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We report on systematical optical model (OM) and continuum discretized coupled channel (CDCC) calcu-
lations applied to describe the elastic scattering angular distributions of exotic and stable nuclei projectiles on
heavy targets. Our optical potential (OP) is composed of the nuclear microscopic double folding São Paulo
potential (SPP), derived from the nonlocal nature of the interaction, and the Coulomb dipole polarization
(CDP) potential, derived from the semiclassical theory of Coulomb excitation. The OP is compared to the
trivial equivalent local potential (TELP), extracted from CDCC calculations. The OM and CDCC predictions
corroborate each other and account for important differences in the nuclei reaction mechanisms, which are
directly related to their structural properties. Thus, OM and CDCC establish a common basis for analyzing
or even predicting exotic and stable nuclei reactions.
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I. INTRODUCTION

Describing nuclear reactions of exotic and stable nu-
clei with the same theoretical approach is one of the most
challenging problems in nuclear physics. Studying reactions
involving weakly bound stable nuclei is a natural step at
the interface between the cases of tightly bound stable and
exotic nuclei, and towards a better understanding of the lat-
ter. The structural models of these nuclei are fundamental to
determine how they interact. Comparing nuclear structures,
reaction mechanisms, and their rates are crucial for key stud-
ies, such as explaining nuclei abundances in the cosmos [1].
In such a scenario, astrophysical applications assume optical
potential (OP) approaches, as input for theoretical calculations
[2–4]. Folding type potentials allow one to infer about nuclear
structures, in a fundamental way, through taking into account
realistic models for the nuclear densities [5].

Within such a fundamental basis, other important proper-
ties can be investigated. Unlike tightly bound stable nuclei,
weakly bound and exotic nuclei have one common striking
characteristic: a low breakup threshold. This characteristic fa-
vors breakup and, therefore, elastic scattering flux absorption,
when interacting with another nucleus. Breakup gives rise
to a complex problem of three or more bodies and can be
driven by different processes: core excitation, direct excitation
of the projectile into continuum states, and transfer to bound
or unbound states of the target, among others [6–14]. Close
to or even below the Coulomb barrier, the Coulomb breakup
can play an important role. In some reactions of exotic nuclei
with heavy targets, Coulomb breakup can even dominate the
reaction mechanisms [15].

Our goal is to study such Coulomb reaction effects, their
interference with nuclear ones, and the consequent elastic
scattering flux absorption, as a function of the structural
properties of different projectiles (6He, 9,11Li, 9,11Be, and
12C). With this proposal, we analyze key projectiles ranging
from stable (tightly bound) to exotic, passing through sta-
ble weakly bound nuclei, reacting on different heavy targets
(120Sn, 197Au, and 208Pb), at energies around the Coulomb
barrier.

The 12C nucleus is created in the stars through the so
called triple α process triggered by the Hoyle state [E∗ =
7654.07(19) keV] [16]. It represents a stable tightly bound
[Qα = 7366.59(4) keV] 3α cluster structure [16], which is
crucial for astrophysics, organic chemistry, and life.

The 9Li exotic nucleus decays, by β− emission, in 9Be,
with a half-life of 178.3(4) ms [17]. The ground state is 3/2−.
The first known excited state is 1/2− with excitation energy
of 2691(5) keV. The next known state is a 5/2− resonance
at 4296(15) keV. The one-neutron separation energy is S1n =
4062.22(19) keV [17].

Unlike 9Li, 9Be is a stable weakly bound nucleus with a
Borromean structure composed of two α particles and one
weakly bound neutron. The 9Be (α + α + n) nucleus has a
smaller binding energy [εb = −1572.7(16) keV] than 9Li,
below the α + α + n threshold. The one-neutron separation
energy of 9Be [S1n = 1664.54(8) keV] [17] is the lowest com-
pared to other weakly bound stable nuclei and the closest to
the exotic nuclei ones (Table I). Thus, 9Be when colliding with
a target nucleus tends to transfer its weakly bound neutron,
this process being followed by α + α or 8Be, which also
decays into α + α.
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TABLE I. Breakup threshold of light stable and exotic nuclei.

System Cluster εb (MeV)

11Li 9Li +2n −0.396
11Be 10Be +1n −0.502
6He 4He + 2n −0.975
6Li α + d −1.473
9Be α + α + 1n −1.573
9Be 8Be +1n −1.664
7Li α + t −2.467
9Li 7Li +2n −4.062
10B 6Li +α −4.461
18O 14C +α −6.228
16O 12C +α −7.162
12C 8Be +α −7.367
4He 3He +1n −20.6

6He (α + n + n) also represents a Borromean nucleus,
therefore, the three binary subsystems, 4He-n and n-n, are not
bound. The 6He exotic nucleus decays, by β− emission, in
6Li, with a half-life of 806.7(15) ms [18]. Reactions induced
by 6He on different targets, at energies around the Coulomb
barrier, exhibit large cross sections for α particle production
[6,9,19–21]. This confirms a breakup picture, which is as-
sociated with the weak binding of the halo neutrons [S2n =
975.45(5) keV] [18], that favors the dissociation of the 6He
projectile in the nuclear and Coulomb fields of the target.
Thus, the two weakly bound valence neutrons modify the
way in which 6He interacts, under Coulomb and/or nuclear
interaction [7,22,23].

The 11Be exotic nucleus decays, by β− emission, into 11B,
with a half-life of 13.76(7) s [24]. The low-lying spectrum of
11Be consists of two bound states: the ground state 1/2+ and
an excited state 1/2−, at 320.04(10) keV excitation energy
[24]. This excited state shows the largest measured B(E1)
distribution between bound states [25]. The one-neutron sep-
aration energy is S1n = 501.64(25) keV [24].

11Li (9Li +n + n) represents another neutron rich exotic
nucleus with Borromean structure, therefore, the three binary
subsystems, 9Li-n and n-n, are not bound. The 11Li decays, by
β− emission, into 11Be, with a half-life of 8.75(14) ms [24].
There are no bound excited states. The two-neutron separation
energy is S2n = 396.15(65) keV [26]. These two neutrons
have high probability of being out of the nuclear potential
range, which leads to an extended nuclear halo compared to
the other 6,7,8,9Li isotopes.

The one- or two-neutron structures of 6He, 9,11Li, or 9,11Be
can be easily polarizable in the strong electric field of a
heavy target (in our case 120Sn, 197Au, and 208Pb). The re-
pulsive Coulomb long-range effect acts on the cores (4He in
the case of 6He, 9Li in the case of 11Li, and 8,10Be in the
cases of 9,11Be). Notwithstanding, it does not act on the neu-
tron(s), which implies that during core repulsion neutron(s)
tend to move forward. This effect produces a distortion of
the wave function that tends to reduce the Coulomb repul-
sion between the interacting nuclei. The reduced Coulomb
repulsion decreases the elastic scattering cross section and

can be described through a dynamic polarization potential
(DPP), induced by dipole Coulomb excitation. This potential
is then composed of two components: an attractive real part
that describes the reduction of the Coulomb repulsion and an
absorptive imaginary part that describes the elastic scattering
cross section reduction [27,28].

In [15], our analyses demonstrated the dominance of
the Coulomb dipole polarization (CDP) potential in the de-
scription of the elastic scattering angular distributions of
11Li + 208Pb. This effect is the main cause of the observed
unusual long range absorption, which is well accounted for
in the CDP potential. The calculated reaction cross section
density (RCSD) corroborated that the absorption mostly takes
place in the region of large interacting distances (R > 15 fm).

Here, we intend to study such effect, as a function of the
projectile binding energy. Thus, in Table I, we present the
breakup threshold (in MeV) for different stable and exotic
nuclei.

In Sec. II, we present our theoretical optical model (OM)
and continuum discretized coupled channel (CDCC) calcu-
lations. In Sec. III, we compare optical potential (OP) and
the trivial equivalent local potential (TELP) extracted from
CDCC calculations. In addition, we compare the theoretical
OM and CDCC predictions to the experimental elastic scat-
tering angular distributions. Finally, in Sec. IV, we present the
main conclusions.

II. THEORETICAL APPROACH

A. São Paulo potential (SPP)

Stable nuclei reactions have been successfully described
assuming the São Paulo potential (SPP) [29]. It describes the
real bare nuclear interaction and predicts, with great accuracy,
experimental angular distributions of a large number of stable
systems in a wide energy range, with no adjustable parameters
[30–32]. Within this approach, the nuclear interaction, coined
VSPP, is written as a function of the double folding potential
(VFold) through

VSPP(R) = VFold(R)e−4v2/c2
, (1)

where c is the speed of light, v is the relative velocity between
projectile and target, and VFold is given by

VFold(R) =
∫∫

ρ1(�r1)ρ2(�r2)V0δ( �R − �r1 + �r2) d�r1 d�r2, (2)

where ρ1 and ρ2 are the projectile and target matter distri-
butions; V0δ(�r) is the zero-range effective interaction with
V0 = −456 MeV. This V0 value has been obtained in [29]
through a potentials systematic extracted from elastic scatter-
ing data analyses. The corresponding nucleon densities were
folded with the matter distribution of the nucleon to obtain the
respective matter densities [29].

A fully microscopic description of the optical potential
(OP), based on the Feshbach theory [33–35], is especially
difficult at energies where collective as well as single particle
excitations are involved in the scattering process. To face this
problem, in a simple way, an extension of the SPP model to
the OP imaginary part was proposed in [36] and successfully
applied to the elastic scattering of stable nuclei. Within this
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context, Eq. (1) describes the real and imaginary parts of the
(nuclear) OP as follows:

VOP(R) = NRVSPP(R) + iNiVSPP(R), (3)

where NR and Ni represent multiplication factors that deter-
mine OP strengths (real and imaginary parts) and simulate
polarization (real and imaginary) effects. Therefore, Eq. (3)
represents the addition of the bare and polarization poten-
tials. The bare VSPP(R) represents the ground-state expectation
value of the interaction operator, which includes the aver-
age effective nucleon-nucleon force V0δ(�r). The polarization
part arises from nonelastic couplings. According to Fesh-
bach theory [33–35], it is energy dependent and complex.
The imaginary part arises from transitions to open nonelastic
channels that absorbs flux from elastic channel. The real part
arises from virtual transitions to intermediate states (inelastic
excitations and nucleon transfer, among others).

In such a scenario, assuming Eq. (3), any need of varying
NR must be related to and account for contributions of the
polarization potential to the OP real part, while Ni accounts
for the absorptive imaginary part of the polarization potential.
Standard averaged values, obtained in [36], from systemati-
cal analysis of stable tightly bound nuclei are NR = 1.0 and
Ni = 0.78. Several recent works on stable weakly bound and
exotic nuclei reactions show how absorption processes can
vary as a function of the projectile and, therefore, OP strengths
[15,37–42].

In [43], Eq. (3) was proposed to systematically study exotic
and stable, tightly and weakly bound, nuclei projectiles (4,6He,
6,7Li, 9Be, 10B, 16,18O) reacting on the same, 120Sn, target
nucleus, in a wide energy range. We verified how data are
most sensitive to the strength of the absorptive imaginary part,
which tends to mostly vary as a function of the projectile bind-
ing energy (Table I). Therefore, Table I relies on projectiles
studied in [43] and here. From [43], we concluded that the
lower the binding energy is, the higher the absorptive imag-
inary strength, which tends to be meaningful even at longer
interacting distances (R > 15 fm), mainly for describing reac-
tions of stable weakly bound and exotic nuclei projectiles.

Thus, here, we extend such systematical study to other
nuclei, besides taking explicitly into account the projectile
binding energy in the optical model (OM). Once the projectile
binding energy decreases, its breakup probability increases, as
well as the elastic scattering flux absorption, which can also
be formally taken into account within the CDCC calculations.
Therefore, we dedicated Secs. II B and II C to describe both
approaches.

B. Coulomb dipole polarization (CDP) potential

A simple analytical formula for the CDP potential was
derived in Refs. [27,28] and has been shown to be a valuable
tool to study exotic nuclei reactions in the OM context [22].
The CDP potential is obtained by requiring that the second-
order amplitude for the dipole excitation-deexcitation process
and the first-order amplitude, associated with the polarization
potential, are equal for all classical trajectories corresponding
to a given scattering energy. This leads to an analytic formula
for the polarization potential according to a single excited
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FIG. 1. B(E1) experimental and theoretical distributions of 6He,
9,11Li and 9,11Be as functions of the excitation energy (ε) (see text for
details).

state [27]. This analytic formula is generalized for the case
of excitation energy to a continuum of breakup states [28],
resulting in the following expression:

UPol = −4π

9

Z2
t e2

h̄ v

1

(r − a0)2r

∫ ∞

εb

dε
dB(E1, ε)

dε

×
[

g

(
r

a0
− 1, ξ

)
+ i f

(
r

a0
− 1, ξ

)]
. (4)

Here, we can note the linear dependence of the polariza-
tion potential with the projectile B(E1) distribution and its
quadratic dependence on the atomic number of the target, Zt.
Such dependence gives rise to an important contribution of the
CDP, which is mainly manifested in the case of exotic nuclei
reacting on heavier targets. Notwithstanding, small effects
can also be observed for reactions of stable weakly bound
projectiles. In Eq. (4), εb is the necessary energy to break up
the projectile (Table I), which is a positive value; a0 is half
of the distance of closest approach in the head-on collision;
v is the velocity of the projectile; and f and g are analytic
functions expressed as

f (z, ξ ) = 4ξ 2z2 exp(−πξ )K ′′
2iξ (2ξz),

g(z, ξ ) = P

π

∫ +∞

−∞

f (z, ξ ′)
ξ − ξ ′ dξ ′. (5)

ξ = ε a0
h̄v

is the Coulomb adiabaticity parameter corresponding
to the excitation energy ε of the nucleus. K ′′ represents the
second derivative of the Bessel functions and P means the
principal value of the integral. As discussed in detail in [27],
when the breakup energy εb is large enough, the purely real
adiabatic dipole potential is obtained. In the opposite limit,
for small energies, f ( r

a0
− 1, ξ ) → 1 and g( r

a0
− 1, ξ ) → 0,

and the polarization potential becomes purely imaginary, de-
pending on r as 1

(r−a0 )2r .
Figure 1 shows B(E1) experimental and theoretical distri-

butions of 6He, 9,11Li, and 9,11Be as functions of the excitation
energy (ε). The 11Li and 11Be B(E1) experimental values
were reported in [44] and [45]. The solid line corresponds
to the three-body model calculation, for 11Li, reported in
[12]. The dotted line corresponds to the core excitation model
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calculation, for the 11Be B(E1) distribution, reported in [14].
The dashed line corresponds to the three-body model cal-
culation for the 9Be B(E1) distribution reported in [46].
The dashed–double-dotted line corresponds to the three-body
model calculation, for 6He B(E1) distribution, reported in
[15]. The dashed-dotted line corresponds to a cluster model
(7Li +2n) [47,48], considered for calculating the 9Li B(E1)
distribution.

C. Continuum discretized coupled channel (CDCC) calculations

The coupling to breakup channels in reactions involving
weakly bound nuclei can be formally described within the
CDCC formalism [49,50], in which the total scattering wave
function is expanded in internal states of the projectile in a
given few-body model. This is typically referred to as three-
body CDCC (for two-body projectiles) or four-body CDCC
(for three-body projectiles).

The corresponding coupling form factors are generated
following a multipole expansion (in Q multipoles) of the
projectile-target interaction, using as input suitable fragment-
target optical potentials.

In the present work, for 11Li, 6He, and 9Be nuclei re-
actions we perform four-body CDCC calculations using the
three-body structure models (9Li + n + n, α + n + n, and
α + α + n) and fragment-target optical potentials presented
in Refs. [51–53]. In this sense, the calculations here pre-
sented have no free parameters. The states of 11Li and 6He
are computed using a binning procedure [54] from the true
three-body continuum states, whereas 9Be states are gener-
ated using a pseudostate approach, the analytical transformed
harmonic oscillator method presented in Ref. [55]. With these
ingredients, the CDCC problem is solved up to convergence in
the number of partial waves and excitation energy above the
respective breakup thresholds, including continuum couplings
to all multipole orders. This allows us to dissect the behavior
of the elastic scattering cross section in terms of different
contributions, from no-continuum calculations to the effect of
dipole and higher order contributions, as discussed in the next
section.

In the reaction 11Be + 197Au, we consider 11Be as a
core+valence (10Be +n) two-body system where we allow
the 10Be core to be excited to its first excited state [56]. To
include this structure properly in the reaction mechanism,
we perform a CDCC calculation including core excitations
(XCDCC) [57,58]. We use the same fragment-target optical
potentials and also the potential for the structure of 11Be
as those presented in [14]. Following [14], we also apply a
binning procedure for the discretization of the continuum.

In all cases, we compute the trivial equivalent local po-
tentials (TELPs), which have the meaning of simple optical
potentials (real and imaginary parts) leading to the same
elastic scattering cross section obtained by the CDCC. The
TELP is calculated following the prescription proposed in
[59], which involves two steps. First, for each total angular
momentum, a trivially equivalent local polarization potential
is calculated from the source term of the elastic channel equa-
tion. Then, an approximate TELP is constructed by averaging
these L-dependent polarization potentials, using as weights

the transfer/breakup cross section for each angular momen-
tum. The TELP obtained by this procedure can be regarded
as an L-independent local approximation of a complicated
coupled-channels system. If the TELP extracted from the
coupled-channels calculation is a good representation of the
overall effect of the couplings, the solution of the single-
channel Schrödinger equation with the effective potential
Ueff = Ubare + UTELP should reproduce an elastic scattering
similar to the one obtained with the full coupled-channels
calculation. The bare potential, Ubare, is just the sum of the
fragment-target interactions convoluted with the ground state
density of the projectile nucleus. These potentials, at large
distances, can be compared with the CDP part of the OM
approach in order to corroborate the observed trends. Note
that, within the CDCC formalism, the influence of the pro-
jectile binding energy on the reaction dynamics is implicitly
contained in the corresponding coupling potentials. If the
ground state is closer to the threshold, its wave function ex-
plores larger distances, thus leading to stronger couplings with
the low-lying continuum states. This, in first order, produces
larger breakup cross sections, therefore we expect a larger
imaginary part of the TELP for less bound systems.

III. DATA ANALYSIS

The OM approach assumed here is written in terms of the
SPP [Eq. (3)] and CDP [Eq. (4)] models, through

UOP(R) = NRVSPP(R) + iNiVSPP(R) + VPol(R) + iWPol(R). (6)

VSPP is given by Eq. (1); VPol and WPol represent the real and
imaginary terms of UPol, according to Eq. (4); NR = 1.00 and
Ni = 0.78 are reference values obtained in [36] and applied in
the current work.

Therefore, in Eq. (6), the OP real part (V (R)) is represented
by the sum

V (R) = VSPP(R) + VPol(R), (7)

while, the OP imaginary part [iW (R)] is represented by the
sum

iW (R) = i(0.78)VSPP(R) + iWPol(R). (8)

In Fig. 2, this OM approach is applied to describe elastic
scattering angular distributions of 12C, 9Be and 9,11Li + 208Pb,
11Be + 197Au, and 6He + 120Sn. For 12C, 9Li + 208Pb systems,
OM calculations, considering Eqs. (6) and (3), are exactly
the same (solid lines). Dotted lines represent only the ab-
sorption effect due to the CDP [given by Eq. (4)] in the
calculations. Such effect is negligible, for 12C, 9Li + 208Pb
systems; however, it tends to increase and dominates absorp-
tion processes as the projectile binding energy decreases (see
Table I). Thus, from Fig. 2 we can observe (dotted lines)
how the CDP potential becomes important for 9Be + 208Pb, in-
creases for 6He + 120Sn, and dominates for 11Be + 197Au and
11Li + 208Pb systems. Moreover, there is a remarkable agree-
ment between data and theoretical calculations performed
with Eq. (6). It is worthwhile to mention that all calculations
were performed without any free parameters.

This absorption effect can be better appreciated in Fig. 3,
where we plot the strength of the CDP imaginary potential

054614-4



SYSTEMATIC CALCULATIONS OF REACTIONS … PHYSICAL REVIEW C 103, 054614 (2021)

0

0.4

0.8

1.2

Eq. 3
Eq. 4
Eq. 6

0

0.4

0.8

1.2

σ/
σ R

0 30 60 90 120 150
θ

c.m.
(deg)

0

0.4

0.8

1.2

0 30 60 90 120 150 180
θ

c.m.
(deg)

11
Li+

208
Pb; E

LAB
=29.8MeV 9

Be+
208

Pb; E
LAB

=44.0MeV

12
C+

208
Pb; E

LAB
=75 MeV

9
Li+

208
Pn; E

LAB
=29.5MeV11

Be+
197

Au; E
LAB

=39.6 MeV

6
He+

120
Sn; E

LAB
=18.0MeV

FIG. 2. Elastic scattering angular distributions of 12C, 9Be and
9,11Li + 208Pb, 11Be + 197Au, and 6He + 120Sn. Experimental data are
extracted from [14,36,51,60,61]. Curves represent OM calculations
based on Eq. (3) (solid line; only SPP), Eq. (4) (dotted line; only
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(WPol), as a function of the interacting distance (R), for differ-
ent systems. As the projectile binding energy decreases, this
strength increases and becomes stronger at longer distances.
The most pronounced effect is observed for 11Li + 208Pb.

Thus, in Fig. 4, we compare the strength of the CDP
imaginary potential (WPol) (dotted line) with the imaginary
Coulomb ( j = 1; Q = 0, 1) TELP (dashed-dotted line) and
the imaginary Coulomb (all contributions) TELP (solid line),
for 11Li + 208Pb. Calculations converge to similar strengths, at
distances greater than 16 fm, and calculations fully converge
for distances greater than 20 fm. Therefore, the Coulomb
dipolar effect is shown to dominate the absorption mechanism
in 11Li reactions.

In Fig. 5, for 11Li, 11,9Be, and 6He reacting on heavy
targets, we compare the strength of the CDP imaginary
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potential (WPol) (dotted line) with TELP, extracted from
CDCC calculations, considering only the Coulomb dipolar
effect (dashed-dotted line) and both Coulomb and nuclear
dipolar effects (dashed line). The former involves the ground
state and the continuum states of the projectile compatible
with dipole excitations, including Q = 0, 1 terms of the mul-
tipole expansion of the Coulomb interaction. The latter is the
same but adding also the nuclear term. It is worthwhile to
mention that the conclusions extracted from the TELP have
to be analyzed with caution, since, as previously commented,
this potential is just a local L-independent approximation
of a very complicated nonlocal and L-dependent object.
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Notwithstanding, as shown in [22], nuclear couplings are also
responsible for the strong repulsive part of the polarization po-
tential. Although they are of shorter range than the Coulomb
polarization potential, it was verified that both the real and
imaginary components of the nuclear polarization potential
extend to distances well beyond the strong absorption radius.
Therefore, besides long range Coulomb couplings, light exotic
nuclei reactions, mainly on heavy targets, are characterized
by long range nuclear couplings. These features are also
consistent with the findings of Mackintosh and Keeley [62]
and Rusek [63]. Furthermore, in [62], it was pointed out that
an emissive imaginary part can appear as a consequence of
representing a strongly nonlocal object, namely, the dynamic
polarization potential arising from the coupled channels, by
a simple local potential. This effect, nevertheless, does not
lead to unitary breaking. In Fig. 5 curves are quite different
at R = 16 fm and just converge (to zero) at R > 25 fm. Such
differences are crucial to cross section determination, as can
be verified in Fig. 6.

Finally, in Fig. 6, we perform CDCC calculations to
describe elastic scattering angular distributions of 9Be and
11Li + 208Pb, 11Be + 197Au, and 6He + 120Sn. These calcula-
tions correspond to the same prescriptions presented in Fig. 5
for TELP. For each system, we can observe the Coulomb
dipolar effect (dotted line). As in Fig. 2, such Coulomb dipolar
effect is much more pronounced for 11Li and 11Be. For the

other two projectiles, 6He and 9Be, nuclear dipolar effects
(dashed-dotted line) play a major role. Notwithstanding, for
all systems, the combination of Coulomb and nuclear effects,
considering contributions of all orders (solid line), is neces-
sary to describe the overall data trend with better accuracy.
These calculations involve the ground state and all continuum
states of the projectile, including all Q terms of the interaction,
up to convergence. Specific details of these calculations can
be found in Refs. [51] (11Li), [14] (11Be), [52] (6He), and [10]
(9Be).

IV. CONCLUSIONS

This paper reports on systematical optical model (OM) and
continuum discretized coupled channel (CDCC) calculations
applied to describe the elastic scattering angular distributions
of 6He, 9,11Li, 9,11Be, and 12C projectiles on different heavy
targets. The OM analysis was carried out within the context
of the optical potential (OP) given by Eq. (6), which is based
on the nuclear double folding São Paulo potential (SPP) [Eq.
(3)] and the Coulomb dipole polarization (CDP) potential [Eq.
(4)]. Trivial equivalent local potentials (TELPs), derived from
CDCC calculations, corroborate the results obtained with the
OM approach. In addition, CDCC calculations are able to
distinguish the importance of Coulomb and/or nuclear effects,
of different orders, for each specific nuclear reaction. Further-
more, CDCC calculations (Fig. 6) show the importance of
considering Coulomb and nuclear effects, of all orders, with
the aim of describing the overall data trend. All calculations
presented here were performed without any free parameters.
Thus, the OM and CDCC predictions establish a common
basis for exotic and stable nuclei reactions, accounting for
important differences in their reaction mechanisms, which
depends on their structural properties.
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