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The unsteady aerodynamics of flapping low-aspect-ratio ellipsoidal-wings in ornithopters is analyzed and 
modeled by the use of three dimensional Computational Fluid Dynamics (CFD) simulations. The range of 
interest is high amplitude, moderate frequency flapping, and low to moderate angles of attack at Reynolds 
around 105, where autonomous ornithopters like GRIFFIN are able to perform complex maneuvers such 
as perching. The results obtained show that the Leading Edge Vortex is produced above a certain Strouhal 
and angle of attack at downstroke. The frequency response of the aerodynamic loads are compared with 
the classical analytical models, observing that analytical models based on absence of viscosity and small 
perturbations are not appropriate for the range of interest. Through the 3D CFD aerodynamic loads 
database, a finite memory Volterra model is identified in order to predict the characteristics of forces 
and moments produced by the flapping wing. A good agreement with the 3D CFD simulations has been 
found by considering a reduced-order model depending on the effective angle of attack of the surrogate 
airfoil located at 70% of the semi-span at three-quarters chord on the airfoil, in agreement with the 
literature. Finally, a methodology for validation with a high-accuracy Motion Capture System and without 
the need of wind tunnel is proposed. As a result the proposed model provides better estimates than 
classical analytical ones.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The efficiency and maneuverability, both in gliding and flapping 
[1], of bird flight has fascinated scientists throughout history, a fact 
that can be shown in the diversity of ornithopter prototypes devel-
oped, such as the Festo Smart Bird [2], Robird [3], Robo Raven [4]
and E-FLAP [5]. Currently, the emphasis in ornithopter research is 
mainly focused on the aerodynamics of flapping wings and design 
as e.g. in [6–11], but at micro/small scale and in experimental se-
tups, unlike here that we focus on high-amplitude flapping in large 
ornithopters with validation in flight using a high-precision motion 
capture system.

The optimization of the aerodynamic loads such as lift can en-
hance the payload of the ornithopters such as the GRIFFIN’s proto-
type E-FLAP [5] (see Fig. 1), being able to improve the sensing and 
computational capabilities, thus allowing fully autonomous flight 
and perching. Moreover, aerodynamic models are also strongly 
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needed to optimize model-based control and planning algorithms. 
However, while simple analytical models subject to various hy-
potheses are practical in the preliminary stages of ornithopter 
design, they become overly complex when trying to model flow 
more accurately, as it is the case of high-amplitude flapping. Thus, 
Computational Fluid Dynamics (CFD)-based models provides a use-
ful tool in the middle stages of ornithopter development. Post-
processing techniques provide a broad view of the phenomena that 
occur in the fluid in the Unmanned Aerial Vehicle (UAV) operating 
range, facilitating the type of the model to identify. Putting it all 
together makes aerodynamic modeling of high-amplitude flapping 
wing a challenging task in terms of accuracy and complexity, since 
involves unsteady viscous phenomena on three dimensional flow.

Classical analytical models and corrections. Unsteady aerody-
namic models reflect the dependence of aerodynamic forces with 
the airfoil states, beyond quasi-steady models that assume that 
the forces produced depend only on the position of the wing 
with respect to the airflow but memoryless. Researchers have 
demonstrated that this aerodynamics do not capture the real 
phenomenon of flapping wing at intermediate-range Reynolds 
[12], [13]. Early models developed for unsteady aerodynamics were 
those of Wagner [14] and Theodorsen [15], for the lift and mo-
ess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

α Static angle of attack.
αs Wing-body fixed angle.
αef f Effective or induced angle of attack.
s̄ Non-dimensional Laplace variable.
C Theodorsen’s function.
H Volterra Linear kernel.
� Wagner’s function.
� Volterra functional.
σ Discrete memory index.
τ Discrete time index.
� Random variable.
A, B Generic matrices of a linear system.
b Wing semi span, half chord . . . . . . . . . . . . . . . . . . . . . . . . . m
c Wing’s root chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
f Flapping frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

h Airfoil heaving amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . m
I yy Pitch moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . Kg m2

L, D, M Lift, Drag and pitch Moment in aerodynamic reference 
frame.

M System memory in time steps.
m Ornithopter mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kg
N Time series length.
St Strouhal number.
u, v, w Linear velocities of ornithopter in body frame.

V Free stream velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
x, y Position in inertial reference frame [m], input-output 

variables of a generic system.
yref Reference position in span of surrogate airfoil . . . . . . m
c̄ Wing mean chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
λ Ridge Regression regularization coefficient.
μ Air viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N s/m2

ρ Air density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kg/m3

θ Wing position in flapping, pitch angle.
k Reduced frequency.
Re Reynolds number.
S Wing surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

t Dimensional time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

Acronyms

CFD Computational Fluid Dynamics.
LEV Leading Edge Vortex.
MCS Motion Capture System.
NMSE Normalized Mean Square Error.
RANS Reynolds-Averaged Navier Stokes equations.
ROM Reduced Order Model.
UAV Unmanned Aerial Vehicle.
UDF User-Defined Function.
WTV Wing-Tip Vortex.
Fig. 1. GRIFFIN e-flap prototype.

ment forces in airfoils, derived from the well known linearized 
potential theory and therefore assuming their hypotheses. The first 
represents the lift evolution after a change in the effective angle 
of attack at 3/4 chord by the impulse response and the convolu-
tion integral. On the other hand, Theodorsen proposed a frequency 
response model for the same problem, and highlighted the rel-
evance of the reduced frequency in performance. However, both 
models were shown to be equivalent later on [16]. A year later, 
Garrick [17] made use of the linearized potential theory and the 
Theodorsen function to derive a compact model of the propulsive 
forces caused by an airfoil performing small oscillatory heaving 
and pitching. This theory has been enhanced recently by Feria [18], 
with the use of the Vortical Impulse Theory. Assuming that a flap-
ping wing’s airfoil in heaving could be interpreted as an infinite 
wing in such movement, surrogate models found similarities be-
tween the performance of the airfoils at given points along the 
span and that of the three-dimensional flapping wing. Based on 
Wagner’s Indicial Response, Jones [19] proposed a correction of the 
Theodorsen’s Theory with the aspect ratio for three-dimensional 
wings. Subsequently, some corrected models based on the Lifting 
Line Theory were derived from the Wager’s step response in or-
2

der to model arbitrary displacements of the wing, as e.g. Delaurier 
[20].

Low Reynolds and high amplitude modeling. At present, various 
investigations have been carried out on the aerodynamics of flap-
ping wings and aeroelasticity which is being studied as a poten-
tially performance-enhancing phenomenon of flapping wing sys-
tems at low Reynolds. Moreover, there is a marked tendency in 
flap wing research to study insect and bird flights separately. While 
insects generally operate at very low speeds through high beat fre-
quencies and complex wing kinematics, where viscous phenomena 
mainly occur [21], [22], [23], birds fly at higher speeds, where cir-
culatory effects are not negligible [24]. A review of models for 
insects proposed till the date can be found at [25] of both inte-
gral and circulation approach. The authors conclude that the Ansari 
model, a quasy-3D model derived from potential flow equations 
was the most satisfactory model to date. However, it was only val-
idated for a Reynolds of the order of 102, typical in insects. On 
the other hand the authors derived a numerical model for insects 
hovering [26].

Although classical models based on the lifting line and po-
tential theory are still widely used [27], due to the development 
of CFD and experimental techniques, the underlying phenomena 
at intermediate-range Reynolds has been thoroughly studied, both 
in airfoils and three dimensional wings. Thus, several researchers 
agree that the Leading Edge Vortex (LEV) is the cause of hyper-
lift effects in flapping wings at moderate Strouhal numbers in the 
Reynolds range of 104 − 105, that includes insects and vertebrates 
[28], [29], [12], [30]. Reference [31] presents a recent review on the 
state of the art of the aerodynamics of flapping airfoils, and con-
cludes that further study of the performance of 3D flapping wing 
aerodynamics is necessary to better understand the flight of birds 
in order to achieve efficient real applications.

Due to the increase of complexity, in recent years Reduced Or-
der Models (ROM) have been identified for the operating range 
of interest, base on numerical and experimental data. A complete 
revision of unsteady aerodynamics data-driven modeling methods 
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can be found at [32]. The strengths and weaknesses of each ap-
proach that has been developed are analyzed, emphasizing those 
based on identification. Modeling unsteady aerodynamics is classi-
fied in three methods: Theoretical, computational and data-driven 
methods. Brunton et al. [33] proposed a semi-empirical state-space 
representation of Theodorsen’s lift model, by identifying the cir-
culatory and added mass parameters empirically at intermediate-
range Reynolds flows. Zakaria et al. [34], [35] identified, by means 
of a wind tunnel experiments, the empirical frequency response 
of a plunging wing at high angles of attack, resulting in a lift 
enhancement compared to Theodorsen’s prediction at certain fre-
quency. Boutet et al. [36] extended the Wagner theory to three 
dimensional wings by using the lifting line theory, maintaining the 
small perturbations hypothesis. Taha et al. [37] included the effects 
of the stall modeled by the lift-alpha slope in the Wagner’s Indi-
cial Respose, using the Duhamel’s principle and obtained a ROM 
for insects at high reduced frequencies. Currently [38] compare 
Navier Stokes simulations of a airfoil and the Theodorsen transfer 
function revealed that the differentiation between circulatory and 
non-circulatory lift is diffuse under certain conditions, concluding 
that it must contain a “viscous circulation” term.

Finally, regarding with Volterra approaches, Silva et al. [39], [40]
proposed the Volterra theory to high velocity unsteady aerody-
namic responses analysis; Cummings et al. [41], [42] applied the 
Volterra theory to X-31 airplane in order to identify transonic re-
sponses and pitching characteristics; Balajewicz et al. [43] applied 
Multi-Input Volterra theory to transonic unsteady CFD simulations 
of an airfoil subject to heaving and pitching displacements; and 
the most related work is K. Liu et al. [44] that applied Volterra 
Kernel identification to flapping 3D CFD simulations, but, however, 
only a sole maneuver for a small angle was identified and no in-
formation about the kernel is provided. Therefore, the application 
of the Volterra theory for flapping wings in the literature is very 
limited.

In summary, this research contributes to the field of ROM for 
large-scale high-amplitude flapping wing ornithopters. No analyti-
cal models that predict the effect of intermediate-range Reynolds 
and high induced angles of attack in ornithopters operating by 
large beating at low velocities [35] are available. Thus, it is nec-
essary to analyze the vortex structures that are generated, in order 
to better understand the lift-propulsion generation mechanisms of 
large flapping ornithopters in that regime. More precisely, for large 
ornithopters, the contributions are enumerated in detail below:

C1. The available aerodynamic 3D-Unsteady CFD-database, in the 
range of Reynolds around 105 and Strouhal 0.1-1, of a semi-
wing at high-amplitude flapping, at angles of attack up to 30 
degrees, for which references are scarce. The methodology to 
obtain this database automatically and efficiently thanks to 
forcing an accurate initialization, shown in block diagram on 
Fig. 4, and the Overset Mesh approach. The CFD scheme has 
been verified through an available dataset in the literature.

C2. The reduced-order Volterra model is proposed as a high per-
turbations generalization of the classical linear models but 
without separating the added mass and circulatory effects, 
and its applicability is analyzed. The ROM incorporates other 
effects that can occur at high-amplitude flapping and interme-
diate Reynolds.

C3. The identification procedure of an unsteady aerodynamic ROM 
based on Volterra Theory with a CFD numerical database as 
a training set. The model is based on the hypothesis that the 
single input is the time history of an effective angle of attack 
at a proper wing’s location, lift coefficient depends in a linear 
way on the previous states at first instance, and the mem-
ory is finite. Those assumptions have been verified by 2D and 
3D aerodynamic simulations comparison to calculate the input 
3

location, and by the model ability to accurate reproduce the 
training set.

C4. The experimental validation methodology of the ROM using 
a high-precision Motion Capture System that provides exper-
imental flight data, shown in the block diagram on Fig. 22. 
A good reproducibility has been found when raw flight data 
is used as input in the proposed model. This is shown as an 
alternative when available wind tunnel does not satisfy the re-
quirements.

C5. In addition, a thorough analysis of the deficiencies found in 
the classical aerodynamics models, that do not satisfy their hy-
pothesis at these conditions, are also provided.

The paper is structured as follows. Section 2 is devoted to the 
CFD simulations for the aerodynamic database construction, which 
includes initial validation with available data in the literature, anal-
ysis of the unsteady 3D CFD aerodynamics and of steady simula-
tions, in order to select the location of the surrogate airfoil. Finally, 
the underlying phenomena in the fluid is highlighted by vortex and 
pressure visualization. Section 3 is devoted to the Volterra ROM 
selection and identification procedure, which includes verification 
of the identified kernel and analysis of discrepancies with classi-
cal Wagner’s theoretical model. Section 4 includes the validation 
methodology using a high-precision Motion Capture System and 
the experimental validation for lift force. Next, a discussion section 
where the limitations and performance of the proposed approach 
and results are discussed. The paper is wrapped up with a conclu-
sion and future work section.

2. Computational fluid dynamics simulations

In order to gain insight into the phenomena of flapping flight, 
some authors proposed the resolution of Navier-Stokes equations. 
In reference [31] can be found most relevant CFD analysis of flap-
ping airfoils, most of them focused on vortex visualization and 
correlation of two dimensional airfoils at low reduced frequency 
performing pitch and heave oscillations at different hinge points. 
However, the most challenging task on CFD simulation of 3D high 
rotation bodies is the efficient generation of an accurate mesh. The 
“remeshing” techniques were use to model the fluid volume ele-
ments along time, Bos et al. [45] among others proposed a mesh 
deformation technique based on radial basis functions to simu-
late the flow around an insect wing at Reynolds O(100) using a 
laminar model. Nowadays become relevant the use of local mesh 
adaptation or Overset techniques that joined to turbulence models 
provides an accurate tool to solve complex flows around flapping 
wings [46]. Unsteady 3D numerical simulations have been per-
formed in a commercial software for the GRIFFIN prototype wing.

2.1. CFD simulations setup

It is widely known that the effects of chord based Strouhal 
and Reynolds aerodynamic numbers govern the fluid around flap-
ping wings in forward flight, in addition to the geometric angle of 
attack. On the other hand, high amplitudes of the flapping also in-
fluences the aerodynamics, not considered in small perturbation’s 
models such as Theodorsen’s model. At this study, the amplitude 
remains constant at a considerable magnitude and, so we will refer 
to the Strouhal as the chord-based Strouhal defined as follows

Re = ρV c̄

μ
, St = f c̄

V
, k = π St.

The wing is modeled as a rigid and thin ellipsoidal plate, which 
dimensions can be found at Table 1. The sections are aligned at 
c
4 , where is located the stroke plane which is perpendicular to the 
longitudinal axis of the ornithopter.
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Fig. 2. Overset and Background mesh for unsteady CFD simulations. Boundary conditions at Background mesh are: “Inlet Velocity” at inlet surface and “Pressure Outlet” at 
remaining outer surfaces. “Overset interface” at Overset mesh outer surfaces and “Wall” in wing surface.
Table 1
Wing model.

Wing dimensions

Mean chord, c̄ 0.28 [m]

Root chord, c 0.36 [m]

Semi span, b 0.6 [m]

Thickness, t 210−3 [m]

Table 2
Parameters range of interest in the study.

Dimensional parameters Range

Inlet velocity, V (0-6) [m/s]
Flapping frequency, f (0-6) [Hz]
Angle of Attack (geometric), α (−8 − 30) [deg.]

Non dimensional parameters

Reynolds, Re (0.4 – 1.2) ·105 [-]
Strouhal (chord based), St (0.1 – 0.85) [-]

The Overset Method has been used to simulate the displace-
ment of the wing over the flapping with two unstructured meshes 
superimposed. The background mesh, provides the layout where 
slides the Overset mesh that contains the mesh of the wing sur-
faces. Thus, the meshes maintain their shape during simulation, 
avoiding the loss of quality produced by elements distortion that 
occurs in the dynamic mesh simulation. Fig. 2a represents the di-
mension of the fluid domain for each of the meshes, which have 
been seen to be sufficient to cover the perturbations of the wing, 
taking into account the reduction of the distance to the walls with 
the movement of the wing. The wing is centered on the Overset 
mesh, which is in the position shown in the Fig. 2b at the ini-
tial instant. Note that the background mesh has been refined in 
the moving zone so that the displacement in a time step is less 
than the size of the cell for the critical case, that is, maximum fre-
quency and speed. We underscore that mesh refinements has been 
explored without noticeable changes.

The simulation parameters are the fluid inlet velocity, the ge-
ometric angle of attack and the flapping frequency as Fig. 3
presents. The mean angle of flapping or dihedral and the ampli-
tude of the flapping of the wing has been fixed to 21.5 deg and 
26.5 deg, respectively. The first responds to stability needs, and 
others are chosen responding to bio-inspired design criteria. Simu-
lations have been performed over the entire operating range of the 
ornithopter, which are shown in Table 2.
4

Fig. 3. Ornithopter’s wing Degrees of Freedom.

Other simulations setups are, the Reynolds-Average Navier-
Stokes (RANS) model chosen, in particular the k − ω with Shear 
Stress transport, a incompressible two equation Eddy-viscosity 
model commonly used in intermediate-range Reynolds aerody-
namics, and a pressure-velocity coupled scheme, with a first order 
implicit time discretization for the transient simulation. For the 
sake of completeness, a case for the laminar model has also been 
simulated, obtaining negligible differences and doubling the com-
puting time.

Once the operating range (αk, V k, f k) and CFD model is se-
lected the simulations are automated with the methodology shown 
in Fig. 4, where a Matlab® interface has been also used. For each 
simulation the time step is selected automatically in order to ob-
tain n points per flap, and N total flapping, hence f1 = 1

nf k , where 
f k is the flapping frequency at the k simulation, n = 100 is the 
number of points per flap. The time vector will be j = 1 : N , where 
N = 3n. First, a steady state is simulated at each condition in or-
der to initialize the flow before the unsteady simulation starts. A 
good convergence of the temporal results after 3 flapping has been 
observed. This convergence has been improved by previous steady 
simulation of the fluid field. The fluid variables solution at each el-
ement is saved in Rk . The steady simulation is iterated until the 
error ε became smaller than εs = 1 · 10−6, obtaining a good con-
vergence in the forces and moments at each time step.

Then, the steady simulation is used as initial values to unsteady 
simulation. The kinematics of the wing is controlled by User De-
fined Functions (UDF), where a chirp or sine function, namely f2, of 
the position of the wing �k

j is enforced and the mesh is refreshed 
in each time step by this kinematics. The unsteady simulation it-
erates in each time step until error εk is smaller than εu . The 
total forces and moments are saved at each time step in inertial 
reference frame Fk,I and it is offline post processed in order to 
j
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Fig. 4. Aerodynamic database construction process. k is the simulation identifier (a combination of incident velocity, angle of attack, and flapping frequency), j is the time 
step identifier for each simulation.

Fig. 5. Verification case at flapping amplitude of 63 deg, and 45 deg of pitching. The Reynolds number is 100. Black circles markers represents lift and drag coefficient from 
[45], black lines are coefficients from our CFD simulations reproducing the same conditions. The forces are in wing fixed reference frame.
maintain a constant time step and disposed in aerodynamic ref-
erence frame (f3 = gcd(dtk)), where gcd is the greatest common 
divisor. Also the effective angle of attack is calculated to complete 
de aerodynamic database. Equations f4, f5, f6 are showed in detail 
in the next section. To finalize, the overall fluid variables Rk

j at 
each element are only saved at selected relevant points over the 
flap for vortex visualization in ensight-case-gold format due to the 
high computational cost.

The verification of the CFD scheme has been performed with 
one found in the literature for a low-Reynolds high-amplitude crit-
ical case. The model used is an ellipsoid, which performs com-
plex figure-eight movements. The results obtained by the proposed 
Overset Method are shown in Fig. 5 and provides a good agree-
ment with those offered by F.M. Bos in [45].

2.2. CFD results: flow visualization and surrogate airfoil

Approximately 70 simulations of flapping at constant frequency 
and 10 simulations varying the frequency in a linear chirp have 
been carried out in the previously defined range. The aerodynamic 
coefficients Lift, Thrust and Pitch moment defined as CL = L

1
2 ρV 2 S

, 

CT = T
1
2 ρV 2 S

and CM = M
1
2 ρV 2 Sc̄

, respectively, are shown in Fig. 8, 9
and 10 in function of the effective angle of attack (αef f ) which we 
will define next.

The effective or induced angle of attack of an airfoil in the wing 
depends on the kinematics of the wing, that is the flapping angle 
θ(t), since it is the induced angle of attack in the wing due to 
its movement relative to the air (see Fig. 6). It also depends on 
the point of the wing that we choose to be measured. It is hy-
5

pothesized that the kinematics of a point on the wing (defined by 
xref , yref ), that is, its induced angle αef f = α + arctan

(
θ̇ yref /V

)
, 

can be used to reproduce the aerodynamic forces of the entire 
wing. As it is well-known, for airfoils it has been shown that the 
aerodynamics depends mainly on the effective angle of attack at 
xref = 3

4 c [14], an analogous representative point can be found 
along the span.

To start with, two-dimensional simulations of the wing’s airfoils 
have been carried out, so that the movement of a flapping three-
dimensional wing has been reproduced by the simulations of the 
airfoils that compose it, separately. In order to select the yref , re-
lated to the airfoil whose forces show a greater regression with the 
forces of the flapping wing. This can be interpreted as the “infinite 
wing” in heaving equivalent to the three-dimensional finite wing. 
The quality and characteristics of the mesh are equivalent, with a 
cell height of 2 · 10−4m approximately.

Fig. 7 shows the amplitude of the lift coefficient of the simu-
lated airfoils at different positions of the span (

yref
b ), as a func-

tion of the Strouhal number, and the same results obtained for 
the three-dimensional flapping wing. Interestingly, the best fit is 
observed with the airfoil located at 70% of the wingspan, conse-
quently, yref = 0.70b.

In what follows in this section, and for the sake of complete-
ness, we show the aerodynamic coefficients obtained for a semi-
wing, in “Unsteady Aerodynamic” reference frame (in the direction 
of αef f and perpendicular) for the last period of each simula-
tion. The data is presented versus the effective angle of attack, as 
a function of the Strouhal [0.1, 0.84] and the static angle of at-
tack (AoA) [−8, 20] deg. The coefficient of aerodynamic moment is 
measured at the center of the chord’s root for convenience.



C. Ruiz, J.Á. Acosta and A. Ollero Aerospace Science and Technology 121 (2022) 107331
Fig. 6. Effective angle of attack of the surrogate airfoil. On CFD the aerodynamic 
forces (F) depends on the induced velocity αef f which varies over the wing and 
time. In the ROM the aerodynamics is dominated by the effective angle of attack 
at an specific airfoil, yref at 3/4 chord. For pure flapping induced angle remains 
αef f = α + arctan

(
θ̇ yref /V

)
.

Fig. 7. Simulated 2D lift coefficient amplitude during heaving cycle at various St and 
positions in the wing span ( yref

b ). Thick line corresponds to 3D lift, which presents 
similar forces to approximately 70% airfoil.

Lift coefficient (Fig. 8). An approximately linear section with the 
effective angle is observed, up to approximately 40 [deg.]. By in-
creasing the Strouhal, the induced angle is increased, which has a 
limit of 90 [deg.]. The lift coefficient decreases/increases rapidly 
at a positive/negative large effective angles of attack values re-
spectively. It is observed that the static angle of attack has little 
influence on the peak values, even less for high Strouhal, since the 
angles induced by the wing are much bigger than the static one. In 
all the simulations, a strong time dependence of the effective an-
gle has been observed, which justifies the use of memory-allowed 
models to identify them.

Drag coefficient (Fig. 9). It remains positive for most positions of 
the wing, however, this does not mean that the wing does not 
produce propulsion, since the projection of these coefficients on 
traditional aerodynamic axes provides negative resistance in cer-
tain cases. The resistance is approximately zero for null induced 
angles, since it is a flat plate in which case the fluid would be 
parallel to it. It should be noted that if the forces are projected 
on traditional aerodynamic axes, the resistance would be different 
from zero for a null static AoA. In general, the drag is a quadratic 
function of the induced angle. The discrepancies that exist between 
the values for a positive and negative angle may be due to the 
symmetry break between the upstroke and downstroke offered by 
the dihedral of the wing.
6

Pitch moment coefficient (Fig. 10). Shown with positive head-up, 
and even though it is also a non-linear function of the AoA (odd 
power), its time dependency is less noticeable.

Finally, the flow is also shown on Fig. 11. It can be observed 
how at intermediate Strouhal, a LEV detachment occurs, which in-
fluences the detachment of the Wingtip Vortex (WTV) creating 
complex structures downwards. While increasing Strouhal, also the 
trailing edge is detached, interfering with the own wing during the 
next stroke. It has been found that the LEV is detached at Strouhal 
higher than 0.3 at high angles of attack.

Fig. 12 compares the pressure contours during one stroke at 
Strouhal numbers 0.26 and 0.41. Notice that, in the latter the LEV 
detachment produces a low pressure gradient in the outer surface, 
providing an increase in lift. In the figure the scale of the colorbar 
has been kept to be able to compare. It can be seen that while in 
the case of low Strouhal the pressure contours remain smooth, in 
the case of higher Strouhal a large negative pressure gradient can 
be observed throughout the downstroke (Snapshots 1 and 4) pro-
duced by the detachment of the LEV, providing an increase in lift.

3. Reduced order model identification

As it has been aforementioned, CFD approaches are too com-
putational expensive. Thus, a widely used and feasible approach 
in aerodynamics is the development of ROMs, with applications 
ranging from forces and moments estimation and control. In our 
application of ornithopters capable of performing maneuvers, high-
precision models are strongly needed for the design and control. 
A suitable choice and well-known in the field is the Volterra 
model. In this section, the identification of a ROM based on 
Volterra theory fulfilling those requirements is proposed and vali-
dated.

3.1. Model selection

System identification as data-driven modeling (see Fig. 13) 
can be performed by different methods. The Eigensystem Realiza-
tion Algorithm (ERA), Autoregressive with exogenous input model 
(ARX) and Indicial functions models propose linear identifications. 
ERA method transform the Impulse response of the system in a 
state-space model with a predefined order. ARX method provides 
a general description of a dynamical system by including both in-
put and output in their formulation. Regarding non linear methods, 
Volterra Series, NARMAX and block oriented methods have been 
used on aerodynamics identification. The choice of the Volterra 
model identified by a flapping training set (not stochastic or im-
pulse) is justified as follows:

1. The first order Volterra series provide a simple model as a first 
iteration that fulfills the requirement of low computational 
load, being therefore suitable for a future onboard implemen-
tation. Moreover, this model can be easily enhanced with non-
linear terms.

2. The noise of the training set signal will not be considerable 
since it is obtained by simulation. For this reason NARMA 
models are not considered.

3. The physical sense of the identified kernel is maintained, in 
analogy to Wagner’s classical theory. For this reason, NARMAX 
models or neural networks are discarded.

4. A wide range of signal types can be used as a training set, 
while other methods are restricted to impulse or white noise 
signals. Simulating an impulse signal using CFD can lead to 
initialization problems that must be solved carefully.

5. However, according to the [48] reference, the Volterra models 
usually need a higher order than the ARX to reproduce similar 
accuracy in linear dynamics.
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Fig. 8. Lift coefficient in Unsteady Aerodynamic reference frame. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 9. Drag coefficient in Unsteady Aerodynamic reference frame. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)
Therefore, in this work we propose the identification of the first 
order Volterra model—suitable for a future onboard implementa-
tion—, in order to be analyzed and compared with the classical 
methods, and current research is underway to explore enhanced 
versions of the model to capture non-linear effects, as e.g. the 
higher order Volterra or Hammerstein-Wiener models.

Let us start with the classical model of Wagner [14] which 
is based on small perturbations of an airfoil. The model for the 
aerodynamic lift coefficient can be described in the time domain 
through the Duhamel’s superposition integral of steps responses 
[33] as

CL(t) = −πbḧ

V 2
+ 2π

⎡
⎣w(0)�(τ ) +

t∫
0

1

V

dw(t′)
dt′ �(t − t′)dt′

⎤
⎦ ,

(1)
7

where h is the heaving input that induces a vertical velocity w = ḣ

at 3/4-chord, and �, with �(0) = 0.5 and �(∞) = 1, is the well-

known Wagner’s step response. Thus, from (1) the use of the inte-

gral convolution with the induced angle of attack as state is phys-

ically justified in order to reproduce the unsteady aerodynamics of 
an airfoil. As mentioned, the lack of fulfillment of the hypotheses–

mainly small perturbations–and the infinite memory need make 
this model useless in practice for prediction of aerodynamics in 
the range of interest.

On the other hand, the Volterra theory of nonlinear systems is 
very suitable for aerodynamics estimations because its causal and 
time-invariant fading memory characteristics. Its greatest poten-

tial lies in the ability to include system memory when computing 
outputs, as long as this memory is fading and weakly nonlinear 
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Fig. 10. Moment coefficient in Unsteady Aerodynamic reference frame. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 11. Vorticity magnitude contours colored by total pressure at Re= 105 and St= 0.3, at different points during a flap. From left to right, up to down: First, during 
downstroke, the effective angle of attack in the wing is maximum and the LEV is created and detached next to the WTV downwards. During upstroke, the WTV is detached 
but with less intensity, since the snapshots are from a positive static angle of attack. The resulting wake forms a figure-of-eight, reported in the classical analysis of birds 
flight [24], similar of those showed at reference [47]. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)
[49].1 In particular, it is well known in the field of fluid mechan-
ics that previous states play an important role in aerodynamics, 
fact that is mathematically posed through convolution-like inte-
grals, and it has been corroborated in the simulation analysis made 
in the previous section. In fact, the Volterra series can be seen as 
the natural generalization of the convolution description of linear 
time-invariant operators for nonlinear systems [51]. Moreover, the 

1 For a detailed description of Volterra’s theory we refer to interested readers e.g. 
[50] and references therein.
8

Volterra series applied to aerodynamic data can be understood as 
a numerical generalization of classical aerodynamic theories, being 
able to take into account any phenomenon produced by current or 
past system states. However, even though it has been extensively 
used to identify aerodynamic models of fixed-wing platforms, the 
application to flapping wing is actually very limited [44], becoming 
necessary for applications to gain more insights of relevant states 
and kernels that best suit their aerodynamics.

Thus, consider a single-input x(t) and single-output y(t) causal 
system, the bi-truncated Volterra series in continuous time can be 
written as
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Fig. 12. Snapshots array of pressure contours of the wing over a complete flapping for two simulations cases. The Strouhal number remains at 0.26 and 0.41 on the left and 
right graphs. The upper and lower set of snapshots corresponds to inner and outer wing views. From left to right, snapshots during time: 1,3. Mean wing position, 2. Lower 
position, 4. Upper position. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)
Fig. 13. Scheme of Unsteady Aerodynamics Modeling Methods. Data obtained from 
[32].

y(t) = y0 +
t∫
· · ·

∫
−∞

H p(t − t′
1, ..., t − t′

p)

p∏
i=1

{x(t′
i)dτi}. (2)

Motivated by (1), it is reasonable to consider a ROM with p = 1
from (2) given by

y(t) = H0 +
t∫

−∞
H1(t − t′)x(t′)dt′ (3)

However, thus defined, the limits of the integral in (3) indicate that 
the response of the system at instant t depends on the entire his-
tory of the input. This definition makes it unapproachable in prac-
tice, for both simulations and applications, and unrealistic because 
the effect of previous states on current loads fades. For example, 
the effect of a vortex detached on the aerodynamic characteristics 
of the wing in an instant t would diminish due to the viscous ef-
fect of the fluid, and also the incident stream drag it downstream. 
Furthermore, it is well-known that the step response of the clas-
sical models converges to a stationary state eventually, and hence, 
the limit can be relaxed to obtain a finite-memory model, i.e. Fi-
nite Impulse Response (FIR). Taking all the above into account, it 
makes us suppose that a good choice for the Volterra series in dis-
crete time from (3) becomes

y[τ ] = x[τ − M]H[τ ] +
σ=τ∑

σ=τ−M

x[τ ]Ḣ[τ − σ ]�t (4)

where �t is the time step with τ and σ time indexes, x[τ ] =
x(t)|t=τ�t and y[τ ] = y(t)|t=τ� are the discrete input and output, 
respectively, and M denotes the number of past steps considered, 
i.e. memory. Note that the kernel H1 has been replaced by Ḣ for 
9

convenience. Finally, it only remains to define the output as lift co-
efficient y[τ ] = CL[τ ] and the input as the non dimensional deriva-
tive of the effective angle of attack, x[τ ] = ˙̄αef f [τ ], mainly due to 
their good agreement with CFD database. Recall that, the effective 
angle of attack induced at 3/4 chord at the yref chord becomes 
αef f = α + arctan

(
θ̇ yref /V

)
for the surrogate heaving wing, where 

θ is the flapping angle, and ˙̄αef f = α̇ef f b/V is its non-dimensional 
derivative. More details about the αef f are provided in section 2.2. 
Finally, notice the arctan(·) term because of the high-amplitude 
case considered, unlike in small perturbations approaches. The in-
put signals used to simulate the CFD are the sinusoidal defined by 
θ = A f

2 sin(2π f t) − Am and chirp functions, θ = A f
2 sin(πt2) − Am . 

The effective angle of attack they produce is shown on Fig. 14.

3.2. Identification

In the literature there are some techniques to identify the 
Volterra Models, which has been used in a variety of areas 
and applications. Regarding to identification method, the Cross-
Correlation Method has been extensively used in signal processing 
and communications [52], [53], however the training set has differ-
ent restrictions such as zero mean. The Impulse Unit Method be-
come relevant in aerodynamics where Silva [39], [40] studied the 
application to unsteady aerodynamics of fixed wing platforms by 
experimental data. However the replication of an impulse change 
in AoA is challenging in CFD because of numerical instabilities. The 
identification process could be accelerate and optimized using ba-
sis functions in the field of aerodynamics, such as Orthonormal 
Basis Functions [54], however, a priori knowledge of the kernel it 
is needed. The direct identification has been used by Liu [44] to 
identify one maneuver of a flapping wing, where no information 
about kernels and method’s details are provided, and it is chosen 
for the present method.

To test the ability of the proposed scheme, the Linear Volterra 
Model will be identified through the lift time series of the simula-
tions. The derivative of the effective angle of attack in the position 
discussed above is chosen as the state, and the different coeffi-
cients of forces and moment as output. In the same kernel will be 
included all the phenomenon since the separation between circu-
latory and added mass effects has been shown arbitrary [38]. The 
model selected is shown in Equation (5), where Ḣ is the kernel to 
identify, analogous to the Finite Impulse Response (FIR).
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Fig. 14. Input signals of the training set, flapping angle and the effective angle of attack they produce. Note that while the flapping amplitude is constant by construction, the 
αef f they produce depends on velocity and frequency. The signals showed corresponds to a Velocity of 4 m/s, α = 20 deg and f = 4H z for sinusoidal.
CL[τ ] = αef f [τ − M]H[τ ] +
τ−1∑
τ−M

˙̄αef f [σ ]Ḣ[τ − σ ]dσ . (5)

By carrying out the necessary operations, the model become a 
linear system such as AH = B , which can be identified by vari-
ous methods. If N is the length of the state and output (B) time 
series, the matrix A would have dimensions (N-M x M + 1), and 
it will multiply if the Nonlinear Volterra Model is chosen. How-
ever, nowadays computing power is rarely the main problem. In 
this case the main difficulty comes from the formulation of the 
identification method itself. This is badly conditioned by definition 
so the rank of the matrix is low. Therefore, direct identification us-
ing least squares is not feasible, and regularization techniques are 
needed.

A =

⎡
⎢⎢⎣

αef f [1] ˙̄αef f [1] ˙̄αef f [2] · · · ˙̄αef f [M]
αef f [2] ˙̄αef f [2] ˙̄αef f [3] · · · ˙̄αef f [M + 1]

.

.

.
.
.
.

αef f [N − M] ˙̄αef f [N − M] ˙̄αef f [N − M + 1] · · · ˙̄αef f [N − 1]

⎤
⎥⎥⎦

(6)

H = [
H Ḣ[M] Ḣ[M − 1] · · · Ḣ[1]]T

(7)

B = [
CL(M + 1) · · · CL(N)

]T (8)

To solve this, Ridge Regularization is proposed as a method to 
avoid over fitting due to multicollinearity. Although others have 
been used (Moore-Penrose Semi-inverse between them) this is the 
one that has led to the best results. The identification is defined 
as follows, where λ is the regularization parameter selected taking 
into account the lowest appreciable eigenvalue of A matrix, and I
is the identity matrix of dimension (M+1).

H = (AT A + λI)AT B (9)

After some tests, it has been obtained that the step response 
stabilizes after 600 time steps at dt = 1/1200, so the memory is 
set at approximately 0.5 seconds. The computation time for an 
identification set of a time series with 24000 points is less than 5 
seconds. The kernels have been identified for sets of simulations 
at different mean angles of attack and frequencies, keeping the 
upstream velocity constant. For each velocity, a kernel has been 
obtained, Fig. 15, valid for the entire range of angle of attack in 
study. Since it has been observed that the angle induced by the 
flapping frequency is greater than the geometric angle of attack, it 
has been assumed that the kernel will only depend on the effec-
tive angle of attack, which includes the geometric one. It is worth 
mentioning, a dependency of the kernel has been observed with 
the fluid inlet velocity.
10
Fig. 15. Reconstructed step response ∫ Mdt
0 Ḣdt+H. It is observed how the response 

reaches a stationary value lower than the theoretical one (2π ) for all speeds.

3.3. Analysis

One of the main problems with the identification of the 
Volterra Model is the loss of physical meaning that occurs with 
the identification of the kernel. However, taking the frequency 
response of the Theodorsen model as a reference (Note that Wag-
ner’s model function �(τ) in frequency domain corresponds to 
Theodorsen’s model function C(s̄)), the differences can be quan-
titatively analyzed and associated with aerodynamic effects. The 
Theodorsen’s Model is shown in Equations (10) and (11) for αef f

and ˙̄αef f as input respectively.
Figs. 16 and 17 show the frequency response of the data ob-

tained from the CFD simulations, the Theodorsen model, and the 
Jones aspect ratio correction as a function of the effective angle 
and its derivative, where s̄ = ik is the non-dimensional Laplace 
variable.

L[ CL

αef f
] = π s̄ + 2πC(s̄) (10)

L[ CL

˙̄αef f ]
] = π + 2π

C(s̄)

s̄
(11)

C(s̄) = 0.5s̄2 + 0.2808s̄ + 0.01365

s̄2 + 0.3455s̄ + 0.01365
(12)

The input for the 3D simulations has been chosen at 70% of 
span, since it has been demonstrated that is the surrogate airfoil. 
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Fig. 16. Frequency response of Theodorsen (Plus markers), Jones correction (diamond markers) and CFD simulations (dot markers) lift coefficient with αef f as an input.
Regarding the magnitude in Fig. 16, it can be observed that for 
low and moderate reduced frequencies (k < 2), the classical mod-
els underestimate the lift force. This range is influenced, according 
to Theodorsen, by the circulatory forces in the airfoil, which are 
diminished by the effect of the aspect ratio. The WTV in flap-
ping is generally higher than in heaving, so the force will be much 
less than predicted. In the high frequency zone (k > 3) an increase 
in lift is observed compared to that expected. This hyper-lift phe-
nomenon has been pointed out by several authors as the cause of 
LEV detachment. Regarding to phase, in inviscid theory, a positive 
phase which tends to 90 deg is found in most reduced frequen-
cies, showing that the influence of the first derivative is dominant, 
except for low frequencies. In the classical Theodorsen’s model it 
can be observed that the forces due to the apparent mass gain rel-
evance when the frequency of oscillation of the airfoil increases, 
producing a phase advance with respect to the effective angle of 
90 degrees in the upper frequency limit, since it is directly pro-
portional to airfoil acceleration. On the other hand, the magnitude 
is diminished for large frequencies, and the limit of the transfer 
function being 0.5 for large frequencies, in concordance to Wagner 
instantaneous lift. For small frequency values, the contribution of 
forces due to the circulatory characteristics of the airfoil becomes 
relevant.

However, a very remarkable fact is that the simulations tend to 
a lower value, around 30-45 degrees depending on the free stream 
velocity (The different lines seen in CFD correspond to simulations 
at different speeds, which when simulated up to a specific fre-
quency, they reach different Strouhal.). This may mean that the 
influence of the angle and its first derivative remain equivalent. 
Taking into account the recent study by Taha [38], where it is 
shown how the circulation actually has a phase that tends to -
45 degrees, as opposed to the controversially defined Theodorsen 
circulatory force that would tend to 0, it may be suspected that 
there are mechanisms not taken into account in the inviscid the-
ory that cause the phase to tend to a value less than 90 degrees 
under certain conditions. Due to this, it is not possible to identify 
a rational transfer function through our data as proposed by [33], 
since rational functions phase tends to a multiple of 90 deg, which 
multiplication factor depends on the order of numerator and de-
nominator of the transfer function.

Regarding the mean values of the aerodynamic forces, the CFD 
results have been compared to those of classical models. They are 
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Table 3
NMSE of CFD and Volterra Model frequency response, in magni-
tude and angle. The maximum error is 6.6% in magnitude and 
3.4% in phase. Note that � and �̂ are the values from CFD and 
estimated from the identified model respectively.

N M S E = E[(�−�̂)2]
E[��̂] V = 2 m/s V = 4 m/s V = 6 m/s

|L [CL ]
[αef f ] | 0.015 0.006 0.066

� L [CL ]
[αef f ] 0.034 0.019 0.018

shown as a function of the reduced frequency k, and the aerody-
namic angle of attack α, from CFD simulations, on Figs. 18a and 
18c, and from analytical models on Figs. 18b and 18d. A great 
dependence with α is observed. The mean CL during a cycle is 
generally lower in CFD than that of the Wagner model, due to the 
WTV effect as explained before. Besides that, at small angles of at-
tack and low frequencies the CFD result is negative. This may be 
because the vortexes generated during the cycle interfere with the 
circulatory effects that occur at small angles of attack. In general, 
both increase with the angle of attack, and decrease slightly with 
the Strouhal.

The average drag coefficient, or propulsion if negative, has been 
compared in the figure with that obtained by Feria [18] using the 
Vortical Impulse theory, for small induced angles and therefore 
small amplitudes. While this theory provides a monotonic rela-
tion with reduced frequency and little dependence on the mean 
angle of attack, the CFD simulations predicts a highly non-linear 
map, with dependence on the |α|. Also, the maximum thrust in the 
study range is at angles around 8 deg. and maximum reduced fre-
quency. Also, in general, the propulsion predicted by CFD is lower.

3.4. Verification

The identified kernels have been verified using training chirp 
time series dataset. An example of the signal is provided in Fig. 19. 
The identified and CFD models are compared in frequency re-
sponse in Figs. 20 and 21, where Normalized Mean Squared Error 
is shown in Table 3.

It can be seen how the identified Volterra model correctly re-
produces the frequency response of the system. The phase and 
magnitude is captured with great precision, however the ampli-
tude at a very small Strouhal has a greater error.
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Fig. 17. Frequency response of Theodorsen (Plus markers), Jones correction (diamond markers) and CFD simulations (dot markers) lift coefficient with α̇ef f as an input.

Fig. 18. Mean lift and drag coefficient in function of reduced frequency k, and mean angle of attack α (aerodynamic reference frame), from CFD on left side, and from theo-
retical models on right side. The colormaps has been interpolated from the simulated points (Black circles). Note that figures have different colorbar range. (For interpretation 
of the colors in the figure, the reader is referred to the web version of this article.)
4. Flight experiments: validation

In order to obtain estimates of the aerodynamic forces of the 
ornithopter, indoor open-loop flapping flights experiments have 
been performed at different constant frequency, in the GRVC2 fa-
cilities. Fig. 22 represents a block diagram resume of the proposed 
approach to validate the identified Volterra Model by flight exper-
iments.

2 Group of Robotics, Vision and Control Lab, University of Seville.
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The total forces and moments are reconstructed by the mea-
surements of a precise Motion Capture System (MCS), shown in 
Fig. 23, which provides position and attitude with a frequency of 
120 [Hz]. Redundant active markers fixed in the ornithopter are 
used, as shown in Fig. 24 and the system is calibrated in such a 
way that a precision of 2 millimeter is reached at the position of 
the markers throughout the flight. The initial conditions for an-
gle of attack, speed, and tail position both in pitch and roll, are 
such that the ornithopter is intended to start flight under trim 
conditions to promote sustained two-dimensional flight, and are 
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Fig. 19. Lift coefficient of a chirp maneuver at V= 2 m/s and α = 20 deg in function of the Strouhal number. Note that since the frequency of the flapping varies linearly with 
time on chirp maneuver, the Strouhal number is proportional to the time. Second and third figures are the pieces A and B of the signal (Low and high Strouhal respectively).

Fig. 20. Frequency response of CFD simulations and Identified Volterra Model: |L [CL ]
[αef f ] | [dB] and � L [CL ]

[αef f ] [deg.].
estimated for each frequency manually. The flapping frequency re-
mains constant at each experiment, and the velocity and angle 
of attack oscillates in the flight around the equilibrium position 
because of the absence of control. It has been proved that the 
flight is preformed sufficiently in a vertical plane after trim to 
13
assume that lateral forces can be neglected. To obtain the forces 
and moments, a two-dimensional movement is assumed, so the 
two-dimensional dynamic equations of flight are used. The iner-
tia model of the ornithopter is shown in Table 4, which has been 
calculated by high accurate CAD (Computer Aided Design) model. 
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Fig. 21. Frequency response of CFD simulations and Identified Volterra Model: |L [CL ]
[ ˙̄αef f ] | [dB] and � L [CL ]

[ ˙̄αef f
[deg.].

Fig. 22. Proposed methodology for Validation.
Table 4
Inertia model of the ornithopters 
test case.

Total mass 0.635 [kg]

I yy 0.028 [kg·m2]
xa 0.013 [m]
xt 0.434 [m]

The measurement of the position of the markers is post-processed 
to obtain the attitude and force estimates through equations f1−4
which corresponds to Equations (13), (14) and f3 : V = √

u2 + w2. 
The maneuver is simulated by the identified Volterra model (f8) 
using the raw measured effective angle of attack and velocity from 
flight (f7) in order to be compared to aerodynamic forces recon-
structed from flight. (See Fig. 25.)

The dynamic equations that allow to extract the lift, moment 
and drag (L, M, D) produced by the wing in position A previously 
described, are shown below. First the position measured in inertial 
reference frame (xh zh) is derived and transformed to body refer-
14
ence frame (b). Then total forces and moment (Fx, F z, M y) in body 
frame are constructed by the body accelerations and pitch (14), 
and tail influence is substracted in (16).

[
ub

wb

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
ẋh

żh

]
(13)

Fx = mu̇ + mg sin(θ) + mw θ̇

F z = mẇ − mg cos(θ) − muθ̇

M y = I yy θ̈

(14)

For this, it is necessary to implement an aerodynamic model 
of the bioinspired tail (Lt , Dt ), which has been obtained through 
experiments in a tunnel of wind, and depends on the free stream 
velocity and relative angle of attack. Recall that α = arctan( w

u ) and 
more information about this model used in the scheme in (f5) can 
be found in [55].
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Fig. 23. Typical path of a flight experiment with snapshots. The ornithopter is launched by hand, which disturbs the flight in the first moments. The Motion Capture system 
measures its trajectory and attitude throughout the flight. Useful data for force reconstruction begins from the time the flight stabilizes (Start point) until seconds before 
landing (End point).
Fig. 24. Schematic representation of the bird model. Points A, B and C represents the 
center of the root chord wing, the hinge point of the tail rotation, and the center of 
mass, which are measured to implement in the dynamic model. The active markers 
positions are highlighted.

⎡
⎣ L

D
M

⎤
⎦ =

⎡
⎣ sin(α) − cos(α) 0

− cos(α) − sin(α) 0
0 xa 1

⎤
⎦

⎡
⎣ Fx

F z

M y

⎤
⎦

+
⎡
⎣ −Lt(α − δt, V )

−Dt(α − δt, V )

−Mt(α − δt, V ) + M ′
t

⎤
⎦ (15)

M ′
t = (xa + xt)(Lt cos(α) + Dt sin(α)) (16)

Once the data from flight is post-processed, the reconstructed 
model inputs, such as free stream speed, angle of attack and fre-
quency are use to simulate the same maneuver by the aerody-
namic model. The memory is adapted to flight time step which 
is ten times higher. In Fig. 26 can be found various validation sets 
from flight compared to our model (Volterra Model) and the clas-
sical model of Theodorsen. The Volterra model reproduces well the 
amplitude and mean of the experiments, while Theodorsen over-
estimate lift amplitude and in lower level, mean lift.

Note that while the flapping frequency is selected a priori by 
flapping actuator commanded power, is measured in flight since 
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Fig. 25. Forces and moments considered in the ornithopters flight. Note that the 
angle of attack of the tails is diminished by the tail deflection.

Table 5
NMSE of ROM and Wagner Model respect flight data at different k 
values, corresponding to Fig. 26 b-d. The identified model obtained 
a higher precision than the Wagner model, being the mean error 
values 7% and 40% respectively.

N M S E = E[(�−�̂)2]
E[��̂] k=0.9 k=1.1 k=1.6 mean

R O M − V olterra 0.025 0.066 0.144 0.078
W agner 0.442 0.372 0.359 0.391

depends on many variables like batteries level or environment. 
However, wing stroke position, which could provide the phase be-
tween the effective angle of attack and aerodynamic forces is not 
measured yet, so the phase is selected for best estimates.

5. Discussion and limitations

Regarding the effort versus the advantages of the approach, the 
reduced order model obtained by following the proposed method-
ology we achieve a reduction in computing time of the order of 
2 · 104 (CFD versus ROM computing time). Thanks to this, we en-
vision that this ROM could be used onboard, which is its ultimate 
goal, to be able to implement optimization schemes and/or com-
plex model-based controls, that with the use of CFD models would 
be unfeasible.

The sources of uncertainty are diverse. First, the wing is slightly 
flexible, and this has not been modeled in the present study, 
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Fig. 26. Validation set at different k.
mainly due to the computational times required to solve the FSI 
problem and the difficulty to obtain experimental data allowing us 
to discriminate the flexibility. Thus, the aeroelastic effect is cur-
rently under investigation and it will be part of a future work in 
this research line, to completely characterize and validate the phys-
ical mechanisms with in-flight data. On the other hand, the inertia 
model used to reconstruct the aerodynamic forces from the flight 
experiments is considered constant, and the experimental data 
show that the change in inertia due to the beating of the wings 
can be considerable outside the plane of symmetry. Therefore, cur-
rent work is also in the direction of identifying the lateral model to 
be able to follow the proposed methodology. Other sources of er-
ror not considered can come from the inaccuracies of the tracking 
system (MCS), either due to the loss of markers or the uncertainty 
of their location, in addition to the wind if the experiments are 
carried out outdoors. However, the total error committed is con-
sidered acceptable for a stable flight indoors, as can be seen in 
Table 5, where the maximum and mean error of the identified 
ROM is 14 and 7 percent, respectively.

The ROM model has been identified in the range of large am-
plitudes of interest. As it only contains the first Volterra kernel, 
it may not be valid for highly non-stationary flows or for very 
large frequencies involving effective angles outside the identifica-
tion range. Therefore it should be used with caution within its 
limits of use. Also it has been observed that the kernel remains 
constant after some time with a certain smooth undulation. How-
ever, it has not been possible to determine yet whether they are 
due to the shedding of vortices that takes place during flapping or 
other phenomena. In a future iteration where the non-linear model 
16
will be identified, more information will be available to discuss it. 
It is also worth mentioning that the kernel memory size must be 
selected carefully. In our case, it has been selected in such a way 
that the slope of the kernel is practically zero after a certain time, 
so that increasing the memory size after this time would not have 
any improvement in precision. This is possible as the aerodynamic 
effects fade due to the viscosity of the fluid, and therefore it can-
not be extrapolated to any identification of another phenomenon 
through Volterra series without further and dedicated experimen-
tation.

Although it has not been included in the model, high-pitching 
rates of the ornithopter cause additional loads in the wing. How-
ever, we presume this effect could be modeled by our ROM, to a 
good approximation, if it is included in the effective angle of at-
tack through a simple formula: αq

ef f = αef f + qxw/V where q is 
the pitch velocity and xw is the distance from 3/4 of the chord 
to gravity center. On the other hand, the lateral movements of the 
ornithopter could induce speeds in the wing different from those 
taken into account in the current longitudinal model, so it is ex-
pected that the forces reproduced by the model will not be precise 
in large lateral movements. In addition, it should be said that for a 
future identification of drag the α2

ef f could be used as input in the 
identification procedure, as proposed in [56].

A final comment is that some difficulty has been encountered 
when maintaining a stable flight in a limited space such as the 
testbed, for which the correct launch near a trim point has been 
crucial to obtain proper data that could validate the proposed 
model.



C. Ruiz, J.Á. Acosta and A. Ollero Aerospace Science and Technology 121 (2022) 107331
6. Conclusions and future work

The aerodynamic forces and moments produced by an or-
nithopter elliptical wing in forward flight performing high ampli-
tude flapping at intermediate-range Reynolds has been simulated 
by unsteady CFD computations. The results has been analyzed 
quantitatively and qualitatively using time series and graphical 
post-processing tools respectively. The Leading Edge Vortex is de-
tached after Strouhal 0.3 is reached during middle down stroke. 
In addition, it has been compared in frequency domain with the 
classical model of Theodorsen for a airfoil. For that, bi-dimensional 
CFD simulations have been performed where is shown that the 
three dimensional wing fits better with the airfoil located at ap-
proximately 70 percent of the semi span, performing heaving with 
the corresponding amplitude. So regarding to modeling, the effec-
tive angle of attack located at this position span wise and three 
quarters chord in chord-wise direction is chosen as input for the 
aerodynamic model. It has been found that the magnitude is over-
estimated by classical models at low reduced frequencies. The 
phase tends to approximately 30 degrees instead of 90 degrees of 
the Theodorsen’s model.

The CFD simulations has been identified by a Volterra Model 
using the linear kernel, where a memory of 0.5 second has been 
found sufficient. A Ridge regression has been found the best fit. Fi-
nally, the identified model is validated through aerodynamic forces 
reconstructed from flight data positions and attitude measures by 
a high fidelity Motion Capture System. The model is capable to be 
used to simulate the aerodynamic forces acting on an ellipsoidal 
wing ornithopter performing high amplitude flapping at high an-
gles of attack and intermediate-range Reynolds number, for any 
time series of effective angle of attack (including flapping fre-
quency, incident velocity and mean angle of attack). The compu-
tation time of the model is very low and so, it could be used to 
in-flight estimation.

Current research is underway of measuring the position of the 
wing in flight to validate the phase between effective angle of at-
tack and the aerodynamic forces and moments. This could be done 
using MCS and placing markers on the wing to become an skeleton 
instead of rigid body. Regarding to future work, a similar conclu-
sion than other ornithopter researchers has been reached: the state 
of the art of ornithopters aerodynamics and flight mechanisms is 
much less than the insects robots. There are several topics that still 
need to be studied, like the lateral aerodynamics in flight and op-
timum kinematics of birds wings, among others.
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