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A novel method to extract the B(E1) strength of a weakly bound nucleus from experimental Coulomb 
dissociation data is proposed. The method makes use of continuum discretized coupled channels (CDCC) 
calculations, in which both nuclear and Coulomb forces are taken into account to all orders. This is a 
crucial advantage with respect to the standard procedure based on the Equivalent Photon Method (EPM) 
which does not properly take into account nuclear distortion, higher order coupling effects, or Coulomb-
nuclear interference terms. The systematic and statistical uncertainties of this procedure are evaluated. 
The procedure is applied to the 11Be nucleus using two sets of available experimental data at different 
energies, for which seemingly incompatible B(E1) have been reported using the EPM. We show that 
the present procedure gives consistent B(E1) strengths, thus solving the aforementioned long-standing 
discrepancy between the two measurements.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The investigation of nuclei close to the neutron and proton 
driplines require measuring observables which display their un-
usual structure properties. A relevant question is how the elec-
tromagnetic field connects the ground state of a weakly bound 
nucleus to its continuum. For that, one would ideally like to place 
the system under the action of a pure electromagnetic pulse, and 
observe the energy distribution of its fragments. In practice, this 
can be achieved experimentally by means of nuclear collisions, al-
though these are sensitive not only to the Coulomb interaction 
but also to the nuclear interaction. By a suitable choice of the 
target, and an adequate range of scattering angles and collision 
energies, one can reduce the effect of the nuclear interaction, and 
have a Coulomb-dominated breakup reaction. Furthermore, under 
appropriate kinematical conditions, one can assume a simplified, 
first-order description of the reaction mechanism which leads to a 
proportionality of the observed experimental quantity, the breakup 
cross section distribution, with the structure property to be deter-
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mined, which is the electric dipole B(E1) distribution. This is the 
Equivalent Photon Method (EPM), for which the double differential 
breakup cross section, as a function of the scattering angle θ and 
the breakup energy ε is given by

d2σ

d�dε
= dB(E1, ε)

dε
F1(θ, ξ), (1)

where F1(θ, ξ) is the dipole Coulomb excitation function, which 
depends on the scattering angle and on the Coulomb adiabaticity 
parameter ξ , which is proportional to the excitation energy. This 
function was derived in the seminal work of Coulomb excitation 
of Alder and Winther [1]. At high energies, relativistic effects must 
be taken into account. This can be done using the generalization of 
Bertulani and Baur [2], in which the Coulomb excitation function is 
replaced by the number of virtual photons produced by the target 
NE1(θ, ξ). They are related as:

F1(θ, ξ) = 16π3

9h̄c

dNE1(θ, ξ)

d�
. (2)

Practical application of a Coulomb dissociation experiment in-
volves considering a certain experimental angular range, deter-
mined by the experimental setup, over which the double differ-
ential cross section is integrated. Also, the measurements are per-
formed at certain nominal breakup energies εi , which incorporate 
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a distribution of nearby energies. Thus, the measured quantities 
are a discrete set of averaged differential cross sections σi , which, 
within the EPM approach, are given by

σi = B(E1, εi)F 1(εi), (3)

where F 1(εi) is the dipole Coulomb function integrated over the 
angular and excitation energy ranges. Note that the value B(E1, εi)

extracted from Eq. (3) should be understood as an average of the 
B(E1) distribution over the energy range represented by εi , with 
weights determined by the integral of F1(θ, ξ) over the angular 
range. This fact complicates the comparison of B(E1, εi) values ob-
tained from different experiments, as well as these with theoretical 
calculations.

There are many approximations implicit in expressions (1) and 
(3). First, the semiclassical treatment should be valid, so that the 
scattering angle defines uniquely a classical trajectory, which is 
assumed to provide an accurate description of the quantum me-
chanical wave function. Second, the trajectories should be pure 
Coulomb, and should not be affected by the ever-present nu-
clear interaction. Third, the coupling interactions should be purely 
dipole Coulomb (no nuclear coupling), and have the asymptotic 
r−2 dependence over all the relevant range. Fourth, a first-order 
perturbation treatment of the Coulomb dipole force should be 
valid. Fifth, the effect of higher multipoles on breakup cross sec-
tions should be neglected. Moreover, the application of the inte-
grated expression (3) requires that the aforementioned approxima-
tions should be valid for all the scattering angles contained in the 
experimental angular range.

In actual experiments, it can be argued that the EPM approx-
imation is “fairly good”, assuming that heavy targets are used, 
small angles are measured and the collision energy is adequate. 
This regime is optimistically referred to as “safe Coulomb” (see, 
e.g., Refs. [3,4]). However, even in these “safe Coulomb” cases, the 
EPM may have non-negligible deviations from more accurate cal-
culations [5–7], which would go as uncontrolled systematic uncer-
tainties to the B(E1) distributions obtained from the breakup cross 
section using Eq. (3). Nuclear effects are sometimes taken into ac-
count by expressing the breakup cross sections σ e

i as a sum of a 
nuclear contribution σ n

i and a pure dipole Coulomb contribution,

σ e
i = σ n

i + B̄(E1, εi) F̄1(εi). (4)

The former is obtained experimentally re-scaling cross sections on 
nuclear-dominated reactions [8]. This procedure, however, neglects 
Coulomb-nuclear interference terms, as well as dynamical effects 
which may be very different in Coulomb and nuclear dominated 
reactions.

Taking into account the enormous efforts devoted to perform 
such experiments, aimed at getting B(E1) distributions with the 
highest possible accuracy, it is timely to overcome the limita-
tions of the EPM method and, whenever the approximations stated 
above are not well justified, substitute it by more accurate proce-
dures based on the best quantum mechanical calculations available 
for the breakup cross sections. Several authors have already em-
phasized and quantified the importance of higher order effects in 
the analysis of Coulomb breakup experiments using a variety of 
methods, including semiclassical [9], quantum-mechanical [10,11], 
and dynamical eikonal [12,13] approaches (see also [14] for a 
review). With the same spirit, in this work we propose a new 
procedure to extract the B(E1) distribution from Coulomb dis-
sociation experiments, which relies on the Continuum-Discretized 
Coupled Channels (CDCC) method. CDCC is a well established fully 
quantum-mechanical reaction framework which does not require 
the approximations inherent to the EPM and overcomes most of 
2

its limitations. The procedure is applied to shed light on the ap-
parently inconsistent B(E1) distributions of 11Be extracted from 
two different Coulomb dissociation experiments [8,15].

2. Theoretical procedure

The central idea of the present work is to provide a new 
methodology for determining B(E1) distribution of halo nuclei 
from Coulomb dissociation experiments. The proposed method 
seeks a relation between the breakup cross sections and the un-
derlying B(E1) distribution which overcomes the aforementioned 
limitations of the EPM method. To find such a relation, the follow-
ing strategy is adopted: We start with a structure model of the 
weakly bound nucleus. This model has to be as realistic as possi-
ble, but also sufficiently amenable to be used as an input for a full 
quantum mechanical scattering calculation for the reaction pro-
cess. Next, reaction calculations are performed using this structure 
model as input. For that, in this work we adopt the Continuum-
Discretized Coupled-Channels (CDCC) method which provides an 
approximate solution of the scattering problem in a truncated 
model space which includes the bound states of the weakly bound 
projectile and a discrete representation of the continuum states. In 
particular, we employ the extended CDCC (XCDCC) method [16,17]
which, in addition to the halo degree of freedom, accounts for 
the core deformation and excitation. The projectile structure is de-
scribed using a particle-plus-core model, comprising a core and 
one or two valence particles, with the core being described by a 
small number of discrete states. The model provides wavefunc-
tions for the projectile bound and continuum states, from which 
a B(E1) distribution, dB0(E1, ε)/dε, can be derived, which should 
be regarded only as an initial estimate of the B(E1) distribution 
to be extracted from experiment. For the reaction calculations, the 
exact scattering states are replaced by a discrete representation, 
obtained by diagonalizing the projectile Hamiltonian in a truncated 
basis of square-integrable functions. In the calculations below, we 
adopt the Transformed Harmonic Oscillator (THO) basis employed 
in our previous works (e.g. Refs. [18,19]). The calculation, suitably 
integrated over the experimental setup, and including the angular 
and energy resolution, produces model differential cross sections 
σ 0

i , evaluated at the experimental energies εi . The model cross 
sections can be compared with the experimentally measured cross 
sections σ e

i . The results will not coincide in general, as it should 
be expected from the fact that the model B(E1) distribution does 
not coincide with the actual B(E1) distribution of the projectile. 
However, we can use the model as a tool to investigate the rela-
tion between the B(E1) distribution and the breakup cross section, 
which will be much more accurate than the EPM relation, Eq. (3), 
because it incorporates elements (quantum effects, nuclear forces, 
higher order coupling, etc) which are absent in the EPM.

As shown in the Appendix A, we can introduce small changes in 
the model, by multiplying all Coulomb dipole matrix elements by 
arbitrary factors (1 + δ(εi)) close to one. This modifies the B(E1)

distribution at each measured energy ei ,

Bm(E1, εi) � B0(E1, εi)(1 + 2δ(εi)), (5)

where δ(εi) is an energy dependent factor defined in Eq. (A.7). The 
differential cross sections will be also modified by the introduction 
of these renormalized dipole Coulomb couplings, in a non-trivial 
way, because the XCDCC calculations take into account couplings, 
nuclear and Coulomb, dipole and other multipoles, to all orders. 
However, a remarkable result, Eq. (A.11), is that the changes in the 
cross sections are determined by the same quantities δ(ei), and 
a magnitude σ ′

i , which is the derivative of the calculated cross 
sections with respect to δ(εi), and can be obtained from the model 
calculations as:
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σm
i � σ 0

i + δ(εi)σ
′
i . (6)

From Eqs. (5) and (6), one can eliminate the explicit depen-
dence in δ(εi), leading to a relation between the B(E1) distribution 
and the cross sections in the modified model:

Bm(E1, εi) � B0(E1, εi)

(
1 + 2

σm
i − σ 0

i

σ ′
i

)
. (7)

This gives an approximate linear relationship between Bm(E1, εi)

and σm
i .

The quantity σ ′
i is the key magnitude that encodes the relation 

of cross sections and B(E1) values. It plays the role of the dipole 
excitation function F̄ (εi) in the EPM, and can be obtained from 
model calculations following Eq. (A.13) of the appendix. The actual 
projectile system will, admittedly, be much more complex than the 
adopted model. However, it is reasonable to consider that a re-
alistic description of the projectile is compatible with the model 
calculation where the electric dipole matrix elements have been 
suitably adjusted. So we are entitled to replace the model cross 
section σm

i in Eq. (7) by the measured cross section σ e
i and then 

infer an “experimental” value for the B(E1) distribution using:

Be(E1, εi) = B0(E1, εi)

(
1 + 2

σ e
i − σ 0

i

σ ′
i

)
. (8)

In order to understand the relation between cross sections and 
B(E1) values using the present method, it is useful to take a glance 
at Fig. 3, to be discussed in more detail in the next section, once all 
the elements in the calculations are introduced. In this figure each 
panel represents the differential cross section of the 11Be+208Pb 
reaction at a certain bombarding energy, for a particular excitation 
energy, versus the B(E1) of 11Be for the same excitation energy. 
Consider first the red open circle, which corresponds to the theo-
retical B(E1) at this excitation energy and its associated computed 
cross section. This is to be compared with the horizontal band, 
that corresponds to the experimental cross section. They do not 
coincide, but we can now perform a series of calculations renor-
malizing the dipole couplings by δ(εi) = −0.4, −0.3 . . . , +0.1, giv-
ing rise to the full circles. Note the linearity previously mentioned 
between cross sections and B(E1). Now, if we want to extract an 
experimental B(E1) value consistent with the experimental cross 
section, we just need to look at the intercept of the horizontal 
band, representing the experimental cross sections, with the red 
line, representing the family of renormalized model calculations. 
The extracted B(E1) value is given by the red vertical dashed line.

It should be stressed that the B(E1) values obtained by this 
procedure are unfolded from the experimental energy resolution, 
because the values of σ 0

i and σ ′
i are calculated integrating over the 

same energy and angular resolution of σ e
i , taking into account the 

energy dependence of the model B(E1) distribution dB0(E1, ε)/dε.

3. Application to 11Be

We will apply the outlined procedure to the extraction of the 
B(E1) distribution of 11Be. We consider two experiments carried 
out for this purpose using the reaction 11Be on 208Pb. The first one 
is the experiment by Palit et al. [8] performed at GSI at 520 MeV/u. 
The other experiment was performed by Fukuda et al. [15] at 
RIKEN at 69 MeV/u. Both experiments measured breakup cross sec-
tions, and derived the B(E1) distribution making use of the EPM, 
producing results that are not compatible at low breakup ener-
gies. In this context, we note that a recent ab-initio calculation by 
Calci et al. [20], based on the no-core shell model with contin-
uum (NCSMC), predicts a B(E1) distribution in good agreement 
with the one extracted in the RIKEN experiment [15]. However, a 
3

Fig. 1. Differential angular cross section for 11Be+208Pb breakup at 69 MeV/u for 
n-10Be relative energies up to 5 MeV (upper panel) and up to 1 MeV (lower pan-
nel). The solid curves are XCDCC calculations with the S3 and S5 structure models, 
whereas the dashed line is the EPM result with model S3. All calculations have been 
convoluted with the experimental resolution [15].

recent eikonal calculation performed in Ref. [21] for the GSI data, 
using a structure model adjusted to reproduce the main features of 
the ab-initio calculation, overestimates the energy differential cross 
section from this experiment at the peak.

In the present study, the 11Be structure is described using 
a two-body (n+10Be) particle-plus-rotor model (PRM) with the 
Hamiltonian of Ref. [22]. To account for the coupling with the 2+
state of the 10Be core, the n+10Be central potential is deformed us-
ing a deformation parameter β2 = 0.67, giving rise to core-excited 
admixtures in the 11Be states. In Ref. [22], several sets of param-
eters are considered for the central and spin-orbit parts, which 
result in different B(E1) strengths. In this work, we present results 
with the sets III and V of Table I of [22] which will be denoted 
hereafter as S3 and S5, respectively.

We have performed continuum-discretized coupled-channels 
calculations, including the 10Be excitation (XCDCC) [16,17]. These 
calculations require the optical model potentials for n-208Pb and 
10Be-208Pb, with the latter including quadrupole deformation to 
account for possible excitations of 10Be during the reaction. For 
the reaction at 520 MeV/u, the n-208Pb potential was generated 
by folding the Paris-Hamburg g-matrix NN effective interaction 
[23,24] with the ground-state density of the target, obtained from 
a Hartree-Fock calculation. For the reaction at 69 MeV/u, the 
n-208Pb potential was taken from the global parameterization of 
Koning and Delaroche [25]. The 10Be-208Pb potential consists of a 
double folding of the projectile and target densities with an effec-
tive g-matrix NN interaction, appropriate for each energy regime, 
namely, the Brùyeres Jeukenne-Lejeune-Mahaux [26,27] for the 
69 MeV/u data (see also [28,29]) and the CEG07 interaction [30,31]
for the 520 MeV/u data. Kinematical relativistic corrections were 
taken into account in both calculations, following [32]. Dynami-
cal relativistic corrections were not included, but test calculations 
using the eikonal CDCC method with relativistic effects [33], gave 
corrections not larger than 2%-3% [34]. The calculated differential 
cross sections were convoluted with experimental angular and en-
ergy resolutions quoted in Refs. [8,15].

The experimental and calculated breakup angular distributions 
for the incident energy at 69 MeV/u are shown in Fig. 1. It can be 
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Fig. 2. Energy differential cross section for 11Be+208Pb breakup at 69 MeV/u (top) 
and 520 MeV/u (bottom). The data from Refs. [15] and [8] are compared with 
XCDCC calculations (solid lines) using S3 and S5 structure models and with EPM 
calculations (dashed lines) with S3 model. In the 520 MeV/u case, the dash-dotted 
line shows the result of adding the estimated nuclear breakup in Ref. [8] to the EPM 
result.

seen that the XCDCC method gives significantly larger cross sec-
tions as compared to the EPM calculations. Moreover, the XCDCC 
calculation reproduces well the shape of the angular distribution, 
even at relatively large scattering angles, for which the nuclear 
interaction will be relevant. The EPM angular distributions differ 
significantly from the data.

Breakup energy distributions are shown in Fig. 2(a) for two an-
gular ranges: 0◦ < θc.m. < 1.3◦ , which is considered to be “safe 
Coulomb”, and 0◦ < θc.m. < 6◦ , where nuclear effects are relevant. 
The EPM calculation based on the B(E1) distribution given by 
the model S3 reproduces well both sets of experimental data for 
breakup energies around the peak (∼0-1 MeV). However, it un-
derestimates the cross sections at higher excitation energies (∼1-
2 MeV). This could be due to limitations of the EPM dynamics, but 
also to limitations of the S3 structure model. To disentangle these 
two effects, we compare the EPM result with a XCDCC calculation 
based on the same S3 structure model. For the “safe Coulomb” 
angular range, the XCDCC cross sections are slightly larger than 
the EPM ones, over all the energy range. For the larger angular 
range, both calculations agree well at the peak, but the XCDCC cal-
culation is significantly larger at higher excitation energies (ε ∼1-2 
MeV), and agrees well with the data. Our conclusion is that there 
is no accurate “safe Coulomb” angular range, and that dynamical 
effects included in the XCDCC calculations are specially important 
for higher breakup energies and larger angles.

For the experiment at 520 MeV/u, no angular distribution was 
extracted in [8] so we focus on the angle-integrated energy differ-
ential cross section, presented in Fig. 2(b). In addition to the pure 
EPM calculation, we present the curve resulting from the incoher-
ent addition of this EPM calculation with the nuclear breakup con-
tribution estimated in Ref. [8]. As emphasized by several authors 
(see e.g. [35]), this procedure is clearly not justified, since it ig-
nores Coulomb-nuclear interference. Nevertheless, we adopt it here 
in order to follow as closely as possible the procedure of the origi-
nal analysis of these data and compare with our method, in which 
Coulomb-nuclear interference is properly taken into account. The 
4

Fig. 3. Relation between the B(E1) values and associated cross sections computed 
with XCDCC (for S3 and S5 models) and with the EPM. The shaded area in each 
panel corresponds to the experimental cross sections, with the corresponding un-
certainty [8,15]. In the 520 MeV/u case, the dash-dotted line shows the result of 
adding the estimated nuclear breakup in Ref. [8] to the EPM result. The vertical 
lines correspond to the extracted B(E1) values. The symbols correspond to model 
calculations for different values of δ, with the hollow ones corresponding to the 
δ = 0 cases. See text for details.

resulting EPM distribution largely overestimates the data. By con-
trast, the XCDCC calculations, based on S3 and S5 models, have a 
better agreement with the data, with some overestimation of the 
former.

In Fig. 3 we illustrate the extraction of the B(E1) from the 
experimental cross sections, with the method proposed in this 
work [Eq. (8)] and using the EPM [Eq. (4)]. In the latter (dotted 
lines), the relation is strictly linear, and the slope is given by the 
dipole Coulomb excitation function, which is model independent 
[cf. Eq. (1)]. For the higher incident energy, we show the EPM with 
and without the addition of the nuclear contribution estimated for 
this excitation energy. The solid lines are the XCDCC cross sec-
tions for different initial B(E1) distributions, obtained by scaling 
the dipole couplings by δ(εi) factors ranging from −0.4 to 0.1. 
It is seen that the relation between σi and B(E1, εi) is linear to 
a very good approximation, thus supporting Eq. (7). However, the 
slope of the EPM line differs significantly from that of the XCDCC 
calculations, leading to markedly different extracted B(E1) values. 
The slope of the XCDCC calculations, although model dependent, 
contains Coulomb-nuclear interference, as well as other dynamical 
effects which are absent in the EPM calculations. Note also that the 
B(E1) values extracted using the EPM at the two different collision 
energies are significantly different, while those extracted from the 
XCDCC calculations are more compatible.

In Fig. 4, we compare the extracted B(E1) values, using both 
S3 and S5 models (black and red symbols), with those obtained 
in the original analyses of the two considered experiments (yellow 
and cyan symbols). We include also the theoretical values of the S3 
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Fig. 4. B(E1) distributions extracted from the 11Be+208Pb breakup data at 69 MeV/u 
and 520 MeV/u. The distributions reported in the original analyses [8,15] are com-
pared with those extracted in the present work, starting with the structure models 
S3 and S5 described in the text. The latter are convoluted with the experimental 
energy resolution.

and S5 models (solid lines). For a meaningful comparison with the 
previous data, we have included in the calculations the effect of 
the experimental resolution quoted for each experiment. For that, 
we have convoluted the model B(E1) distribution in Eq. (8). For 
the RIKEN data, we show separately the results for the angular in-
tervals θc.m. ≤ 1.3◦ (top panel) and θc.m. ≤ 6◦ (middle panel). In the 
former we see that our derived B(E1) agrees rather well with that 
from the original analysis for relative energies above 1 MeV, but 
is somewhat lower at the peak, due to the dynamical effects dis-
cussed previously. For the GSI data (bottom panel), our extracted 
B(E1) agrees also very well with that of Ref. [8] but it is slightly 
higher at the peak. These two effects go in the direction of mak-
ing the results of the two experiments more compatible. It is also 
noticeable that the S3 and S5 models, while predicting rather dif-
ferent cross sections [cf. Figs. 2 and 3], give rise to fully consistent 
B(E1) distributions once they are corrected following the present 
procedure.

Note that the error bars in the extracted B(E1) include the 
experimental uncertainty of the cross sections only. We have per-
formed a preliminary estimation of the systematic uncertainties in-
troduced by the model dependence (comparing S3 and S5 models), 
the choice of the nuclear potentials (using different prescriptions 
for fragment-target interactions) and non-linearity in the relation 
between the B(E1) and the cross section. These sources of sys-
tematic uncertainties are found to be similar or smaller than the 
experimental uncertainties. We expect to deepen the uncertainty 
analysis in future publications.

To compare the B(E1) extracted from the two experiments, we 
present unfolded B(E1) values in Fig. 5. They are obtained us-
ing Eq. (8) with the model S3 B(E1) distribution. For comparison, 
we include also the theoretical curves obtained with the original 
5

Fig. 5. Unfolded B(E1) distributions extracted from the experimental breakup data 
from Refs. [8] (squares) and [15] (circles) using the present method starting with 
model S3. For comparison, the original S3 and S5 models (black and red curves) 
and the NCSMC ab-initio calculation of Ref. [20] (blue line) are also shown.

S3 and S5 models as well as the NCSMC ab-initio calculation by 
Calci et al. [20] based on the N2LOSAT interaction. For the high-
energy data at 520 MeV/u, our derived values are significantly 
larger than those extracted in the original EPM analysis [8]. This is 
partly due to the effect of the energy convolution. We also present 
the B(E1) distributions extracted from the data at 69 MeV/u for 
the angular ranges θc.m. ≤ 1.3◦ and θc.m. ≤ 6◦ . Note the relatively 
larger error bars for the smaller angular range, stemming from 
the smaller cross sections for this interval. The B(E1) extracted 
from the data up to 6◦ are indeed affected by the nuclear interac-
tion, but these effects are explicitly considered in our procedure. 
Notice the remarkable agreement of the three derived distribu-
tions. Our extracted B(E1) values from the two experiments turn 
out to be fully consistent and hence no discrepancy between the 
measured cross sections is apparent from our analysis. The B(E1)

values are consistent with the NCSMC distribution of [20] for the 
higher excitation energies, but are somewhat smaller at the peak. 
This discrepancy would deserve further investigation which goes 
beyond of the scope of the present work.

The present results solve the long-standing controversy be-
tween these two measurements. Furthermore, it shows that a 
proper description of the reaction, including Coulomb and nu-
clear effects on an equal footing, is necessary for a meaningful 
extraction of structure information of the projectile. We consider 
that the present procedure for extracting B(E1) distributions from 
Coulomb-dominated breakup cross section data can be applied to 
other exotic nuclei, which are currently being measured at radioac-
tive beam facilities such as RIKEN, MSU and GSI-FAIR.
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Appendix A. Amplitude analysis

In this appendix we justify the use of a correction factor de-
termined from the differential cross sections, to obtain the experi-
mental B(E1) distribution.

Consider a model calculation, involving some nuclear and 
Coulomb couplings, which are considered to all orders. A general 
quantum mechanical treatment of Coulomb dissociation experi-
ments leads to cross sections which are given by an integral over 
the angular range and the energy resolution of the calculated dou-
ble differential cross section

σ 0
i =

∫
dx R(εi, x)

d2σ 0

d�dε
, (A.1)

where R(εi, x) represents the experimental angular and energy 
resolutions and x = (�, ε) incorporates both the centre of mass 
angle and the energy of the break-up fragments. The double differ-
ential cross section contains, in turn, an average over the ground 
state spin projection N , as well as a sum over the break-up states 
M compatible with the energy ε, of the square of the transition 
amplitudes connecting them. The discrete index M labels com-
pletely the break-up states, so it includes the core angular mo-
mentum, the halo neutron orbital angular momentum, the halo 
neutron total angular momentum, the total angular momentum of 
the halo nucleus, and its spin projection:

d2σ 0

d�dε
=

∑
N M

|A(N, M, x)|2 (A.2)

where 
∑

N M indicates this sum over final states M and average 
over the initial states N . In Coulomb dominated breakup reactions, 
the amplitude A(N, M, x), is dominated by a dipole Coulomb term 
which is proportional to the Coulomb dipole matrix element, so 
that AC (N, M, x) = 〈N|M(E1)|M, ε〉AD(x), but it will also have 
an extra term An(N, M, x), containing the nuclear component, as 
well as other higher order Coulomb components, which we do not 
want to neglect. Note that we do not have to make any assump-
tion about the specific expression AD(x). In particular, we do not 
need to make any semi-classical assumption, nor do we have to 
neglect the effect of nuclear forces or other dynamical effects. We 
only assume that the general amplitude A(N, M, x) has a depen-
dence on the initial and final states N, M , which has a dominant 
term proportional to 〈N|M(E1)|M, ε〉, and an additional, smaller 
term An(N, M, x), with a different N, M dependence. The model 
will produce a B(E1) distribution

dB0(E1, ε)

dε
=

∑
N M

|〈N|M(E1)|M, ε〉|2, (A.3)

which, particularized at the experimental energies, becomes

B0(E1, εi) =
∑
N M

|〈N|M(E1)|M, εi〉|2, (A.4)

and the associated differential cross sections

d2σ 0

d�dε
=

∑
MN

|〈N|M(E1)|M, ε〉AD(x) + An(N, M, x)|2. (A.5)

Expression (A.5) indicates that the measured cross section is 
not proportional to the B(E1) distribution, as assumed in the EPM. 
It also indicates that, owing to the presence of interference terms, 
it is not possible to estimate the nuclear effects as a nuclear cross 
section to be added to the pure Coulomb one. In spite of that, we 
6

will see how it is possible to obtain the B(E1) distribution from 
these cross sections.

Consider now that we make arbitrary small changes in the 
model. This will result in small changes in all the Coulomb dipole 
couplings, in particular, those connecting the ground state with the 
continuum states, that can be described by factors (1 +δ(N, M, ε)), 
where δ(N, M, ε) are arbitrary small numbers. The nuclear cou-
plings could in principle be also modified, producing small changes 
in An(N, M, x). However, as the nuclear amplitudes are already 
small compared to the Coulomb ones, their small changes would 
be a second order effect, that can be neglected. For this modified 
model, the B(E1) distribution is approximately given by

dBm(E1, ε)

dε
�

∑
MN

(1 + 2δ(N, M, ε))|〈N|M(E1)|M, ε〉|2

= (1 + 2δ(ε))
dB0(E1, ε)

dε
, (A.6)

where δ(ε) is a weighted average of the δ(N M, ε) values corre-
sponding to the different dipole couplings between the ground 
state and the states with energy ε, i.e.,

δ(ε) =
∑

N Mδ(N, M, ε)|〈N|M(E1)|M, ε〉|2∑
N M |〈N|M(E1)|M, ε〉|2 . (A.7)

This expression can be particularized at the experimental ener-
gies εi , leading to

Bm(E1, εi) � (1 + 2δ(εi))B0(E1, εi). (A.8)

Let us now consider the effect on the cross sections. The modi-
fied differential cross sections are

σm
i =

∫
dxR(εi, x)

∑
MN

|(1 + δ(N, M, ε))AC (N, M, x)

+ An(N, M, x)|2. (A.9)

This can be expanded to the lowest order in the small pa-
rameters δ(N, M, ε). Also, considering that the energy range for 
R(εi, x) is sufficiently narrow, compared to the energy depen-
dence of the electric matrix elements, one can take δ(N, M, ε)

and 〈N|M(E1)|M, ε〉 out of the integral, and evaluate them at the 
nominal energy εi . Note, however, that we do not need to make 
any assumption about the energy dependence of the amplitude 
AD(x).

σm
i � σ 0

i +
∑
MN

δ(N, M, εi)|〈N|M(E1)|M, εi〉|2

×
∫

dxR(εi, x)

(
2|AD(x)|2 + AD(x)A∗

n(N, M, X)

〈N|M(E1)|M, εi〉∗ + cc

)
.

(A.10)

In a Coulomb-dominated reaction, the dipole amplitude |AD (x)|2
dominates over the Coulomb-nuclear interference term, and hence 
the term in parentheses is approximately independent of the final 
dipole state. This justifies replacing δ(N, M, εi) by the weighted av-
erage δ(εi) given by Eq. (A.7). It also justifies neglecting any small 
correction of the nuclear amplitudes. Thus we get

σm
i � σ 0

i + δ(εi)σ
′
i , (A.11)

where

σ ′
i =

∑
MN

|〈N|M(E1)|M, εi〉|2

×
∫

dx R(εi, x)

(
2|AD(x)|2 + AD(x)A∗

n(N, M, x)

〈N|M(E1)|M, εi〉∗ + cc

)
.

(A.12)
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The practical calculation of σ ′
i can be done evaluating the cross 

sections σi(δ) at the experimental energies εi from model calcu-
lations where all the dipole couplings have been renormalized by 
factors (1 + δ), using small values of δ, such as δ = ±0.1.

σ ′
i = 1

0.2
[σi(δ = 0.1) − σi(δ = −0.1)] . (A.13)
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