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Background: Knockout reactions with proton targets provide an invaluable tool to access the properties of two-
neutron halo nuclei. Recently, experimental results for the average opening angle as a function of the intrinsic
neutron momentum in 11Li have shown a localization of dineutron correlations on the nucleus surface.
Purpose: Study the model dependence and the effect of distortion and absorption on the opening angle
distributions to assess the reliability of this observable to extract properties of Borromean two-neutron halo
nuclei.
Method: A quasifree sudden model is used to describe the knockout process, where absorption effects are
modeled by the eikonal S matrix between the proton target and the core of the Borromean nucleus. Final states
in momentum space are built within a three-body model for the projectile, which enables the description of
momenta and opening angle distributions.
Results: A strong dependence on absorption effects is found for the opening angle at large intrinsic momenta,
while the region of lower momenta is mostly insensitive to them. Reasonable agreement with the available data
is obtained for 11Li at low momenta with weights for s and p waves different from those previously reported,
showing a model dependence in their extraction. For 19B, test calculations show marked sensitivity to small
p-wave components.
Conclusions: The opening angle for (p, pn) knockout reactions on Borromean nuclei at small intrinsic momenta
is a reliable observable mostly sensitive to the structure of the Borromean nucleus. For larger momenta, the
reaction mechanism leads to a larger distortion of the distribution. In the case of nuclei with small components
of opposite parity to the dominant ones, this observable can be used to explore them. The relation between
dineutron in coordinate space and opening angle in momentum space is found to be model dependent.
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I. INTRODUCTION

Two-neutron halo nuclei along the neutron dripline are at
the focus of our efforts to understand the limits of nuclear
stability. Since the first observation of an abnormally large
interaction cross section for 11Li [1], the topic has driven
enormous experimental and theoretical endeavors [2]. The
term halo refers to a diffuse matter distribution corresponding
to the valence neutrons, which are loosely bound and explore
distances far from the more compact core [3,4]. The structure
of core + n + n two-neutron halo nuclei is usually called Bor-
romean [5,6], where the binary subsystems core + n and n + n
are unbound. It is then clear that the correlations between the
valence neutrons are essential in binding the system [5,7,8].
These correlations favor a strongly localized two-neutron
structure, also referred to as dineutron configurations, which is
enhanced by a large mixing between different-parity orbitals
[9]. In 11Li, for instance, three-body calculations show that the
halo wave function is very much determined by the mixing
between s- and p-wave states in the low-lying spectrum of
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the unbound 10Li system [8,10,11], and a dominant dineutron
peak is obtained in the corresponding two-neutron density. A
similar situation has been recently explored for the heavier
two-neutron halo 29F, where the mixing between intruder p3/2

components with standard-order d3/2 enhances the dineutron
configuration and the size of the halo [12,13]. In the case
of two-neutron halo nuclei without a strong mixing between
different-parity components, such as 6He or 19B, the dineutron
is less pronounced [5,14,15].

Different techniques have been employed to investigate
the correlations between the halo neutrons experimentally.
The angle between the two valence neutrons in 11Li was
estimated from a Coulomb breakup measurement, using the
link between the extracted E1 strength into the continuum and
the so-called cluster sum rule in a core + n + n model, and
assuming an inert core [16]. The average angle obtained was
〈θnn〉 = 48+14

−18 deg, well below the value of 90 deg expected
for a no-correlation scenario [17,18]. This estimation was
refined in a subsequent theoretical work, pointing toward a
larger 〈θnn〉 value, but always compatible with a correlated
pair in coordinate space [19]. It is worth noting, however,
that the simple relation between the cluster sum rule for
dipole transitions and the geometrical configuration of the
two-neutron halo is model dependent, and effects such as core
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excitations can modify the results [10]. An alternative way to
access these correlations is provided by knockout reactions
[20]. In Ref. [21], the neutron knockout from 11Li and 14Be
on a carbon target was reported and analyzed in terms of the
mixing between different components in the projectile wave
function. For 11Li, an asymmetric angular distribution was
obtained, favoring a large opening angle (>90 deg) between
the neutrons in momentum space, which translates to a small
angle in coordinate space and therefore small distance be-
tween neutrons: a dineutron structure.

Recently, the dineutron correlation in 11Li has been further
studied with the measurement of the neutron knockout on a
proton target at intermediate energies [22] and analyzed in
terms of the quasifree eikonal sudden model from Ref. [23].
The missing momentum (i.e., the intrinsic momentum of the
knocked-out neutron) distribution was described in terms of
s, p, and d waves in the 11Li ground state, and their relative
weights were estimated from the fitting of the data. From
the asymmetry in the opening angle and its dependence on
the missing momentum, their conclusions indicate that the
dineutron correlation is localized on the surface of the 11Li
halo. The sensitivity to the reaction mechanism and to the
degree of mixing between different-parity states, however,
was not discussed in detail and may play a role in the extracted
conclusions.

In this work, we explore this new observable, the opening
angle as a function of the missing momentum, and analyze
its sensitivity to the reaction mechanism and to the structure
of the projectile, described through a three-body model, in
order to determine which properties of the Borromean nucleus
can be extracted from its analysis. In Sec. II, we rederive the
expressions presented in Ref. [23], modified to suit a specific
three-body framework used to describe Borromean nuclei. In
Sec. III, results for the nucleon removal (p, pn) reaction on
11Li and 19B are presented, focusing on the effect of the reac-
tion mechanism and their nuclear structure. Finally, in Sec. IV,
the conclusions and outlook of this work are summarized.

II. THEORETICAL FRAMEWORK

We will describe the momentum and angular distributions
in the knockout of a neutron from two-neutron halo nuclei by
following the theoretical model in Ref. [23].

Assuming a quasifree regime, the transition potential for
the (p, pn) process involves the interaction between the target
proton and the knocked-out neutron. In a zero-range approxi-
mation, we can write the T matrix as

T = 〈� (−)|Vnpδ(rp − r2)|χp�gs〉, (1)

where � (−) is the final-state wave function, χp is the distorted
wave for the proton, and rp and r2 denote the position of the
proton and removed neutron with respect to the center of mass
of the projectile. Here, �gs corresponds to the ground-state
wave function of the bound Borromean (core + n + n) nu-
cleus. Using an eikonal sudden approach, the proton distorted
wave will transfer a momentum q to the removed nucleon and
can be written as

χp = S(bp)eiq·rp, (2)

n1

core

n2

�x

�y
�rp

p

FIG. 1. Schematic representation of the neutron-knockout pro-
cess from the halo of a core + n + n system.

with bp being the impact parameter of the proton and S(bp)
the usual eikonal S matrix,

S(bp) = exp

[
− i

h̄v

∫ ∞

−∞
VpC (bp, zp)dzp

]
. (3)

Thus, we get

T = Vnp〈�3.b.(−)|δ(rp − r2)|S(bp)eiq·rp�gs〉, (4)

where we will assume that the final state of the two neutrons
and the residual core �3.b.(−) is not distorted by the proton
after the collision, except for the transferred momentum q.
The knocked-out neutron will have a momentum k f

y = ky + q
in the final state, where ky is the “original” momentum the
neutron had “inside” the Borromean projectile. Since the mass
for the core is much larger than that of the valence particles,
we can approximate r2 by y, the distance between the removed
neutron and the center of mass of the remaining core-n sub-
system. Moreover the transferred momentum at high energies
in quasifree kinematics will be large, so the wave function
of the removed nucleon will be similar to a free plane wave.
Therefore (ignoring spins), the final state of the two neutrons
and the core can be expressed as

�
3.b.(−)
no spins = φc-n(kx, x)ei(ky+q)·y, (5)

where x is the coordinate between the core and the neutron
that is not removed in the (p, pn) reaction, so that φc-n(kx, x)
is the continuum wave function for the core-neutron system
corresponding to an asymptotic momentum kx. The distances
x and y can be easily related to the Jacobi coordinates [5]; see
Fig. 1. Now the application of the zero-range approximation
for the Vpn interaction, and the inclusion of the coupling of all
relevant spins in the final state, yields for the T matrix

T ∝ 〈φc-n(kx, x) ⊗ eiky·y|S(by)�gs(x, y)〉. (6)

As a final simplifying approximation, we will consider that
the S-matrix dependence on by can be approximated by the
dependence on the modulus of y, as in Ref. [23],

T ∝ 〈φc-n(kx, x) ⊗ eiky·y|S(y)�gs(x, y)〉. (7)

In the previous expression, S(y) introduces distortion and
absorption in the (p, pn) quasifree process, so the interior of
the nucleus will have a diminished effect in the final cross
section. It is clear that, if no absorption is included (S = 1) and
the core + n continuum state is replaced by a plane wave in
the x coordinate, we recover for T a simple Fourier transform
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for the ground-state wave function �gs of the Borromean pro-
jectile. Therefore, in Eq. (7) we recognize a distorted Fourier
transform. The corresponding cross section, as a function of
kx, ky, matches the result derived in Ref. [23].

A. Three-body wave functions

The modified Fourier transform introduced in Eq. (7) can
be written as

� jμ(kx, ky) = 〈φc-n(kx, x) ⊗ eikyy
∣∣S(y)� jμ

g.s.(x, y)
〉

=
∑

η

wη(kx, ky)

× {[Y jx
lxs(	x ) ⊗ χI

]
j1

⊗ [
Yly (	y) ⊗ κs

]
j2

}
jμ,

(8)

where the label η ≡ {lx, jx, I, j1, ly, j2} j follows the coupling
scheme in Refs. [11,24], i.e., jx = lx + s is the single-particle
angular momentum of a neutron with respect to the core, so
that

Y jxmx

lxs (	x ) = [
Ylx (	x ) ⊗ κs

]
jxmx

, (9)

j1 is the total angular momentum of the core-n system after
coupling with the spin I of the core, j2 is the single-particle
angular momentum of the remaining neutron, and j = j1 +
j2. Note that this wave function is expressed in the so-called
Jacobi-Y representation, where the conjugated x coordinate
connects the core and one valence neutron.

The momentum functions wη(kx, ky) in Eq. (8) can be
obtained as

wη(kx, ky) = (4π )2
∑

c′

i−lx−ly

kx

∫
dxdy f ( j1 )

c,c′ (kx, x)

× ωc′, j1,ly, j2 (x, y) jly (kyy)S(y)y, (10)

where c = {lx, jx, I}, so that η = {c, j1, ly, j2}. Here,
f ( j1 )
c,c′ (kx, x) is the radial part of the core + n continuum

state φc-n(kx, x) for specific entrance and exit channels,
jly (kyy) are spherical Bessel functions from the partial-wave
expansion of the plane wave, and ωη(x, y) are the radial
wave functions of �g.s.(x, y) in Jacobi coordinates. This wave
function follows the same form of Eq. (8),

� jμ
g.s.(x, y) = 1

xy

∑
η

ωη(x, y)

× {[Y jx
lxs (̂x) ⊗ χI

]
j1

⊗ [
Yly (̂y) ⊗ κs

]
j2

}
jμ

, (11)

where the angles now refer to the spatial coordinates. Details
on how to construct this coordinate-space wave function for
core + n + n nuclei are given, for instance, in Ref. [25] and
are summarized in Appendix A.

By introducing the radial overlaps between the three-body
ground state and the two-body continuum wave functions used
in Refs. [11,24],

ξ
η

c′ (kx, y) =
∫

dx f ( j1 )
c,c′ (kx, x)ωc′, j1,ly, j2 (x, y), (12)

core

n1

n2

�kx

�ky

θ

FIG. 2. Relative momenta kx and ky, and opening angle θ used in
the present work to characterize the knockout process.

the previous expression can be rewritten,

wη(kx, ky) = (4π )2
∑

c′

i−lx−ly

kx

∫
dyξη

c′ (kx, y) jly (kyy)S(y)y.

(13)

Finally, the overlaps for different channels {l ′
x, j′x, I ′} cor-

responding to the same configuration of the knocked-out
neutron {ly, j2} can be summed, leading to

ξ̃η(kx, y) =
∑

c′
ξ

η

c′ (kx, y), (14)

so we get

wη(kx, ky) = (4π )2 i−lx−ly

kx

∫
dyξ̃η(kx, y) jly (kyy)S(y)y.

(15)

B. Momentum and angular distributions

From Eqs. (7) and (8), the cross section for the (p, pn)
process is obtained as

σ ∝ 1

2 j + 1

∑
μ

∫
dkxdky|�|2, (16)

where the dependence on kx, ky and the angles 	x,	y is
implicit in the wave-function density. To obtain momentum
distributions and the relative angle between the two Jacobi
vectors, we can define the z axis in the direction of kx. In
that case, θy = θ and ky represent, respectively, the opening
angle and the missing momentum considered in Ref. [22] and
shown in Fig. 2. Using this condition for the construction of
the density, by integrating all variables except kx, ky, and θ and
working out the algebra, we get

σ ∝
∫

dkxdkyd (cos θ )
∑
ηη′

wη(kx, ky)w∗
η′ (kx, ky)Cηη′

×
∑

L

D(L)
ηη′

(
ly l ′

y L
0 0 0

)(
lx l ′

x L
0 0 0

)
PL(cos θ ), (17)

where the Cηη′ and D(L)
ηη′ constants are given by products of

angular-momentum factors, 6 j symbols and real phases. More
details are provided in Appendix B. From this expression,
the extraction of the opening angle and the momentum dis-
tribution is trivial. The angular dependence in Eq. (17) is
given by Legendre polynomials PL of order L in cos θ , and
we see that L comes from coupling different orbital angular
momenta of the three-body wave function. Since the Legendre
polynomials are symmetric functions for even L values, it is
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TABLE I. Properties of 10Li (scattering length a or resonance
energy Er for s- and p, d-wave states, respectively) and 11Li (partial-
wave content in the ground state) with the adopted model.

a (fm) Er (MeV)

2− 1− 1+ 2+ 4− %s1/2 %p1/2 %d5/2

−38 0.37 0.61 4.5 63 32 2

then clear that asymmetric angular distributions (associated to
nn correlations) can only be obtained if different-parity states
in the core-n subsystem are combined, which is consistent
with traditional literature [9] and with the results discussed
for 11Li in Ref. [22]. This mixing will be enhanced if the
different-parity components show a large degree of overlap
in ky and kx.

III. RESULTS

A. Application to 11Li

We apply the present formalism to the 11Li(p, pn) 10Li
reaction in inverse kinematics, for which recent experimen-
tal data on the missing momentum and opening angle are
available [22]. To compute the relevant distributions, we use
as a reference the three-body (9Li +n + n) ground-state wave
function for 11Li used in Refs. [11,24]. The model includes
the spin of 9Li, giving rise to a splitting of the 2s1/2 and
1p1/2 single-particle levels into 1−, 2− and 1+, 2+ doublets,
whose positions are adjusted with an effective neutron-core
potential assuming an inert core. To that aim, we employ
the potential labeled as P1I in Refs. [11,24], which fol-
lows the spin-dependent parametrization of Ref. [26]. For
the nn interaction, we adopt the Gogny-Pirres-Tourreil tensor
potential [27].

The 11Li ground state so obtained is characterized by a
dominance of s-wave components, and it provides a good de-
scription of both low-energy (p, d ) angular distributions and
quasifree (p, pn) relative-energy spectra. In this work, besides
the s and p states considered in Refs. [11,24], we include
also 1d5/2 resonances (4−, 3−, 2−, 1−) starting at Ecore-n =
4.5 MeV, which was suggested in Ref. [28] to better describe
9Li(d, p) 10Li spectra. This results in a small d-wave contri-
bution to the ground-state wave function. A summary of the
structure properties of the 11Li ground state, including the cor-
responding 10Li states considered to fit the core + n potential,
are given in Table I. Details of the three-body calculations,
which are based on the hyperspherical-harmonics formalism
[5], are given in Appendix A.

Following Ref. [23], we model the absorption by the proton
target through the modulus of an eikonal S matrix between
proton and 9Li computed using the tρ prescription, as in
many previous nucleon knockout analyses [29,30], using a
Hartree-Fock density with the SkX interaction [31] for 9Li.
The S matrix is presented in Fig. 3. As can be seen in the fig-
ure, it introduces a mild absorptive effect for small distances
between proton and core, which also correspond to small

0 2 4 6 8 10
b (fm)

0

0.2

0.4

0.6

0.8

1

S
(b

)

real part

imaginary part

modulus

9
Li - p

FIG. 3. S matrix for 9Li-p used in the calculation. It has been
computed through the tρ prescription using for 9Li a Hartree-Fock
density with the SkX interaction.

distances between neutron and core, due to the zero-range
approximation for the Vpn interaction.

First, we present in Fig. 4 the missing momentum (ky)
distribution for the 11Li(p, pn) reaction. In the top panel, we
present the momentum distribution and its decomposition in
s-, p-, and d-wave components, in solid lines. As can be
seen in the figure, the d-wave has a negligible effect in this
observable, due to its small contribution to the ground state
of 11Li. In order to explore the effect of the absorption of
the proton, we present as well results nullifying absorption
by setting S(y) = 1, in dotted lines. The effect is moderate at
best, narrowing the distributions somehow, and having almost
no effect at small ky. This is expected, since the removed
neutron is a halo neutron, so its collision with the proton takes
place at a large distance from the 9Li core, resulting in small
absorption. In the bottom panel, the momentum distribution is
convoluted with the experimental resolution and compared to
the experimental data in Ref. [22], finding very good agree-
ment. In Ref. [22], a very similar procedure was used, but
the weight of the different components of 11Li were fitted to
describe the data. It should be noted that, in the present work,
these weights are obtained from the three-body calculation
and have not been fitted, apart from an overall scaling factor
to match the magnitude of the experimental data.

We also present in Fig. 5 the computed distribution in
the opening angle for the calculation with and without the
absorption effect. As noted in previous works [20], the marked
asymmetry of the distribution is a clear indicator of a strong
interference between components of different parities, in this
case the s and p waves. As can be seen in Fig. 5, the absorption
effect keeps being rather moderate. This can be understood
from the missing momentum distribution in Fig. 4 by noticing
that the opening angle distribution results from the integration
of Eq. (17) over kx and ky. From Fig. 4, we see that the main
contribution corresponds to a range of ky where the effects
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FIG. 4. (a) Missing momentum distribution for the 11Li(p, pn)
reaction. The different components are presented in solid lines, as
well as the contributions setting S(y) = 1, in dotted lines, rescaled to
reproduce the maximum of the distributions with absorption. (b) The
missing momentum distribution is convoluted with the experimental
resolution and compared to the experimental data of Ref. [22].
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FIG. 5. Opening angle distribution for the 11Li(p, pn) reaction.
Results with (solid line) and without (dashed line) the effect of
absorption are presented.
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FIG. 6. Average opening angle θ as a function of ky. Results
with and without absorption are presented in solid and dashed lines
respectively.

of the absorption are small, so this translates to a reduced
effect in the opening angle. On the other hand, the d wave,
despite having a small contribution in the missing momentum
distribution, plays a fundamental role in the shape of the
opening angle distribution. From Eq. (17), the opening angle
distribution is a sum of Legendre polynomials restricted by
the orbital angular momentum transfer between the different
components of the 11Li ground-state wave function. Had the
wave function only s1/2 and p1/2 components, L would be
restricted to 0 and 1, resulting in a linear shape for the opening
angle distribution. It is the addition of the d-wave component
which introduces higher multipoles and a curved shape to
the distribution, despite its small magnitude. Similar effects
were found for 11Li breakup on a carbon target explored with
a three-body description of 11Li [32]. The effect of the f
wave, not considered here, has been tested and found to be
negligible.

In Fig. 6, we present the average opening angle θ as a
function of the missing momentum ky and compare to the
experimental data from Ref. [22]. Results with and without
absorption are presented in solid and dashed lines, respec-
tively. As can be seen in the figure, for small ky the effect
of absorption is small, and the agreement with the data is
reasonable in that region. For larger ky, the difference be-
tween both curves grows rapidly. The calculations including
absorption decrease following the data, although they tend to
overestimate the opening angle, and beyond ≈1.5 fm−1 the
result presents an oscillation not seen in the data. Meanwhile,
the calculations without absorption show a flat behavior at
≈94◦, far away from the experimental data.

Due to the simplicity of the reaction model, it is
questionable whether the distortion effect due to the real
part of the proton-target potential can be adequately de-
scribed, in particular since the coordinates of the remaining
neutron in 10Li are not considered (due to the lack of
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imaginary part in the Vpn potential at these energies, this issue
does not appear when considering absorption). We find it
illustrative, however, to explore the sensitivity of the opening
angle distribution to the real and imaginary parts of the po-
tential (equivalently the phase and modulus of the S matrix)
to elucidate which parts of the distribution would be more
affected by the reaction mechanism. We therefore modify the
p- 9Li potential as follows

Vp-9Li(r) = NV (r) + iMW (r), (18)

i.e., we rescale the real part of the potential by a factor N
and we rescale the imaginary part by a factor M. For S(y),
this results in Smod(y) = |S(y)|MeiNφS (y), where the original
S(y) equals S(y) = |S(y)|eiφS (y). Previous calculations would
correspond to N = 0, M = 1. The results of varying N and M
are presented in Fig. 7, where in the top panel the imaginary
part of the potential is kept fixed to M = 1 and the real part
is modified, while in the bottom panel the real part of the
potential is kept to zero and the imaginary part is modified.
As can be seen in the figure, a variation of the real part of
the proton-target potential leads to large modifications of the
large-momentum behavior of the opening angle distribution,
while the low-momentum maximum is left mostly unchanged.
With the original real part of the optical potential N = 1,
calculations deviate significantly from the experimental data,
showing the limitations of the reaction model for the descrip-
tion of this distortion. For variations in the imaginary part of
the optical potential, the maximum at low momenta remains
unchanged as well, with larger modifications at large mo-
menta, although the effect is more moderate than for the real
part of the optical model. The fact that the low-momentum
maximum is not modified by the proton-core potential can be
associated to the halo nature of 11Li, where low-ky momenta
correspond to configurations where the two neutrons are far
away from 9Li so the interaction Vp-9Li plays a small role.

Given that the large-momentum part shows such a large
sensitivity to the description of the p- 9Li interaction and thus
to the reaction mechanism, we find it difficult to extract infor-
mation on 10Li from this region of the distribution. As such,
we choose to focus on the low-momentum maximum, finding
that its magnitude is consistent but somehow underestimated
by our calculations. Since the asymmetry of the opening angle
distribution originates from the interference of the positive-
and negative-parity waves, a larger asymmetry (and thus an
opening angle more different from 90◦) should be obtained if
the positive- and negative-parity waves have closer weights.
Focusing on the region of the maximum, we can see from the
momentum distribution in Fig. 4 that indeed the asymmetry
originates from the interference of the s and p waves. As
such, we have tried to increase the asymmetry by artificially
increasing the contribution of the p wave and reducing that
of the s wave so that they become more comparable. The
results of this manipulation are presented in Fig. 8, the top
(bottom) panel showing the results with (without) the effect of
absorption. The original results, with 63% s wave and 32% p
wave, are shown by the black solid line, while the weights for
the red dash-dotted line and the green dashed lines are 48%
s, 48% p and 31% s, 64% p respectively. As expected, the
results for the maximum are the same whether we consider
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FIG. 7. Effect of S(y) on the average opening angle. N de-
notes a scaling factor for the real part of the Vp-9Li potential, while
M corresponds to the scaling factor of the imaginary part. Panel
(a) corresponds to M = 1, that is, the original imaginary part of the
potential, while panel (b) corresponds to N = 0, the removal of the
real part of the potential.

absorption or not, although for larger momentum there is
naturally a difference.

As expected, as well, a decrease in the s-wave component
and an increase in p wave does produce a larger opening angle,
although for the more extreme modification the position of
the maximum is also shifted and no longer fits that of the
experimental data. Even despite this rather large alteration, the
magnitude of the maximum in all cases is rather similar and
smaller than the experimental data. By comparing the calcula-
tions to the experimental data in the maximum, it would seem
the best agreement is found for the case with equal weight
(≈48%) for the s and p waves, although it must be noted that
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FIG. 8. Average opening angle θ as a function of ky, comparing
the reference calculation (solid black line) with the results adjusting
the s- and p-wave weights (dot-dashed red line and dashed green
line), with (a) or without (b) absorption.

the degree of agreement is comparable for all calculations.
That s and p components have similar weights in the ground
state of 11Li has also been suggested from other experiments
[20,21,33]. In Fig. 9, we show the momentum distributions
with these modified weights. The different components are
shown, as in Fig. 4, alongside the original result (with weights
63% and 32% for the s and p waves, respectively) shown by
the dashed black curve. The top panel corresponds to 48% s
wave and 48% p wave and the bottom panel to 31% s wave
and 64% p wave.

The sensitivity to the weight of each component is rather
large in this observable, with the weights of 48% s, 48% p
describing well the large-momentum tail but missing the peak,
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FIG. 9. Momentum distribution described with the modified
models with (a) 48% s wave and 48% p wave and (b) 31% s wave and
64% p wave. The s, p, and d components are shown separately. The
distribution for the original calculation is shown in the black dashed
line.

and the 31% s, 64% p missing the whole distribution. The
degree of agreement for the top distribution is similar to that of
the original distribution, so a clear distinction cannot be made
from these observables for the weight of the two components,
especially considering that the effect of absorption (as shown
in Fig. 4) modifies the agreement in a comparable manner.
Given that the model with the original weights has been
able to describe observables for 11Li(p, pn) [11], 11Li(p, d )
[24], and 9Li(d, p) [28], we favor the original weights. It is
remarkable that the bottom distribution describes so poorly
the data, given that the weights are similar to those extracted
in Ref. [22]. The reason for this discrepancy could be related
to the different descriptions of the structure of 11Li used here
and in Ref. [22]. In particular, the scattering length found for
the 2− state is −38 fm in the model used in this work, while
it is −45 fm [10] for the one used in Ref. [22]. Therefore,
the distribution for the s wave in this work is broader, so a
description of the peak requires a larger s-wave component.
It is then clear that the extraction of these structure properties
from such observables is a model-dependent procedure, and a
word of caution must be raised.
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FIG. 10. Average opening angle θ as a function of ky for (a) 11Li
and (b) 19B. In both cases, absorption has been removed.

B. Sensitivity to the properties of the wave function:
Comparison between 11Li and 19B

In this section, we will focus on the average opening angle
as a function of the missing momentum and compare our 11Li
results with the case of 19B, which was recently identified
as a two-neutron halo via Coulomb dissociation [14]. Given
the dependence found for the large-momentum behavior with
absorption, we choose to focus on the low-momentum part of
the distribution. We describe 19B using the 17B +n + n model
presented in Ref. [15], which for simplicity assumes an inert
(and spinless) core. This model was shown to describe the
observed B(E1) distribution of 19B reasonably. The ground
state is characterized by 53% s1/2 components and 39.2% d5/2

components, associated to a virtual state and a d-wave reso-
nance in 18B, respectively, and with a very small admixture of
d3/2 and p waves. As discussed in Ref. [15], better knowledge
of the 18B spectrum would be required to include the core spin
and effectively constrain the spin-spin interaction in 17B +n,
similarly to our 11Li calculations in the previous section. In
Fig. 10, we present the average opening angle as a function of
missing momentum both for 11Li and 19B.

It is surprising that both distributions show very similar
magnitudes at low momenta, since one would expect the mag-
nitude of the opening angle to reflect the asymmetry of the
wave function, and 19B, with only 3.3% p-wave component,
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FIG. 11. Opening angle distribution for the 19B(p, pn) reaction.
Absorption has not been included.

is markedly more symmetric (see Fig. 11) than 11Li. In fact,
with the considered models, the overall opening angle for
11Li is of 95.4 deg while for 19B it is 91.7 deg, much closer
to the symmetric 90 degs. This is consistent with the more
asymmetric nature of 11Li, showing that the overall opening
angle is a better descriptor of the asymmetry of the wave
function than the maximum of the average angle as a function
of the missing momentum. This can be understood noticing
that the opening angle shown in Fig. 10 has been averaged
over the corresponding momentum range, so its magnitude
will depend not only on the overlap between positive- and
negative-parity components, as implied by Eq. (17), but also
on the magnitude of the wave function for that momentum
range. Therefore, the interpretation of the magnitude of the
maximum of the opening-angle distribution is not straightfor-
ward as it reflects not only the asymmetry of the wave function
but also the overall magnitude of the wave function at the
considered momentum.

On the other hand, the position of the maximum should
indicate the value of the missing momentum for which the
overlap between positive- and negative-parity components is
maximal, when compared to the overall magnitude of the
wave function for that momentum. To explore this, we present
in Fig. 12 the opening angle (top panels) as well as the
momentum distributions (bottom panels) both for 11Li (left
panels) and 19B (right panels). A red dashed line indicates
the momentum with the maximum average opening angle.
As can be seen in the figure, for 11Li, the maximum occurs
for a momentum close to the maximum of the p wave dis-
tribution, where s and p wave have similar magnitudes, as
would be expected. The maximum average angle does not
occur at the point where both components have exactly the
same magnitude because their overlap not only depends on
their magnitude but also their shape and phase, so a maxi-
mum overlap does not always occur for waves of the same
magnitude.
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FIG. 12. Average opening angle (top panels) and momentum dis-
tributions (bottom panels) for 11Li (left panels) and 19B (right panels).
The different components are presented separately in the momentum
distributions, as in Fig. 4. A red dashed line is used for both nuclei to
mark the position of the maximum in the average opening angle. In
the momentum distribution for 19B (bottom right panel), the p-wave
component is also presented rescaled for visibility by the dotted blue
line.

For 19B, positive- and negative-parity components have
very different magnitudes for all momenta, due to the p-
wave component being Pauli blocked and contributing very
little to the ground state. Here the same arguments for max-
imum overlap and similar magnitudes would predict that the
maximal average opening angle would correspond to a mo-
mentum where either the larger component has a minimum
or the smaller component has a maximum (with the caveats
mentioned above). Indeed, as shown in Fig. 12, rescaled for
visibility in the dotted blue line, the p-wave component ex-
hibits a maximum exactly in the position of the maximum
opening angle. Note that even though our 19B model does not
include the spin of the core, the same qualitative conclusions
would be expected when including the spin-spin splitting,
provided the overall position and relative weight of the dif-
ferent single-particle configurations is maintained. A more
quantitative analysis including the spin of the core explicitly
requires further investigation. It should also be noted that the
p-wave component in this model presents no resonances and
its shape corresponds to purely nonresonant continuum.

This suggests that the average opening angle as a function
of the missing momentum could be used as a promising probe
to explore components of the wave function with small contri-
bution to the overall ground-state wave function of Borromean
nuclei, if they have a parity opposite to that of the main com-
ponents. This could help study the effect of core excitation
or other structure properties that generate such components.
For instance, the method could be used to study recent (p, pn)
data for 17B [34], for which the analysis of the relative-energy
spectrum and momentum distributions yielded mostly s and d
waves. A deviation from 90 deg in the corresponding average
opening angle could then be interpreted as a result of a small
p-wave admixture.

C. Dineutron in coordinate space

In Ref. [22], the maximum (>90 deg) of the average open-
ing angle at low missing momenta is associated with the
surface localization of dineutron correlations in 11Li. This
means that, in coordinate space, the wave function favors
configurations in which the valence neutrons are close to
each other at some distance from the core. We can study this
effect by looking at the ground-state probability density as a
function of the distance between the halo neutrons (rnn) and
that between the center of mass of the two-neutron system
and the core (rc-nn). Here we use the usual Jacobi coordinates
in the so-called T representation. Our results for 11Li and 19B
are shown in Fig. 13.

The 11Li density (top panel) exhibits a clear maximum for
small n-n relative distances, the so-called dineutron config-
uration. Interestingly, the region corresponding to large rnn

and small rc-nn values (sometimes called “cigar”-like con-
figuration) shows a small probability in our model. This is
consistent with the large asymmetry of the opening angle in
momentum space presented in Fig. 2, which is also apparent
in coordinate space but now pointing towards small angles
(<90 deg) between the valence neutrons. The rms rnn as a
function of rc-nn has a minimum at 3.13 fm, which is similar
to the value of 3.2 fm given in Ref. [35]. It is clear from the
present calculations that the wave function shows a diffuse
tail at longer distances, and the dineutron peak appears in the
surface. The conclusions are aligned with those in Ref. [22],
though the authors obtained a value of rc-nn = 3.6 fm. Note,
however, that this quantity is model dependent, as it comes
from the three-body calculations, and it is not a direct result
from the experimental data on the average opening angle.

In the case of 19B (bottom panel of Fig. 13), the corre-
sponding density explores in general larger distances, with the
minimum of the rms rnn distance appearing at rc-nn = 4.16 fm.
While a dineutron peak is also present, the wave function has
a large probability outside this maximum. In particular, the
“cigar”-like configuration is more clearly separated and takes
a big portion of the total norm. This is reflected by an overall√〈r2

nn〉19B
= 3.65 fm, which is significantly larger that that for

11Li,
√〈r2

nn〉11Li = 3.30 fm. Therefore, in 19B the “dineutron”
is less compact, and this is consistent with a relatively small
asymmetry in the opening angle, as discussed in the previous
section. It is worth stressing again that the position of the
maximum of the average opening angle as a function of the
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FIG. 13. Ground-state probability density for (a) 11Li and (b) 19B
as a function of rnn and rc-nn.

missing momentum is not directly related to the localization of
the dineutron correlation in rc-nn and that a model is required
to extract this information from the data.

IV. SUMMARY AND OUTLOOK

In this work, we have analyzed the opening angle as
a function of the missing momentum in nucleon-knockout
reactions from Borromean two-neutron halo nuclei with pro-
ton targets. We have studied its sensitivity to the reaction
mechanism through the S(y) proton-core S matrix and to
the structure of the nucleus, in particular the weights of its
positive- and negative-parity components. We have found a
rather large effect of S(y) for large missing momenta but an
almost negligible one for small momenta. This indicates that
caution should be taken when extracting structure information
from the behavior of this observable at large missing mo-
menta, where the effects of the reaction mechanism are more
pronounced. We have analyzed the data recently published
for 11Li [22] and found a reasonable agreement using the
three-body model presented in Refs. [11,24], despite its s-
and p-wave contributions being rather different from those

extracted in Ref. [22]. This shows a significant model de-
pendence in the extraction of these quantities. We have also
explored the 19B case, where even a small p-wave compo-
nent produces significant variations in the opening angle. This
opens this observable as a sensitive probe to small components
of the wave function with inverse parity to that of the dominant
components, thus allowing their characterization, which can
be difficult to explore otherwise. The surface localization of
the dineutron explored in Ref. [22] has been found for both
of the nuclei considered in this work, although its relation to
the opening angle as a function of the missing momentum
requires an intermediate three-body model and is as such
model dependent.

Improvements of the reaction theory and the structure de-
scription may allow for a better exploration of this observable.
On the one hand, reaction calculations such as full distorted-
wave impulse approximation (DWIA) [36] or transfer to the
continuum [37] would be desirable, but due to the numerous
final states of the unbound core + n system which have to
be added coherently, this can pose a challenging and com-
putationally expensive endeavor. Therefore, an improvement
of the present theory, such as a description of S(by) in its
natural coordinate (the impact parameter), the inclusion of
distortion effects distinguishing explicitly the neutron and
core, together with a more microscopic description of the
proton-core interaction, may provide a better description of
the large momentum part, which can give new insights on
the properties of Borromean two-neutron halos. On the other
hand, a refinement of three-body structure models, such as the
inclusion of core excitations explicitly, may modify the results
and conclusions. Work along these lines is ongoing and will
be the subject of future research.

ACKNOWLEDGMENTS

The authors would like to thank A. M. Moro, A. Corsi and
Y. Kikuchi for useful discussions. This work has been partially
supported by the Spanish Ministerio de Ciencia, Innovación
y Universidades under Project No. FIS2017-88410-P, by the
European Union Research and Innovation Programme un-
der Marie Skłodowska Curie Actions, Grant Agreement No.
101023609, and by the European Social Fund and Junta de
Andalucía (PAIDI 2020) under Grant No. DOC-01006.

APPENDIX A: THREE-BODY HYPERSPHERICAL
FORMALISM FOR CORE + N + N NUCLEI

We describe three-body wave functions using Jacobi co-
ordinates and the hyperspherical framework, which is briefly
discussed in this Appendix. A more comprehensive formula-
tion is presented, for instance, in Refs. [5,6] and summarized
in Ref. [25]. In the case of core + n + n nuclei, two sets of
Jacobi coordinates {x, y} can be defined, the T and Y represen-
tations, which are illustrated in Fig. 14. The relation between
the scaled Jacobi coordinates and the physical distances rx, ry

in the T representation is given by

x = axrx, ax =
√

1/2, (A1)

y = ayry, ay =
√

2A/(A + 2), (A2)
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where A is the mass of the core. From Jacobi coordinates,
one defines the hyperspherical coordinates {ρ, α, x̂, ŷ}, where
ρ =

√
x2 + y2 is the hyper-radius and α = arctan (y/x) is the

hyperangle. Following the coupling order of Ref. [38] and
introducing 	 = {α, x̂, ŷ}, the wave functions for a given total
angular momentum j can be written as

ψ jμ(ρ,	) = ρ−5/2
∑

β

U j
β (ρ)Y jμ

β (	), (A3)

Y jμ
β (	) = {[

ϒ
lx ly
Kl (	) ⊗ κSx

]
jab

⊗ χI
}

jμ
, (A4)

ϒ
lx ly
Klml

(	) = ϕ
lx ly
K (α)

[
Ylx (x) ⊗ Yly (y)

]
lml

, (A5)

where β ≡ {K, lx, lx, l, Sx, jab} are the relevant quantum num-
bers that label different components. Here, ϒ

lx ly
Klml

are the
hyperspherical harmonics, eigenfunctions of the hypermo-
mentum operator (or grand hyperangular momentum) K̂ , and
ϕ

lx ly
K are the analytical hyperangular functions. Note that Sx

is the coupled spin of the two particles related by x, and I
is the spin of the core. Therefore, it is convenient to solve
the problem and obtain the wave functions in the Jacobi-
T representation, with the two neutrons related by x. In
that case, Sx = 0, 1 and the Pauli principle for two identical
fermions imposes that Sx + lx is even. This reduces the num-
ber of components needed in the wave-function expansion.
The hyper-radial functions U j

β are the solutions of a set of
coupled equations with an effective three-body barrier defined
by K and involving the coupling potentials

V jμ
β ′β (ρ) = 〈Y jμ

β (	)
∣∣V12 + V13 + V23

∣∣Y jμ
β ′ (	)

〉 + δββ ′V3b(ρ).
(A6)

In this expression, Vi j are the pairwise potentials, usually
adjusted to reproduce known properties of the binary subsys-
tems, and V3b is a diagonal three-body force that is customarily
used to fine-tune the computed three-body energies to the
experimental values. In this work, instead of solving the cou-
pled hyper-radial equations numerically, the eigenstates of the
three-body system are obtained by diagonalizing the three-
body Hamiltonian in a discrete basis. We choose here, as in
Refs. [15,25], the analytical transformed harmonic oscillator
basis [39]. The convergence of the calculations is checked
with the number of basis functions, but also setting a maxi-
mum hypermomentum Kmax for the wave-function expansion.
This limits the possible lx, ly values, so no additional trunca-
tion is needed.

Once the solutions in the Jacobi T set are known, a trans-
formation to the Jacobi Y representation can be achieved by

using the Raynal-Revai coefficients [40]. Formally, the trans-
formed wave function reads

ψ
jμ

Y (ρ,	′) = ρ−5/2
∑
β ′

(∑
β

Nβ,β ′U j
β (ρ)

)
Y jμ

β ′ (	′)

= ρ−5/2
∑
β ′

U j
β ′ (ρ)Y jμ

β ′ (	′), (A7)

in terms of the quantum numbers in the Y representation β ′.
The coefficients Nβ,β ′ = 〈Y, β ′|T, β〉 are analytical and deter-
mine the hyper-radial functions U j

β ′ in the new set. The angular
functions in Eq. (A7) follow the same form of Eq. (A4) and
with the same K, l , since these quantum numbers (as well
as ρ) are preserved in the transformation [38]. Note that the
relation between Jacobi-Y coordinates and physical distances
is now given by

x′ = ax′r′
x, ax′ =

√
A/(A + 1), (A8)

y′ = ay′r′
y, ay′ =

√
(A + 1)/(A + 2), (A9)

In Sec. II, we employ the three-body wave function in
Jacobi Y coordinates and follow a different coupling order,
which involves the single-particle angular momentum be-
tween one of the neutrons and the core. The corresponding
radial functions in Eq. (11) are given by Eq. (A8) of Ref. [25],
i.e.,

ω j
η(x′, y′) = ĵ1 ĵ2

∑
j′ab

(−) jab−ly− j1 ĵ′abW ( j1l ′
y js; j′ab j2)

×
∑

l

(−)l−l ′x−l ′y l̂W (l ′
yl ′

x j′abs; l j1)

×
∑

K

ρ−1/2U j
Kη(ρ)ϕ

l ′x l ′y
K (α′), (A10)

where W are Racah coefficients, �̂ = √
2� + 1, and we have

identified β ′ = {K, η}, with η being the set of quantum num-
bers introduced before.

APPENDIX B: WAVE-FUNCTION DENSITY IN
MOMENTUM SPACE

The derivation of the cross section in Sec. II B involves the
density of a momentum-space wave function that incorporates
final-state interaction and absorption effects, which is given
in the Jacobi Y representation by Eq. (8). In order to obtain
the angle between the two Jacobi vectors, we fix kx in the di-
rection of the z axis by replacing the corresponding spherical
harmonics by

Ylx,mx (0, 0) = l̂x√
4π

δmx,0. (B1)

Then, by expanding the wave-function couplings and per-
forming the summation over all projections and unwanted
angles, we get
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1

ĵ2

∑
μ

�∗
gs�gs =

∑
ηη′

w∗
η (kx, ky)wη′ (kx, ky) ĵ1 ĵ2 ĵx ĵ′1 ĵ′2 ĵ′x

l̂x√
4π

l̂ ′
x√
4π

l̂y l̂ ′
y√

4π

∑
L

L̂

(
ly l ′

y L
0 0 0

)(
lx l ′

x L
0 0 0

)
YL0(θ )

×
{

jx L j′x
j′1 Ic j1

}{
jx L j′x
l ′
x sn lx

}{
j′2 j2 L
j1 j′1 j

}{
j′2 j2 L
ly l ′

y I

}
(−)−2 j′1−Ic−sn−I− jx− j′x+L− j′2− j2− j . (B2)

By comparing this to Eq. (17), we identify the geometrical quantities

Cηη′ = ĵ1 ĵ2 ĵx ĵ′1 ĵ′2 ĵ′x
l̂x√
4π

l̂ ′
x√
4π

l̂y l̂ ′
y√

4π
(−)−2 j′1−Ic−sn−I− jx− j′x− j′2− j2− j, (B3)

D(L)
ηη′ = L̂(−)L

{
jx L j′x
j′1 Ic j1

}{
jx L j′x
l ′
x sn lx

}{
j′2 j2 L
j1 j′1 j

}{
j′2 j2 L
ly l ′

y I

}
. (B4)
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