
Using Industrial Standards on PLC Programming
Learning

F.J. Molina∗, J. Barbancho∗, C. Leon∗, A. Molina∗, A. Gomez∗
∗University of Seville/Department of Electronic Technology, Seville, Spain

Abstract— In this paper, we review aspects relevant to
industrial standards related to PLC programming: IEC
61131, IEC 61499 and a work about safety developed by the
PLCOpen organization based on IEC 61508. We propose to
use these standards in PLC learning to fix a common know-
how that allows one to reduce the gap between industry and
education, and between different professionals. We show the
application scope of these standards by analyzing the IEC
61131 limits. The IEC 61499 can be introduced in distributed
control systems and in complex centralized systems with
multiple operating modes. In critical applications, like safety
functions, where functional safety is required, the IEC 61508
is a reference model.

I. INTRODUCTION

In PLC programming, there is a gap between industry
and education that has been increasing, especially in the
last few years. We identify two main reasons. Tradition-
ally, automation control systems have been developed
by engineers or technicians. Their know-how, design
methodology and working procedures are compiled into
standards. But usually, these standards are quite complex
to be introduced in education because they are written to
transmit clear information to experts, not to teach to non-
experienced students. The second reason is the increasing
use and the integration, of programmable electronic sys-
tems (PES) and computers in all the levels of the automa-
tion hierarchy: sensor/actuator level, supervisory level and
the company management tools (databases, information
systems, decision tools, etc). Due to the introduction of
communications technologies and new programming con-
cepts with PES, professionals from computer science have
started working with industrial PES. Their methodology
and their knowledge about industrial processes are quite
different from traditional engineers and conversely. There
is a mutual misunderstanding.

The IEC 61131 standard was a first attempt to give
a reference model for industrial PES. It was defined
in 1993 and released in 2003. It unifies concepts and
proposes a common standardized programming interface
to allow people with different backgrounds to create
different pieces of a program that can be joined to work
together correctly. The standard also defines a set of
programming languages and includes an easy way to
apply new technologies like communication protocols and
fuzzy-logic [1][2][3]. The PLCOpen association is work-
ing to update and promote the IEC-61131 standard. Their
working groups have developed much material to better
understand and teach the standard [4] [5]. They have also
been developing recommendations and solutions to many
industrial problems such as safety and motion control.

The study of these works offers a clear perspective of the
programming methodology that the standard draws. Cur-
rently, the IEC 61131 has been successfully introduced in
the industry. Many commercial tools are compliant or, at
least, include their main concepts. Nevertheless, several
studies show that the languages and the execution model,
defined in the standard, are incomplete. Because of this,
frameworks usually define additional language elements
or characteristic, and non-compliant program execution
models [6] [7].

In section II, we analyze the main concepts of IEC
61131-3 standard. In certain applications, special relia-
bility and availability are required for long periods of
time (e.g. safety in process and machinery). Programming
restrictions and different methodologies are necessary to
achieve that [8] [9] . IEC 61508 standard introduces the
main concepts on functional safety, recommendations and
methods for programmable electronic devices in safety
applications. In the section III, we present a work done
by PLCOpen organization to adapt IEC 61131-3 to IEC
61508 recommendations.

The application of the IEC 61131 also has limitations.
The study of these limitations allows us to introduce the
standard IEC 61499. This new standard is better suited
to program decentralized control with highly-coupled
applications distributed on several devices [14] [15] .
It is also adequate when the process and the controller
have multiple operation modes and operating states. A
comparative study of both is presented in section IV.

II. THE IEC 61131-3 MAIN CONCEPTS

The IEC 61131 part 3 defines a software model for
industrial controllers based on a clear set of definitions
about what is a program, how to construct one, and how
the program interacts with the host machine and with
another program. The model consists of:

• High-level elements: Configurations, Resources and
Tasks. They describe the overall architecture of a
program resident in a programmable controller.

• Program Organization Units - POU’s. They are basic
code containers. A program is structured in one or
more POU’s.

• Variables and Data Types.

The standard defines basic hardware-independent data
types. The size and the arithmetic are strictly declared.
Consequently, many errors, caused when a program is
compiled in different platforms, can be avoided. From
basic types, programmers can define derived data types,

2007 Mediterranean Conference on Control and
Automation, July 27 - 29, 2007, Athens - Greece

1-4244-1282-X/07/$25.00 ©2007 IEEE

T10-006

creating enumerations, sub-ranged types, arrays, or data
structures.

POU’s are the key of the program development based
on 61131-3. There are three types: Functions (FUN),
Function Blocks (FB) and Programs (PROG). A Function
is defined as a program organization unit in which, when
executed, yields exactly one data element. It does not
contain internal memory. The same arguments always
yield the same output.

A function block can process several outputs. It con-
tains internal state information. Each function block in-
stance has a structure with internal data, the inputs or
default input values, and output, last output or default
output values.

A Program is a function or a FB with access to the I/O
variables.

Fig. 1 illustrates function or function blocks elements:
interface, internal variables and code.

Two advantages of using blocks can be stood out.
Firstly, the interface must be defined exactly and con-
sequently the block operation/behavior. The second is re-
lated to the programmer’s skills. The code can be written
using any of the five languages that the standard defines.
Ladder (LD), Functions (FUN) and Sequential Function
Chart (SFC) are graphical languages. Instruction List
(IL) and Structured Text (ST) are textual languages. The
selection of these languages is guessed right because it
allows the programmers with different abilities to program
easily. Ladder language is widely used. Seventy percent
of the programs in PLC’s are written in it. It is inspired
on relay logic formalism, so it is very popular amongst
technicians. Instruction List language is similar to the
assembler languages. It is better suited to solve problems
that deal with mathematical algorithms, or to process
data intensively. It is very popular amongst program-
mers accustomed to low level languages like embedded
systems developers. Structured Text language is similar
to Pascal language. It is attractive to computer science
programmers, and it is better suited to solve math or
algorithmic problems. Despite their importance, SFC and
FUN languages are not very popular. In the standard,
both languages are used to structure the main program. In
fact, the main program is defined as a logical assembly
of programming languages elements. Figures 2 and 3
illustrate the aspect of a main program structured with
both languages

EN

INPUTS OUTPUTS

ENO

CODE

0

0

1

0

0

1
STATIC DATA

Fig. 1. Function Block elements.

AUTO_MODE

ENDEN

MANUAL

ENDEN

MAN_SELECTED

RESTORING

ENDEN
MAN_SELECTED

Fig. 2. Main program structured by FB’s.

S1

S2 MAN_MODE

S3 RESTORING

End_Restoring

End_Auto& /Man_Selected

S3

AUTO_MODE

End_Auto&ManSelected

Fig. 3. SFC structured main program.

SFC - Sequential function chart is an evolution of IEC
648 language. But instead of a program documentation
resource, SFC is a set of execution control elements
for POU’s. It is designed to structure sequential and
concurrent algorithms. It can be considered a special case
of a Petri Net, and it is better suited to describe Discrete
Event Systems (DES). Many researchers have developed
procedures to program SFCs from DES models [10] [11]
[12] [13] .

Function Language is a graphical language in which
POU’s can be interconnected with in a similar way to an
electronic circuit. It structures the program and manages
concurrency easily.

The standard also defines high level elements to de-
scribe how the program is hosted and executed. The
elements are Tasks, Resources and Configurations.

A Task defines the execution mode of program or a
POU. Typically, there are three: cyclic execution, periodic,
or triggered by an event. In this context an Event is
a change in a variable. If this variable is associated
to a physical I/O the event is called Alarm. A Con-
figuration represents a programmable controller system
as defined in IEC61131-1. A PLC is a configuration
example. Another is a computer running a Soft-PLC.
A soft-PLC is a specialized software able to run IEC
programs. Nowadays, this technology is being applied
more and more frequently. A Resource is a real o virtual
machine where the programs are executed. Each CPU
in a PLC is a resource. A configuration can contain
one or more resources. Global user variables can be
defined in the resource or a configuration level, and this

2007 Mediterranean Conference on Control and
Automation, July 27 - 29, 2007, Athens - Greece

T10-006

CONFIGURATION

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

ACCESS PATHS

EXECUTION CONTROL PATH

VARIABLE ACCESS PATHS

FB CUNTION BLOCK

VARIABLE

OR

COMMUNICATION FUNCTION (SEE IEC 1131-5)

GLOBAL AND DIRECTLY
REPRESENTED VARIABLES

INSTANCE-SPECIFIC
IMPLEMENTATIONS

Fig. 4. The IEC 61131-3 software model

will be its scope. Special sort of global variables are
Directly Represented Variables and Access paths. Directly
Represented Variables are vendor-defined and represent
physical I/O channels. Access Paths are variables that can
be accessed by other configurations.

The standard software model (fig. 4) describes an
overall automation structure consisting of several configu-
rations connected by a communication bus, with programs
residing in the resources and working in a coordinated
way.

III. PROGRAMMING RESTRICTIONS AND FUNCTIONAL

SAFETY OF PLC’S

Reliability and functional safety are always problems
present in an industrial controller. In fact, IEC 61131
defines hardware and software characteristics to achieve
this goal. Although, programmers’ habits and program-
ming languages are likely sources of failures. Jointly and
with a clear methodology, to reduce program failures it
is necessary to limit the variability of the languages. Full
Variability Languages (FVL) like Pascal, Java or C++,
allow to the programmers great freedom to define the
program structure, the data and the program flow, so
the failure probability is greater compared to Limited
Variability Languages (LVL) that are more restricted, and
combine predefined and application specific functions.
The IEC 61131-3 languages are good examples of LVL’s.
But the standard also includes additional restrictions to
increase reliability, e.g. by fixing the program structure
and by limiting the program access to hardware resources
directly. Specifically, this late restrictions means:

• The I/O channels are updated through Directly Rep-
resented Variables, e.g. the program never read or
write the I/O channels.

• The programs are not often compiled to a processor
native code program. Instead of that, it is translated
to Instruction List or to a pseudo assembler language
that runs in a supervised or interpreted mode.

S3

S1

S2

S4 S5

S3

S1

S2

S4

S6

S5

Fig. 5. Unsafe and impossible SFC’s

IEC 61131-3 languages have been well studied in sev-
eral papers, and they are known for their inconsistencies.
For example in SFC languages the state evolution can fall
into unsafe states or impossible conditions derived from
jumps from simultaneous divergences (fig. 5).

Moreover, dynamic problems like critical races or non-
deterministic execution time have to be avoided for better
reliability, too. Critical races can be present in any lan-
guage if simultaneous accessing to shared variables or
feedbacks are used in FB’s. In these cases, the result
can depend on the execution order. Non-deterministic
execution time or infinite loops can be caused by clas-
sical structuring instructions like WHILE or FOR. In
consequence, language and execution model restrictions
must be stronger in those cases where reliability should
be higher. Safety is one of these cases. Safety can be
defined as the expectation that a system will not cause
anyone bodily harm or risk human life or health. Safety
functions in a process or machinery require an extra
reliability and availability that can only be achieved with
special hardware devices, special PLC systems and/or
special programming methodology. Safety in machinery
or industrial processes is a very important, sometimes
complex problem that can be considered at the design
stage. Safety measures have to be included at the be-
ginning of the development process, so the process and
the safety elements are well integrated. Safety functions
can be managed by standalone elements, wiring safety
devices or specialized programmable electronic systems
(PES). Complex safety functions are usually managed by
safety PLC’s, using centralized or distributed structures.
Safety functions must be reliable to guarantee that safety
measures are functional or to maintain a safe state for
the equipment under control. This concept is described in
the IEC 61508 standard as Functional Safety of a safety
related system. The introduction of this standard is quite
important to have a clear idea about how to estimate the
risks derived from the failure of a PES, and the Safety
Integrity Level (SIL) required to assure the risks are at an
acceptable level. Furthermore, IEC 61508 offers a set of
measures or recommendations to enhance SIL in a PES.
For example:

• Using applicable programming languages and lan-
guage subsets.

• Using validated software blocks.

2007 Mediterranean Conference on Control and
Automation, July 27 - 29, 2007, Athens - Greece

T10-006

Safety
Inputs

Safety Application

Runt ime
Safety

Outputs
&

Standard
Inputs

Funct ional
Application

Runt ime

Standard

Outputs

Fig. 6. PLCOpen software model for Safety applications

• Using applicable programming guidelines.
• Using recognized error-reducing measures for the

lifecycle of the safety-related software.
More specific standards, derived from IEC 61508 have

been proposed in the process industry (IEC 61511),
machinery (IEC 62061), nuclear plants (IEC 61513),
etc. In these standards the IEC 61508 philosophy is
integrated with specific safety measures and functions,
specific recommendations and specific failure estimation
methods. PLC Open has developed a wide work to include
the IEC 61508 and IEC 62061 strategies within the IEC
61131-3 programming languages. The work is organized
into four topics:

• A software model.
• A set of recommended reductions in the Develop-

ment framework.
• General rules for Safety-Related Function Blocks.
• A library of certified Safety Function Blocks.

A. The software model

The software model describes the functional process
application and the safety application in a generic way in
order to allow that existing and upcoming safety systems
can be covered (Fig. 6). No safety control hardware
architecture should be excluded by this specification. Both
applications can be executed on one device or there could
be several devices which are more or less coupled.

The main objective of PLC Open is to merge the
developer environment for the functional part and with
an integrated safety part, including reductions in language
programming and functionality for safety section. This
way, safety is integrated with process control functions
at the beginning of the development stages. Safety I/Os
and safety signal processing are clearly separate from the
process I/Os and the functional application. The func-
tional application can read safety inputs, but it can not be
connected to the safety outputs directly, it only can control
the data flow to them. To achieve this separation, a new
data type with the designation SAFEBOOL was defined.
SAFEBOOL is not a simple new boolean variable. It can
include additional information in order to calculate the
SIL with the programming tools. SAFEBOOL represents
a single input or output channel, regardless of the internal
hardware structure: 1oo1 (”1 out of 1”), 1002D, 2oo2
or 2oo3. The hardware which executes the FBs with

Safety application:

PROG or FB programmed

in basic level

FB programmed

in system level

FB programmed

in extended level

Any language FBD, LD

FBD, LD

AND

User FB library

TOF

GE

NOT

Validation/

certification
Validation/

certification

Vendor FB library

Fig. 7. Safety applications programming procedure

the SAFEBOOL I/Os has to be certified separately. The
safe value of a SAFEBOOL must be false. Application
engineers must ensure that the safe behavior when set to
FALSE. Additional recommendations have been included
to process safety functions, such as: the safety application
must runs only as a single task, or it must to have higher
priority. A safety functions should not be interrupted by
the functional application program.

B. Recommended reductions in the development frame-
work

The specifics proposed by PLCOpen for the framework
differentiate between three user levels: Basic, Extended
and System level. In the Basic Level, the program consists
of certified interconnected blocks. The Extended Level
allows one to create custom blocks, although they have
to be validate/certificated before being used in the basic
level. System Level is provided for suppliers of safety
controls. The blocks can be programmed in any language,
so this level is not part of the specification. The figure 7
illustrates these ideas.

IEC 61508 defines a reduction in the preferred pro-
gramming languages for different SILs. Based on this,
PLOpen has selected in the specification Ladder and
Function Block IEC 61131-1 languages for Basic and
Extended levels. SFC, Instruction Lists and Structured
Text are more complex to test and validate.

Data types, functions and function blocks from the IEC
61131-3 are also reduced. The reduction is stronger in the
basic level.

C. Safety related function blocks (SRFB’s): General rules
and certified library

The PLCOpen safety specification defines a generic
SRFB (fig. 8). Specific safety related FB’s should be
derived from this one. The interface and the behavior of
this FB are the following:

• An Activate input to enable the safety function.
• A Reset that can be used for different purposes:

as ”error reset”, restoring the initial state, or as a
”manual reset” of a restart interlock by the operator.

2007 Mediterranean Conference on Control and
Automation, July 27 - 29, 2007, Athens - Greece

T10-006

StateX
8xxx

Init
8001

Errors
Bxxx

S_Out = TRUE

0

0

0

0

0

3

1

1

Idle
0000

1

1

S_Out = FLASE

Ready = FALSE

START

Idle
0000

2

1 On error

2 S_Inputx value3

0 NOT Activate

Activate

TRIGat Reset

Activate

Reset
S_input_1

S_input_n

BOOL

SAFEBOOL
SAFEBOOL

SAFEBOOL

SF_Function

Ready
S_Output_1

S_Output_n

Error

DiagCode

BOOL
SAFEBOOL

SAFEBOOL

BOOL

WORD

Fig. 8. Interface and behavior of the base SRFB.

• S Inputs (process specific variables).

• A Ready output indicates if the FB is activated and
the outputs are valid.

• S Outputs (process specific variables)

• Error output indicates that the FB is in an error state.

• The DiagCode is very useful for debugging. It repre-
sents all the states (active, not active and error states).

Following this model, PLC Open has developed a
library composed of 20 SFRB’s (e.g. emergency stop, safe
stop category 1 and 2, mode selector, two hand control,
sequential and parallel muting, etc)

IV. THE LIMITS OF THE IEC 61131-3 PROGRAMMING

MODEL AS AN INTRODUCTION TO IEC 61499
STANDARD PROGRAMMING

In complex controllers, the IEC 611313 model presents
applicability problems derived from overall architecture
model misconceptions, and FB specifications. A con-
trolled system with a high number of control points (I/O
channel) does not carry to a complex controller necessar-
ily. In this paper, we refer to controller complexity as a
functional complexity. Two aspects contribute to increase
this functional complexity:

• Multiple operation modes or running states of the
process and the controllers.

• The use of distributed control systems in highly-
coupled applications.

The IEC 61131-3 describes a centralized, or ”multi-
centralized”, architecture, i.e. a control system composed
by several configurations running different applications
each one, but in a coordinated way. In the opposite,
IEC 61499 proposes applications hosted and running in
several devices. Obviously, Function Blocks running in
different devices, within a distributed application, have
to be strongly coupled, so it is required to have more

F3
Finishing
procedure

F2
Starting
procedure

F5
Ordered
producing
test

F6
Operating
Test

F4
Disordered
producing
test

A1
Stopped at
Initial state

A6
Restarting

A7
Stopping in a
non-nitial state

A4
Stopped at a
non- initial state

A2
End of
cycle
request

A3
Stop
requested

D3
Production
with faliures

D1
Emergency Stop

D2
Diagnosis and
teatment of
faliures

F - WORKINGA - PROCESS STOPPED

D - DE FECT

F1
Normal Production

A5
Preparation for
restarting after a
faliure

Fig. 9. The GEMMA guide.

E128.0

E128.1

E128.2

E200.0

E200.1

A128.0

A128.1

A200.0

A200.1

F4-Manual mode
EN

ON
OFF

/TE

PUMB1
PUMB2

A6 - Restarting Mode

EN

/TE

Temp

PUMB1
PUMB2

Heater

GEMMA
SCHEDULER

F4_EN

A6_EN

Fig. 10. GEMMA implementation example.

sophisticated synchronization methods than IEC 61131-
3 defines. E.g., in contrast with the Send/Receive func-
tions or Networked Variables, the IEC 61499 offers Pub-
lisher/Subscriber and Client/Server services.

On the other hand, along its operational life, a machine
or a process can be placed in many different operating
modes and states. A very popular design reference to
define them is GEMMA (Guide d’Etude des Modes
de Marches et d’Arrts) (fig. 9). GEMMA is a general
schedule that describes the process with up to 16 states.
Engineers have to decide which states are present or not.
Each state is a different automation problem and describes
the process in a specific situation. For example: F1- is the
normal production mode. F4 represents a manual mode,
where some elements can be controlled by an operator’s
orders, A6 state signals a set of sequentially ordered
operations for restarting the process, etc.

Following the traditional structuring methodology, and
IEC 61131-3 FB’s, each state will be programmed with
a different FB. A scheduler FB will call the right FB
depending on the operating process state. This can be
done by using the EN input of FB’s (Fig 10), or using
actions in an SFC main program.

When an FB is deactivated it is not executed and stores
the process state. When the block is activated again, the

2007 Mediterranean Conference on Control and
Automation, July 27 - 29, 2007, Athens - Greece

T10-006

MODE1 ALGORITHM1

START

INITIALIZE

MODE1 ALGORITHM2

1 1

INIT INITO

REQ & PAR AM = 2

REQ & PAR AM = 1

INIT & QI

Ex ecution Co ntrol C hart

Algorit hms

I nter nal va ria bles

RQ

INIT INITO

Fig. 11. IEC 61499 Function Blocks: interface and ECC.

real process state will likely not match with the stored
one, so the FB’s must be restarted. But FB’s in the IEC
61131-3 have no special inputs to achieve that. Each
vendor defines specific non-standarized inputs to control
their execution. In consequence, the programs are not
portable and the behavior of FB’s can differ from different
vendors. The FB’s defined in IEC 61499 standard solve
both problems. The FB interface makes a clear separation
between process inputs and another special, and event
triggered ones, called Events. These inputs control the
functional state of the FB by means of a user defined
Execution Control Chart (Fig. 11).

ECC guarantee the FB behavior, managing the execu-
tion and restarting of the algorithms written in it. When
comparing ECC and GEMMA is clear that ECC can
implement the complete system operation model (e.g.
GEMMA) or, at least the relevant part of it. Nowadays,
there are few IEC 61499 compliant frameworks. Although
many elements like ECC’s, can be implemented under
certain restrictions with IEC 61131-3 tools [16] [17] (e.g
using SFC’s). SFC language is an evolution of GRAFCET
(IEC-848). It is very usual that commercial tools support
vendor specific implementations of GRAFCET orders do
not include in SFC standard language. E.g. non-structured
hierarchy actions like SET, KILL and FREEZE. With
these orders, a master SFC can control the execution
of another SFCs. SET order activates states, fixing them
till the order is deactivated. KILL order deactivates all
the states and actions of an SFC, so it can not keep
on running. And, FREEZE pause the SFC evolution and
actions execution till the order will be deactivated. Master
SFC acts like ECC in IEC 61499 Function Blocks and the
slaves like the algorithms.

V. CONCLUSIONS

IEC 61131-3 is a reference standard for PLC pro-
gramming. It is designed to allow that technicians and
engineers with different skills can work together. It is

successfully introduced in the industry and there are many
commercial frameworks. Vendor specific implementation
can change, but all the tools have many common elements.
That is an advantage in PLC programming learning,
jointly with the efforts made by PLCOpen organization to
extent the standard and make it grow and understandable.
Analyzing the IEC 61131-3 limits, it is possible introduce
new standards and new programming methodology. In
applications like safety, reliability and availability can
increase limiting the language variability. Programming
methodology must be integrated with an overall design
methodology such as it is described in IEC 61508 stan-
dard. Again, in this point, the work realized by PLCOpen
is outstanding. IEC 61131-3 is also limited in distributed
control systems. In this scope, the new IEC 61499 can
be introduced. But, as we have shown, IEC 61499 is also
better suited to be applied in centralized control systems,
when the process and the controller have many different
operating modes and operative stages.

REFERENCES

[1] International Electrotechnical Commission, “IEC 61131-3. Second
Edition” , IEC publications, 2003.

[2] R. Lewis, “Programming industrial control systems using IEC
61131-3”, IEE Control Engineering Series, 1998.

[3] F. Bonfatti, “IEC 1131-3 Programming Methodology” , CJ Inter-
national, France, 1997.

[4] www.plcopen.org
[5] E. van der Wal, “Introduction into IEC 1131-3 and PLCopen” , The

Application of IEC 61131 to Industrial Control, IEE Colloquium on.
1999.

[6] I. Plaza and C. Medrano, “A specific implementation of IEC 61131-
3 software model”, IEEE World Automation Congress, 2004.

[7] N. Bauer, R.Huuck, B. Lukoschus, S. Engell, “A Unifying Se-
mantics for Sequential Function Charts”,Integration of Software
Specification Techniques for Applications in Engineering, LNCS
3147, 2004, pag 400-418.

[8] Lewis,R., “Can IEC 61131 graphical languages be used for safety
related PLC applications?”,IEE - The Application of IEC 61131 in
Industrial Control, 2002.

[9] K. Toon, “ IEC 61131-3 in Safety Applications”IEE - The Appli-
cation of IEC 61131 in Industrial Control, 2002.

[10] J. Flochova, “ A Petri net based supervisory control implementa-
tion”,Systems, Man and Cybernetics, 2003.IEEE Conf., 2003.

[11] G. Music, D. Gradisar, D. Matko, “IEC 61131-3 Compliant
Control Code Generation from Discrete Event Models”,Intelligent
Control. Mediterrean Conference on Control and Automation”,
2005.

[12] S.Klein, G.Frey; M. Minas, “PLC Programming with Signal In-
terpreted Petri Nets”,IEEE - Applications and Theory of Petri Nets
2003, ICATPN, 2003.

[13] D. Thapa, S. Dangol, Wang, “Transformation from Petri Nets
Model to Programmable Logic Controller using One-to-One Map-
ping Technique”,Computational Intelligence for Modelling, Control
and Automation, IEEE - CIMCA, 2005.

[14] G. Frey, T. Hussain, “ Modeling techniques for distributed control
systems based on the IEC 61499 standard - current approaches
and open problems”,Discrete Event Systems, 2006 8th International
Workshop on, IEEE Proc., 2006.

[15] F. Vyatkin, S. Karras, T. Pfeiffer, “Architecture for automation
system development based on IEC 61499 standard”,Industrial In-
formatics, IEEE Conf., 2005.

[16] L. Ferrarini, M. RomanoC. Veber, “ Automatic Generation of AWL
Code from IEC 61499 Applications”Industrial Informatics, IEEE
Conf., 2006.

[17] Isagraf Inc.,“IEC 61499 Execution Model”www.isagraf.com.

2007 Mediterranean Conference on Control and
Automation, July 27 - 29, 2007, Athens - Greece

T10-006

