Natural Evolutionary Coding: an application to estimating
Software Development Projects

Jestus S. Aguilar—Ruiz
Department of Computer Science
University of Seville
aguilar@Isi.us.es

Abstract

Software Project Simulator and Evolutiona-
ry Computation are combined to generate
decision rules. The purpose is to provide
accurate decision rules in order to help the
project manager to take decisions at any time
in the development. To obtain these rules
we have analysed a new method to encode
the individuals (rules) of the genetic popu-
lation. Our approach, named “natural cod-
ing”, uses one gene per continuous attribute
leading to a reduction in the search space,
what might have influence on the convergence
of the evolutionary algorithm. Genetic oper-
ators for this approached natural coding are
described. The application of our method to
databases obtained by means of simulations
are summarized in the last section, in which
the decision rules are compared to that of
C4.5. Results show that the evolutionary ap-
proach produces better decision rules for this
decision—making task.

1 INTRODUCTION

In problems related to supervised learning, the deci-
sion rules are especially relevant. Given a database
with continuous attributes, and a class label, we try
to find a rule set that describes the knowledge within
data or classify new unseen data. For an attribute a;,
the rules take the form of “if a; € [I;,u;] then class”,
where [; and u; are two real values belonging to the
range of the attribute and I; < u;. For example, we as-
sume that we have an hypothetical database that asso-
ciate the weight (in kilograms) and height (in meters)
of a person with being or not candidate to have ac-
cepted a paper in a relevant conference. The database
is a sequence of tuples such as (83, 1.71, no), (71, 1.62,

José C. Riquelme
Department of Computer Science
University of Seville
riquelme@Isi.us.es

Isabel Ramos
Department of Computer Science
University of Seville
isabel.ramos@Isi.us.es

yes), etc. A rule describing the relationship among at-
tribute values and class might be: if weight € [60, 70]
height € [1.60,1.68] then he/she is a candidate.

The finding of these rules can be tackled with many
different techniques and the evolutionary algorithms
are among them. Two critical factors have influence
on the decision rules obtained by an evolutionary al-
gorithm: the selection of an internal representation of
the search space (coding) and the definition of an ex-
ternal function that assigns a value of goodness to the
potential solutions (evaluation).

In this work, we are especially interested in the cod-
ing, i.e. in finding a method to accurately encode the
genetic information of the individuals. The coding
method, named “natural coding” because it uses natu-
ral numbers, needs only one value (gene) per attribute.
Every interval is encoded by one natural number. This
coding needs a new definition for the genetic operators
in order to avoid the convertion from natural numbers
to the values of the original space (from genotype to
phenotype). These definitions are presented and it is
shown in the paper, the evolutionary algorithm can
work directly with the natural coding until the end,
when the individuals will decoded to decision rules.
Our approach leads to a reduction of the search space
size, what has a positive influence on the convergence
of the evolutionary algorithm.

This natural coding has been applied to the manage-
ment of Software Development Projects and the re-
sults compared to that of C4.5 (Quinlan, 1993) are
very satisfactory. C4.5 is a well-known tool which ba-
sically consists in a recursive algorithm with divide and
conquer technique that optimises the tree construction
on basis to gain information criterion. The program
output is a graphic representation of the found tree,
a confusion matrix from classification results and an
estimated error rate. As for number of rules as num-
ber of records covered by the rules the evolutionary

algorithm found decision rules with higher quality.

The dynamic models for software projects have a set of
initial parameters that define the management policies
to be applied. These policies are associated with the
organization (maturity level, average delay, turnover of
the project’s work force, etc.) and the project (num-
ber of tasks, time, cost, number of technicians, soft-
ware complexity, etc.). The use of an Software Project
Simulators (SPS) will be complex if the number of
parameters is very large. For example, the dynamic
model shown in (Abdel-Hamid, 91) has about 60 pa-
rameters. Therefore, the impact on the project of 60
different features could be known. The more parame-
ters the model has, the more complex the development
of the project and the use of the model.

Decisions made in any organizational setting are
based on what information is actually available to the
decision—makers. The computer simulation tools of
dynamical systems provide us with the possibility of
changing one or several factors while the remaining
ones are kept unchanged. The implications of man-
agerial policies on the software development process
could be analysed to infer the best decision. The SPS
plays an important role in the decision—making task:
first, post-mortem projects can be analysed in order to
infer which actions could improve the results; second,
an a priori analysis would indicate the intervals within
which the values of the parameters have a tendency to
achieve the aims of the project.

Other modelling techniques have been applied for es-
timating effort or cost of software projects: ordi-
nary least-squares regression, analogy-based estima-
tion (Finnie el al., 2000), (Shepperd an Schofield,
2000), (Walkerden and Jeffery, 1999), genetic pro-
gramming (Dolado, 2001). Nevertheless, evolution-
ary algorithms provide us with a method for find-
ing good solutions (in our case, decision rules) in a
complex search space (database generated by an SPS)
where parameters do not have an obvious relationship
(Aguilar et al., 2001) . In Section 2 the new coding
method for evolutionary algorithm is presented, to-
gether with the specific definition of genetic operators.
Section 3 describes briefly the more relevant aspect of
the evolutionary algorithm. The experiments were car-
ried out by defining three different artificial scenarios
and they are analysed in Section 4.

2 NATURAL CODING

Through the text, we will use a very simple database
in order to explain the application of the genetic op-
erators. This database has one attribute with range

[1.1,6.2].

Nevertheless, the real coding is more appropriate with
real domains, simply because is more natural to the
domain. A number of authors have investigated non—
binary evolutionary algorithms theoretically (Bhat-
tacharyya and Koehler, 1994), (Koehler et al., 1998),
(Vose et al., 1998) . In this sense, each gene would
be encoded with a float value. Two float values would
be needed to express the interval of a continuous at-
tribute.

The number of values that the attribute can take in
its real range is infinite. The search space is therefore
large, so that reducing this search space would make
possible a faster convergence of the algorithm . Then,
the first step consists in trying to diminish the cardi-
nality of the set of values of the attribute.

2.1 Diminishing the cardinality

A number of remarkable supervised discretization
methods has been approached in the bibliography.
Among them, the Holte’s 1R (Holte, 1993) and the
method of Fayyad and Irani (Fayyad and Irani, 1993)
are well-known. However, as the aim of this method is
not to find intervals but cut—points to be used as limits
of the further decision rules, we assume that any su-
pervised discretization method would be appropriate
for our purpose. As we will see below, if the discretiza-
tion method produces k intervals, then there will be

k+1 cut—points and will therefore be <k ; 1) possible
intervals for the decision rules.

Our goal consists in observing the class along the dis-
cretization method in order to decrease the alphabet
size. This coding allows to use all the possible inter-
vals defined by every two cutpoints obtained by means
of discretization.

Firstly, we will analyse what intervals inside the range
of the attribute tends to appear as intervals for a pos-
sible decision rule obtained from the natural coding.
This task could be solve by any supervised discretiza-
tion algorithm, for example, the well-known method
1R proposed in (Holte, 1993) . Once the vector in-
dicating which are the boundaries for the intervals is
obtained (vector of cuts), we assign natural numbers
to any possible combination, as it appears in Table 1.

Example 1 Let assume from the database example
that the output of the discretization algorithm is the
vector of cuts {1.1,3.75,4.85,5.2,6.2}. The possible
intervals to be generated from those values are shown
in Table 1. FEach interval is identified by a natural

Table 1: Intervals calculated for the continuous attribute with range [1.1,6.2].

Cut—points 3.75 4.85 5.2 6.2
1.1 1=[1.1,3.75] 2=[1.1,4.85] 3=1[1.1,5.2] 4=1[1.1,6.2]
3.75 - 6 =[3.75,4.85] 7=[3.75,5.2] 8 =][3.75,6.2]
4.85 - - 11 =1[4.85,5.2] 12 =[4.85,6.2]
5.2 - - - 16 =[5.2,6.2]

number, for erample, the interval [3.75,4.85] will be
referenced by the natural number 6.

Table 1 shows 5 cutpoints, which can generate 10 in-
tervals. The number of intervals defines the size of the
alphabet for such attribute and depends on the num-
ber of cuts k, exactly |Q| = @ To know the max-
imum number of cuts that an attribute should have in
order to consider interesting this coding is k < v/3n,
where n is the number of different values.

In Table 1 a natural number (in bold), beginning by 1,
from left to right and from top to bottom, is assigned
to each interval. These “natural” numbers will help us
to identify such intervals later.

2.2 Transitions

Once the necessary number of cuts has been calcu-
lated, we know the size of the new alphabet |Q|. From
now, we will analyse the mutation and crossover oper-
ators for this coding.

To know what interval could be obtained from another,
the figures from Table 1 are placed into a graph (see
Figure 1). Every state is indicating graphically what
are their adyacent states. The number of states will
be the size of the new alphabet. All these values taken
from a given state are not erroneous, i.e. every in-
terval obtained from a mutation or crossover will be
coherent. To assure that each interval is coherent for
all the generations is a good step to achieve a fast con-
vergence.

k=2 k=3

Figure 1: Transitions for k = 2, k = 3, k = 4 and
k =5.

Definition 1 (row and column) Let n be the value
of the gene, and let r and c be the row and the column,
respectively, where n is located in Table 1. The way in
which r and ¢ are calculated is: (% is the remainder
of the integer division)

r=22t+1 c=n-1)%k-1)+1 (1)

Example 2 Let n; =2 and n; = 8. Then

r2)=1 ¢2)=2 r8 =2 ¢8) =4
That is to say, 2 is in row I and column 2, and 8 is

mn row 2 and column 4.

Definition 2 (boundaries) Let n be the value of the
gene, we named boundaries of the value n to those val-
ues from Table 1 that limits the four possible shifts (one
by direction): left, right, up and down, and they will
be denoted as ble, bri, bup and bdo, respectively, and
they will be calculated as:

ble(n)=(k—-1)(r—-1)+r
bri(n) = (k — 1)r
bup(n) = ¢ (2)

bdo(n) = (k—1)(c—1)+c¢

Example 3 From Example 2,

ble(2) =1 bri(2) =4 bup(2) =2 bdo(2) =6
ble(8) =6 bri(8) =8 bup(8) =4 bdo(8) =16

That is to say, 2 could reach up to 1 to the left, up to
4 to the right, up to 2 to the top and up to 6 to the
bottom; 8 could reach up to 6 to the left, up to 8 to the
right, up to 4 to the top and up to 16 to the bottom.

Definition 3 (shifts) The left, right, up and down
adjacent shifts for a value n will be obtained (if possi-
ble) as follows:

left(n) = max(ble(n),n — 1)

right(n) = min(bri(n),n + 1) 3)
up(n) = mazx(bup(n),n —k + 1)

down(n) = min(bdo(n),n + k — 1)

We define horizontal and vertical shifts as all the pos-
sible shifts as for row as for column, respectively, where

n is placed, including n.

k—1

hor(n) = U maz(ble(n), (k —1)(r —1) +1i) (4)
k—1

ver(n) = U min(bdo(n),(k—1)(i—-1)+¢c) (5)

i=1
Example 4 From Ezample 3, the adjacent shifts of 2
and 8 will be:
left(2)=1 right(2)=3
left(8)=7 right(8)=8
hor(2) = {1,2,3,4}
hor(8) = {6,7, 8}

up(2)=2 down(2)=6
up(8)=4 down(8)=12

ver(2) = {2,6}
ver(8) = {4,8,12,16}

2.3 Natural mutation

A mutation consists in selecting a near interval to that
that has the value n. For example, observing Table 1,
if the number of cuts is equal to 5 (k =5), and n =7,
there are four possible mutations {3,6,8,11}; however,
if n = 4, there will be two possible mutations {3,8}.

Definition 4 (natural mutation) Let n be the
value of the geme, the natural mutation of n, denoted
by Mut(n), is any near value to n by using the shifts
and distinct from n.

Mut(n) € {z |z € {mov(n) —n}} (6)
where mov(n) = left(n) Uright(n) Uup(n) Udown(n).

Example 5 Thus, Mut(2) € {{1,2,3,6} — {2}}, i.e.,
Mut(2) € {1,3,6}. Now, one of the three values is
selected.

2.3.1 Natural crossover

Definition 5 (natural crossover) The natural
crossover between two values n; and n;, denoted by
Cruce(ni,nj) is obtained as follows:

Cross(n;,n;) €
€ ((For(ng) NEr(ny) U (Ror(ny) nTer(ne))) (1)

We can observe in Table 1 that the nearest values are in
the intersection between the row and the column where
both values being crossed are placed. For example, the
nearest value to 1 and 6 is 2; the nearest value to 6 and
12 is 8. Only when the values n; and n; are located in
the same row or column the interval will be inside the
other.

Example 6 Thus,

Cross(2,8) €

{{{1,2,3,4} n {4,8,12,16}} U {{6,7,8} N {2,6}}},
i.e., Cross(2,8) € {4,6}.

Now, we can select one or more of the values generated
by the crossover operator.

3 ALGORITHM

The algorithm is a typical sequential covering EA
(Mitchell, 1997) . It chooses the best individual of
the evolutionary process, transforming it into a rule
which is used to eliminate data from the training file
(Venturini, 1993) . In this way, the training file is re-
duced for the following iteration. A termination crite-
rion could be reached when more examples to cover do
not exist. The method of generating the initial popu-
lation consists in randomly selecting an example (with
the label of interest) from the training file for each in-
dividual of the population. Afterwards, an interval to
which the example belongs is obtained by adding and
subtracting a small random quantity from the values
of the example.

The fitness function must be able to discriminate be-
tween correct and incorrect classifications of examples.
Finding an appropriate function is not a trivial task,
due to the noisy nature of most databases.

The evolutionary algorithm maximizes the fitness
function f for each individual. It is given by the equa-
tion 8.

f(i) =2(N — CE(i)) + G(i) + coverage(i) (8)

where IV is the number of examples being processed;
CE(i) is the class error, which is produced when the
example ¢ belongs to the region defined by the rule
but does not have the same class; G(i) is the num-
ber of examples correctly classified by the rule; and
the coverage of the " rule is the proportion of the
search space covered by such rule. Each rule can be
quickly expanded to find more examples thanks to the
coverage in the fitness function.

4 EXPERIMENTS

By simulating the Abdel-Hamid’s dynamical model
(Abdel-Hamid, 1991) we have obtained three different
scenarios. These scenarios are defined by the intervals
of values that the attributes can take. Concretely, the
initial values were almost the same as those described
in the Abdel-Hamid’s work. Only four attributes were
modified, taking random values from previously de-
fined intervals. Each row contains the name of the

attribute in the model, the range of values it can as-
sume, a brief description of its meaning and the esti-
mated value at the beginning of the project.

The attributes ASIMDY, HIREDY, TRNSDY (related
with the new personnel management enrolled to the
ongoing project) and MXSCDX (related with the de-
cision of imposing constraints to the delivery time) de-
scribed in Tabla 2, will allow us to analyse their influ-
ence on the variables of the project (mainly, delivery
time, cost or effort, and quality) described in Table 3.
Table 2 show attribute names, description, range and
initial estimated value for the attributes or input pa-
rameters. Table 3 show attribute names, description
and initial estimated value for the variables or output
parameters. These input and output parameters will
generate the three case of study:

e Scenario 1: Attributes can take any value within
the range (defined in Table 2).

e Scenario 2: Attributes related with the personnel
management take the low values in their range,
i.e. ASIMDY in [5,15], HIREDY in [5,10] and
TRNSDY in [5,10], what means that the person-
nel management is fast. Moreover, the date exten-
sion can not be greater than 20% of the initially
estimated value.

e Scenario 3: Personnel management is the same as
before, and MXSCDX can take any value in its
range.

The goal is to find which management policies produce
good results for the variables of interest in every sce-
nario. In this work, the quality must be prioritized,
only considering those projects for which the variable
QUALITY has a low value. From these constraints,
we try to obtain policies that minimize the delivery
time (independently of the effort), the effort (without
taking into account the delivery time) or both delivery
time and effort at once.

Decision rules for each scenario are obtained by the
following steps:

e Define the intervals of values for the attributes of
the dynamical model (see Table 2).

e Define the goals of the project (values for time
and cost).

e Generate the database: Each simulation produces
a record with the values of the parameters and the
values of the variables shown in Table 3 and this
record is saved in a file.

e Assign labels to the records according to a thresh-
old for every variable.

e From the file generated in the preceding step,
a set of decision rules is provided automatically
by the evolutionary algorithm for the decision-
making task.

e These decision rules are compared with those pro-
duced by C4.5.

Table 4 gives the values of the parameters involved in
the evolutionary process.

Table 4: Parameters of the evolutionary algorithm.

Parameter Value
Population size 100
Generations 50
Crossover probability 0.5
Individual Mutation probability 0.2
Gene mutation probability 0.1

It is worth noting that the decision rules presented
below were obtained by running the evolutionary al-
gorithm with 50 generations. This means that the run-
ning time of the algorithm was very small, less than a
minute in a Pentium II 450MHz.

4.1 SCENARIO 1

The results for this scenario are as follows: the vari-
ables EFFORT take values in [1589,3241], TIME in
[349.5,437] and QUALITY in [0.297,0.556]. In order
to assign a label to the records, the variables were dis-
cretized, taking one threshold for TIME and EFFORT
and two for QUALITY. The constraints over the at-
tributes and variables are shown in Table 5, where out
of three hundred simulations only 8 had quality less
than 0.35, whereas when QUALITY is less than 0.45
there were 26 records with EFFORT under 1888 and
27 records with TIME under 384. Only one record
satisfied the constraints for both EFFORT and TIME
simultaneously.

We use the evolutionary algorithm to find rules that
provide an adequate effort, a good delivery time or an
excellent quality (three independent analysis).

e Rule for effort: a rule covering 22 records (C4.5
produces two rules covering 23 records).

if 101< ASIMDY and

and 20.2< HIREDY and

and 6.9< MXSCDX then

then EFFORT< 1888 and QUALITY< 0.45

Table 2: Parameters of the environment of the project and organization.

Attribute Interval Description

Estimated Value

ASIMDY [5,120] Average assimilation delay (days) 20
HIREDY [5,40] Average hiring delay (days) 30
TRNSDY [5-15] Time delay to transfer people out (days) 10
MXSCDX [1-50] Maximum schedule completion date extension (dimimensionless) 3

Table 3: Variables of the environment of the project and organization.

Variable Description Estimated Value
EFFORT Cost or necessary effort for the project development (tech. per day) 1.111

TIME Delivery time (days) 320
QUALITY Quality of the final product (errors/task) 0

Table 5: Number of Software Development Projects
satisfying the constraints. Rows indicate constraints
over variables and columns over attributes: (1) None;
(2) EFFORT < 1888; (3) TIME < 384.

Constraint (1 (@2 (3
NONE 300 42 37
QUALITY < 0.35 8 1 8
QUALITY < 0.45 227 26 27

If the assimilation and the hiring are slow then
the effort is optimized.

Rule for time: a rule covering 20 records (C4.5
produces two rules covering 21 records).

if 7< ASIMDY< 17.9 and

and 5.6< HIREDY< 39.5 and

and 2.3< MXSCDX and

and 5.4< TRNSDY then

then TIME< 384 and QUALITY< 0.45

These rule shows that the intervals for the at-
tributes HIREDY, MXSCDX and TRNSDY are
very unrestricted, i.e. these attributes might take
any value within the range. Therefore, the rule
could consider only the attribute ASIMDY: a
fast assimilation is enough to fulfill the time con-
strains.

Rule for quality: if QUALITY must be less than
0.35, only 8 records with TIME less than 384 are
obtained. The evolutionary algorithm needs one
rule (C4.5 needs two).

if ASIMDY< 23.2 and

and 5.9< HIREDY< 32.8 and

and 13.1< MXSCDX< 47.1 and

and 5.5< TRNSDY< 10.8 then

then TIME< 384 and QUALITY< 0.35

This rule is similar as before but warning that

Table 6: Number of Software Development Projects
satisfying the constraints. (1) None; (2) EFFORT <
1999; (3) TIME < 352.

Constraint (1) (2) (3)
NONE 300 105 297
QUALITY < 0.35 13 0 12
QUALITY < 045 47 1 45

the average delay to transfer people out must be
lower.

4.2 SCENARIO 2

For this scenario the variable EFFORT takes values
in [1709,3395], TIME in [349.5, 354.3] and QUAL-
ITY in [0.235, 0.661]. The thresholds for labelling the
database were 1999 for EFFORT, 352 for TIME and
0.35 and 0.45 for QUALITY. The number of records
satisfying these constraints are shown in table 6.

e Rules for time: two rules covering 31 records out
of 45. (C4.5 produces 3 rules covering 22 records).

if 11.6 < ASIMDY and

and 6.3 < HIREDY and

and 1.1< MXSCDX < 1.15 then

then TIME< 352 and QUALITY< 0.45

if 8.6 < ASIMDY and

and 6.8 < HIREDY < 9.5 and

and 1.16 < MXSCDX then

then TIME < 352 and QUALITY < 0.45

These rules are complementary with regard to the
schedule completion date extension: the first one
has a fixed schedule and the second one has not.

e Rules for quality: for 12 records with QUALITY
less than or equal to 0.35 the evolutionary algo-
rithm produced a rule covering six of them (C4.5
produced three rules covering 8 out of 12):

Table 7: Number of Software Development Projects
satisfying the constraints. (1) None; (2) EFFORT <
1999; (3) TIME < 352.

Constraint (1) (2) (3)
NONE 300 164 226
QUALITY < 0.35 43 0 9
QUALITY < 045 116 11 49

if 11.8 < ASIMDY and

and 7.8 < HIREDY < 9.8 and

and 1.1 < MXSCDX < 1.19 and

and TRNSDY < 6.8 then

then TIME < 352 and QUALITY < 0.35

To improve the quality, the rule must limit the
time delay to transfer people out.

4.3 SCENARIO 3

The model is again simulated 300 times with the
following values for the variables: EFFORT in
[1693,2415], TIME in [349.5,361.5] and QUALITY in
[0.236,0.567]. The threshold for labelling the database
are the same that in the second scenario. The number
of records satisfying the constraints is shown in Table
7.

e Rules for effort and time: the scenario 3 is the
only one that has a case in where both con-
straints over time and effort are sastisfied: When
EFFORT <1999 and QUALITY <0.45 there are 11
cases matching TIME <352 by chance. Two rules
cover these records (C4.5 needs three rules for 9
out of 11).

if 8.4 < ASIMDY < 11.5 and

and 8.8 < HIREDY and

and 9.3 < MXSCDX then

then EFFORT < 1999 and TIME < 352 and
and QUALITY < 0.45 (7 records)

if 9.8 < ASIMDY < 11.2 and

and 6.8 < HIREDY < 8 and

and MXSCDX < 39.5 then

then EFFORT < 1999 and TIME < 352 and
and QUALITY < 0.45 (4 records)

These rules point out that for obtaining good re-
sults simultaneously for TIME and EFFORT is es-
sential that the assimilation of technicians is fast.
The two rules are complementary with regard to
HIREDY and MXSCDX.

e Rules for time: if we only wish to minimize the
variable TIME, we can produce similar rules as

before by relaxing the assimilation (ASIMDY). In
this way, we can accept values for this parameter
less than 14.

5 CONCLUSIONS

In this paper a new coding method for evolutionary
algorithms in supervised learning is presented. This
method converts every attribute domain into a natural
number domain. The population will therefore have
only natural numbers. The genetic operators (muta-
tion and crossover) are defined in order to work effi-
ciently with this new search space, and they use no
convertions from the original attribute domains to the
natural number domains, but the evolutionary algo-
rithm works from the begining to the end with natural
numbers. As every attribute use one gene in the indi-
vidual of the population, the size of the search space
is decreased, what might allow a faster convergence of
the evolutionary algorithm.

The personnel management policies are dominant with
respect to the delivery time. When extreme person-
nel policies (fast or slow) are applied to the organi-
zation is difficult to obtain good results for the vari-
ables TIME, EFFORT and QUALITY simultaneously.
A fast personnel management policies helps to obtain
good results for TIME, at the expense of increasing
the project EFFORT. With slow policies the opposite
occurs. The more significant parameters for finding
suitable management policies are in order: assimila-
tion(ASIMDY) and hiring(HIREDY) delay. From the
knowledge provided by the rules it is possible to infer
that the time delay to transfer people out(TRNSDY)
is not significant in most of cases and neither the max-
imum schedule completion date extension(MXSCDX)
for the secenarios analysed in this study.

With respect to the advantages of our evolutionary
approach in comparison with C4.5, we would like to
note some important issues. Our algorithm searches
for rules which cover records with the label identified
by the user; C4.5 generates a decision tree in which
all the labels appear, and we are definitely not in-
terested in bad projects. From these rules (for bad
projects) we can not extract useful knowledge related
to management policies. C4.5 always produced more
rules covering less records. In many cases, the intervals
found by C4.5 for some parameters had a very small
range, which is inappropriate if we wish to vary these
values in order to achieve a good decision. For exam-
ple, in the third scenario the three rules produced by
C4.5 has very small range for the attribute ASIMDY:
[10.22,10.81] for the fist two rules and [9.17,9.27] for
the third one. It is obvious that these intervals do not

allow the project manager to make a decision.

Acknowledgments

The research was supported by the Spanish Research
Agency CICYT under grant TIC1143—-C03-02.

References

T. K. Abdel-Hamid. Software Project Dynamics: an
integrated approach. Prentice-Hall, 1991.

J. S. Aguilar-Ruiz, J.C. Riquelme, and M. Toro. An
evolutionary approach to estimating software develop-
ment projects. Information and Software Technology,
14(43):875-882, 2001.

S. Bhattacharyya and G.J. Koehler. = An analysis
of non—binary genetic algorithms with cardinality 2v.
Complex Systems, 8:227-256, 1994.

J. J. Dolado. On the problem of the software cost func-
tion. Information and Software Technology, 43:61-72,
2001.

U. M. Fayyad and K. B. Irani. Multi-interval dis-
cretisation of continuous valued attributes for classifi-
cation learning. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence.
Morgan Kaufmann, 1993.

G. R. Finnie, G. E. Wittig, and J.-M. Desharnais. A
comparison of software effort estimation techniques:
using function points with neural networks, case-based
reasoning and regression models. Journal of Systems

and Software, 39(3):281-289, 2000.

R. C. Holte. Very simple classification rules perform
well on most commonly used datasets. Machine learn-
ing, 11:63-91, 1993.

G.J. Koehler, S. Bhattacharyya, and M.D. Vose. Gen-
eral cardinality genetic algorithms. Evolutionary
Computation, 5(4):439-459, 1998.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

J. R. Quinlan. C4.5: Programs for machine learning.
Morgan Kaufmann, San Mateo, California, 1993.

M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering, 23(12):736-743, 2000.

G. Venturini. Sia: a supervised inductive algorithm
with genetic search for learning attributes based con-
cepts. In Proceedings of European Conference on Ma-
chine Learning, pages 281-296, 1993.

M.D. Vose and A.H. Wright. The simple genetic algo-
rithm and the walsh transform: Part i, theory. Evolu-

tionary Computation, 6(3):253-273, 1998.

M.D. Vose and A.H. Wright. The simple genetic al-
gorithm and the walsh transform: Part ii, the inverse.
Evolutionary Computation, 6(3):275-289, 1998.

F. Walkerden and R. Jeffery. An empirical study of
analogy-based software effort estimation. Empirical
Software Engineering, 42:135-158, 1999.

