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ABSTRACT This paper introduces a design and on-chip verification framework for IPCores in FPGA
platforms. The methodology of the proposed framework is based on the development of a high level software
model, an HDL description of the IPCore and the verification of the system under test by the Autotest Core,
an on-chip verification core developed for this framework. The test pattern generation is done at the high
level in software and used throughout the design and verification process. HDL simulation results can then be
compared to on-chip results and get performance measurements from the Autotest Core. The Off-line testing
is possible by using standard low-cost Flash storage (SD card). The proposed framework and methodology
applied to PRESENT and SPONGENT cryptographic algorithms has shown over two orders of magnitude
better performance than commercial tools like Xilinx’s VIO and a hardware footprint of the verification
cored below 3% of the available FPGA resources.

INDEX TERMS FPGA, framework, HDL, IoT, IPCore, on-chip, performance, verification.

I. INTRODUCTION
Nowadays embedded systems such as those found in smart-
phones, smart cities, medical devices, home automation or
security systems are part of our daily life. Thus the Internet of
Things (IoT) is one of the most active fields of research. It has
been estimated than there will be more than 64 billion IoT
devices connected in 2026 [1]. The increasing IoT demand
has created new market opportunities, specifically in FPGA
that is expected to reach a value of 7.5 billion $ by 2030 [2].
This has hardened time-to-market constraints, which is
a problem despite the availability of external Intellectual
Property Cores (IPCores) and high-level-software techniques
and tools such as MyHDL [3], PyRTL [4], CocoTB [5] or
VIvado HLS [6]. The impact is remarkably severe in terms
of verification and validation, since these processes take a
large portion of the development time. Because of this, bug
implementations are not uncommon. In 2020 only 17% of
the projects were in production with no known bugs [2].
Therefore, it is imperative to speed up the verification
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process. That is a challenging task, since circuit verification
is a complex issue and a field of study of its own. A crucial
task included in verification is functional verification. The
objective of functional verification is to make sure the system
carries out the task it was designed to. In the case of a digital
system, during functional verification, it is fed with a set of
input vectors and the corresponding outputs are compared
with precomputed free-fault values. Obviously, for the most
part this cannot be carried out comprehensively since the
size of the input space grows exponentially with the input
vectors length. A set of pseudo-random input test patterns of
manageable size is then chosen so that, if the system produces
the corresponding outputs, then the probability of a fault in
the design is low. The device or algorithm generating these
patterns is called a Test Pattern Generator (TPG), and the
system fed by them is the Core Under Test (CUT). If the
verification fails, inspecting the internal signals of the system
is then convenient in order to find the source of the flaw. If the
procedure or device employed to carry out the verification
makes it possible to inspect such internal signals, then it is
said to provide white-box-testing [7]. In contrast, only the
external signals are monitored in black-box-testing.
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One of the reasons why verification takes so much time
and resources is that it must be carried out at every stage
of the development cycle. Automated procedures can apply
the same test patterns at every stage in order to minimize
this time. If the system has been described using a Hardware
Description Language (HDL), this can be carried out at
the earliest stages through simulation. However, simulation
is very time consuming, making it infeasible when the
size of set of test patterns is high. Also, some flaws can
only be detected once a physical instance of the CUT is
available. Verifying a physical instance can be faster and
more reliable, but it requires additional devices. For example,
dedicated apparatus called Automated Test Equipment (ATE)
can be used to test a physical instance. ATE can be very
powerful, but also expensive and bulky. Because of that,
in field verification with ATE can be difficult or impossible.
Alternatively, the CUT and the verification device can be
in the same board or even the same Integrated Circuit (IC).
Several Verification IPCores (VIP) are available for this.
Obviously, On-Chip verification devices can be expedited
by using Reconfigurable Hardware (RH) such as FPGA.
An example of On-Chip verification devices are Internal
Logic Analysers (ILA). ILAs are less expensive than external
logic analysers and do not require an out-chip to monitor
signals. However, they consume a remarkable share of the
IC resources. Another example is the Built-In-Self-Test
(BIST) [8], that is a mechanism that permits a device to
feed itself with a fixed set of input patterns and compare
the corresponding outputs or a hash of the outputs with
a precomputed stored value. Usually, BIST provides poor
control on the test patterns. It is suitable when it is necessary
to check the system’s reliability along its lifetime once it has
been deployed, but not in previous stages.

In this paper, the authors introduce a new framework to
design, test and measure the performance of an arbitrary
digital system by using automated TPG an On-Chip open
source verification device called Autotest Core. This core
provides high throughput during hardware verification, per-
formance measurements and immediate test/fail results. The
framework provides functional verification at every stage of
the development cycle, making it possible to reuse the set of
test patterns. Additionally, It is a general purpose framework
that can be applied to any implementation technology. The
TPG can be chosen according to what is most in accordance
with the CUT, and there are no restrictions in the size of the
set of test patterns.

II. RELATED WORK
The main advantage of using FPGA devices for the design
and implementation of digital systems is the possibility to
carry out hardware verification during the design process
itself, even if it is intended to be implemented in an Appli-
cation Specific Integrated Circuit (ASIC). Because of this,
FPGA plays an important role onto the hardware functional
verification of critical parts or even the whole system.
To perform this On-Chip functional verification, FPGAs

vendors provide several tools. For example, Xilinx provides
black-box-testing tools such as the Virtual Input/Output
(VIO) core [9] as well as white-box-testing tools such as
ChipScope [10]. The first one is a customizable IPCore that
can both monitor and drive internal FPGA signals in real
time, while the latter is an ILA. In [11] the methodology to
carry out white-box-testing on hardware using Chipscope is
described. It details several benefits, but also points out the
limited number of samples that can be recorded in the internal
blockRAMs.Other authors have developed alternatives to the
use of ILAs in order to solve their drawbacks. An example
of this is the educational works presented in [12] and [13]
used to implement telematic FPGA laboratories. In [12]
the ILA is replaced by an integrated microprocessor that
controls the operation of the CUT (Circuit Under Test), feeds
it with input patterns, stores its output and internal signals
and sends them outside of the FPGA. The work presented
in [13] is more specific because it exclusively verifies the
On-Board execution of a program loaded into an embedded
microcontroller. A Finite State Machine (FSM) is used to
control the operation. One of the main drawbacks of the ILAs
is the reduced number of data that can be stored due to the
size of the block RAMs of the FPGAs. Different alternatives
have been proposed to solve this problem. In [14] the use of
a microcontroller (picoblaze [15]) is proposed. The signals
that are considered necessary to verify the operation of the
CUT are captured and sent out in real-time. This system is
suitable for the functional verification of IPs that operate at
low speed and generate results in a permanent and constant
way over a long period of time. In [16] a start-stop system
is applied so that when the internal memories are full, the
operation is stopped, the data is extracted, and the system is
restarted again. This is done by controlling the system clock
signal, stopping and reactivating it as the memories fill up
and are downloaded. The work that we have been discussing
so far focuses on the On-Chip functional verification process
itself.

The previous contributions make it possible to carry out
functional verification on a physical prototype. However, the
verification methodology must be comprehensive, covering
all phases of the design process. Also, the synergy between
the verification process carried out at each stage is essential
since it improves their quality and reduces the design time.
This holistic approach is expedited by VIPs. These are
IPCores specifically designed to check the functionality
of specific protocols, interfaces or functionalities both at
a discrete level and in combination with other IPCores.
An example of this type of VIP is presented in [17]. In some
holistic verification methodologies, the input patterns and
obtained results are reused in later design stages. To this end,
a high-level software programming language is used to get the
first description of the system. This makes it possible to take
advantage of the power of software programming language
to carry out functional verification. In [18] a methodology of
this type is proposed based on the high-level description tools
of Xilinx (VivadoHLS) that automates functional verification
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FIGURE 1. Design flow overview.

at Register Transfer Level (RTL), simulation and hardware
levels.

In [19], the authors propose a co-validation design flow
using the continuous integrationmethodology with tools such
as Jenkins [20], GitHub [21] and Docker [22]. In this flow,
a high-level software model of the system is used to verify
each implementation. Another co-validation design flow is
presented in [23]. In this paper, the authors introduce a python
framework based on CocoTB called DUTILS to design SoCs.
DUTILS is a python framework based on CocoTB which
uses python to migrate high-level code to HDL. It uses a
software model reference and from that creates by iterative
steps the HDL model. Then, both are tested by the same test
patterns, achieving an HDL module tested in a simulation-
level. Reference [24] introduces another tool called LastLayer
that makes it possible to create a C code simulation interface
from an HDL description. In order to generate the interface,
the HDL code must be adapted to a C library. According to
the authors, this task is quite simple. Performing white-box-
testing with the simulation interface is also straightforward,
and the simulation interface is the same regardless of the
implementation.

III. DESIGN FLOW OVERVIEW
From the analysis of previous work in the field of IPCore ver-
ification, three main questions arise that must be considered
in any verification methodology:

1) Test pattern generation. As previously mentioned,
most times an exhaustive test will not be possible, and a
set of test patterns of manageable size must be carefully
selected. Test pattern generation is a complex issue that
is an active research field in its own, and is outside the
scope of this paper.

2) Functional verification. The behaviour of the imple-
mentation fed by the selected test patterns is simulated
at logical level. This has a high computational cost,
and usually requires a remarkable share of the whole
verification time.

3) Hardware verification. A physical instance of the
implementation is fed by the selected test patterns.

Addressing these three main issues requires a comprehen-
sive design, verification, and implementation procedure that
begins with a high-level design and ends with a hardware
verification of the implementation. The proposed approach
is a fully integrated design and functional verification
framework that consists of three main steps as shown
in Fig. 1:

A. SOFTWARE LEVEL: DEVELOP A SOFTWARE MODEL OF
THE SYSTEM
The design flow begins with the development of a high-level
software model that describes the functionality of the system.
The Python programming language is used for this task.
The simplicity, clear structure and extensive availability of
high-level programming libraries, makes it possible to write
the software model in a fraction of the time required to
design the hardware and verify it, taking advantage of the
great facilities for the test that the Python language has. The
software model also has the purpose to help the developer
get a better understanding of the core functionality, making it
possible to speed up the HDL design. The software model
is then fed with a suitable set of test vectors, and the
corresponding outputs are stored to be used as a reference
in later steps. The proposed framework is flexible and does
not impose a mechanism to get this set of test vectors. The
developer can use test patterns or a TPG provided by a third
party or write his own TPG. As previously mentioned, test
pattern generation techniques are outside the scope of this
paper.

B. RTL LEVEL: WRITE AND VERIFY THE HDL DESCRIPTION
First, the HDL description has to be developed. Then, the
behaviour of the HDL description is simulated by using the
CocoTB tool (RTL simulation). CocoTB is a co-verification
Python tool that provides white-box testing. Specific python
test code is written for critical parts of the HDL description,
such as internal registers or counters at each clock cycle.
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FIGURE 2. Proposed On-Chip functional verification system.

The overall functional verification of the whole HDL
description is done by feeding CocoTB with a subset of the
test patterns generated in step 1 and comparing its outputs
with those generated by the software model.

C. HARDWARE LEVEL: VERIFICATION AND
PERFORMANCE TESTING OF THE HARDWARE
In the last step, the system is implemented in a RH chip,
alongside the so called Autotest Core, that will carry out
black-box-testing. TheAutotest Core is connected to the CUT
inputs and outputs, as shown in Fig. 2. The test vectors and
results previously generated by the software model are stored
in a low-cost Flash memory device (microSD card). The
Autotest Core then checks the functionality and performance
of the CUT by feeding it with the test vectors, and comparing
its outputs against the expected results. Every mismatch is
reported and stored back in the microSD card alongside the
performance measurements for further off-line analysis.

IV. AUTOTEST CORE
The proposed On-Chip functional verification system is
shown in Fig. 2. In this Figure are three components; the flash
memory which stores all the test records, the CUT which is
the target to test on-board and finally the Autotest Core. The
Autotest Core gets the test records from the flash memory by
the Flash R/W Module using the SPI protocol. Once a test
record is retrieved, it is processed by the Control Module to
feed the CUT. To achieve it, the Control Module must be in
charge of the control signals of the CUT, such as the reset
signal, in order to get the CUT outputs which are compared
with the expected ones. Lastly, the data collected from the
CUT are send it from the Control Module to the Flash R/W
module which writes it back into the flash memory.

Regards to the submodules of the Autotest Core, the
Control Unit it is detailed below. However, the Flash R/W
module is a modified version of the minsdhost module
described in [25]; the differences are:

1) It is written in SystemVerilog instead of VHDL.
2) It supports class 10 microSD cards.
3) It implements the write command (CMD24 [26])
4) It implements the read multiple blocks command

(CMD18 [26])

FIGURE 3. Record stored in the flash memory in the single block mode.

The Autotest Core description must be configured for each
CUT. The Control Module has two operation modes suitable
for different combinations of CUT and dataset. Both modes
are different enough to provided an HDL implementation for
each one. In order to agilize the design cycle template codes
has been created and are available in the authors’ github [27].
Therefore, when the designer chooses the dataset for the
CUT then the appropriate template will be selected creating
a synthesis of the full system.

A. SINGLE BLOCK MODE
This is the mode used to verify and measure the performance
of any core whose input can be read in a single clock cycle,
i.e. all the input bits are provided in parallel. The record
corresponding to each test vector is stored within a single
block of the flash memory using the format shown in Fig. 3.
A block can only contain data for a single record, and test
vectors to the same core are stored in a list of contiguous
blocks.

Each record includes the following fields:

• ID: Every core to be tested is assigned a 32-bit identifier.
The identifier of the core corresponding to the test vector
is stored in this field. This makes it possible to store test
vectors of different cores in the same flash memory.

• TV: This is the test vector to be applied to the CUT.
• SW_R: The expected output computed by the software
model is stored in this field.

• HW_R: The output of the CUT is stored in this field.
• ET: The number of clock cycles employed by the CUT
to generate the output is stored in this 64-bit field.

• padding: The size of this field is chosen so the size of
the whole record is 512 bytes, i.e. the size of a block of
the flash memory. Its content is not relevant since it is
never read nor written.

The flow diagram for the single block mode is shown in
Fig. 4. initial_block, IPCUT_ID and max_timer
are parameters of the Autotest Core code template,
while current_b and errors are local variables.
initial_block is the number of the block containing the
first test vector of the CUT, IPCUT_ID is the core identifier
of the CUT and max_timer is an upper bound on the
number of clock cycles required by the CUT to compute the
output. Respecting the local variables, current_b encodes
the number of the block containing the current input vector
to be applied, while errors is the number of wrong outputs
found. As previously mentioned, we used the seven segment
displays available in our FPGA prototyping board to show
errors in runtime.
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FIGURE 4. Flow diagram for the single block mode.

The behaviour of the Control Module in the single block
mode is to wait until the start signal is activated. Then,
it enters into a setup stage where the Flash R/W module is
reset as well as all counters and registers. After that, the loop
begins to check each test record. First, the test record fields
are stored from the Flash memory into internal registers.
Then, it makes a comparison between the ID field with a pre-
stored signature, if both values are different then the Control
Unit is finished, else the CUT is fed with the inputs from
the test record and waits until an end signal is generated
from the CUT. Due to the nature of the black-box testing,
a timer has been introduced to be able to continue even if
an internal state of the CUT is stalled. This timer also gives
us the execution time that takes the CUT to process the data.
Then, the output from the CUT is compared with the expected
output, if both values are different then an internal counter for
errors is incremented. Once the output and the execution time
from the CUT are stored in the memory flash together with
the test record, an internal register is updated to the upcoming

FIGURE 5. Record stored in the flash memory in the multiple block mode.

block in the memory flash where the next test record can be
found and the loop begins once again.

B. MULTIPLE BLOCK MODE
This is the mode to be used to verify and measure the
performance of cores used to process a data stream of
variable size such as checksum generators and cryptographic
hash function implementations. The Autotest Core code
template for this mode has an additional parameter labeled
word_size that is the size in bytes of the words used to
feed the CUT. As shown in Fig. 5, for each test pattern
a record with the following fields is stored in the flash
memory:
• ID: Every core to be tested is assigned a 32-bit identifier.
The identifier of the core corresponding to the test vector
is stored in this field. This makes it possible to store test
patterns of different cores in the same flash memory.

• TV: If the input of the CUT has fixed-size fields, they
are stored here. For example, it can be the key used
by message authentication code generators or digital
signature implementations.

• SW_R: The expected output computed by the software
model is stored in this field.

• SS: The size in bytes of the data stream is stored in this
64-bit field.

• NR: The number of the first flash block used to store the
record of the following test pattern, if any, is stored in
this 32-bit field.

• HW_R: The output of the CUT is stored in this field.
• ET: The number of clock cycles employed by the CUT
to generate the output is stored in this 64-bit field.

• padding: The size of this field is chosen so the size of
the whole record (except the data stream) is 512 bytes,
i.e. the size of a block of the flash memory. Its content
is not relevant since it is never read nor written.

• DS: The data stream is stored in this field.
• DS padding: The size of this field is chosen so the
size of the data stream is a multiple of 512 bytes, i.e. the
size of a block of the flash memory. Its content is not
relevant since it is never read nor written.
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FIGURE 6. Flow diagram for the multiple block mode.

The flow diagram for this mode is quite similar to the
previous one as shown in Fig. 6.

The behaviour of the Control Module in the multiple block
mode is quite similar to the single block mode. Both make
the same steps at the beginning until the way to feed the
CUT. To feed the CUT in this mode, a chunk of data is
read and then applied to the CUT which generates a new
internal state. This process continues until all bytes stored
have been applied. Then, the Control Module activates an end
feed signal to the CUT which processes the data and when it
finishes, it activates an end signal. It is important to clarify
that a timer has been placed in the Control Unit as well as in
the single mode. However, to get more accuracy in the result

of execution time of the CUT, the timer is paused when the
Flash R/W retrieves the data. Once the output is generated,
it is stored together with the execution time of the CUT into
the flash memory. If the generated output is different from
the expected output, then the error counter is increased. After
that, an internal register is updated with the value stored in the
test record which indicates the upcoming block in the flash
memory where the next test record is found. Lastly, the loop
begins once again.

V. RESULTS
To validate the proposed approach and to estimate its
performance, the following aspects have been evaluated:
(i) Ease of integrating Autotest Core in the functional
verification process of different systems; (ii) Resources used
by the distinct operationmodes; And (iii) Performance results
(total execution time used to process a set of input test patterns
in single and multiple block modes). Furthermore, these
aspects have been compared with Xilinx VIO, an alternative
method to perform black-box-testing on-board. In addition,
one of the examples presented has been compared with
a specific BIST solution detailed in [28]. However, this
comparison can be only performed with the first example due
to the specificity of the BIST solution.

A. EASE OF INTEGRATION
To demonstrate the ease of integrating Autotest Core in
the functional verification process of any system, this
approach has been used to design and verify a variety of
IPCores available at the authors’ GitHub repository. Most of
these IPCores are hardware implementations of lightweight
cryptographic algorithms:

• Block Ciphers: PRESENT and Twofish.
• Stream Cipher: Trivium.
• Hash Functions: Hirose PRESENT and SPONGENT.

These hardware implementations are perfectly adapted to
the IoT perspective, where most devices are highly resource
constrained and hardware implementations of traditional
cryptographic algorithms cannot be afforded in terms of
resources and power consumption. Therefore, once verified,
these IPCores will be used to provide adequate security to
different IoT devices that are being developed.

In order to organize them, a folder structure was used for
each IPCore. The folders are:

• python_code: This folder contains the Python imple-
mentation of the IPCore functionality. In addition,
it contains the TPG (Python script) which generates the
test patterns.

• hdl_code: This folder contains the SystemVerilog imple-
mentation of the IPCore.

• cocotb_files: This folder contains a Python file which
acts as a testbench file. This file is used for testing
the SystemVerilog implementation with the test patterns
generated by the TPG. A Makefile needed by CocoTB
is also included in this folder.
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• Hardware_verification_files: This folder contains two
subfolders:

-- fusesoc_files: This subfolder contains a core file
alongside the SystemVerilog top file. The core file
collects all the files that FuseSoc [29] requires to
generate the specific project files, depending on the
selected Electronic Design Automation (EDA) tool:
Vivado (Xilinx), Quartus (Intel), etc. As a result,
this tool builds the bitstream file for the chosen
hardware platform, which includes the IPCore as
CUT and the Autotest Core as the functional
verification core.

-- microSD_script_files: This subfolder contains all
the necessary scripts to analyze the microSD card,
once the Autotest Core has finished.

Moreover, this repository includes a user guide, which
details the process of Autotest Core integration. Thus, it can
allow designers to use this core to verify their own system.

The fact of providing all this information is twofold.
Firstly, to demonstrate that Autotest Core is a generic
approach that enables the functional verification of a wide
range of systems quickly and easily, regardless of the
technology used. And secondly, to facilitate that all the results
presented in this paper can be contrasted.

Specifically, the obtained results in the functional verifica-
tion process of two IPCores is shown in this paper: PRESENT
block cipher and SPONGENT hash function.

The PRESENT IPCore is a SystemVerilog implementation
of the PRESENT symmetric block cipher [30] with a block
size of 64 bits and a key size of 80 bits. First, the HDL code of
this block cipher was verified comparing the software results
with the CocoTB simulation results. Later, the Autotest Core
was adapted to the PRESENT cipher; and since inputs can be
provided in parallel, the single block mode was used to verify
this IPCore. The test vectors (TV record) have the following
format:

• key: the 80-bit encryption/decryption key
• text: a 64-bit plaintext or ciphertext
• mode: a 1-bit control signal that selects the PRESENT
Core mode to cipher (0-value) or decrypt (1-value)

The SPONGENT IPCore is a SystemVerilog imple-
mentation of the SPONGENT hash function [31]. This
implementation may be fed with an arbitrary amount of input
data. SPONGENT has an N-bit output where N can be 88,
128, 160, 224 or 256 bits. Therefore, a multiple block mode
was used in order to test this IPCore. Input data is provided
in the DS record; the TV record is empty.
Related to the VIO verification, the VIO IPCore can be

easily configured and integrated using the Vivado Design
Suite; and it is used to drive data into your design and read
data from your design through the JTAG port. To automize
the process of sending and reading data, an external software
application is usually used. Unlike the Autotest Core, VIO
is technology dependent and can only be implemented on
Xilinx FPGAs.

Listing 1. TPG simplified for PRESENT.

Listing 2. TPG simplified for SPONGENT.

B. TPG SELECTION
As mentioned earlier, the TPG selection can be chosen by
the developer. In our particular case, the goal is to test
the proposed framework. Therefore, the TPG selection falls
into the background. A TPG which generates a number of
random test records has been used for simplicity. However,
theoretically this particular TPG method has a high fault
coverage assuming the single stuck-at fault model when
applied to crypto-cores [32].

The following pieces of code are simplified versions of the
python script used as TPG in these results, the full code can
be accessed in the authors’ github at the paths:
• block_ciphers\present_cipher\python_code\
gen_testbench.py

• hash_functions\spongent_iter\python_code\
gen_testbench.py

Listing 1 is the code for the PRESENT which has three TV
fields. However, the mode field can be only 0, 1, therefore
in each iteration of the TPG we create two records, one for
each value of the mode field. Listing 2 is the code for the
SPONGENT which only needs to generate the DS values.
Each time data from the Stream is generated, it is used to feed
the software model which updates the hash state. Once it is
finished the random data is stored in the microSD.

C. RESOURCES
Regards to the hardware implementation on FPGA, both
IPCores were implemented in a Nexys4DDR development
board from Digilent [33], which included a Xilinx Artix7
XC7A100T-1CSG324C [34] FPGA chip. Besides this,
in order to compare the amount of hardware resources used
for our approach with those obtained in the PRESENT
BIST work presented in [28], the PRESENT IPCore was
also implemented in a Genesys2 development board which
included a Xilinx Kintex7 XC7K325T FFG900-2 [34].
Similar results were obtained for both FPGAs. In this way,
we assumed the same values is the Present BIST work for
both boards in order to compare the results.

In table 1 the amount of resources used for three different
alternatives in order to verify a PRESENT block cipher core
(Autotest, VIO and the PRESENT BIST work) are shown.
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TABLE 1. FPGA resources on Xilinx Artix7 XC7A100T-1CSG324C with the total percentage of the FPGA resources used by different functional verification
cores in order to verify a PRESENT block cipher core.

TABLE 2. FPGA resources on Xilinx Kintex7 XC7K325T FFG900-2 with the total percentage of the FPGA resources used by different functional verification
cores in order to verify a PRESENT block cipher core.

TABLE 3. FPGA resources on Xilinx Artix7 XC7A100T-1CSG324C with the total percentage of the FPGA resources used by different functional verification
cores in order to verify a SPONGENT88 hash function core.

TABLE 4. FPGA resources on Xilinx Kintex7 XC7K325T FFG900-2 with the total percentage of the FPGA resources used by different functional verification
cores in order to verify a SPONGENT88 hash function core.

The results indicated that the BIST implementation is the
option that uses the least hardware resources. This is because
the PRESENT cipher core is reused as a TPG, therefore,
being a specific solution. However, it can be seen that
Autotest and VIO options are similar in this category. These
approaches are generic solutions and the resource constraints
are not critical since both cores use less than a 3% of the total
slices. Similarly in table 2 the BIST implementation is the
most efficient solution at the cost of being the more specific.
Respect the other solutions although they are more expensive
in resources, both are below the 1% of slices for the Xilinx
Kintex7 XC7K325T FFG900-2 FPGA.

In tables 3 and 4 the amount of resources used by two
different functional verification cores (Autotest and VIO)
in order to verify a SPONGENT hash function core with
an 88-bit output are shown. It can be seen that both cores
have a low impact on the total FPGA resources, occupying
less than 3% of the total slices for the Xilinx Artix7
XC7A100T-1CSG324C and less than 1% of the slices for the
Xilinx Kintex7 XC7K325T FFG900-2. Therefore, in terms

of hardware resources, they are generic solutions that allow
designers to verify these types of systems.

Finally, as described in the previous sections, the Autotest
Core read the input tests and expected results from the Flash
memory device, so the whole functional verification process
could be carried out within the FPGA. Regards to VIO core,
an external script in TCL format was used to send the test
vectors to the CUT through a JTAG port. This script also took
care of receiving the output from CUT, comparing it with the
expected result and storing all verification results in a file.
Since the input tests were read one by one, the use of BRAMs
was not necessary as observed in Tables 1,2 and 3. Therefore,
hardware resources are highly optimized for both functional
verification cores (Autotest and VIO) and operation modes
(single and multiple block modes).

D. PERFORMANCE RESULTS
In this section, performance results will be presented. In the
context of this paper, performance will be measured as the
time dedicated to process a set of test patterns.
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FIGURE 7. PRESENT IPCore. Execution times, partial up to 1000 test
patterns.

As described in Section III, first, the behaviour of the
HDL description was simulated using the CocoTB software
tool. Next, was the On-Chip functional verification proce-
dure. Therefore, three different alternatives were analyzed:
CocoTB software tool, Autotest Core and Xilinx VIO core.
All the software executions were executed in a computer with
an AMD Ryzen 7 2700 Eight-Core Processor and 32 GB of
RAM memory.

First, we can see the functional verification results of
PRESENT block cipher are shown. Fig. 7 depicts execution
times, partial up to 1000 test patterns (500 encrypts and
500 decrypts). This figure shows a similar performance for
CocoTB software tool and VIO core. This is because the
script used to communicate to the computer with the VIO
core was running in software, so most of the time was spent
reading test vectors from a file, exchanging data through
the JTAG port and storing all functional verification results
in another file. In this way, the potential of doing On-Chip
functional verification using the VIO core was reduced in
terms of communication with the computer. As seen in Fig. 7,
this fact does not occur when Autotest Core is used, since
all operations (reading of the test patterns from the SD card,
pattern processing, etc.) are fully performed in hardware.
This statement implies that Autotest Core can process a large
number of test patterns per unit of time and perform a more
thorough functional verification of systems, compared to the
other alternatives.

From the data shown in Fig. 7, trend lines and coefficients
of determination can be calculated for each alternative:
CocoTB simulation tool, Autotest Core, and Xilinx VIO core
(Fig. 8(a), 8(b), and 8(c), respectively). In these figures, the
line slopes represent the average time per pattern, and the line
constants represent the initialization times.

To get a better understanding of the results, Fig. 9 has
been added. In this figure, it has been compared the average
execution time (ns) taken to test one record. In addition, it has
been included the time that the PRESENT cipher Core takes
to encode or decode data in order to be able to compare both
the time dedicated to the CUT, and the complete system. The
values of the Y-axis are in logarithm base 10 to get a quick
sight of the differences in orders of magnitude. The results
show that the PRESENT BIST implementation presented

FIGURE 8. PRESENT IPCore. Trend lines and coefficients of determination
for each alternative: (a) CocoTB, (b) Autotest Core, and (c) Xilinx VIO core.

FIGURE 9. PRESENT solution average execution time for one record in
log10 scale.

in [28] has the better performance with an order of 10−8s
by far of the second best that is Autotest Core with 10−4
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FIGURE 10. SPONGENT88 IPCore. Execution times, partial up to 1000 test
patterns. The input data has a size of 1024 bytes.

TABLE 5. PRESENT IPCore. Number of test patterns processed in one
hour.

and the 10−2 of VIO. However, the clock signal used in
the BIST solution is five times greater than the one used
in the other cases, 500Mhz in opposition of 100Mhz. The
conclusion with these results is that specific solutions are
better in performance, but our framework is a better generic
solution to test a broad set of Cores.

To demonstrate the power of Autotest Core, Table 5 shows
the number of test patterns processed in one hour by each
alternative. As seen in Table 5, the number of test patterns
processed by Autotest Core exceeds the results obtained by
CocoTB and VIO core by two orders of magnitude; speeding
up the functional verification process. In addition, the type of
functional verification that Autotest Core performs has two
additional benefits. Firstly, that performing such a thorough
hardware functional verification can allow designers to
detect errors occurring after several hours of testing under
certain established conditions. And secondly, it can check the
maximum operating frequency of the system and measure the
processing time of the system at that frequency. In this way,
it has been verified this IPCore works properly at a maximum
frequency of 400 MHz, getting a processing time of 390 ns.

Secondly, the functional verification results of SPON-
GENT hash function will be shown. Fig. 10 depicts execution
times, partial up to 1000 test patterns. The input data has a size
of 1024 bytes. Trend lines and coefficients of determination
for each alternative are shown in Fig. 11(a), 11(b), and 11(c).
Regarding the VIO core, Fig. 10 shows that when the CUT
must be fed with an arbitrary amount of input data (only
1024 bytes in this scenario), the performance of this core is
very low; even CocoTB presents a better performance. This
is because the VIO core is designed to replace or augment
board-level I/O components such as status indicators and
low-bandwidth controls (LEDs, buttons or DIP switches); but

FIGURE 11. SPONGENT88 IPCore. Trend lines and coefficients of
determination for each alternative: (a) CocoTB, (b) Autotest Core, and
(c) Xilinx VIO core.

it is not optimized to perform this type of hardware functional
verification. Fig. 10 also shows Autotest Core can verify
this type of IPcores in a reduced time. Besides, according to
the Fig. 11(a), 11(b), and 11(c), the number of test patterns
processed by Autotest Core exceeds the results obtained by
CocoTB and VIO core by four orders of magnitude. This
means that in scenarios where a larger number of test patterns
or larger input data have to be processed, Autotest Core still
offer a good performance.

In the same line with the previous example, Fig. 12 has
been added. This figure shows the execution time (ns) to
process one test record in the different solutions, alongside
the time taken by the Core to generate the hash value.
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TABLE 6. Power consumption.

FIGURE 12. SPONGENT88 solution average execution time for one record
in log10 scale.

The logarithm base 10 in the results is to compare the orders
of magnitude. It is clear that Autotest Core has an advantage
over VIO by four orders of magnitude, so the Autotest Core
has an order of 10−3s and VIO has an order of 101s.

Finally, the performance of the SPONGENT IPCore has
been determined by Autotest Core. In this way, this IPCore
works properly at a maximum of 400 MHz, getting a
processing time of 126,75 µs.

E. POWER CONSUMPTION
In this section, the power consumption will be presented.
These results are an estimation performed by Vivado Power
Analyzer tools.

With the values presented in table 6we can establish that all
the proposed solutions have the same order of consumption
(10−2W ), being that one assumable in the IoT field.

VI. CONCLUSION
The verification framework proposed in this paper is adequate
to design and test IPCores in a fast and reliable way
by combining test pattern generation using a software
model, HDL simulation, on-chip testing and performance
measurements.

TPG generation, including expected results, is done at
a high level in software and used throughout the whole
verification process by the HDL model and the on-chip
verification core (Autotest Core) greatly reducing verification
time.

PRESENT and SPONGENT cryptographic cores and
random pattern generation have been used to test the
framework functionality successfully. It has been shown that
the Autotest Core hardware footprint is below 3% of the
total slices available in standard FPGA chips while the ability
to read patterns and store results in low-cost standard Flash

memory (SD card) provides a very flexible and cost-effective
verification system.

Comparison to commercial alternatives like Xilinx’s VIO
shows that the Autotest Core performance is at least two
orders of magnitude faster in addition to be able to do off-line
testing without the support of an external system (computer),
making it a great alternative to standard tools.
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