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Abstract 
As delay models used in logic timing simulation 

become more and more complex, the problem of model 
parameter values extraction arise as an important issue, 
which is necessary to face in order to achieve a practical 
implementation of the model. In this way, this communica- 
tion describes the characterization process associated to 
the previously developed Delay Degradation Model for 
CMOS logic gates (DDM) and the implementation of an 
automatic characterization tool that automates the process 
and allows an easy and fast model parameters extraction. 

In the field of logic simulation of digital CMOS circuits, 
delay models exist that take into account most issues 
affecting accuracy [ 1,2,3,4]: low voltage, submicron and 
deep submicron devices, transition waveform, etc. There 
are also dynamic effects, the most important being the so- 
called input collisions [5], which happens when two or 
more input signals change almost simultaneously. The type 
of input coIIision that more notably affects the behaviour 
of digital circuits are the glitch collisions, or those that may 
cause narrow pulses or glitches. In previous papers [6,7,8] 
we have presented a very accurate model that handles the 
generation and propagation of glitches, which makes an 
important headway in logic timing simulation. This model 
is called Delay Degradation Model (DDM). 

One important point in any delay model (including the 
DDM) is the definition of the model parameters and the set 
up of an useful characterization process that describes how 
the model parameter values are obtained. This information 
is necessary to be able to reproduce simulation results by 
others and also to check the viability of the approach: a 
model that is very hard or expensive to characterize may be 
useless. 

In this paper we describe the parameter characterization 
process associated to the DDM and we present a tool that 
automates the process. We will show that the automation of 
the process is necessary in order to be able to use the model 
in a practical way. 

The paper is organized as follows: in section 2 the Delay 
Degradation Model is presented, in section 3 we describe 
the characterization process and its complexity, section 4 
presents the characterization tool autoddm from the point 
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Figure 1. Modelling delay degradation. a) T 
parameter, b) degradation curve. 

of view of use and implementation; performance results 
are shown in section 5 and we will finish with the main 
conclusions of this work. 

2. Degradation Delay Model (DDM) 
Narrow pulses or glitches propagating through CMOS 

gates are affected by the so-called degradation effect. In 
previous papers, we have developed a model that handles 
the degradation effect and is able, then, to accurately sim- 
ulate the propagation of arbitrarily narrow pulses. Despite 
the model has been presented in previous papers [6, 7, 81, 
we will summarize its main points in this section. 

A suited way to describe and quantify the degradation 
effect is as a reduction in the delay ( t  ) with respect to the 
normal propagation delay as a function of the inputs and 
output timing characteristics. Here, normal means the 
delay when no degradation effect takes place, which is the 
one calculated by conventional delay models [1,2]. It has 
been demonstrated in [6] that this reduction in the delay 
depends on the time elapsed since the last output transition 
( T )  as shown in Figure la. The t p  ,dependence on T of 
Figure lb  very well fits to the following expression: 

P 

where tpO is the normal propagation delay and T o  and T 
are fitting parameters. 

For a given gate, there is a set of input triggering condi- 
tions that may produce degradation effect, called glitch 
collisions. Some of them correspond to narrow pulses in a 
given input while others correspond to almost simultane- 
ous changes of a pair of input signals. A classification of 
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the types of input collisions that produce degradation effect 
can be found in [8]. 

For each particular gate, T and To  depend on the output 
load ( C,), the supply voltage (V,,), the input transition 
time ( zin ) and the position of the input that is changing 
state ( i ) .  It has been obtained in [8] that this dependence 
can be expressed as: 

~ ~ V D D  = ‘ x i  +‘xi‘, (eq. 2) 

C .  
To ,  = (i - *)zin 

V D D  
(eq. 3) 

where “x” stands for “r” or ‘tf’ depending on the sense of 
the output transition (rise or fall respectively). In this way, 
a CMOS gate is fully characterized with respect to the deg- 
radation effect when the set of A ,  B and C parameters 
(the degradation parameters) are obtained for each gate 
input. Therefore, the number of degradation parameter for 
a n-input gate is: 

n p  = 6n (eq. 4) 

The degradation parameters are obtained by fitting (eq. 
2) and (eq. 3) to HSPICE simulation data. 

3. Characterization process 
The objective of the characterization process is to obtain 

the values of the set of degradation parameters of (eq. 2) 
and (eq. 3) for a particular gate, i.e. 

( A , ,  B,, Cx i}  x = r, f i = 1 ... n (eq. 5) 

3.1 Characterization process description 
The characterization process is composed of three main 

tasks: 

Tusk 1: obtain t p  vs. T curves corresponding to (eq. 1) and 
Figure lb. 
Tusk 2: obtain z vs. C, curves corresponding to (eq. 2). 
Tusk 3: obtain To  vs. T~~ curves corresponding to (eq. 3). 

The first task is the source to obtain 7, T o  pairs, which 
are needed by tasks 2 and 3. z, T o  pairs are extracted from 
applying a regression fitting to data obtained from electri- 
cal simulations (SPICE [9] or HSPICE [lo]) like in Figure 
lb. Each point in the curve requires a transient analysis for 
a given value of T .  The number of transient analysis that 
are necessary to represent a t vs. T curve is noted as 
ncurve and a typical value is 28. 

By repeating task 1 with different values of C,, a set of 
z, C,  pairs is obtained, allowing for the calculation of 
parameters A and B by linear regression (eq. 2). The 

PB 
number of points used in a z vs. C,  curve is noted as n 
and a typical value is 10. Task 3 is carried out in a similar 
way, by performing task 1 a number of times ( n c )  with 
different values of zin to obtain parameter C by linear 
regression (eq. 3). nC is also typically ?qual to 10. 

3.2 Characterization process complexity 
A good manner to measure the complexity of the char- 

acterization process is by evaluating the total number of 
transient analysis that are needed to characterize a gate. 
Considering that 2n is the number of input collisions that 
produce degradation, the number of transient analysis can 
be calculated as: 

ntran = ~ ( ~ A L I  + nC)ncurven (eq. 6) 

where n is the number ofhputs  of the gate. 

Another interesting parameter measuring the character- 
ization process performance is the characterization time 
(t,,, ) which is necessary to complete the characterization 
of a gate. It is proportional to the number of transient anal- 
ysis and can be expressed like: 

= t f n t r a n  (eq. 7) 

where t f  is the characterization time factor which meas- 
ures the average time needed to set up and run each tran- 
sient analysis. It is useful to split this time factor in two: 

t f  = t f O P + t f  sirn (eq. 8) 

where t f s i m  is the simulator time factor, which measures 
the average time used by the electrical simulator in each 
transient analysis; and t fop  is the operator time factor 
which includes the average time spent in any other tasks 
done to prepare each transient analysis: file editing, simu- 
lation launching, data storing, problem resolution and data 
analysis (regression, fitting, etc.). 

In a conventional laboratory setup, t fop  would corre- 
spond to the time spent by a human operator in performing 
the mentioned tasks using a set of computer tools, while 
,tfsim is the CPU time consumed by an electrical simulator 
in each transient run. In this case, t fsim is negligible with 
respect to t 

can be optimistically 
estimated in losec., assuming that an experimented opera- 
tor is driving the characterization process. If we also con- 
sider typical values like ncurve = 20,  nAB = nC = 10 
and a 4-input gate, the characterization time can be calcu- 
lated from (eq. 6) and (eq. 7): 

f o p  ’ 
As an example, the time factor t 

t,,, = 10 x 2( 10 + 10)20 x 4 = 3200sec 
(eq. 9) 

= 8h, 53min, 20sec 

This means that, in the best case, a well trained human 
operator would spent around 9 hours in the characteriza- 
tion of a single gate. This cost is excessive in most cases, 
specially when the objective is to characterize a whole 
library of gates or when exploring different gate configura- 
tions. 

4. Characterization tool description 
A tool called autoddm has been implemented in order to 

automate and speed up the characterization process 
described in the previous section, saving “human” time. 
The tool is easy to use and is able to provide with the whole 
set of degradation parameters of a gate, from a basic infor- 
mation specified by the user. 
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Figure 2. Autoddm input/output data flow. 
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Two versions of the program are currently implemented: 
autoddm-cis and autoddm-spice, which only difference is 
the electrical simulator used to perform the electrical sim- 
ulations. The autoddm-cis uses CIS, which is a library 
designed to control the HSPICE simulator, while 
autoddm-spice uses Berkeley's SPICE3fS. 

Figure 2 shows the information flow around the 
autoddm tools. The designer has to specify a configuration 
file (xxx.conjg) with the information about the characteri- 
zation process parameters and basic information about the 
gate to be analysed (type and number of inputs). Addition- 
ally, a netlist of the gate under analysis need to be pro- 
vided, as well as the MOS models. In the case of the 
HSPICE version (autoddm-cis), this information is 
included in a file called m . s p ,  while in the case of the 
SPICE3f5 version (autoddm-spice), the netlist is placed in 
file xxx.gate and the MOS transistors model card is placed 
in file xxx.mode1. 

Once the input files are created, the tool runs in batch 
mode and produces a characterization result which is 
stored in the xxx.ddm output file. The progress of the char- 
acterization process is printed to the standard output (std- 
out) and error messages are directed to the standard error 
output (stderr). 

For the sake of clarity, we will use the autoddm-spice 
version in the following examples, the other version being 
similar. 

Technology: oxide capacitance ( CO, ) and minimum 
channel length of the technology ( Z m i n  ). This parameters 
are not mandatory, but can simplify the use of other char- 
acterization process parameters. 

Geometry: channel widths of the N-MOS and P-MOS 
trees in the gate. Again, these are not mandatory but con- 
venient when using gates with homogeneous trees. 

Files: name of input and output files. In the example, the 
configuration file is set to work either with the SPICE and 
HSPICE versions. Lines corresponding to the HSPICE 
version are commented out to select the SPICE version. 

The configuration file just defines a set of process 
parameters, and is composed of five sections: 
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Figure 3. Autoddm block diagram. 

Gate: gate type, number of inputs and gate's input 
capacitance (or reference capacitance). If technological 
and geometrical parameters are provided, Ci, is calcu- 
lated automatically if not present in the configuration file. 

Simulation: various simulation parameters like the 
power supply value ( V D D )  and the ranges of interest for 
the curves corresponding to the different tasks of the char- 
acterization process mentioned in the previous section. 

The input to the tool is completed with the netlist and 
model files mentioned above. The last is usually one pro- 
vided by the foundry, while the former is just a spice netlist 
of the gate. 

With respect to the program output, a lot of useful infor- 
mation about the characterization process is generated 
besides the value of the degradation model parameters. For 
example, the program gives information about each degra- 
dation curve (task 1 of the process) allowing the monitor- 
ing of the characterization process. 

5. Characterization tool implementation 
Internally, autoddm is organized in four separate mod- 

ules that interact following the diagram in Figure 3. These 
modules are: ddm, deg, sirn and regression. We will 
describe them going from a lower to a higher level: 

regression: is an utility module which consist on just 
one function to calculate the linear regression parameters 
that corresponds to a set of points. This is used by other 
parts of the program which need this facility. 

sirn: this module is in charge of running transient analy- 
sis on an electrical simulator in order to obtain delay values 
( t  ) for a given set of simulation parameters ( C ,  , zin , 
etc.). The sim module incorporates two submodules to 
allow interaction with either HSPICE or SPICE electrical 
simulators (sim-cis and sim-spice). 

deg: this module uses the sim module functionality to 
obtain degradation curves like the one in Figure lb, and 
calculates the corresponding z and T o  parameters from it 
(using the regression module) thus implementing task 1 of 
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the characterization process. 

ddm: corresponds to the main function of the program 
and implements the rest of the characterization algorithm 
(tasks 2 and 3). This function does the following: after 
reading the configuration from the input files, the program 
initiates some variables and starts the main loop that runs 
through every input collision that produces degradation, in 
order to obtain a set of parameters for each input. In each 
pass, the main loop executes two new loops: the first for 
different values of C,, implementing task 2, and the sec- 
ond for different values of T ~ ~ ,  implementing task 3. In 
both cases, the corresponding degradation parameters are 
obtained at the end of the loop by linear regression. Char- 
acterization data are printed as they are obtained. At the 
end of the main loop, all inputs have been characterized 
and the program ends. 

6. Autoddm performance results 
An example of a gate characterized using autoddm has 

been presented in Table 1. The value of the parameters 
obtained by autoddm are at least as accurate as those 
obtained by a human operator. In fact, autoddm actually 
achieves better results than a human operator since it 
makes more elaborated calculations to obtain a more 
homogeneous distribution of points in each degradation 
curve. Nevertheless, the main result is related to the time 
gain of autoddm with respect to a human operator. As an 
example, we will compare three representative cases: two 
automatic systems using both versions of autoddm and a 
human operator. System 1 corresponds to autoddm-cis 
(HSPICE) running on a Sun Ultra-SPARC-2 400MHz 
work station with Solaris 7, while system 2 is 
autoddm-spice (SPICE3fS) running on a PC Pentium I1 
266MHz with Linux 2.2.14. The characterization time fac- 
tors for system 1 is 2.34, for system 2 is 0.179 and for the 
human operator is 10. 

It is worth to remark that system 2 is much faster than 
system 1. We have discovered that the main reason is the 
delay added at the beginning of each HSPICE simulation 
due to the licence management tasks that are run by this 
tool during the simulator’s set up. This is an important por- 
tion of the total simulation time. 

Table 1 compares the performance of the three examples 
as a function of the number of inputs to characterize. The 
number of transient analysis is calculated using (eq. 6) 
with nAB = nC = 10 and ncurve = 20 .  The characteri- 
zation time is calculated from (eq. 7). Four characteriza- 
tion tasks are studied: an inverter, a gate, a small library of 
gates and a big library of gates.Attending to these results, 
it is easy to conclude that the characterization process auto- 
mation greatly improves the characterization time with 
respect to a manual characterization. Comparing systems 1 
and 2, it is clear that the long HSPICE set up time repre- 
sents a bottleneck in the characterization time, which does 
not appears when using SPICE3fS. Furthermore, charac- 
terization of a whole library is not affordable using a tradi- 
tional method but is viable using an automatic 

n 

1 (inverter) 

Table 1. Characterization times for the three com- 
pared cases in days, hours and minutes. 

characterization time (D:H:M) I 
Human System 1 System 2 

%an 

800 0:2:13 0:0:31 0:0:2.4 

4 (gate) 
100 (small lib.) 

I I I I I 

3200 0:8:53 0:3:7 0:0:9.5 
80000 9:6:13 2:4:0 0:3:59 

I 500(biglib.) I 400000 I 46:7:7 I 10:20:0 I 0:19:53 

7. Conclusions 
To provide a characterization process for a delay model 

may be as important as the model itself. In this way, we 
have described the tasks involved in the characterization 
process of the Delay Degradation Model developed previ- 
ously and showed the need for an automatic characteriza- 
tion tool. This tool has been implemented following an 
easy to understand and reusable modular design. Perform- 
ance results of the automatic characterization tool running 
on different platforms are presented, showing an improve- 
ment in the characterization time up to 50 times better than 
a characterization driven by a human operator, making the 
characterization process affordable. 
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