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Abstract

This article aims to describe a system designed to control the movement of mobile robots by blinking eyes. It is based on the use
of a Brain Computer Interface and a particular control architecture. The paper addresses the key aspects that allow simplifying users-
robot interaction and proposes a control strategy that facilitates a fast learning of robot handling. In this sense, the main advantage of
the approach is the short period of time required for users’ training. The article details a methodology aimed to evaluate this feature,
presents experimental results that confirm this fact and also discusses about the influence of interacting with a real or a simulated
robot. Particularly, it analyses if a previous training with the virtual robot helps to improve the interaction with the real robot or vice

versa. Copyright © CEA.
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1. Introduction

The study of Human-Robot Interfaces (HRI) has focused
the attention of the scientific community in the last decades
(Adams, 2002), (Kofman et al., 2005). Human-Robot interac-
tion has traditionally been implemented by the motion of certain
parts of the body: from the use of hands (moving a mouse, tou-
ching a screen, etc..) to others parts of the body with enough
mobility to be registered (Goodrich and Schultz, 2008). It is al-
so worth mentioning the incorporation of voice for interacting
with robots (Lv et al., 2008). However, there are still people
who, due to their movement and voice limitations, can not use
these devices efficiently.

With the arrival of Brain-Computer Interfaces (BCI) the op-
portunity to help these people to interact with electronic systems
appeared. Especially new challenges arose to face the integra-
tion of these devices within the control mechanisms of the robot

(Ibaiiez et al., 2009). In this sense, different devices that are
able to capture electrical signals produced by the interaction of
neurons in the human brain have been developed: (Ibéiiez et al.,
2011), (Elsawy et al., 2017). Moreover, numerous applications
have been developed by using BCI systems (Choi et al., 2017),
(Barios et al., 2017), (Ubeda et al., 2017). Though the accuracy
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of these devices is not high enough for clinical use, it can be
used for neurofeedback purposes (Salabun, 2014), providing a
direct communication between the brain and an external system.
Through their use, researchers have attempted to control various
types of robotic platforms, from basic applications (such as vir-
tual simulations, mouse pointer control, etc.) to more complex
applications in which robots (manipulators or wheelchairs) are
managed (Sudarsanan and Sasipriya, 2014), (Escolano et al.,
2012), (Hortal et al., 2015A).

This technology is hopeful for the assistance of elderly or di-
sabled people with mobility and voice restrictions, since it will
allow them, in day life, to interact freely with different devices,
and overcome their limitations of movement. Almost 15 percent
of the world population has a disability. In Spain, this number
reaches 3 million people, among them those having limited phy-
sical mobility represent a high percentage. So the development
of this technology must be considered as an ethic compromise
for researchers and engineers.

A BCI system suitable for controlling a robot is a closed-
loop control system that uses brain signals in combination with
surrounding environment feedback in real-time. The collected
brain activities must be decoded to identify human mental acti-
vities and to generate commands for robots to execute an action
or a particular task. The design of such a system must also take
into into account kinematics and dynamics of the robot, as well
as the control architecture and the robot behavior (Ferreiraet
al., 2008), (Hortal ef al., 2014), (Hortal et al., 2015B).

The possibility of brain-computer communication based on
the electroencephalogram (EEG) was discussed almost four de-
cades ago. The acquisition configuration usually consists of
evoking sources to generate specific brain activities, measuring
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brain signals with a BCI sensor, analyzing data and possibly
controlling objects. Major techniques for this challenging pro-
cess has been developed by the use of three main EEG para-
digms and their hybrids (Mao et al., 2017): event-related desyn-
chronization or synchronization (ERD/ERS), steady-state visual
evoked potential (SSVEP) and event-related potential (ERP).
ERD/ERS are generated by Motor Imagery (MI), when the
user makes a mental representation of a motor act. SSVEP is a
steady-state physical response to outside periodic stimuli, when
the user selects a target by means of an eye-gaze. ERP is gene-
rated when a specific stimulus acts on the sensory system of the
brain or some mental factor occurs, this bias stimulus is called
target stimulus when the subject reacts to it. The P300 compo-
nent, for instance, is observed in 300ms after the target stimulus
appears.

Although these methods exhibit high reliability, are very ex-
pensive in terms of equipment and, mainly, in users’ training
time. So, in order to achieve an efficient development of this
technology, it is necessary to reach a trade-off solution that ta-
kes into account efficiency, cost and users learning facility. This
is the reason why this paper propose the use of blinking eyes
for control purposes. Blinking is one of the most natural mo-
tion of human being. Even people with a paralyzed whole body
can blink. Blinks can be easily identified, when ECC signals are
recorded. Moreover, as will be shown, blinking action can be
easily trained, so user can quickly acquire an adequate ability to
control then.

This paper approaches the development of a platform that
allows to teleoperate a mobile robot through blinking signals
registered by a commercial BCI. The BCI processes the brain
waves and characterizes the level of attention or meditation of
the user. These signals are complemented by an associated sig-
nal, also generated by the BCI, which in this case is the strength
of the user blinks. By using this information, the system imple-
ments a control methodology that allows users to operate the ro-
bot by controlling the strength of the blinks. This methodology
avoids the use of the traditional paradigms, using a simple visual
feedback. With respect to previous works, the time for training
user’s ability to maneuver the robot is improved (from days to
few hours or minutes, depending on the objective to achieve),
and all of this is implemented with an usable, portable, and ac-
cessible technology.

The article describes the main features of the system, the
control strategy and some experimental results that show how
non-expert users are capable of achieving outstanding results
without a previous training. Experimental results also compare
the result of operating with a real o a virtual robot.

The paper is organized as follow. In section 2 a description
of the system and its components is drawn. Section 3 details
the control strategy. Section 4 is devoted to illustrating the ex-
perimental setup and describing the method for organizing the
experiments. Section 5 is dedicated to analyzing the results. Fi-
nally, the article ends with some conclusions.

2. Using blinking for controlling robots

This work aims to develop a platform that allows controlling
simple movements of a mobile robot without the interaction of
hands, voice or any of the traditional mechanisms to transfer the
user’s command to the robot. The design is based in the spirit
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of finding a practical and economical solution for robot opera-
tion by avoiding the use of complex and costly devices. Authors
hypothesized that using blinking eyes could be an easy way to
achieve these objectives, and that user training will be easier
than in other alternative methodology, allowing them to hand-
le the robot in a short periods of time without much training
and specific technical knowledge. The approach is based on the
use of three basic elements: an accessible BCI, the MindWave
BCI developed by Neurosky (NeuroSky, 2009), a mobile robo-
tic platform, and a resident application on a personal computer
(PO).

2.1.  System Architecture

The architecture of the developed system is shown in Figure
1. It is noteworthy that the three elements are connected wire-
lessly, giving some freedom of movement to the user. The co-
re of the system is an application developed in Matlab 2015b,
that interacts independently with the BCI MindWave’s contro-
ller and the robot.

On the one hand a specific software has been programmed in
C# to read the data captured by the BCI and to format them co-
rrectly. This program aims at overcoming Matlab limitation to
manage more than one serial port at the same time. It is based on
the Lab Streaming Layer (LSL) (C. Kothe et al., 2005), which
uses the UDP protocol to create different data streams that are
synchronized by adding time stamps to them. The Matlab ap-
plication also includes an LSL interface to receive and store the
data streams created by the controller. On the other hand, the
control application implements an algorithm that eases the task
of driving. The user has a visual feedback of the behavior of
the robot and through the control of the signals provided by the
BCI he should be able to move the robot from a specific point
to another initially established.

2.2.  Neurosky Mindwave

MindWave BCI is able to estimate the state of attention and
meditation (among other parameters) of the user. The attention
and meditation signals are established by the behavior of certain
brain waves. In particular, alpha waves are dominant when the
meditation is high and beta waves predominate when the level
of attention is high. Mindwave records these waves, and set the
levels of attention and meditation using only two sensors, which
is an important advantage compared to other more complex and
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difficult systems, that requires more than 24 electrodes. Toget-
her with this reduction, it should be noted as an advantage that
the electrodes work in dry, which improves the precision in the
measurement of brain wave.

Specifically, MindWave provides attention and meditation
states using the so called attention and meditation algorithm
eSense, property of NeuroSky, along with the registered wa-
ves and information on the frequency bands of the brain wave,
which is provided by the proper NeuroSky technology, Think-
Gear. This technology includes the contact sensor, touching the
point of the head front, the contact reference in the ear clip and
the integrated circuit that processes all the data.

The shapes of brain waves and the eSense measurements
(attention and meditation) are calculated in this circuit by am-
plifying the signal of brain waves, removing ambient noise and
muscle movement. eSense algorithm is then applied to the re-
maining signal resulting in values that can be interpreted. Keep
in mind that the values of the measured eSense levels do not
describe an exact number, but the ranges of the activity of the
subject. Each different type of eSense value is reported on a re-
lative scale of 1 to 100. In this scale, a value from 40 to 60
is considered neutral and is similar in concept to the baselines
established in conventional brainwave measurement techniques
(although the method used by ThinkGear for determining a ba-
seline is proprietary and may differ from conventional methods).

A value from 60 to 80 is considered slightly elevated, and
can be interpreted as levels of attention or meditation which may
be considered greater than normal for a particular person. The
values from 80 to 100 are considered high. Similarly, at the low
end of the scale, a value from 20 to 40 indicates low, while a
value from 1 to 20 indicates very low levels. These levels may
indicate mental states of distraction, agitation, or an anomaly.

The reason to have spread ranges of values for every possi-
ble interpretation is that some parts of the algorithm of eSense
learn dynamically, and, sometimes, some slow adaptation algo-
rithms are used, so it fits to the fluctuations and trends of each
user in a natural way. This represents the fact that brain waves
in the human brain are subject to fluctuations. For this reason,
the ThinkGear sensors are able to operate within a wide range
of individuals under an extremely wide range of personal and
environmental conditions at the time that they provide a good
accuracy and reliability.

Additionally, the Mindwave system is capable of capturing
another signal called ’eye blink strength’, which advises the
user’s eye blink intensity. Its value ranges from 1 to 255 and
is provided when a blink of the eyes is detected. The value in-
dicates the relative strength of a blink without units. The front
sensor of the Mindwave must be very tight in order that spu-
rious blinks were avoided. These blinks are ranged usually in
an intensity value from 30 to 40, the same that occurs with the
natural eye blink.

The Mindwave transmits the data to the PC wirelessly, th-
rough the use of a Bluetooth USB adapter specific for the BCI
used in this experiment.

2.3.  Application running on the personal computer

The general scheme of the applications obeys to the flow
chart shown in Figure 2. It can be observed how two programs
(control and BCI reading) are running in parallel. Control ap-
plication has been implemented under the Matlab environment,
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Figura 2: Software workflow. Matlab application scheme on the left and the
MindWave data acquisition controller on the right.

whereas the BCI reading program runs under the control of the
Operative System. In both cases, after the phase of variables
initialization and ports configuration, an iterative loop is execu-
ted until finishing after a given time.

ThinkGear components deliver their digital data as a series
of asynchronous-byte sequence. This sequence must be analy-
zed and interpreted as ThinkGear packages in order to extract
the data values correctly and process them on a computer. Neu-
rosky provides a specific library that helps the programmer to
establish a communication between Mindwave and the PC in
an easy and simple way. By using this library, it is possible to
access the data package and extract the values of attention, me-
ditation and eye blink strength values. This way, the acquisition
application reads data from the BCIL, formats them conveniently,
and sends data packets to Matlab in its own LSL stream through
an UDP port.

Withing the loop of the control program, the following is
executed sequentially: reading data from the UDP port, evalua-
ting a state machine that determines the actions the robot must
perform, and sending the control instructions to the robot. As
the algorithm is simple, Matlab can work nearly in real time.

2.4.  Robotic platforms

Two different robotic platform have been used for experi-
mental purposes: a robot built with the Lego’s Mindstorms NXT
kit, and a Turtlebot robot. The first one represents a practical
option; due to its small size it is easily transportable and adapta-
ble to any experimentation scenario. The second is a less easily
transportable but more sophisticated option, since it has a more
precise optometry and capacity to incorporate advanced sensory
systems. This option seems more appropriate for the develop-
ment of applications in which accuracy is necessary.

On the one hand, the Toolbox RWTH - Mindstorms NXT has
been used to control the behavior of the Lego robot from Matlab.
This toolbox is a project developed by the University of RWTH
Aachen (RWTH, 2017). This software has been developed to
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control the robot kit using Matlab via a Bluetooth wireless con-
nection or via USB. This software is an open source product and
is subject to the GNU General Public License (GPL). With this
software it is possible to interact with the robot using MATLAB
commands via Bluetooth.

On the other hand, TurtleBot is connected using the Matlab
ROS interface. This Robotics System Toolbox enables you to
interface with ROS and use ROS functionality in Matlab and
Simulink (Matlab, 2017). You can connect to a ROS network,
collect data, send and receive your own messages, and deploy
code to a standalone system. With this software it is possible to
interact with the robot using Matlab commands via Wifi.

The main part of the mobile robot control lies in a state ma-
chine that takes the levels of the signals provided by the BCI
as input values, and evolves by activating and deactivating a set
of states that are associated with the different ways of moving
that the mobile robot has. This state machine together with the
general control strategy are illustrated in the following section.

3. Control Strategy

The approach presented in this paper are based on a simpli-
fied version of the methodology detailed in (L6pez de Ahu-
mada et al., 2017). There, the control strategy was based on the
combination of attention signals, and eye blink strength to deter-
mine the intentions of the user. However, the present approach
addresses the possibility of controlling the robot by just consi-
dering the capability of user for training eye blinking strength.
Thus, the state machine that controls the robot will only respond
to the changes of this signal to evolve from one state to another.

The idea presented in this paper is to control the movement
of the robot by two parameters, the linear velocity (v;) and an-
gular velocity (w). Although more complicated strategies can be
used, the illustrated experience is based on the switching bet-
ween two behaviors: forward movement (Ly;: v; enabled and w
disabled); rotating movement (R);: v; disabled and w enabled).

To make the state machine evolve, an input variable will be
taken into account: eye blink strength (/). The machine has two
states. One activates the L, behavior and the other activates the
Ry behavior. The switching between one behavior to another
takes place when the intensity of the eye blink 7, is higher than
a certain threshold.

This simple strategy allow user to move the robot in an easy
way, just switching from forward to rotating motion. The imple-
mentation of a more sophisticated strategy, allows the realiza-
tion of turns to the right and to the left, as well as more complex
maneuvers with forwards and backwards movements (Ldpez
de Ahumada et al., 2017). However the time for users’ training
required by that approach is larger than the period required by
the present work.

4. Experiments Setup

The objective of the experiments was to verify that users wit-
hout previous training could handle the robots and reach cer-
tain proposed goals. In addition, the study aimed at figuring out
whether the interaction with a real or virtual robot, or with both,
influences the success of users in achieving the goals.
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4.1

The experiments analyzed below were carried out during the
celebration of the Week of Science at the University of Huel-
va. Eighteen boys and fifteen girls between 14 and 16 years old
participated in the experiment. The kids could interact with the
robot, controlling its movement, either in a real or a virtual en-
vironment.

Participants were split into two groups in order to check the
system usability and test different hypotheses. The first one, or
hypothesis H1, aims at verifying if the user experience is better,
or not, with a virtual or a real robot. The second one, or hypothe-
sis H2, looks for studying the existence of any other effect in the
interaction with virtual and real robots or, in other words, if star-
ting using the virtual robot helps them improve the interaction
with the real robot or vice versa. Then, both groups were split,
in turn, into two subgroups. For H1, one of them only played
with the real robot while, the other, only with the virtual one.
For the H2, one half of the participants started using the virtual
robot to later interact with the real one, whereas the remainder
inverted the order of playing.

For both hypothesizes, two dependent variables were analy-
zed: number of achieved targets (N,,;) and number of blinks per
target (Npp;). These variables quantify, in some extent, the task
completeness and the difficulty in maneuvering the robot res-
pectively.

The objectives the students had to achieve were different de-
pending on whether they were interacting with the real or the
virtual robot.

Evaluation tests

4.2. Interacting with a Real Robot

The working area of the experiments with the real robot is
represented in Figure 3. It consists on a flat surface of 4 m?
in the ground where the robot could move freely. Two objects
were located at a distance of 20 cm between them. Figure 4
shows a snapshot of the experimental session. The objective set
for the students was to drive the robot until it moved between
both objects, as many times as possible.

In each experiment, the robot was initially located perpen-
dicularly to the objects, in the same relative position, so that
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Figura 4: A snapshot of the experiments during the Week of Science

the optimum route to achieve the objective would consist of th-
ree different motions (as illustrated Figure 3): firstly a forward
displacement, secondly a rotational motion and a thirdly a for-
ward movement. If the objective was achieved, the student had
to drive the robot to another point of the working area and start
manoeuvring again. Experimenter manually annotated the num-
ber of achievements in each session, whereas the other variable,
Nppi, was obtained from the analysis of the recorded data.

4.3.

A Matlab application was built to simulate the movements
of the robot on a computer screen. The virtual robot appears
as a triangle (Figure 5) that can move ahead and rotate, as the
real robot does, using the same control algorithm. In the Ry
state, the robot spins around at a frequency of /6 rad/s and, in
the Ly, state, it moves along the panel at a velocity that allows
the target to be reached several times during the session. Such
a target is shown as a red circle, with a size that is one eighth
of the working area side, and a position that randomly changes
as soon as the robot touches it. Once the target is placed on a
new position, the robot appears away from it at a distance of
one half of the working area side and with a relative angle that
is a multiple of 7/6. This allows users to reach the target by
performing only one blink.

Additionally, the user interface contains a lateral panel whe-
rein a blink level indicator, for feedback purposes, is also shown.
The blink indicator, the robot rotation movement and the fini-
te state machine are all updated every second, as the software
receives a new data package from the NeuroSky headset. The
target position, EEG signal, received blinks and robot location
was all continuously recorded for further analysis.

Interacting with a Virtual Robot

5. Experimental Results

The first objective was to show that the proposed methodo-
logy facilitates user robot interactions, by analyzing the percen-
tage of students that achieve, at least, a target during their first
experimentation. In the case of participants interacting with the
real robot, the percentage of user achieving a target was 40 %,
while this percentage increase to 92 % for users playing with the
virtual one. Later, authors proposed to analyze differences in the
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interaction with the real and the virtual robot by considering hy-
potheses H1 and H2.

5.1. Hypothesis HI

Table 1 summarizes the results obtained by participants
when maneuvering the robot in a virtual or a real scenario. As
can be seen, the percentage of people who could properly drive
the robot towards the target, and reached it in at least one oc-
casion, was higher with the virtual robot (87.5 %) than with the
real robot (37.5 %). Besides, the average number of blinks per
target was 5.9 with the virtual robot, less than with the real, 8.5.
Note that N, is not considered when the robot did not reach
the target.

Figures 6 and 7 depict the boxplots for N, and N, respec-
tively. Their median values (plotted with a red line in the boxes)
show that the use of virtual robots seems to be better for obtai-
ning a slightly higher number of achievements, N,;, and needing
a lesser number of blinks for the robot guidance towards the
target, Npp,;. The Mann-Whitney-Wilcoxon test (MWW), a non-
parametric statistical test that does not need previous knowledge
of the sampling distribution and can be applied to unequally-
sized observation groups, shows that there exists an effective in-
fluence of robot model on N, (p=0.03), but not on N, p-value
of 0.46.

5.2.  Hypothesis H2

Here, we investigated any order effect on the variables of
interest, collected in Table 2. Five people (subjects 25-29) fo-
llowed the virtual-real robot sequence in a double-round expe-
riment, whereas the four other subjects (30-33) performed a re-
versed sequence. The table also includes the incremental values,
AN, and ANy, which have been calculated by subtracting the
results of the first round from the second one. Thus, a negati-
ve/positive AN, means that the number of final achieved targets
decreased/increased with respect to the first round figures.

On the one hand, the percentage of achievements in the first
round was 100 % and 50 % respectively for those subgroups,
higher and lower respectively than the results obtained in H1,
but with non statistically significant differences between them
(p > 0.4 according to MMW). On the other hand, the average
number of blinks per target was 8.5 and 14.5 for virtual and real
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Subject | Nypr | Ny
1 13 1
2 8.5 1
3 11 1
Virtual 4 1 2
5 3.5 1
6 1 1
7 3.5 1
8 - 0
9 - 0
10 10 1
11 - 0
12 - 0
13 - 0
14 - 0
15 - 0
16 6 1
Real 17 - 0
18 - 0
19 1 2
20 16 1
21 - 0
22 0
23 5 1
24 13 1

Tabla 1: Results for hypothesis H1. Subjects 1-8 used only the virtual robot
while subjects 9-24 drove the real robot.

25 f + 1

|
1
15 | i
|
|
|
L
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-0.5 ¢ . . B
Virtual Real

Figura 6: Number of achieved targets with the virtual and the real robot.

robot at the first round. Both higher than the values in H1, but
without significant differences either (p > 0.3 in both cases).

Figures 8 and 9 respectively depict the boxplots containing
the incremental variables ANy,,; and AN, for H2. Following the
same procedure as above, the statistical analysis turned out a p-
value higher than 0.4 for both variables, meaning that the order
does not exert any significant influence on them.

It is remarkable that the variable Ny, in the second round
with the real robot, showed a significant increase (p=0.016) with
respect to the first round, performed with the virtual robot, sug-
gesting that the former was perceived as more difficult to con-
trol.
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1-Virtual 2-Real

Subject Nbpt Ny Nbp, Ny ANbpt AN
25 12 1 - 0 - -1
26 7 1 14 1 7 0
27 5 1 19 3 14 2
28 9 3 63 1 54 -2
29 10 2 18 2 8 0

1-Real 2-Virtual

Subject N},pt Ny Nb[,, Ny AN},[,t AN
30 - 0 - 0 - 0
31 15 1 - 0 - -1
32 - 0 - 0 - 0
33 14 2 8 2 -6 0

Tabla 2: Results for hypothesis H2. Subjects 25-29 used the virtual robot
and then the real robot, while subjects 30-33 inverted the order. Incremental
values are also shown.

Virtual/Real Real/Virtual

Figura 8: Differences in the number of achieved targets according to the
experimental sequence.

5.3. Discussion

The analysis of the results presented above demonstrates that
this approach can be considered as a user-friendly methodology
for interacting with real or virtual robot. A success rate between
40 % and 60 % in a first interaction, without a prior training and



Jornadas Nacionales de Robdtica 2019

50

40

30 r 1

20 1

A Nbpt

10r .

Real/Virtual

Virtual/Real

Figura 9: Differences in the number of blinks per target according to the
experimental sequence.

considering a evaluation period of 60s, indicates that the parti-
cipants quickly acquire an efficient ability to handle the robot.

Another question is: which environment, real or virtual, fa-
cilitates user’s learning the most? Virtual environments and the
use of robots have shown several advantages in areas like Me-
dicine. In (Riener, 2012), authors proved the benefits of virtual
environments in rehabilitation, showing even better performan-
ces than real environments when comparing motor learning in
people with disabilities (Holden, 2005). Other studies have de-
monstrated the feasibility and effectiveness of an assistive robot
system to engage elderly users in physical exercise (Fasola et
al., 2013), enhance manual performance of individuals with ce-
rebral palsy (Nooshin et al., 2017) or promote social interaction

(Goémez-Gonzilez et al., 2016).

When comparing virtual or physical robots, some works ha-
ve showed that tangible agents or physical robots resulted in
more favorable responses from participants during a human-
computer interaction (Li, 2015), or in promoting longer exerci-
sing times compared to virtual agents (Schneider et al., 2018).
In contrast, our results have shown more effectiveness for virtual
robots according to the statistical significance in the number of
achieved targets. Several reasons may justify this, some of them
related to how the interaction was carried out, which slightly
differed from the physical robot in two main aspects. Firstly, if
the virtual robot gets too close to the working area border, it au-
tomatically switches into the rotation state. Secondly, as soon
as the target is reached, another target is generated, the virtual
robot is placed at a specific distance from it and the control al-
gorithm returns again to the rotation state. These reasons toget-
her give enough spare time for subjects to achieve more targets
during the session. Moreover, the dynamics of the real robot
has special influence in the interaction with users. For instan-
ce, robot’s inertia is particularly responsible for the lack of pre-
cision during motion switching and reorientation manoeuvres.
Similarly, Bluetooth communication between computer and ro-
bot adds delays that in the case of the simulated system do not
exist. These reasons could explain a larger number of successes
(N4) in the experiment with the virtual robot and a greater the
number of blinks per target (Np,,) in the case of the real robot.

Another aspect concerns the high number of blinks needed
to complete the task, when, as explained above, it might have
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been possible with just one blink. A possible explanation yields
in the proprietary blink detection algorithm supplied by Neu-
roSky. Some studies have highlighted its low accuracy, close to
50% (Maskeliunas et al., 2016), which may cause a lack of
response in the robot to the subject’s signal at the appropriate ti-
me. To address with this issue, it is necessary to include another
method that guarantees a much higher blink recognition rate, as
for example, with the algorithm proposed in (Molina-Cantero,
A. et al., 2017a) or (Molina-Cantero, A. et al., 2017b) which
reaches an accuracy over 98 %. Additionally, the control varia-
ble itself, eye blinking, affects the robot guidance when involun-
tary blinks make the robot switch among states, modifying its
trajectory and, then, requiring more blinks to complete the dri-
ving task. To avoid that effect, new methods for discriminating
between voluntary and involuntary blinks must be included. In
this sense, the development of a new algorithm that allows de-
termining more precisely the intensity of blinking would help to
develop more efficient applications.

By comparing H2 to H1, additional information can be ex-
plored. On one hand, for those who used the real robot in the
second round in H2, the mean of achieved targets was 1.4. This
figure improves the result obtained by subjects 9-24 in HI in
average (0.44), who only used the robot. This may suggest that
a previous training with a virtual robot benefits the control of a
real robot. Indeed, the statistical analysis showed that this proce-
dure was near to be significant (p=0.055). However, the reduced
number of subjects limits the power of the statistical analysis
and, hence, it must not be concluded the existence of such an
effect. On the other hand, those who played in the second round
with the virtual robot, experienced a decrease in the N, with
respect to subjects 1-8 in H1 (from 1.13 down to 0.5) but, as si-
milarly as above, such differences were not conclusive (p=0.12).
Future work will try to reduce the differences between the vir-
tual and the real robot to determine if these results are due to
this or other reason.

6. Conclusions

This article describes the architecture of a system aimed to
control the movement of a robot by blinking eyes. The system
is based on the use of a BCI that registers the intensity of blin-
king, and a control architecture that allows transforming inten-
sity changes into motion commands for the robot. By means of
this approach the training time that users need to learn to dri-
ve the robot is very short, obtaining a high rate of success in
a period of 60s. The article presents experimental results that
confirm this fact and also discusses about the influence of in-
teracting with a real robot or with a virtual one. The results
indicate that with the proposed configuration users handle the
virtual more easily than the real robot. The article also studies
if a previous training with the virtual robot helps to improve the
interaction with the real robot or vice versa. The results indica-
te that experimenting first with the real robot helps to improve
the results with the virtual robot, nevertheless the same does
not happen in reverse. As future works we propose the develop-
ment of a particular algorithm that improves the estimation of
the blinking intensity and the application of other types of algo-
rithms in order to enhance the discrimination of natural blinks.
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