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ABSTRACT  

The study of developable surfaces has not been very common in the context of architectural 

education. This is not due to their complexity, but perhaps to the relatively recent emergence 

of digital tools that enable these surfaces to be controlled via advanced graphic thinking. In 

our recent workshops on Geometry and Digital Fabrication, we have worked with 

developable helical surfaces. These workshops have involved the design, manufacture and 

assembly of two ephemeral pavilions: the Butterfly Gallery and the Molusco Pavilion. These 

two experimental structures provide the initial inspiration to enter into greater geometrical 

depth of the expandable condition of certain helical structures described herein. 
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1. DEVELOPABLE HELICAL SURFACES 

The study of developable surfaces is strongly marked by the mathematical advances of the 

seventeenth century and by the figure of Gaspard Monge [1] who devoted much of his work 

to studying them in depth. It can be seen that the advance in knowledge of these surfaces 

is closely related to spatial intuition and the treatment of space as defined by Monge through 

his Géométrie Descriptive [2]. 

However, according to Glaeser [3], the presence of such surfaces is not yet common in the 

context of architectural education and professional practice. This is not due to their 



 
 

 

complexity, but perhaps to the relatively recent emergence of digital tools that enable these 

surfaces to be controlled via advanced graphic thinking. 

Specifically, the helicoid is extensively studied in classic manuals of Descriptive Geometry, 

and its formulation has been described as a surface of equal slope resting on a cylindrical 

helix [4], [5], [6], [7]. We make a description centred on the more general conception of 

developable surfaces, whereby we consider it as a type of tangential surface with respect to 

a space curve (Fig.1) [8]. These tangential surfaces are determined as the envelope surface 

of the osculating planes [9] (defined by the tangent vector T and the normal vector N of each 

point of the space curve, the so-called the edge of regression). It is common to observe a 

simplified definition that determines this surface generated, not by the envelope of osculating 

planes, but directly by the set of tangent vectors T along the edge of regression, as 

mentioned by Glaeser [3, p.63]. According to this definition, and within the general theory of 

surfaces, the developable surface from a cylindrical helix can be understood as a tangential 

developable (i.e. torsal) ruled surface of this curve.  

 

Fig. 1 - Left-hand-side: helicoid as a surface of equal slope supported on a helix.  
Right-hand-side: tangential developable surface generated by tangent vectors T along a curve.  

Source: The authors. 
. 

Evolute, involute and evolvent 

On the other hand, we can understand the helicoid as a surface of equal slope that rests on 

a flat horizontal curve called involute or ‘evolvent’ (according to Spanish notation). These 

concepts are reviewed here. 

In general, the evolute is the curve formed by the orbit of the centres of all osculating circles 

of another curve called the involute. A single evolute has infinitely many equidistant involutes 

(Fig. 2, left-hand-side) and the shape of the evolvent is identical for all circumferences, 



 
 

 

according to Elizalde [9, p.334]. This may seem contradictory to the aforementioned 

property: a single evolute (circumference) has infinite involutes (evolvents), but as shown in 

Fig. 2 (left-hand-side), the infinite evolvents would be interpreted as the different rotations 

of the curve around the centre of the circumference. The turns produce equidistant involutes 

and these become into the original in a complete rotation. Hence the division of the 

circumference into n equal parts, is directly related to the division of segment A-A' (tangent 

to the circumference) into the same n equal parts. The evolvent also maintains another 

important property with respect to its circumference: The distance between the start point A 

and the end of its first rotation  A' is strictly 2𝜋𝑅, the length of the circumference. This 

relationship can be extrapolated to any proportional distance (Fig. 2, centre).  

 

Fig. 2 - Left-hand-side: Infinite evolvents of the circumference.  
Centre: relationship between the length of the circumference and its evolvent. 

Right-hand-side: Graphic demonstration. Source: The authors. 
. 

 

The helix has a constant slope β, just like the straight lines of the helicoid. If we unroll the 

vertical cylinder that carries the helix A-B, it becomes a segment A'-B, since that cylinder is 

the rectifying surface of the helix [8, p.72]. The rectified segment A'-B must be the length of 

the helix and the segment A-A' must be the length of the circumference. We can graphically 

verify this spatial correspondence between the unrolled cylinder and the helicoid (Fig. 2, 

right-hand-side). The rectified segment A'-B coincides with the generating lines of the 

helicoid and the evolvent passes through point A'. 

 

2. FACTORS OF THE DEVELOPMENT 

Development by circular sectors 



 
 

 

If the helicoid is formed by generating lines of equal length, as in Fig. 3, then its planar 

development is a portion of a circular sector limited by two lines tangent to the smaller 

circumference [9, p.338]. The length of the arc of this smaller circumference is equivalent to 

the length of the cylindrical helix on which the straight lines are tangentially supported.  

Fig. 3 - Relationship between the osculating circle in space and the planar development.  
Source: The authors. 

 

The curvature at each point of the generating helix is defined by the osculating circle, and 

the radius of curvature OA coincides with the radius of the minor circumference in the 

development. The points OB, of the right-hand-side triangle contained in the osculating 

plane passing through point A, determines the largest circumference (Fig. 3). We can 

imagine how the planar development curves in space until it attains the helicoidal form (Fig. 

3 left-hand-side). Therefore, the same planar development could be considered common to 

several helicoids. 

 

Developments of helicoids generated by evolvents 

If the helicoid is generated as an equal slope surface that rests on an evolvent, then it can 

be verified that the unrolled surface is another evolvent (Fig. 4). The first evolvent comes 

from the circle projection of the helix, and the second from the osculating circle of the helix. 

The most important property, which we will use later, is that both evolvents, and their 

respective circles, have a homothetic relationship. 



 
 

 

Fig. 4 - Left-hand-side: Relationship between the evolvent of the basis and the unrolled helicoid. 
Right-hand-side: Homothetic relation between both evolvents. Source: The authors. 

 

3. CURVATURE OF A CURVE AND CURVATURE OF A SURFACE 

The main curvature δ of a curve (or simply, curvature) measures the angular deviation 

between two normal vectors N, infinitely close at a point on the curve. This curvature is 

characterized graphically by the osculating circle, which is defined by three points of the 

curve that are infinitely close to each other.  

In contrast, the torsion ζ of a curve evaluates the tendency of this curve to rise from its 

osculating plane and it is measured by the angular deviation between two Binormal vectors 

B, that are infinitely close. Once the curve unfolds on a plane, it maintains the main curvature 

but it loses the torsion, according to Leroy [8, p. 143]. 

The evolution of the values of δ and ζ can be verified by their equations, by means of 

substituting values: 

Curvature 𝛿 =
ோ

ோమା௄మ
        Torsión: 𝜁 =

௄

ோమା௄మ
  

𝑥(𝑡) = 𝑅 cos 𝑡       𝑦(𝑡) = 𝑅 sin 𝑡       𝑥(𝑡) = 𝐾𝑡      

The curvature of a surface, in general terms, is characterized by two principal curvatures 

determined by two principal directions V, U. In the case of the developable surfaces, one of 

these two curvatures is always zero, since it coincides with the direction of the generating 

lines. For this reason, we usually denominate the developable surfaces as surfaces of a 

single curvature, which is equivalent to having a vanishing Gaussian curvature, or as formed 

only by parabolic points (see Glaeser [3, p.61]).  



 
 

 

This has major practical consequences; the curvature of these surfaces is characterized in 

each point by a single parameter of curvature associated perpendicularly to the direction of 

the generating lines. It can therefore be expressed graphically as a circle of curvature, as 

seen in Fig. 5. 

 

 

 
 
 
 
 
 
 
Fig. 5 - Curvature of a developable surface characterized at each point by unique parameters 

(circle of curvature) perpendicular to each generating line. Source: The authors. 

 
If we relate these geometrical aspects to the possibility of constructing these surfaces with 

laminar materials, such as wood, veneers, etc., then this curvature value can help us 

determine the feasibility of using such materials. The appropriate use of these materials 

would be limited between an infinite radius of curvature (zero curvature) and a minimum 

radius (maximum curvature of the material) [10]. To conclude this first approach to design, 

we use another type of analysis where tensions and deformations are considered. 

 

4. HELICOIDS THAT SHARE THE SAME DEVELOPMENT 

Once the geometrical foundations are reviewed, we establish that several helicoids can 

share the same planar development, since this property explains why they can be turned 

into transformable structures. 

We have formulated a parametric algorithm - based on tangents T along the regression edge 

- employing Rhinoceros-Grasshopper software. We have been able to relate how the flat 

development of a helicoid varies by changing, or keeping constant, different parameters 

(radius R of the helix, pitch of the helix, radius of the osculating circle,...) as we will show 

below. 

 



 
 

 

4.1  Helicoids that share the same planar development 

Fig. 6 - Left-hand-side: Different helicoids with similar development, around the same cylinder. 
Right-hand-side: Evolution of the generating lines to maximum position (right-hand-side figure). The 

maximum curvature occurs in the proximity of the helix, where the lines are tangent. Source: The authors. 

 
The same planar development offers an infinite number of possible helicoids since, in fact, 

there are two parameters to combine. First, the radius Rc of the cylinder is limited between 

zero and the smallest circle of the development. Secondly, we can vary the pitch of the helix 

for each Rc chosen. The pitch would be comprised between two limits: zero, at which the 

helicoid acquires the form of a cone coiled on the cylinder; and a maximum pitch position 

for each Rc. 

In Fig. 6 (left-hand-side), it can be observed how the planar development can be adjusted 

around the same cardboard cylinder R1 in different helicoids, varying from zero pitch (cone), 

to the maximum pitch position. In the graphic study of Fig. 6 (right-hand-side) we verify that 

the generating lines of the helicoid are tangent to another invisible inner cylinder, which, in 

the case of maximum pitch, coincides with the cylinder of radius R1. 

 

4.2. Family of helicoids that share the same development (circular sector) and whose 

generating lines are tangent to the helix 

In order to study how a series of helicoids share the same development, the length of the 

helix and the radius of the osculating circle are kept constant, while the radius of the helix is 

varied (Fig. 7). This radius thus changes from the maximum value (coincident with the radius 

of the osculating circle in planar position) to a value close to zero. As the radius of the helix 

is reduced, it also decreases the pitch of the helix. The helix must maintain the same length; 

consequently, the helicoid begins to roll up. In the limit position (radius close to zero) the 



 
 

 

helix tends to become a vertical segment, since it has been coiled almost an infinite number 

of times. 

 

Fig. 7 - Family of helicoids that share the same planar development and whose generating lines 
are tangent to an interior helix of variable radius. It can be appreciated how all the generating helices share 

the same osculating circle radius. Source: The authors. 

 

4.3. Development by evolvents 

Similarly, when the helicoids are generated by evolvents, the same planar development is 

common to several helicoids, which guarantees its transformable character as shown in Fig. 

8. It can be observed how the radius of the helices decreases homothetically with the 

evolvent (Fig. 8, top). From another point of view, we can deduce that all the helicoids 

supported by the same evolvent, regardless of the slope of the helical surface have, as edge 

of regression, helixes of equal radius R (Fig. 8, down-left). So, we conclude that we can 

always create a transformable structure from any two helicoidal developments, joining the 

evolvents and providing that both curves are of equal length. 

The two helicoids that share the evolvent, will have two generating helixes of equal radius 

at each position (Fig. 8, down-cent From another point of view, it can be deduced that all 

the helicoids supported by the same evolvent, regardless of the slope of the helical surface, 

have helices of equal radius R as the edge of regression (Fig. 8, bottom left-hand-side). It 

can therefore be concluded that we can always create a transformable structure from any 

two helicoidal developments, if we join the evolvents on the condition that both curves are 



 
 

 

of equal length. The two helicoids that share the evolvent will have two generating helices 

of equal radius at each position (Fig. 8, bottom centre). 

Fig. 8 - Top: Family of helicoids that share the same planar development and whose generating lines are 
tangent to helices. Bottom left-hand-side: Two helicoids supporting the same evolvent always share the radii 

of their generating helixes. Source: The authors. 

 

A unique position of this transformable structure formed by two helicoids occurs when one 

of them is plane, denoting the minimum angle of the other helicoid. If a third helicoid is 

added, then we arrive at one formal solution of great structural resistance (Fig. 8, bottom 

right-hand-side). As Fig.8 demonstrates, in addition to the explanation, the helicoids that 

share the same evolvent are related to a spatial affinity transformation.  

 

 

 

5. TRANSFORMABLE HELICOIDAL FOLDED STRUCTURES 



 
 

 

We now propose a set of transformable helicoids, formed by plane surfaces sewn at their 

edges.  

5.1. Folding on concentric rings 

We propose a series of circular sectors with their edges sewn at their contact line, which 

allows the movement of the whole set. We will consider the physical movement involved in 

carrying the folded geometric structure from the plane to space (Fig. 9).  

Fig. 9 - Set of circular sectors, connected at their common edge.  
Evolution from their folded and plane position to varius helical rings. Source: The authors. 

 
We created a model to study different positions in its extensible movement and to clarify 

which geometric relationships link the helicoid family with the motion of the set (Fig. 9). It is 

first deduced that all the rings of the set are helicoids of equal pitch. It is important to highlight 

how contact occurs between generating lines and their respective apparent helices. Only a 

truly tangential contact occurs in the case of the smaller rings, the rest of the ruled lines of 

the set are not tangent to the apparent helices, but to other inner helices (Fig.10). These 

helices have a radius similar to the smallest circumference of the circular sector. It can 

therefore be deduced that the whole set depends on a unique generator helix, and all helical 

rings are fragments of one or the other branch of the same helicoid in different rotations.  



 
 

 

 

Fig. 10 - Left-hand-side: Structure formed by a group of helical rings. Centre and right-hand-side: The ruled 
lines of the second ring are tangents to the cylinder of the minor ring. The maximum curvature of surface 

occurs in the proximity of the minor ring helix. Source: The authors. 
 

 

As we have already observed, the generating lines of the helicoid are tangent to the helix 

only when the maximum pitch position is reached, and hence the helicoid corresponding to 

the minor ring is always in the maximum pitch position (Fig.10, centre). If this parameter 

(pitch) is kept invariant, then we diminish the degree of freedom and the expandable 

structure has only one possible transformation path. With more tension exerted, and the 

maximum pitch mode achieved, the smaller helicoid is deformed only by vertical 

lengthening, while its radius is reduced. In this way, in its motion, the whole transformable 

structure depends solely on the smaller ring. 

5.2. Folding evolvents. 

Another possibility of folding consists of articulating the helicoids with respect to a mirror 

plane, which imposes the condition of equal slope to that plane. Since the helicoid is a 

surface generated by a family of ruled lines of equal slope with respect to the plane of the 

evolvent, the set of lines could be reflected specularly from this plane, thereby retaining the 

same slope in both cases (Fig.11). The evolvent can, therefore, be understood as the folding 

line of a single continuous surface (Fig.11 bottom). 

 



 
 

 

 
Fig. 11 – Top: Sections (evolvents) of a helicoid using horizontal planes. 

Bottom: A single piece of cardboard folded along evolvents. Source: The authors. 
 

 

6. CONCLUSIONS AND DISCUSSION 

We have analysed the generation of helicoids from their parameterization in Rhinoceros-

Grasshopper, and have paid special attention to developments in circular rings and 

evolvents. We are now able to propose structures formed by several helical surfaces linked 

together, giving rise to a single transformable or extensible structure. These surfaces can 

be built with laminar pieces, which can be combined with different folded structures, thereby 

providing a wide variety of formal solutions. We have studied the geometric relationships 

between the helicoids in the movement of transformation of a linked set, and have 

demonstrated the importance of certain geometric parameters over others. All this expertise 

and knowledge can be put into practice when we design helical surfaces for use in 

lightweight architecture. At this point, we have designed two architectural installations on the 



 
 

 

general properties of the helicoids (Figs. 12 and 13), [11]. The next challenge is now to 

design an extensible structure that will benefit from the characteristics studied. 

 
 

 
Fig. 12 – The Butterfly Gallery, Universidade 

Federal do Rio de Janeiro, Brazil, 4-14 August 
2015. Source: The authors. 

 
Fig. 13 – The Molusco Pavilion. Facultad de 

Arquitectura, Urbanismo y Diseño. Universidad del 
Norte, Barranquilla, Colombia. October 2016. 

Source: The authors. 
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