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Strong nonexponential relaxation and memory effects in a fluid with nonlinear drag
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We analyze the dynamical evolution of a fluid with nonlinear drag, for which binary collisions are elastic,
described at the kinetic level by the Enskog-Fokker-Planck equation. This model system, rooted in the theory
of nonlinear Brownian motion, displays a really complex behavior when quenched to low temperatures. Its
glassy response is controlled by a long-lived nonequilibrium state, independent of the degree of nonlinearity
and also of the Brownian-Brownian collisions rate. The latter property entails that this behavior persists in the
collisionless case, where the fluid is described by the nonlinear Fokker-Planck equation. The observed response,
which includes nonexponential, algebraic, relaxation, and strong memory effects, presents scaling properties: the
time evolution of the temperature—for both relaxation and memory effects—falls onto a master curve, regardless
of the details of the experiment. To account for the observed behavior in simulations, it is necessary to develop
an extended Sonine approximation for the kinetic equation—which considers not only the fourth cumulant but
also the sixth one.
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I. INTRODUCTION

Glassy behavior is typically associated with systems com-
prising many strongly interacting units, which give rise to a
complex energy landscape with multiple minima separated by
barriers [1–3]. The typical phenomenology of glassy systems
includes, among other aspects, strongly nonexponential relax-
ation [4–15]. The latter facilitates the emergence of memory
effects like the Kovacs hump [16–31].

In the Kovacs experiment [16,17], the time evolution of a
relevant physical quantity P(t ) is monitored. The system is
initially equilibrated at the temperature Ti. For 0 < t < tw, the
system is aged at a lower temperature T1. At t = tw, the bath
temperature is suddenly changed to Tw, such that the instan-
taneous value of P, P(tw ), equals its equilibrium value for Tw.
The Kovacs effect emerges when P, despite having its equi-
librium value at t = tw, displays a nonmonotonic behavior
for t > tw, i.e., a hump, before returning to equilibrium [32].
This is so because the evolution of the system does not only
depend on the value of the thermodynamic (or hydrodynamic)
variables but also on additional ones, the values of which
are determined by the way the system has been previously
aged [11,13,21,33–40].

Aging is also connected with the Mpemba effect [41],
which has recently been observed in spin glasses [42]. In
the Mpemba effect, the initially hotter sample cools sooner
and the relaxation curves thus cross at a certain time. Only
very recently has it been theoretically investigated, both from
a stochastic thermodynamics [43–46] and a kinetic theory
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[47–53] approach. The former describes the crossing in terms
of the Kullback-Leibler distance to equilibrium. The latter de-
scribes the crossing in terms of the kinetic temperature, which
is closer to the experimental situation. Moreover, it has been
succesful in showing that the Mpemba effect comes about in
very simple systems like granular gases [47–52]. Notwith-
standing, the following crucial question remains unanswered:
How does the system have to be aged for the Mpemba effect to
emerge? This is one key question that we solve in this paper.

We analyze a very general model—rooted in the theory of
nonlinear Brownian motion [54]—for a fluid with nonlinear
drag force. From a phenomenological point of view, it can
be regarded as the minimal, simplest, model for a fluid with
nonlinear drag [55–57]. From a more fundamental point of
view, it arises when an ensemble of Brownian particles, with
mass m and particle density n, is immersed in an isotropic
and uniform background fluid at equilibrium with temperature
Ts, the particles of which have masses mbf [58,59]. In the so-
called Rayleigh limit, where mbf/m → 0, the drag force on the
Brownian particles is linear in the velocity, Fdrag = −mζ0v,
i.e., the drag coefficient ζ0 is a constant. Still, in a real situation
mbf/m �= 0, and it is thus relevant to consider the corrections
to the Rayleigh limit. Specifically, by introducing the first-
order corrections thereto, i.e., by retaining linear terms in
mbf/m but neglecting (mbf/m)2 and higher-order terms, the
drag force is found to be of the form

Fdrag = −mζ (v)v, ζ (v) = ζ0

(
1 + γ

mv2

kBTs

)
, (1)

sometimes called the quasi-Rayleigh limit. The nonlinear
parameter γ is given as a certain integral that includes the
Brownian-particle-background-particle differential cross
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section [58–60], and typical values are limited to
γ � 0.1–0.2 [49].

In this way, the velocity distribution function (VDF) for the
Brownian particles obeys the Fokker-Planck (FP) equation

∂t f (v, t ) = ∂

∂v

[
ζ (v)

(
v + kBTs

m

∂

∂v

)
f (v, t )

]
. (2)

The interaction between the Brownian and the background
fluid particles gives rise to both the nonlinear drag force
Fdrag = −mζ (v)v and the white-noise stochastic force Fwn.
Its correlation 〈Fwn(t )Fwn(t ′)〉 = 2mkBTsζ (v)δ(t − t ′), where
kB is Boltzmann’s constant, follows from the fluctuation-
dissipation relation [54] and ensures that the only stationary
solution of Eq. (3) is the equilibrium Maxwellian, fs(v) =
n(2πkBTs/m)−d/2 exp(−mv2/2kBTs).

The model described above can be visualized as a mix-
ture of two fluids: a fluid of Brownian particles moving in a
background fluid acting as a thermal bath, with the masses
of the Brownian and the background fluid particles being
comparable. In fact, this is the physical situation for the mix-
ture of ultracold atoms in Ref. [60], in which an ensemble
of 133Cs atoms moves in a dilute background cloud of 87Rb
atoms. Despite the very low temperatures involved—in the
μK range—the low density makes it possible to describe
the system with the tools of classical statistical mechanics,
namely the FP Eq. (2).

However, the FP description does not take into account
Brownian-Brownian collisions. Here we consider that the
Brownian particles are d-dimensional hard spheres and model
their dynamics via the Enskog-Fokker-Planck (EFP) equation

∂t f (v, t ) = ∂

∂v
·
[
ζ (v)

(
v + kBTs

m

∂

∂v

)
f (v, t )

]
+ J[v| f , f ].

(3)

The Enskog collision operator J[v| f , f ] accounts for the col-
lisions among the mutually interacting Brownian particles,

J[v1| f , f ] ≡ σ d−1g(σ )
∫

dv2

∫
d σ̂�(v12 · σ̂)v12 · σ̂

× [ f (v′
1, t ) f (v′

2, t ) − f (v1, t ) f (v2, t )]. (4)

Above, g(σ ) = limr→σ+ g(r) is the contact value of the pair
correlation function g(r), � is the Heaviside function, v12 ≡
v1 − v2 is the relative velocity, and v′

1 = v1 − (v12 · σ̂ )̂σ,
v′

2 = v2 + (v12 · σ̂ )̂σ are the post-collisional velocities.
The EFP Eq. (3) has been previously employed for de-

scribing both molecular fluids and heated granular gases
[47,49,61–66]. It can be considered as a reasonable model that
interpolates between two limiting cases—the FP equation and
the Enskog (or Boltzmann) equation. In particular, the EFP
equation reduces to the FP Eq. (2) in the limit of vanishing
(Brownian-Brownian) collision rate.

The energy landscape of the Brownian particles is very
simple, its energy being only kinetic. Still, there appears
a strong nonexponential relaxation when the system is
quenched to low enough temperatures. Moreover, this non-
exponential relaxation is universal in the sense that, after a
suitable rescaling of the variables, it does not depend on the
initial and final temperatures, nor on the degree of nonlinear-
ity, nor on the relevance of the collision term. Interestingly, it

is also closely linked to the existence of a long-lived nonequi-
librium state (LLNES). Therein, the higher cumulants of the
VDF are basically time-independent while the temperature is
algebraically decaying. Besides, the LLNES rules the emer-
gence of strong memory effects. Specifically, we investigate
the Mpemba and the Kovacs effects, which are also shown to
display scaling features.

The glassy behavior described above—nonexponential
relaxation and strong memory effects, linked to the LLNES—
will be obtained using the framework of the EFP equation.
Though, we will show that these physically appealing results
also hold in absence of the collision term, i.e., for the FP
equation. In this way, the relevance of the LLNES and its
associated glassy behavior is reinforced.

The paper is organized as follows. In Sec. II we put forward
the evolution equations for the temperature and the cumu-
lants in the extended Sonine framework. The quench to low
temperatures is analysed in Sec. III. First, in Sec. III A, we
derive the approximate system of evolution equations in this
limit. Second, we show how the LLNES and the strongly
nonexponential relaxation emerge in Sec. III B. Memory ef-
fects are the focus of Sec. IV, Sec. IV A for the Mpemba
effect, and Sec. IV B for the Kovacs effect. Section V is
devoted to the study of the relevance of collisions and the
Fokker-Planck limit. The main conclusions of our work and
a physical discussion of our results are presented in Sec. VI.
Finally, the Appendices deal with some technical aspects and
complementary material, nonessential for the understanding
of the results in the main text.

II. EVOLUTION EQUATIONS FOR THE TEMPERATURE
AND THE CUMULANTS

In this section, we derive the evolution equations for the
relevant physical variables. The kinetic temperature T (t ) is
given by 〈v2〉 = dkBT/m. It is useful for our purposes to scale
velocities with the thermal velocity vT (t ) by defining

c ≡ v/vT (t ), vT (t ) ≡
√

2kBT (t )/m, (5)

which implies 〈c2〉 = d/2. In addition, we introduce dimen-
sionless temperature and time,

θ = T/Ts, t∗ = ζ0t, (6)

we drop the asterisk in the following to simplify the no-
tation. For isotropic states, the reduced VDF φ(c, t ) ≡
n−1vd

T (t ) f (v, t ) can be expanded in a complete set of orthog-
onal polynomials as

φ(c, t ) = π−d/2e−c2

[
1 +

∞∑
l=2

al (t )L
d−2

2
l (c2)

]
, (7)

where L(α)
l are the generalized Laguerre (or Sonine) poly-

nomials [67]. In the simplest—and usual—first Sonine
approximation, only the fourth cumulant or excess kurtosis
a2,

a2 ≡ −1 + 4

d (d + 2)
〈c4〉, (8)

is retained and higher-order cumulants are neglected. Unfor-
tunately, this approximation fails to reproduce the behavior
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observed in the simulations [68], as shown in Appendix A.
Then, we must consider an extended Sonine approximation,
in which not only a2 but also the sixth cumulant

a3 ≡ 1 + 3a2 − 8

d (d + 2)(d + 4)
〈c6〉 (9)

are retained.
The parameter ζ0 that we have employed to nondimen-

sionalize time marks one of the two characteristic times in
this system: the time ζ−1

0 over which the Brownian parti-
cles feel the drag due to the background fluid, ζ−1

0 ∝ T −1/2
s

[58–60]. The other characteristic time is set by the collision

frequency among the Brownian particles at the steady state
νs ≡ g(σ )nσ d−1√2kBTs/m [69]. The average time between
collisions at the steady state is τs ≡ ν−1

s ∝ T −1/2
s [49]. The

dimensionless average time between Brownian-Brownian col-
lisions is thus given by

ξ ≡ ζ0τs. (10)

Equivalently, ξ−1 is the dimensionless Brownian-Brownian
collision rate. This parameter ξ is independent of Ts—see also
Appendix A.

Within the extended Sonine approximation, the following
evolution equations for (θ, a2, a3) hold [70],

θ̇ = 2(1 − θ )[1 + γ (d + 2)θ ] − 2γ (d + 2)θ2a2, (11a)

ȧ2 = 8γ (1 − θ ) −
[

4

θ
− 8γ + 4γ (d + 8)θ + 8(d − 1)

d (d + 2)

√
θ

ξ

]
a2 + 2

[
2γ θ (d + 4) + (d − 1)

d (d + 2)

√
θ

ξ

]
a3, (11b)

ȧ3 = 12

[
−4γ + 6γ θ + (d − 1)

d (d + 2)(d + 4)

√
θ

ξ

]
a2 + 6

[
4γ − 1

θ
− γ θ (d + 14) − (d − 1)(4d + 19)

2d (d + 2)(d + 4)

√
θ

ξ

]
a3, (11c)

Substituting ξ = ∞ into Eq. (11) gives the evolution equa-
tions for the collisionless EFP equation, i.e., for the FP Eq. (2).
In other words, collisions among the Brownian particles are
basically negligible when the dimensionless average time be-
tween them is very long, i.e., ξ � 1 [71]. The equilibrium
solution of this system is (θs = 1, as

2 = as
3 = 0), the equilib-

rium VDF is Gaussian, for all values of the parameters γ and
ξ .

For linear drag, γ = 0, the temperature obeys Newton’s
law of cooling, θ̇ = 2(1 − θ ). Therefore, it relaxes expo-
nentially to equilibrium, θ (t ) = 1 + [θi − 1]e−2t , for all θi ≡
θ (0). Moreover, the VDF remains Gaussian, a2(t ) = a3(t ) =
0. For nonlinear drag, one typically has γ � 0.1 [72]. If the
initial and final temperatures are of the same order, θi =
O(1), then small values of the cumulants and mild deviations
from the exponential behavior are observed; see Appendix A.
Therefrom, one might guess that both the deviations from
the exponential relaxation and the Gaussian VDF should al-
ways be small: we show in the following that this intuition is
utterly wrong. There emerges a strong nonexponential relax-
ation together with quite large, time- and (γ , ξ )-independent,
cumulant values when the system is quenched to a low
temperature.

III. QUENCH TO LOW TEMPERATURES

A. Scaled evolution equations

Glassy behavior, slow nonexponential relaxation functions,
and their associated memory effects such as the Kovacs or
Mpemba effects [16,17,41], usually arise for low enough
temperatures. For a review, see, for instance, Ref. [73]. For
the case of our concern, this translates into considering a
quench to low temperatures, i.e., we consider the limit θi =
T (0)/Ts � 1 [74].

To look into the limit θi � 1, it is convenient to define the
scaled temperature

Y = θ/θi. (12)

Initially Y (0) = 1 and Y remains of the order of unity for
not too long times. In fact, this quantity gives the overall
relaxation of the temperature. If one defined a normalized
relaxation function in the standard way,

ϕ(t ) ≡ T (t ) − Ts

Ti − Ts
= θ (t ) − 1

θi − 1
, ϕ(0) = 1, ϕ(∞) = 0,

(13)
we would have that ϕ(t )  Y (t ) as long as θ (t ) � 1.
They only differ for very long times, when θ is close to
the steady state and takes order of unity values, in fact
limt→∞ Y (t ) = θ−1

i � 1.
Insertion of this scaling into the evolution equations leads

to

Ẏ = −2γ θi(d + 2)Y 2(1 + a2) + O(1) + O(γ ), (14a)

ȧ2 = −4γ θiY
[
(d + 8)

(
a2 − ar

2

) − (d + 4)
(
a3 − ar

3

)]
+ O(γ ) + O(

√
θi/ξ ), (14b)

ȧ3 = −6γ θiY
[ − 12

(
a2 − ar

2

) + (d + 14)
(
a3 − ar

3

)]
+ O(γ ) + O(

√
θi/ξ ), (14c)

the dominant terms on the rhs are the order of γ θi � 1 [75].
The above system of coupled ODEs suggests that the relevant
time scale is no longer t , but a new scaled time s given by

s = γ θit . (15)

Retaining only the dominant terms in Eqs. (14), one gets the
approximate system

dY

ds
= −2(d + 2)Y 2(1 + a2), (16a)

da2

ds
= −4Y

[
(d + 8)

(
a2 − ar

2

) − (d + 4)
(
a3 − ar

3

)]
, (16b)

da3

ds
= −6Y

[ − 12
(
a2 − ar

2

) + (d + 14)
(
a3 − ar

3

)]
, (16c)
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FIG. 1. Relaxation after a quench to a low temperature. Specifi-
cally, we plot 1/Y = θi/θ as a function of the scaled time s = γ θit .
Data from DSMC correspond to parameters (θi, γ , ξ ), as specified
in the legend, and d = 2. Also plotted is the theoretical prediction
in Eq. (18) (solid line). The linear behavior of 1/Y means that the
temperature relaxes algebraically, basically as t−1.

where

ar
2 ≡ − 2(d + 14)

d2 + 10d + 64
, ar

3 ≡ − 24

d2 + 10d + 64
, (17)

are the pseudostationary values obtained by imposing
da2/ds = da3/ds = 0. Specifically, for d = 2, ar

2  −0.36
and ar

3  −0.27.
Note that the right hand side of Eqs. (16) does not depend

on γ ; such dependence has been absorbed into the time scale
s. In addition, nor does it depend on ξ , i.e., these equations
are also valid for the collisionless case ξ = ∞, where the FP
Eq. (2) applies.

B. Universal nonexponential relaxation and long-lived
nonequilibrium state

The relaxation of the system is universal in the following
sense: all the relaxation curves of the temperature should
be superimposed when Y = θ/θi is plotted against s = γ θit ,
independently of the values of γ and ξ . This universality
is checked in Fig. 1, in which several relaxation curves are
shown. They have been obtained by numerically solving
the kinetic equation with the direct simulation Monte Carlo
(DSMC) method [76,77]. Specifically, we plot 1/Y versus s,
for values of γ and θi such that 50 � γ θi � 100, 0.01 � γ �
0.1, and 1 � ξ � 2. A clear linear behavior arises, i.e., Y (s)
shows a very slow algebraic decay, basically proportional to
s−1 or, equivalently, t−1. A similar behavior has been recently
found for the relaxation dynamics of several glass-forming
models to their inherent structures [15].

This strongly nonexponential relaxation can be theoreti-
cally understood as follows: the cumulants rapidly tend (over
the s scale) to their reference values ar

2 and ar
3, as shown

below. Setting a2 = ar
2 in Eq. (16a), we get

Y (s) = Yalg(s) ≡ 1

1 + 2(d + 2)
(
1 + ar

2

)
s
. (18)

This theoretical prediction is also plotted in Fig. 1, where
it is neatly observed that the agreement with the numerical

FIG. 2. Relaxation of the excess kurtosis (left panel) and the
sixth cumulant (right panel). Both a2 and a3 decay toward their
respective reference values, which characterise the LLNES. Sym-
bols correspond to DSMC data for θi = 1000, while the dashed
lines correspond to the numerical integration of the scaled evolution
Eqs. (16). Additional employed parameters are d = 2, γ = 0.1, and
ξ = 1. The actual LLNES obtained through DSMC is characterized
by larger (in absolute value) values of the cumulants than those
predicted by the extended theory. In particular, the extended Sonine
approximation underestimates ar

2 by approximately 15 percent.

results is excellent. Looking at Eq. (11a), one sees that θ̇ is
basically proportional to θ2 for θ � 1: this is the reason why
the algebraic t−1 relaxation emerges.

Substituting a2 with its pseudostationary, reference, value
ar

2 is justified by looking into the time evolution, over the s
scale, of the cumulants—see also Appendix B. This is done
in Fig. 2, which shows the same time window 0 � s � 5 of
Fig. 1. Both data from DSMC simulations and the numerical
integration of the approximate system Eq. (16) are plotted. It
is neatly seen that both cumulants, a2 and a3, rapidly become
negative and quite large, being roughly constant for s � 1.
Note that, however, the temperature is reduced by a factor of
25 from its initial value θi in Fig. 1.

In Fig. 2, there appear some discrepancies between the
DSMC data and the prediction from the extended Sonine
approximation for the cumulants. These discrepancies mainly
stem from the truncation done in the latter—i.e., our neglect-
ing of an for n � 4 [78]. Still, we must keep in mind that
the—rather slight—discrepancy in the reference value of a2

has very little impact on the predicted behavior of the kinetic
temperature.

The above analysis means that the system remains in a
LLNES for most of the relaxation in the low-temperature
quench. Over the LLNES, the cumulants a2 and a3 equal their
reference values Eq. (17), whereas the temperature decays
algebraically following Eq. (18). This state only breaks for
very long times, for which 1/Y does not diverge but saturates
to its equilibrium value [79].

IV. MEMORY EFFECTS

The just described nonexponential relaxation opens the
door to the emergence of strong memory effects. We have
shown that there exists a regime, θi � 1, or in other words,
a quench to low enough temperatures, for which the sys-
tem moves over the far-from-equilibrium LLNES state. The
strength of possible memory effects roughly depends on the
values of the cumulants, which measure the deviations from
equilibrium. If their value is small (large), then the VDF is
close to (far from) the Gaussian shape and weak (strong)
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memory effects appear. Therefore, if we age the system to the
LLNES, strong memory effects are expected. In the following,
we analyze the Mpemba and Kovacs effects separately.

A. Mpemba effect

We start the analysis with the Mpemba effect. In the
Mpemba effect, the initially hotter fluid sample (A, initial
temperature θiA) cools sooner than the one initially cooler (B,
initial temperature θiB). Therefore, the “cooling rate” of the
hotter system should be larger: since the cooling rate increases
with the excess kurtosis a2, as follows from Eq. (11) [80],
the Mpemba effect is maximized when the hotter (cooler)
sample has the largest (smallest) possible value of a2. In
such a way, the hotter (colder) samples cool as fast (slow) as
possible.

Here, not only do we show that for large enough differ-
ence �a2i ≡ a2i,A − a2i,B the Mpemba effect emerges, but (i)
how to maximize the effect and (ii) how the system has to
be previously aged to get such an initial preparation of the
samples. As stated above, a2i,A (a2i,B) must take its largest
(smallest) possible value to optimize the Mpemba effect. A
rigorous mathematical derivation of the extrema (maximum
and minimum) values of a2 compatible with the fluid dynam-
ics makes it necessary to employ the tools of optimal control
theory [81,82]. The quite lengthy calculation is outside the
scope of this paper and thus will be published elsewhere [83].
However, the result is physically appealing and compatible
with the more intuitive analysis performed in Appendix C.

On the one hand, the minimum value amin
2 = ar

2 of the
excess kurtosis is obtained for a quench to a very low tem-
perature, i.e., when θi � 1 and the system is cooled to the
(γ , ξ )-independent LLNES described in the previous section.
On the other hand, the maximum value of a2 is obtained
for the somehow “opposite process,” i.e., for θi � 1 that
corresponds to a heating to a much higher temperature. In
Appendix C, we show that amax

2 is proportional to γ and much
smaller than |amin

2 |. For example, in the case (γ = 0.1, d =
2, ξ = 1) we have that amax

2  0.04 whereas ar
2 = −0.36. An

even larger absolute value of ar
2 is found in DSMC simula-

tions, as illustrated in Fig. 2.
For maximizing the Mpemba effect, then one should age

the samples in the following way. The hot sample A must
be aged by heating from a much lower temperature, so that
a2 takes its maximum value and the sample has the largest
possible cooling rate. The cold sample B must be aged by
cooling from a much higher temperature, so that a2 takes its
minimum, reference, value over the LLNES and the sample
has the smallest possible cooling rate. Still, since amax

2 is quite
small, a practical and very close to optimal procedure is to take
the hot sample A at equilibrium, for which a2 = 0. In this way,
the difference �a2 ≡ a2i,A − a2i,B is around 90 percent of the
optimal value amax

2 − amin
2 . This is the initial preparation that

we employ throughout this work.
These samples A and B are put in contact with a common

thermal reservoir at a much lower temperature, so Eqs. (16)
govern the evolution of our system for a long time and, in
particular, are capable of describing the universal Mpemba
effect observed. The initially hotter sample cools with a2

FIG. 3. Mpemba effect for different initial temperature ratios
RAB. Specifically, we consider four values of RAB, RAB = 1.05, 1.1,
1.15, and 1.2. Additional parameters employed are d = 2 and ξ = 1.
We plot θ/θi,B as a function of sB, from the DSMC simulation and
the theoretical prediction stemming from Eq. (16). The relaxation
curve of the cold sample B (circles DSMC, solid line theory), starting
from θi,B = 100 with a2i,B = ar

2, is crossed by the curves for the hot
samples A (empty symbols DSMC, dashed lines theory), which start
from θi,A = RABθi,B with a2i,A = 0 (i.e., at equilibrium).

decreasing from zero toward ar
2, i.e.,

YA(sA) = θA(sA)

θi,A
= f (sA), sA = γ θi,At, (19)

where f is a certain function, independent of θi,A, the exact
form of which is irrelevant for our discussion. The initially
colder sample cools following Eq. (18), i.e.,

YB(sB) = θB(sB)

θi,B
= Yalg(sB), sB = γ θi,Bt . (20)

The Mpemba effect takes place when θA = θB for some cross-
ing time t×.

Figure 3 shows the large Mpemba effect we observe.
Since both the Y and s variables depend on the initial condi-
tions, we plot YB = θ/θi,B vs. sB = γ θi,Bt . After defining the
initial temperature ratio RAB ≡ θi,A/θi,B > 1, YA = YB/RAB,
and sA = RABsB. Specifically, we consider one B sample,
with θi,B = 100, and four different A samples, with RAB =
1.05, 1.1, 1.15, 1.2. Symbols correspond to DSMC simula-
tions of the system and lines to the theoretical prediction
stemming from Eqs. (16). The temperature curves cross at
a certain time sB,×, which corresponds to t× in the original
time scale, sB,× = γ θi,Bt×. For sB > sB,×, the curve for the
initially hotter sample lies below that of the initially colder.
The Mpemba effect is even neatly observed for RAB = 1.2
(i.e., 20 percent initial temperature difference). In fact, it is
still present up to 40 percent initial temperature difference,
i.e., RAB = 1.4, as illustrated by Fig. 4.

The Mpemba effect is moreover universal in the follow-
ing sense. Let us consider a fixed value of the ratio RAB,
but different values of the the initial temperatures θi,A and
θi,B, the nonlinearity parameter γ , and the average time be-
tween collisions ξ . If we plot θ/θi,B versus sB, all the curves
corresponding to the colder temperatures superimpose, as
Fig. 5 shows. Besides, also the curves corresponding to the
hotter temperatures superimpose, because sA = RAB sB and
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FIG. 4. Same as in Fig. 3, but for larger temperature ratios. The
curves correspond to RAB = 1.1 (down-triangles), 1.2 (circles), 1.3
(up-triangles), and 1.4 (squares). Within the figure, an inset has been
plot to appreciate the Mpemba effect for RAB = 1.4 (40% initial
temperature difference).

Eq. (19) entails θA(sB) = θi,A f (RAB sB), i.e., θA(sB)/θi,B =
RAB f (RAB sB). This is neatly shown in Fig. 5, where we have
plotted relaxation curves for RAB = 1.1 and different values
of (θi,B, γ , ξ ), as detailed in the legend. The analytical pre-
diction from Eq. (16) for the colder sample is slightly under
the DSMC data, because of our underestimating the excess
kurtosis over the LLNES.

To quantify the strength of the Mpemba effect, we in-
troduce the parameter Mp defined in Ref. [48], which
corresponds to the maximum difference between the relax-
ation curves once they have crossed each other. We have
computed the numerical values of Mp from the DSMC simu-
lation. Since the strength of the Mpemba effect is proportional
to θi,B, we have specifically computed Mp/θi,B. For the curves

FIG. 5. Universal Mpemba effect for different initial prepara-
tions and parameters (γ , ξ ). In particular, we plot θ/θi,B, i.e., the
temperature in units of the initial temperature of the colder sample,
as a function of the scaled time sB for the colder sample, defined
in Eq. (20). For a fixed value of the initial temperature ratio RAB, all
the curves corresponding to different sets of (θi,B, γ , ξ ) superimpose,
both for the hotter (A) (open symbols) and colder (B) samples (filled
symbols). There are eight simulation curves: four corresponding to
hot samples with RAB = 1.1 and the corresponding four curves for the
cold samples. Dashed and full curves are the solutions of Eq. (16) for
(a2i, a3i)= (0,0) and (ar

2, ar
3), respectively.

FIG. 6. Inverse Mpemba effect for different initial temperatures
for the hotter sample. Specifically, we consider hotter samples with
temperatures θi,A = 0.86, 0.87, 0.88, 0.89, and 0.90, while the colder
sample departs from a temperature of θi,B = 0.85. Additional em-
ployed parameters are ξ = 1 and d = 2. Empty (filled) symbols
correspond to DSMC data for the hotter (colder) samples, while the
dashed (full) lines correspond to the numerical integration of the
evolution Eqs. (11) for the hotter (colder) samples.

shown in Fig. 4, the values are Mp/θi,B = 0.059, 0.045, 0.034,
and 0.026 for initial temperature ratios RAB = θi,A/θi,B = 1.1,
1.2, 1.3, and 1.4, respectively. As expected, Mp decreases with
the initial temperature difference θi,A − θi,B—or, equivalently,
with RAB. Since θi,B � 1, the actual values of Mp for this sys-
tem are typically larger than unity. In the figure, θi,B = 100, so
Mp ranges from 2.6 to 5.9, values that are indeed higher than
those for the large Mpemba-like effect reported in Ref. [48]
for a rough granular gas.

It is also interesting to study the inverse Mpemba effect,
in which the initially colder sample heats sooner than the
initially hotter one, which has also been observed in a wide
variety of systems [43–45,47–53]. Now, samples A (initially
hotter) and B (initially colder) are put in contact with a
thermal reservoir at a larger temperature. If sample A heats
more slowly than sample B, then the inverse Mpemba effect
emerges. But heating more slowly is basically equivalent to
cooling faster: in both cases, we want to have θ̇ as small as
possible. Therefore, we would like again to have the initially
hotter sample with the maximum possible value of a2 and the
initially colder one with the minimum possible value, exactly
the same preparation as for the normal case.

Following the reasoning in the previous paragraph, we
study the inverse Mpemba effect when the initially cooler
sample departs from the LLNES while the hotter one departs
from equilibrium [84]. In Fig. 6 we may observe that the initial
temperature differences are smaller than those for the normal
Mpemba effect. Here, the maximum value of the parameter
RAB is 1.06, i.e., a 6% maximum initial temperature difference,
whereas in the normal case it was 40%. Consistently, the
strength of the inverse Mpemba effect is smaller than that of
the normal one: the values of the Mp parameter range between
0.001 and 0.013 in this case.

B. Kovacs effect

Next, we look into the Kovacs effect. In our system, the
relevant physical quantity is the kinetic temperature. The
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FIG. 7. Evolution of the temperature in the Kovacs protocol.
Parameter values are γ = 0.1, d = 2, and ξ = 1. Eight simulation
curves are shown for different combinations of the initial (Ti), aging
(T1), and final temperature (Tw). Writing the aging temperature as
Tw = T1 + x(Ti − T1), the data shown correspond to x = 0.2 (filled
symbols) and 0.1 (open symbols). Curves for smaller values of x are
basically superimposed with those for x = 0.1. The dashed (solid)
line corresponds to the numerical integration of Eqs. (11) with the
theoretical (simulation) values for the cumulants over the LLNES.

Kovacs hump will come about if the cumulants are nonzero
at the waiting time tw. Therefore, to maximize the effect the
(absolute) values of a2 and a3 have to be in turn maximized.
This entails that the optimal aging protocol is a quench to a
much lower temperature, i.e., T1 � Ti, over which the system
reaches the LLNES. Equations (11) govern the time evolution
of the system for t > tw, with θ = T/Tw and initial conditions
θ (tw ) = 1, a2(tw ) = ar

2, a3(tw ) = ar
3.

The resulting Kovacs response also has scaling properties,
although somehow weaker than those of the temperature re-
laxation and the Mpemba effect. The initial conditions and,
therefore, the subsequent Kovacs hump do not depend on
(Ti, Tw, T1). Yet, it does depend on γ and ξ . Figure 7 illustrates
the scaled Kovacs hump, we plot θ = T/Tw as a function of
t − tw, for t > tw. Indeed, the triplet (Ti, Tw, T1) does not af-
fect the Kovacs hump measured in DSMC simulations. Here,
for the sake of simplicity, we have taken one of the aging tem-
peratures as unity [85]. Moreover, our theory quantitatively
describes the numerical results: the agreement is very good,
especially when the simulation value of ar

2 is employed [86].
To further study the Kovacs effect, a perturbative analysis

can be carried out—see Appendix D for details. It gives that

K (t ) ≡ θ (t ) − 1 = − γ ar
2

2(d + 2)

λ+ − λ−

[
M11 + M12 + |λ−|

|λ+| − α
(e−α(t−tw ) − e−|λ+|(t−tw ) ) − M11 + M12 + |λ+|

|λ−| − α
(e−α(t−tw ) − e−|λ−|(t−tw ) )

]
+ O

[(
γ ar

2

)2]
, (21)

where α = 2[1 + γ (d + 2)], Mi j are the elements of a 2 × 2 matrix M,

M11 = −4

[
1 + γ (d + 6) + 2(d − 1)

d (d + 2)ξ

]
, M12 = 2

ar
3

ar
2

[
2γ (d + 4) + d − 1

d (d + 2)ξ

]
, (22a)

M21 = 12
ar

2

ar
3

[
2γ + d − 1

d (d + 2)(d + 4)ξ

]
, M22 = −6

[
γ (d + 10) + 1 + (d − 1)(4d + 19)

2d (d + 2)(d + 4)ξ

]
, (22b)

and λ± are the eigenvalues of the matrix M,

λ± = TrM ±
√

(TrM)2 − 4 det M
2

< 0. (23)

The Kovacs effect is always normal, as it must be in a molec-
ular system [24], since ar

2 < 0. Note that M12, as defined by
Eq. (22), depends on the cumulants, in particular on the ratio
ar

3/ar
2. Had we aged the system in a different manner, ar

2 and
ar

3 would have been substituted with a2(tw ) and a3(tw ) [87].
The accuracy of our perturbative expansion is checked by

comparing Eq. (21) for the Kovacs hump to DSMC data.
This is done in Fig. 8, where we plot the function K (t ) for
three different values of γ , namely γ = 0.1, γ = 0.05, and
γ = 0.025. Again, we write Tw = T1 + x(Ti − T1) and the
data shown correspond to x = 0.1. We compare the DSMC
data with Eq. (21), both employing the theoretical predictions
for ar

2 and ar
3 (dashed line) and their simulation values (solid

line). The mild discrepancies basically stem from the differ-
ence between the theoretical and DSMC values of the excess
kurtosis, as illustrated by the very good agreement observed
for the solid lines.

Let us analyze the position and the height of the maximum,
which we denote by tM and KM ≡ K (tM ), respectively. The

values of tM and KM corresponding to the curves in Fig. 8
are given in Table I. Specifically, we give their values stem-
ming from the theoretical expression Eq. (21), again both
employing the theoretical predictions for ar

2 and ar
3 and their

simulation values. The agreement between the theory and the
simulation is very good, especially when the DSMC values of
the cumulants are inserted into the theoretical expression. The
maximum position tM depends very weakly on γ , whereas its
height KM is roughly proportional to it.

V. RELEVANCE OF COLLISIONS
AND THE FOKKER-PLANCK LIMIT

The relevance of the Enskog collision term in the EFP
equation is modulated by the dimensionless average time be-
tween Brownian-Brownian collisions ξ . In previous sections,
we have typically considered order of unity values of ξ , for
which the drag force and collisions act over the same time
scale. As already stated below the evolution Eqs. (11), the
limit ξ = ∞ corresponds to the collisionless case, in which
the EFP equation simplifies to the FP equation. Now, moti-
vated by recent work in binary mixtures of ultracold atoms
[60], we investigate how the existence of the LLNES and the
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TABLE I. Values of the maximum coordinates (tM , KM ) for the Kovacs hump. Specifically, the reported values correspond to the curves
plotted in Fig. 8.

Eq. (21) (ar
2, ar

3 from Sonine) Eq. (21) (ar
2, ar

3 from DSMC) DSMC data

γ = 0.025 (0.281,0.007) (0.286,0.009) (0.280,0.009)
γ = 0.05 (0.257,0.014) (0.262,0.016) (0.280,0.016)
γ = 0.1 (0.219,0.023) (0.225,0.029) (0.240,0.031)

associated slow algebraic relaxation is affected in the limit as
ξ � 1.

In Ref. [60], the behavior of a binary mixture of Cs and
Rb atoms is investigated. Quantum effects are negligible—
despite temperatures being in the μK range, due to the low
densities of both the Brownian (Cs atoms) and background
(Rb atoms) fluids. Therefore, the motion of the Cs atoms is
described by means of a Langevin equation—or the equivalent
nonlinear FP Eq. (2)—with nonlinear drag force, because the
masses of the Cs (mCs) and Rb (mRb) atoms are comparable.
For the mixture of Cs and Rb atoms, the parameters for
our EFP equation framework are γ = mRb/(10mCs) ≈ 0.067
and the dimensionless characteristic time ξ = 674.17—see
Appendix A.

We show below that the high value of the dimensionless
average time between collisions ξ in Ref. [60] entails that
the predictions for the EFP equation and the FP equation
are basically equivalent. In other words, collisions are so
infrequent that the Enskog collision term can be completely
disregarded in that case. Also, we show that the existence
of the LLNES and thus of a wide time window over which
the temperature relaxes algebraically—for a quench to low
temperatures—is independent of the value of ξ ; systems with
ξ = 1, ξ = 674 and ξ = ∞ display exactly the same behavior
in the time scale s.

We present the results for the relaxation of the temperature
in Fig. 9. Symbols correspond to (i) the numerical simula-
tions for the EFP equation for two different values of the

FIG. 8. Dependence of the Kovacs hump on the nonlinearity
parameter γ . Three sets of data are plotted: both correspond to the
triplet (Ti = 1000, T1 = 0.1, x = 0.1) for three different values of γ ,
specifically γ = 0.1 (squares), 0.05 (circles), and 0.025 (up trian-
gles). Additional parameter values are d = 2 and ξ = 1. The dashed
(solid) lines correspond to the first-order perturbative expression
Eq. (21) with the theoretical (DSMC) values of ar

2 and ar
3.

characteristic time ξ , ξ = 1, and ξ = 674, and (ii) the FP
equation (ξ = ∞). The line corresponds to the algebraic re-
laxation (18), with the theoretical value ar

2 = −0.33 for d =
3. It is neatly observed that all the curves are basically su-
perimposed. Specifically, there is no difference between the
simulation results for the EFP equation with ξ = 674 and the
FP equation. Also, the agreement between these two simu-
lation curves and the theoretical prediction Eq. (18) is better
than that of the case ξ = 1, which is already very good. In
fact, the terms involving ξ in Eq. (14)—which have been
neglected when writing (16)—vanish for ξ = ∞, so Eq. (16)
was expected to give a better description for the collisionless
case.

The inset in Fig. 9 shows the relaxation of the temperature
for longer times. Therein, we clearly observe that the LLNES
persists for a longer time when collisions are infrequent (ξ =
674) or inexistent (ξ = ∞). This is reasonable from a physical
point of view. The collision term does not directly affect
the time evolution of the temperature, because collisions are
elastic and kinetic energy is conserved. However, collisions
indeed affect the time evolution of of the VDF through higher-
order cumulants like a2 and a3: they favour the “mixing” of

FIG. 9. Dependence of the LLNES on the collision rate. DSMC
data for the relaxation after a quench to a low temperature, specif-
ically with θi = 1000, are plotted: ξ = 1 (down triangles), ξ = 674
(diamonds), and ξ = ∞ (squares)—the first two correspond to the
EFP equation, whereas the latter correspond to the FP equation.
The simulation data are compared with our theoretical prediction for
the LLNES, Eq. (18) (solid line). The agreement theory-simulation
is very good for all curves but especially for the cases ξ = 674
and ξ = ∞, which are basically superimposed. The inset shows the
relaxation curves for longer times, 5 � s � 30, whereas in the main
panel 0 � s � 5. Therein, it is observed how the system starts to
depart from the LLNES: the smaller the collison rate ξ−1, the smaller
the separation from the LLNES.
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velocities and thus make the relaxation to equilibrium faster.
Accordingly, the relaxation curve of 1/Y for ξ = 1 is always
above than those for ξ = 674 and ξ = ∞.

VI. CONCLUSIONS

The molecular fluid with nonlinear drag shows a very
complex relaxation behavior. The leading role is played by
the LLNES reached by the system when quenched to a low
temperature. Over it, the temperature displays a very slow,
algebraic, decay and the VDF neatly separates from the
Maxwellian shape. The strong non-Gaussianities are char-
acterized by large (absolute) values of the fourth and sixth
cumulants, which we have termed their “reference” values ar

2
and ar

3.
Both the own existence of the LLNES and the physi-

cal properties over it—algebraic decay of the temperature
and reference values of the cumulants—do not depend on
the degree of nonlinearity, as measured by γ , nor on the
Brownian-Brownian collision rate, as measured by ξ . It must
be remarked that, in particular, the LLNES survives in the
limit ξ = ∞, when the Enskog collision term is not present
and the velocity VDF for the Brownian particles obey the FP
Eq. (2) with nonlinear drag.

This LLNES also rules the emergence of large memory
effects, both Mpemba-like and Kovacs-like. On the one hand,
not only have we shown that a large Mpemba effect—present
for temperature differences up to 40 percent—comes about
but also how the hot and cold samples have to be prepared.
The identification of the aging procedure is important for the
experimental reproducibility of the Mpemba effect: here, the
hot sample starts from equilibrium whereas the cold sample
starts from the LLNES. The strongly nonexponential relax-
ation associated with the Mpemba effect is quite unique, since
the relaxation is basically exponential in the majority of sys-
tems in which the Mpemba effect has been studied. On the
other hand, it is the relaxation following the quench to a low
temperature that has to be interrupted to maximize the Kovacs
effect, once the system has reached the LLNES. The reported
Kovacs hump, of the order of 3 percent in Fig. 7, is quite
large as compared to typical values. For example, it is one of
order of magnitude larger the original observation by Kovacs
[16,17], 2–3 times larger than its value in a Lennard-Jones
fluid [21], and of the same order of magnitude of the recently
reported results in a disordered protein construct [28].

Both the nonexponential relaxation and the memory effects
present scaling features. When properly scaled, all relaxation
curves corresponding to the quench to a low temperature
superimpose. Not only does the relaxation in scaled variables
not depend on the initial temperature θi but also is independent
of the degree of nonlinearity γ and the average time ξ be-
tween Brownian-Brownian collisions. This is why we employ
the term universal to refer to the observed relaxation of the
temperature.

For the Mpemba effect, a similar scaling entails that all
curves corresponding to a given initial temperature ratio also
superimpose, independently of the value of other parameters:
initial temperatures of the hot and cold samples and also
(γ , ξ ). In this sense, we also speak about a universal Mpemba
effect. The Kovacs effect also displays scaling properties,

although weaker: the hump depends on (γ , ξ ) but not on the
initial, final, and aging temperatures.

The LLNES naturally emerges when the system is
quenched from a very high temperature θi � 1, and thus the
temperature θ � 1 over a—quite wide—time window. Would
the LLNES still be relevant for other, more general, protocols,
in which the temperature of the bath followed a certain pro-
gram Ts(t )? Looking back at the evolution Eqs. (11) in the
second Sonine approximation, Eqs. (11b) and (11c) would re-
main unchanged whereas (11a) would have an additional term
−θd ln Ts(t )/dt on its right-hand side (rhs). This implies that,
as long as θ (t ) ≡ T (t )/Ts(t ) � 1, Eqs. (11b) and (11c) for the
time evolution of the cumulants are still valid and the cumu-
lants would tend to their reference values, characteristic of the
LLNES, in this more general situation. As for the tempera-
ture, Eq. (11a) would have an additional term −Y d ln Ts/ds
making, quite logically, the time evolution of θ depend on the
considered program. The analysis of the behavior of the fluid
with nonlinear drag under such a time-dependent program for
the bath temperature is an interesting perspective for future
work.

Another relevant question is the robustness of the LLNES
for other, more general forms, of the nonlinear drag. The
results derived in this paper are specific for the quadratic
nonlinearity in Eq. (1) but, what about higher-order nonlin-
earities? For instance, let us think of the next correction in the
systematic expansion in powers of the mass ratio mbf/m intro-
duced in Refs. [58,59], which involves a quartic, proportional
to v4, term. Incorporating it would result in the coupling of the
time evolution of the temperature not only with 〈v4〉, which
gives rise to the term proportional to θ2a2, but also with 〈v6〉,
which would give rise to a new term proportional to θ3a3—
dominant for a quench to low temperatures, where θ � 1.
This entails that the third-order Sonine approximation would
be necessary to describe the evolution of the temperature,
since so is quantitatively predicting a3. Still, a LLNES would
appear in which a2, a3, and a4 would tend to pseudostationary
reference values ar

2, ar
3, and ar

4. The temperature would also
have an algebraic decay but with a different exponent, since
we would have θ̇ ∝ −θ3 (instead of −θ2) for θ � 1 and
therefore θ ∝ t−1/2 (instead of t−1).

In this work, we have employed the extended—or
second—Sonine approximation, retaining not only the excess
kurtosis a2 but also the sixth cumulant a3. This stems from the
evolution equation of the temperature θ being directly coupled
with a2, whereas a3 only appears in the evolution equation of
a2. In our study, the n-th-order Sonine approximation—i.e.,
retaining (θ, a2, . . . , an+1)—allows for quantitatively describ-
ing the behavior up to the second to last kept cumulant an

as the initial temperature is increased. The discrepancies be-
tween the theory and the DSMC simulations slightly increase
with the order of the cumulant—i.e., when one goes from
θ to an. However, it “only” gives a qualitative account of
the behavior of the last kept cumulant an+1. This makes it
necessary to consider the extended, second-order, Sonine ap-
proximation when considering a quench to low temperatures,
because an accurate prediction for the time evolution of the
excess kurtosis is needed.

The most rigorous approach to analyze the mixture of
Brownian and background fluids would be writing down the
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Boltzmann (or Enskog) equation for the two species. Com-
paring the results of this framework with those from the EFP
equation—for order of unity Brownian-Brownian collision
rate ξ—is an interesting perspective for future work. It is
worth recalling that both frameworks give rise to the FP equa-
tion in the limit ξ → ∞, in which we have shown that the
glassy behavior found for the EFP equation persists.

Our work opens the door to investigating aging phenomena
and glassy behavior in ultracold atoms. A key result of this
work is the role played by the quench to a much lower temper-
ature that leads the system to the LLNES, which controls the
emergence of nonexponential relaxation and the associated
memory effects (both Mpemba- and Kovacs-like). Since the
model employed here describes mixtures of ultracold atoms,
like that in Ref. [60], the central role of the LLNES may be
checked in real experiments.
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APPENDIX A: SONINE EXPANSION

Here we summarize the main features of the so-called
Sonine expansion of the VDF, which makes it possible to—by
introducing suitable approximations—truncate the infinite hi-
erarchy of equations for the cumulants. Also, we compare the
theoretical predictions of the first Sonine approximation and
the extended Sonine approximation with DSMC simulations
of the EFP Eq. (3).

For the scaled VDF introduced in Eq. (7), the EFP equation
becomes [49]

∂tφ(c, t ) = 1

ξ

√
θI[c|φ, φ] + ∂

∂c
·
[

θ̇

2θ
c + (1 + 2γ θc2)

× ·
(

c + 1

2θ

∂

∂c

)]
φ(c, t ), (A1)

where θ and t are the dimensionless temperature and time
defined in Eq. (6)—recall that we have dropped the asterisk
to simplify the notation,

I[c1|φ, φ] =
∫

dc2

∫
d σ̂ �(c12 · σ̂ ) c12 · σ̂

× [φ(c′
1)φ(c′

2) − φ(c1)φ(c2)] (A2)

is the dimensionless Enskog collision operator, and ξ is the
parameter defined in Eq. (10).

The parameter ξ measures the relative relevance of the
nonlinear drag force—i.e., collisions between the background
fluid particles and the Brownian ones—and the Brownian-
Brownian collisions. The regime ξ � 1 implies that collisions
act over a much longer time scale than the drag force. When
the background fluid is also composed of hard-spheres—
therefore, d = 3—of density nbf and diameter σbf, it has been

shown that [49,60]

ξ = 2nbf

3n

(
1 + σbf

σ

)2
√

5γ

1 + 10γ
. (A3)

In the case of self-diffusion, mbf = m, nbf = n, and σbf = σ ,
we have that ξ = 0.9428, i.e., very close to unity. This is the
reason why we have often chosen ξ = 1 in this work.

For isotropic states, the reduced VDF φ(c, t ) is expanded
in Sonine polynomials, as given by Eq. (7). The coefficients
with l = 2 and l = 3 correspond to the cumulants a2 and a3,
respectively. The n-th order Sonine approximation consists in
retaining up to the (n + 1)th cumulant in the above expansion
and neglecting higher order ones, for these are assumed to
be small. Moreover, nonlinear combinations of the cumulants
are also usually dropped, because of their smallness. In this
Appendix, we consider two possibilities: the first and the
second—or extended—Sonine approximations.

Under the first Sonine approximation, a closed set of dif-
ferential equations for the variables θ and a2 is obtained, since
a3 and higher-order cumulants are neglected (also nonlinear
terms in a2). From Eq. (A1), the following evolution equations
are derived [49]:

θ̇ = 2(1 − θ )[1 + γ (d + 2)θ ] − 2γ (d + 2)θ2a2, (A4a)

ȧ2 = 8γ (1 − θ )

−
[

4

θ
− 8γ + 4γ (d + 8)θ + 8(d − 1)

d (d + 2)

√
θ

ξ

]
a2,

(A4b)

which are linear in a2 but nonlinear in θ . Under the second
(or extended) Sonine approximation, the sixth cumulant a3

is incorporated to the picture. Therein, we obtain a closed
set of differential equations for the variables θ , a2 and a3,
where higher order cumulants—i.e., from a4 on—and nonlin-
ear combinations of a2 and a3 are neglected. The result is the
system in Eq. (11) of the main text.

In what follows, we test the validity of the evolution
equations provided by the first and the extended Sonine ap-
proximations, Eqs. (A4) and (11), respectively. We compare
the numerical integration thereof with DSMC simulations of
the EFP equation, which numerically solve it. Specifically, we
have considered a two-dimensional system (i.e., hard-discs)
with γ = 0.1 and ξ = 1, which is initially prepared at the
equilibrium state corresponding to different values of θi, rang-
ing from 2 to 100.

Figure 10 presents the time evolution of the kinetic temper-
ature. As we may observe, discrepancies between DSMC data
and the first Sonine approximation emerge for high enough
temperatures. Specifically, they become noticeable over the
scale of the figure for θi = 100, for which the extended Sonine
approximation is clearly superior. As we show in the follow-
ing, this is due to the cumulants value increasing with θi. Also,
it is neatly observed that the relaxation of the temperature
changes from being basically exponential for θi = 2 and 5 to
strongly nonexponential behavior for θi = 100. We investigate
this point in more depth in Appendix B.

The differences between the first and second Sonine ap-
proximations are even clearer in Fig. 11, in which we show
the time evolution of a2. For the lowest initial temperature,
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FIG. 10. Time evolution of the dimensionless temperature for
different values of the initial dimensionless temperature. Specifically,
we present a logarithmic plot of θ − 1, so that a straight line cor-
responds to an exponential decay to the steady state value θs = 1.
Additional employed parameters are d = 2, ξ = 1 and γ = 0.1.
Symbols correspond to DSMC data. Dashed lines represent the nu-
merical integration of Eqs. (A4), for the first Sonine approximation,
whereas the full lines correspond to the numerical integration of
Eqs. (11), for the extended Sonine approximation.

θi = 2, both Sonine approximations give quite close results,
although it is already observed that the extended Sonine ap-
proximation describes the behavior of the excess kurtosis in
a more accurate, quantitative, way. As the initial temperature
is increased, the difference between both approaches becomes
larger, with the extended Sonine approximation giving always
the better description of the actual behavior of the system.

For the highest temperature considered in Fig. 11(d), θi =
100, the minimum value for the excess kurtosis in the first

FIG. 11. Time evolution of the excess kurtosis for different val-
ues of the initial dimensionless temperature. The panels correspond
to the same cases shown in Fig. 10 for the temperature, with the
same codes for the lines and symbols. It is clearly observed that the
extended Sonine approximation (solid line) gives a better description
of simulation data (symbols) than the first Sonine approximation
(dashed line).

FIG. 12. Time evolution of the sixth cumulant for different val-
ues of the initial dimensionless temperature. The panels correspond
to the same cases shown in Fig. 10 for the temperature, with the same
codes for the lines and symbols.

Sonine approximation is roughly one-half of that in DSMC,
whereas the deviation of the theoretical prediction from the
DSMC value decreases to  10% in the extended Sonine
approximation. Looking back at Fig. 10(d), we note that
this slight underestimation of a2 does not impinge on the
theoretical prediction for the time evolution of the kinetic
temperature, which is the focus of our work.

Finally, we show the prediction for a3 in Fig. 12, which
makes only sense in the extended Sonine approximation. The
discrepancies between the DSMC data and the numerical in-
tegration of the evolution equations become more important
than for a2, especially as the initial temperature is increased
and the absolute value of a3 also increases. Notwithstanding,
the extended Sonine approximation, Eq. (11), provides the
correct qualitative picture.

Note that, since the temperature is directly coupled to
a2 but not to a3, the discrepancies in the sixth cumulant
observed in Fig. 12 are not relevant for the investigation
of the dynamical evolution of the temperature. To diminish
the discrepancies in a3 observed in the second-order Sonine
approximation, one could consider a third-order Sonine ap-
proximation by introducing the eighth cumulant a4. Within
this third-order Sonine approximation, one would expect a
qualitative description of a4 and a quantitative account of a2,
a3, and the temperature. More specifically, the discrepancies
in a3 observed in the second Sonine approximation would be
“transferred” to a4 in the third Sonine approximation (and
those in a2 to a3, those in θ to a2).

APPENDIX B: FAST RELAXATION TO THE LLNES

Here, we show that the cumulants decay to their reference
values over a time scale that is shorter than that of the relax-
ation of the temperature, after a quench to a low temperature.
Therefore, the system quickly reaches the LLNES described
in the main text, over which the cumulants are basically
constant and equal to their reference values and the temper-
ature relaxes algebraically.
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According to the approximate evolution equations in the s
scale Eq. (16), both Y (s) and the cumulants a2(s) and a3(s)
tend to stationary values for long enough times. On the one
hand, Y → 0, which seems counterintuitive at first glance, but
we must not forget that the approximate system of ODEs only
remains valid for high enough temperatures, i.e., Y = O(1).
On the other hand, the cumulants tend to their respective
reference values ar

2 and ar
3. For longer times, i.e., when Y � 1,

Eq. (16) ceases to be valid, and the whole extended Sonine
framework, as described by Eqs. (11) has to be used. It is only
over this very long time scale that the temperature actually re-
laxes toward its stationary value θs = 1, and all the cumulants
tend to zero—for the equilibrium VDF is Gaussian.

Here we show that the main part of the relaxation of the
temperature takes place over the s scale. Moreover, we show
that the cumulants quickly relax to their reference values, as
given by Eq. (17), while the temperature relaxes in a much
more slowly way. To do so, it is useful to start by considering
the evolution equations in the s scale in the first Sonine ap-
proximation, i.e., when a3 is neglected. Therein, we have the
system

dY

ds
≈ −2(d + 2)Y 2(1 + a2), (B1a)

da2

ds
≈ −4Y (d + 8)

(
a2 − a′r

2

)
, (B1b)

in which a′r
2 = −2/(d + 8) is the reference value for the ex-

cess kurtosis in the first Sonine approximation. This system of
equations can be solved in parametric form, since

da2

dY
= 2(d + 8)

Y (d + 2)

a2 − a′r
2

1 + a2
(B2)

is a separable first-order ODE with solution

Y (a2) =
[

d + 8

2

(
a2 − a′r

2

)]α

exp

[
(d + 2)a2

2(d + 8)

]
, (B3)

where α = (d + 2)(d + 6)/[2(d + 8)2]. Equation (B3) im-
plies that a2 reaches its reference value when the temperature
is still relaxing. Let us prove this statement by considering
a small perturbation in a2 around its reference value, a2 =
a′r

2 + δ, δ � 1, and inserting it into Eq. (B3),

Y ≈ δα

[
d + 8

2

]α

exp

[
− d + 2

(d + 8)2

]
�⇒ δ = 2

d + 8
Y 1/α exp

(
2

d + 6

)
. (B4)

Thus, for Y = 1/2, we get δ ≈ 3.37 × 10−3 (for d = 2),
which gives a relative error for the excess kurtosis δ/|a′r

2 | ≈
0.02.

The general picture outlined above is illustrated in Fig. 13.
Therein, we plot the parametric solution Eq. (B3) (dashed
line). It is clearly observed that a2 is very close to its reference
value a′r

2 for Y � 1/2. Also plotted is the corresponding para-
metric curve for the extended Sonine approximation (solid
line), which has been obtained from the numerical integration
of Eq. (16). The same qualitative picture applies, although the
values of Y for which a2 is very close to its reference value ar

2
become smaller, Y � 0.2.

FIG. 13. Plot of the parametric curves Y = Y (a2). The curves for
both the first (dashed line) and the extended (solid line) Sonine ap-
proximations are plotted, for d = 2. The former is given by Eq. (B3),
while the latter follows from the numerical integration of Eqs. (16).
Also marked are the reference values for the excess kurtosis in both
frameworks, a′r

2 and ar
2.

APPENDIX C: EXTREMA FOR THE CUMULANTS

In this Appendix, we look into the extreme values—
minimum and maximum—of the cumulants a2 and a3. Again,
it is instructive to start by considering the first Sonine ap-
proximation. Let us focus on Eq. (A4b): at the time such that
a2 reaches one of its extrema, we have that ȧ2 = 0, i.e., the
corresponding value of the excess kurtosis must verify

aext
2 = 8γ (1 − θ )

4
θ

− 8γ + 4γ (d + 8)θ + 8(d−1)
d (d+2)

√
θ

ξ

. (C1)

For a given value of ξ , aext
2 is a function of θ . In fact, the

asymptotic behavior of aext
2 is independent of the average

inter-collision time ξ both in the limits θ → 0+ and θ →
+∞,

aext
2 ∼ 2γ θ, θ → 0+,

aext
2 → amin

2 = − 2

d + 8
, θ → +∞. (C2)

Moreover, aext
2 = 0 for θ = 1, ∀ξ . This means that the general

qualitative picture of aext
2 is the following, ∀ξ : it vanishes

at θ = 0, has a maximum in the interval θ ∈ (0, 1), and de-
creases to its minimum value amin

2 for θ > 1. The specific case
ξ = 1 is presented in Fig. 14(a) (dashed line). Note that amin

2 is
also independent of γ , in fact it equals the reference value a′r

2
in the first Sonine approximation. However, amax

2 is roughly
proportional to γ and thus quite small: in the case ξ = ∞ (FP
limit), to the lowest order in γ one has aext

2 ≈ 2γ θ (1 − θ ) and
amax

2 ≈ γ /2.
In the extended Sonine approximation, we impose ȧ2 =

ȧ3 = 0 in Eqs. (16) to get the extrema of a2 and a3, aext
2 and

aext
3 . The explicit expressions of aext

2 and aext
3 as a function of θ

and ξ are quite complicated and not particularly illuminating,
so we do not write them here. Yet, the qualitative behavior of
aext

2 and aext
3 is similar to the one found for the excess kurtosis

in the first Sonine approximation. Both aext
2 and aext

3 vanish
at θ = 0 and θ = 1, and tend to their minimum (negative)
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FIG. 14. Parametric solutions of the extrema for the cumulants
as functions of the dimensionless temperature. Specifically, we plot
the extremum for the excess kurtosis a2 (top panel) and the sixth
cumulant a3 (bottom panel). In the extended Sonine approximation,
they are obtained by imposing ȧ2 = ȧ3 = 0 in Eqs. (16) (solid lines).
In the first Sonine approximation, only the curve for the excess
kurtosis can be plotted [dashed line on panel (a)], which is given
by Eq. (C1). Additional employed parameters are d = 2, ξ = 1, and
γ = 0.1.

values amin
2 and amin

3 for θ → +∞, independently of the value
of ξ . Also, both minima amin

2 and amin
3 do not depend on γ

and coincide with their pseudostationary, reference, values ar
2

and ar
3, respectively. A particular case, again for ξ = 1, is

presented in Fig. 14 (solid lines), a2 (a3) in its top (bottom)
panel. The maximum values of both cumulants are again
basically proportional to γ and thus much lower (in absolute
value) than their respective minima.

APPENDIX D: PERTURBATIVE APPROACH
TO THE KOVACS EFFECT

Now we consider the Kovacs effect described in the main
text. In the aging time window 0 � t � tw, the system re-
laxes toward the LLNES and therefore the cumulants take
their reference values at the end of this stage, a2(tw ) = ar

2,
a3(tw ) = ar

3. Here, we derive an analytical expression for the
nonmonotonic behavior of the temperature, i.e., the Kovacs
hump, that arises when the system is put in contact with a
thermal bath at temperature T = T (tw ) for t > tw.

The evolution Eqs. (11) cannot be exactly solved, but we
may resort to a perturbative expansion to get an approximate
expression for the time evolution of the temperature. The
initial conditions for the Kovacs experiment are

T (tw ) = Ts, a2(tw ) = ar
2, a3(tw ) = ar

3. (D1)

A perturbation theory in the cumulants is not expected to
give good results, since ar

2 and ar
3 are quite large, as we have

already discussed. However, bringing to bear that γ � 0.1, we
can develop a perturbative theory in the product γ a0, where a0

is of the same order as the reference values for the cumulants,
i.e., ar

2/a0 and ar
3/a0 are both of the order of unity. Then we

write

θ (t ) = θ (0)(t ) + γ a0θ
(1)(t ) + O[(γ a0)2], (D2a)

A2(t ) = A(0)
2 (t ) + γ a0A(1)

2 (t ) + O[(γ a0)2], (D2b)

A3(t ) = A(0)
3 (t ) + γ a0A(1)

3 (t ) + O[(γ a0)2], (D2c)

in which we have defined

A2(t ) ≡ a2(t )

ar
2

, A3(t ) ≡ a3(t )

ar
3

, (D3)

which also are of the order of unity. The above expansions
lead to the following hierarchy: to the lowest, O(1), order we
have

θ̇ (0) = 2(1 − θ (0) )[1 + γ (d + 2)θ (0)], (D4a)

Ȧ(0)
2 = 8γ

ar
2

(1 − θ (0) ) −
[

4

θ (0)
− 8γ + 4γ (d + 8)θ (0) + 8(d − 1)

d (d + 2)

√
θ (0)

ξ

]
A(0)

2 + 2

[
2γ θ (0)(d + 4) + (d − 1)

d (d + 2)

√
θ (0)

ξ

]
ar

3

ar
2

A(0)
3 ,

(D4b)

Ȧ(0)
3 = 12

[
−4γ + 6γ θ (0) + (d − 1)

√
θ (0)

d (d + 2)(d + 4)ξ

]
ar

2

ar
3

A(0)
2 + 6

[
4γ − 1

θ (0)
− γ θ (0)(d + 14) − (d − 1)(4d + 19)

√
θ (0)

2d (d + 2)(d + 4)ξ

]
A(0)

3 ,

(D4c)

and to the first, O(γ a0), order

θ̇ (1) = − 2θ (1)
[
1 + γ (d + 2)θ (0)

] + 2γ (d + 2)θ (1)[1 − θ (0)]

− 2(d + 2)
ar

2

a0
(θ (0) )2A(0)

2 . (D5)

We do not write the equations for A(1)
2 and A(1)

3 because they
are not necessary for the calculation of the temperature to the
first order, which is our goal here.

In the scaled variables, the initial conditions are θ (tw ) =
A2(tw ) = A3(tw ) = 1. This means that, in the perturbative
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series, θ (0)(tw ) = A(0)
2 (tw ) = A(0)

3 (tw ) = 1, whereas θ ( j)(tw ) =
A( j)

2 (tw ) = A( j)
3 (tw ) = 0, ∀ j � 1. Let us focus first on the low-

est order. We have that θ (0)(t ) = 1, i.e., there is no Kovacs
effect if γ a0 = 0. This is logical, since this condition is ful-
filled if either γ = 0, i.e., linear drag, or a0 = 0, i.e., the
system is at equilibrium for t = tw. Neither of these situations
allows for the emergence of the Kovacs effect. Second, A(0)

2

and A(0)
3 are obtained by solving

d

dt
A(0) = M · A(0), (D6)

where the vector A(0) and the matrix M are defined as

A(0) ≡
(

A(0)
2

A(0)
3

)
, M ≡

(
M11 M12

M21 M22

)
, (D7)

where Mi j has been given in Eq. (22) of the main text. The
eigenvalues λ± of the matrix M have been defined in Eq. (23),
and their corresponding eigenvectors are

u± =
(

M12

λ± − M11

)
. (D8)

The solution is thus given by

A(0)(t ) = c+u+eλ+(t−tw ) + c−u−eλ−(t−tw ), (D9)

where c+ and c− are determined by imposing the initial con-
ditions, which results in

c+ = M11 + M12 − λ−
(λ+ − λ−)M12

, c− = λ+ − M11 − M12

(λ+ − λ−)M12
. (D10)

Once the lowest order is completed, we make use of
Eq. (D5) to compute θ (1)(t ), which gives the simplest theo-
retical prediction for the Kovacs hump. Recall that θ (0)(t ) = 1
to the lowest order, so Eq. (D5) simplifies to

θ̇ (1) = −2θ (1)[1 + γ (d + 2)] − 2(d + 2)
ar

2

a0
A(0)

2 . (D11)

Taking into account the initial condition θ (1)(tw ) = 0, one gets

θ (1)(t ) = −2(d + 2)
ar

2

a0
e−αt

∫ t

tw

eαuA(0)
2 (u)du, (D12)

in which α ≡ 2[1 + γ (d + 2)], and

A(0)
2 (t ) = 1

λ+ − λ−
[(M11 + M12 − λ−)eλ+(t−tw )

+ (λ+ − M11 − M12)eλ−(t−tw )]. (D13)

As a consequence, the Kovacs hump is given by Eq. (21) of
the main text in this perturbative scheme.
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