaction plays
the biggest role in the agreement between formalisms.

One of the most intriguing discrepancies between TC and
Faddeev-AGS corresponds to the shoulders in Fig. 1. Tests
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FIG. 15. As Fig. 1 for the removal of a 1p-state neutron with the
prescription KD n- 10Be and the Reid93 interaction.

performed by varying the n- 10Be potential in the final state
show that the magnitude of the shoulders is reduced when the
n- 10Be potential in the outgoing channels is set weaker. This
points to their origin being related the d-wave resonance in the
n- 10Be potential, which is not well described in TC and leads
to a distortion of the final energy distribution. Fortunately,
we note that realistic calculations must include imaginary
components in the potentials for the outgoing particles, which
severely reduce the strength of resonances, so this artifact
does not appear in realistic TC calculations, such as those
with prescriptions III and IV. The effect of the resonance may
also explain why prescriptions I and II consistently give worse
agreement than prescriptions III and IV.

The fact that the shoulders appear for prescription I but not
II indicates an interplay between the p-n and n- 10Be interac-
tions in the final channels. This is confirmed by Faddeev-AGS
calculations where the resonance peak in the n- 10Be relative
energy distribution near 1.3 MeV with the prescription I is
considerably higher than with the prescription II. The nature
of this interplay is not clear but may also be related to the
better agreement for prescription IV than for prescription III.
Also, it should be remarked that for the more realistic NN
interactions (prescriptions II and IV, and Reid93) the effect of
this interplay does not affect TC calculations.

It is also noticeable that in all cases, a small but visible
discrepancy in the low-momentum tail is apparent between
both methods. Since this tail can be attributed to the n- 10Be
interaction, it cannot be well described by TC or by the com-
monly used distorted-wave impulse approximation (DWIA)
formalism. This shows the limitations of TC and DWIA, and
sets a systematic uncertainty of a few percent on the observ-
ables, i.e., spectroscopic factors, that can be extracted using
these methods.

V. SUMMARY AND CONCLUSIONS

In this work, the formalisms of Faddeev-AGS and transfer-
to-the-continuum have been benchmarked for the reaction
11Be(p, pn) 10Be at incident energies over 100 MeV/A. The
benchmark shows a good agreement (�10% difference),
which serves as a validation of both reaction formalisms, al-
though it must be remarked that the transfer-to-the-continuum
calculations lead to systematically smaller cross sections. The
agreement is mostly sensitive to the nucleon-nucleon interac-
tion between the incoming proton and the removed neutron.
The use of the realistic Reid93 interaction leads to a sim-
ilar agreement, of ≈10%, which is possibly smaller than
the typical error in the experimental cross sections used to
determine spectroscopic factors. Therefore, both formalisms
can be used consistently for the extraction of spectroscopic
factors, although it is essential that a realistic nucleon-nucleon
interaction be used in the calculations, although the specific
interaction, provided it is realistic, does not lead to significant
differences [21].

Given their consistency, both models can be used to extend
the study of (p, pN) reactions, employing each model beyond
the range of applicability of the other. Namely, transfer-to-
the-continuum calculations show deficiencies at low energies,
where the properties of the nucleon-core potentials play a
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significant role. There, Faddeev-AGS calculations can provide
more reliable results. Conversely, for heavier nuclei and pro-
ton removal, Faddeev-AGS calculations become unfeasible,
while transfer-to-the-continuum can approach the computa-
tion in this regime.

It should also be mentioned that in the presented calcula-
tion, the structure and reaction inputs (bound wave function
and optical potentials) have been assumed to be independent.
Thanks to the recent development of dispersive optical poten-
tials [35] it is now possible to present a consistent analysis
of the nucleon-nucleus interaction at negative and positive
energies. The dispersive optical potentials present a nonlocal
energy-dependent form. This makes them applicable in the
implementation of the Faddeev-AGS equations used in this

work, but not for the transfer-to-the-continuum one, which
would require an extension to include energy-dependent op-
tical potentials in the coupled-channel calculations.
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