i\;lg electronics m\py

Article
Impact of Thermal Throttling on Long-Term Visual
Inference in a CPU-Based Edge Device

Théo Benoit-Cattin (9, Delia Velasco-Montero 2 and Jorge Fernandez-Berni >*

1 Ecole Nationale Supérieure d’ElectroteChnique, d’Electronique, d’Informatique,

d’Hydraulique et des Télécommunications, BP 7122, 31071 Toulouse, France;
theo.benoitcattin@etu.inp-toulouse.fr
2 Instituto de Microelectrénica de Sevilla, Universidad de Sevilla-CSIC, 41092 Sevilla, Spain;
delia@imse-cnm.csic.es
Correspondence: berni@imse-cnm.csic.es

check for
Received: 28 October 2020; Accepted: 3 December 2020; Published: 10 December 2020 updates

Abstract: Many application scenarios of edge visual inference, e.g., robotics or environmental
monitoring, eventually require long periods of continuous operation. In such periods, the processor
temperature plays a critical role to keep a prescribed frame rate. Particularly, the heavy computational
load of convolutional neural networks (CNNs) may lead to thermal throttling and hence performance
degradation in few seconds. In this paper, we report and analyze the long-term performance of
80 different cases resulting from running five CNN models on four software frameworks and two
operating systems without and with active cooling. This comprehensive study was conducted on a
low-cost edge platform, namely Raspberry Pi 4B (RPi4B), under stable indoor conditions. The results
show that hysteresis-based active cooling prevented thermal throttling in all cases, thereby improving
the throughput up to approximately 90% versus no cooling. Interestingly, the range of fan usage
during active cooling varied from 33% to 65%. Given the impact of the fan on the power consumption
of the system as a whole, these results stress the importance of a suitable selection of CNN model and
software components. To assess the performance in outdoor applications, we integrated an external
temperature sensor with the RPi4B and conducted a set of experiments with no active cooling in
a wide interval of ambient temperature, ranging from 22 °C to 36 °C. Variations up to 27.7% were
measured with respect to the maximum throughput achieved in that interval. This demonstrates that
ambient temperature is a critical parameter in case active cooling cannot be applied.

Keywords: ambient conditions; convolutional neural networks; edge vision; long-term inference;
thermal throttling; Raspberry Pi

1. Introduction

Deep learning (DL) [1] and its particular embodiment in the form of convolutional neural
networks (CNNs) have become the de-facto approach to address many computer vision tasks,
e.g., image recognition, object detection, or segmentation. New training and processing techniques
together with the availability of large datasets and high computational power are the main underlying
factors supporting the distinctive feature of CNNs versus classical algorithms, i.e., their high accuracy.
The flip side of this high accuracy is a notable increase in processing and memory requirements,
which has prompted multiple research efforts on designing efficient network architectures [2-8]
and reducing the computational load of CNNs through techniques such as network pruning,
data quantization, and network compression [9-11].

Despite these efforts, the implementation of CNNs still constitutes a major challenge for
edge visual inference. Application scenarios such as robotics [12], environmental monitoring [13],
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or the Internet of Things (IoT) [14] can greatly benefit from incorporating vision capabilities in
ultra-low-power low-cost devices. However, DL-based processing pipelines deplete the scarce
resources available in such devices, significantly affecting the timely completion of other tasks.
Furthermore, CNNs can degrade their own performance—and therefore the performance of the whole
system—as a result of thermal throttling, precluding continuous inference at prescribed throughput
during a long runtime period.

In this study, we expressly focused on the problem of thermal throttling, i.e., the automatic
reduction of processor performance caused by temperature excess. It is a preventive action to avoid
thermal damage of system components and implies a reduction of the clock frequency. Our analysis
is based on an extensive set of indoor measurements comprising state-of-the-art CNN models and
software frameworks deployed on the latest version of arguably the most popular embedded CPU
platform, i.e., Raspberry Pi 4B (RPi4B). In addition to the standard 32-bit operating system (OS) usually
running on RPi4B, we also characterized the 64-bit beta version recently released. This vast set of
measurements is intrinsically valuable as a basis to compare and select the optimal combination of
components according to prescribed specifications for edge vision. Concerning thermal throttling,
we examined the long-term performance of 80 combinations without and with active cooling in terms
of throughput; CPU usage, temperature, and frequency; and fan usage. The best combinations for
each parameter are pointed out and interesting conclusions are drawn. For instance, we prove that the
64-bit OS is not always the best option, in spite of the fact that it is supposed to better exploit the 64-bit
architecture of the RPi4B CPU. We also analyze the case of outdoor operation to elucidate the impact
of varying ambient temperature with no active cooling. This is critical for remote sensing applications
in which the extra power consumption of the fan could not be affordable.

The remainder of this paper is organized as follows. In Section 2, related studies reported in
the literature are briefly reviewed and our contribution is emphasized. The experimental setup for
assessing thermal throttling during CNN inference together with the evaluated hardware and software
components are introduced in Section 3. The characterization methodology is described in Section 4.
The indoor experimental results are presented and discussed in Section 5 whereas the outdoor case is
addressed in Section 6. Finally, we draw relevant conclusions in Section 7.

2. Related Work

Throughput, energy budget, or memory restrictions are major concerns when designing an
embedded system for edge vision. These days, it implies to carefully consider the heterogeneity of
CNN models and specialized hardware and software available for DL-based inference. Regarding the
ever-growing zoo of CNN models, comparative studies facilitate model selection according to the
prescribed application accuracy and model size suitable for the target platform [15,16]. However,
there is a strong dependence on the underlying hardware integration and software framework.
In recent studies, the inference time and energy consumption of CNNs on various edge platforms and
hardware accelerators were measured [17-19]. At software level, the performance of a diversity of
frameworks for mobile applications was also evaluated in [20], where it is stated that the software
stack contributes to the inference performance in the same proportion as model complexity does.
The recent project MLPerf [21] constitutes an attempt to address this complex scenario holistically. It is
a collaborative benchmark framework to provide reliable performance figures for multiple models,
hardware platforms, and software environments.

In view of these benchmarking efforts, it is remarkable that thermal issues derived from running
CNNss on edge devices have hardly been addressed in previous works. In [22], different algorithms
were studied for managing both platform overheating and power consumption during extensive
workloads on IoT devices. To this end, the authors applied well-known techniques such as dynamic
power management and dynamic voltage and frequency scaling (DVES). However, they focused
on basic vision tasks and did not analyze the impact of thermal throttling. Two power control
policies for embedded systems were evaluated in [23]. CNNs were characterized under DVFS thermal
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management based on such policies. In a more recent study [24], the same authors analyzed the
impact of model topology scaling on power-constrained systems over both functional (accuracy) and
non-functional (latency and temperature) constraints. In both works [23,24], the authors stressed the
importance of thermally induced performance degradation and the scarcity of studies on the topic.
In this context, the first major contribution of our study is a thorough assessment of the impact
of thermal throttling on a broad set of state-of-the-art CNN workloads running on a low-cost CPU
platform under stable ambient temperature. Performance metrics are compared with the case of
hysteresis-based active cooling, which prevented performance degradation for all the workloads.
A second contribution is the evaluation of fan usage during active cooling, which allows to quantify
the extra power consumption required to keep maximum performance; interestingly, the fan usage
widely varied over the benchmarking set. Finally, a third important contribution is the analysis of
outdoor performance in a wide range of ambient temperature with no cooling. We consider that the
discussion and conclusions about our results will also be of interest for the related research community.

3. Experimental Setup

Figure 1 shows the experimental setup employed for the different characterizations performed in
this study. The central device is the RPi4B. An off-the-shelf camera module [25] was also integrated,
but it was not finally used for testing. Instead, images previously stored in memory provided a constant
input flow, thereby ensuring that no bias on performance occurred due to changes in illumination
conditions. The ambient temperature was sensed by a DHT11 temperature sensor [26] connected to
an Arduino Nano microcontroller, which transmits the temperature values to the RPi4B through the
serial port. Next, we provide further details about the RPi4B platform and briefly describe the different
components of the software stack and the evaluated CNN models.

Figure 1. Experimental setup: visual inference was performed on the RPi4B, which also processed
temperature values from a DHT11 sensor controlled by an Arduino Nano microcontroller.

3.1. Hardware Platform

CNN-based computer vision was implemented on the RPi4B [27]. Its Broadcom BCM2711
system-on-chip includes a quad-core ARMv8 Cortex-A72 64-bit CPU that can work at frequencies
ranging from 600 MHz to 1.5 GHz. It also incorporates a Broadcom VideoCore VI GPU, but it cannot
be easily exploited for CNN inference at the present time, i.e., leveraging open-source DL software for
GPU acceleration. We specifically used an RPi4B model featuring 8 GB LPDDR4-3200 SDRAM.

Heavy processing workloads resulting from running CNNs cause CPU overheating, which is
automatically counteracted through a DVES strategy encoded in the RPi4B firmware [28]. When the
temperature of the quad-core ARM processor exceeds a critical value (Tj;,;; = 80 °C for RPi4B),
the clock frequency of the cores is progressively reduced from 1.5 GHz to, eventually, 600 MHz,
thereby gradually degrading CNN inference performance. Alternatively, CPU overheating can be
mitigated through an external cooling fan. We employed a commercial module [29] compatible with
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RPi4B consisting of a fan unit mounted on a circuit board. This board allows the user to control the fan
with a hysteresis approach in accordance with the CPU temperature through a Python library [30].
The fan consumes 0.65 W when it is on. Given that the power consumption of the RPi4B ranges from
3 W (idle) to 6.25 W (under stress) [31], the fan increases the power consumption of the system at least
by approximately 10%.

3.2. Software Stack

3.2.1. Operating System

Raspberry Pi Foundation officially provides a 32-bit OS for RPi4B—so-called Raspbian [32].
Nonetheless, a 64-bit beta version of this OS was recently released [33]. This second version aims to
completely leverage the 64-bit ARM processor of the platform. Experiments were conducted on both
Raspbian flavors.

3.2.2. DL Frameworks

Training, testing, and deployment of DL-based applications are facilitated by DL software
frameworks. Within the diversity of tools publicly available these days, we selected the following
frameworks specifically oriented for embedded inference:

OpenCV [34] is a popular library that allows importing DNN models previously trained with
other tools—e.g., Caffe, TensorFlow, or Torch—to perform visual inference. We built OpenCV version
4.3.0-dev by setting the pertinent compilation flags to exploit the ARM NEON instruction set and
enable VFPv3 optimizations. This library was accessed through its C++ interface.

Tengine [35], developed by OPEN AI LAB [36], is a tool intended for running neural networks on
embedded devices and IoT scenarios. It is specifically designed to make the most of ARM architectures.
Pre-trained models from Tensorflow, Caffe, and MXNet, in addition to ONNX models, can be converted
to the particular model format employed by Tengine. We used the standalone version of Tengine
v1.12.0 and C++ coding.

NCNN [37] is an inference framework optimized for mobile platforms. Its high-performance
implementation, exclusively encoded in C++, supports ARM NEON optimizations and multi-core
parallel computing acceleration. It can import models from Caffe, PyTorch, MXNet, ONNX,
and DarkNet.

ArmNN SDK [38] is a set of open-source Linux software tools that enables machine leaning
workloads on power-efficient devices. It provides a bridge between existing neural network
frameworks and low-power Cortex-A CPUs, ARM Mali GPUs, and ARM Ethos neural processing
units. Consequently, it is supposed to fully leverage the RPi4B cores. This software can take networks
from other DL frameworks, translate them into the internal ArmNN format and deploy them efficiently.
It supports Caffe, TensorFlow, TensorFlow Lite, and ONNX models. The version of ArmNN we used
is v20.05 through its Python API (pyArmNN).

3.3. Convolutional Neural Networks

We benchmarked the five CNNSs listed in Table 1. All of them were trained over the ImageNet
dataset [39] for 1000-category image classification. The set includes complex—ResNets—and
lightweight—MobileNets and SqueezeNet—models. Note that there is no clear correlation between
an increasing number of weights and a corresponding higher accuracy. This has a significant impact
on the achievable performance, as will be demonstrated in Section 5. We downloaded the files with
the corresponding pre-trained network weights compatible with each framework from the public
repositories shown in Table 2.
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Table 1. Popular convolutional neural networks (CNNs) for 1000-category image classification assessed
in this study.

Network Work Top-1 Top-5 #Weights
SqueezeNet-v1.1 [71 575% 80.3% 12M
MobileNet-v1 [5] 70.6% 89.9% 42M
MobileNet-v2 [6] 720% 905% 34M
ResNet-18 [40] 69.1% 89.0% 11.7M
ResNet-50 [40] 772% 93.3% 25.6M

Table 2. Repositories serving the files with pre-trained network weights used in this study. These files
were either directly loaded for inference or translated to the format required by each framework.

Network OpenCV/Tengine NCNN ArmNN
SqueezeNet-v1.1 [41] [42] [43]
MobileNet-v1 [44] [42] [45]
MobileNet-v2 [44] [42] [46]
ResNet-18 [47] [42] [48]
ResNet-50 [49] [42] [50]

4. Characterization Methodology

The long-term performance of each and every combination among the aforementioned OSs,
software frameworks, and CNN models was evaluated on the RPi4B according to the methodology
described next.

4.1. Metrics

Key performance metrics such as throughput, CPU usage, CPU temperature, and CPU frequency
were periodically monitored during continuous inference periods. The experiments were repeated for
two cases:

. case (a): raw version of the RPi4B hardware, i.e., no active cooling.
e case (b): application of active cooling through the external fan unit.

A C++ test program was coded to extract the metrics (In the case of ArmNN, the test program was
coded in Python given that we used the Python interface of this framework). This program proceeded
as follows:

1. Images from ImageNet were resized to fit the input resolution of the pre-trained CNNs,
i.e., 3 X 224 x 224. This pre-processing time was not included in the throughput.

2. Real-time CNN inference with batch size 1 was performed and the instantaneous throughput
was measured.

3. CPU usage, temperature, and frequency were monitored through calls to Linux tools, in particular
vcgencmd and mpstat.

The instantaneous ambient temperature was also periodically recorded during the tests. For the
indoor experiments, this information allowed us to ensure that all the tests were conducted at ambient
temperatures as stable and similar as possible, always within the range 27-29 °C. For the outdoor
experiments, the ambient temperature was correlated with the system performance under no-cooling
conditions to evaluate the impact of the former on the latter.
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Finally, we also evaluated the fan usage, denoted by FU, for case (b) according to the
following equation:

FU(%) = tf—TN x 100 1)

where tpn denotes the sum of time intervals in which the fan was on within the total test time,
denoted by t7. Note that when applying active cooling, a hysteresis approach is typically employed
to reduce FU as much as possible. We set the hysteresis on/off temperatures at 75 °C and 65 °C,
respectively, to prevent thermal throttling on the RPi4B CPU.

4.2. Tests

Each individual experiment was started when the CPU temperature was cool and stable, far away
from thermal throttling. The two considered cases—(a) no cooling; (b) active cooling—were analyzed
by averaging the aforementioned metrics at steady state. In case (a), steady state means that CPU
overheating gave rise to thermal throttling and the DVFS strategy encoded in the RPi4B achieved a
stable system performance. In case (b), active cooling maintained a steady performance throughout
the total duration of all the tests. We exemplify these behaviors in Figures 2 and 3 for 64-bit
OS/OpenCV/SqueezeNet.

Figure 2 shows the long-term behavior of CNN inference without active cooling. The CPU
temperature reached Tj;,,;; after approximately 50 s of workload, causing thermal throttling and hence
reduction of the CPU frequency from that instant on. Consequently, the throughput was notably
affected, eventually reaching a stable value of approximately 10 fps, which is significantly lower than
its initial value, around 16 fps. This occurred after approximately 1000 s of continuous inference,
when the underlying DVEFS strategy achieved a stable temperature around 85 °C. The histograms in
the bottom plot reveal that the processor operated at 1 GHz most of the time, with peaks of CPU usage
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Figure 2. Example of test for case (a)—no cooling—and 64-bit-OS/OpenCV /SqueezeNet combination.
(i) Increasing CPU temperature leads to thermal throttling, forcing the reduction of the CPU frequency.
(ii) Throughput decreases due to thermal throttling, eventually becoming stable; CPU usage is also
represented. (iii) Histograms summarizing the plots above.
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Figure 3 depicts the same CNN inference but applying active cooling. The impact of the
fan hysteresis cycle on the CPU temperature is evident. Thermal throttling never occurred.
Both CPU frequency and usage kept stable at 1.5 GHz and approximately 75%, respectively. Likewise,
the throughput slightly fluctuated around 16.4 fps. The histograms in the bottom plot confirm this
steady behavior. Note that the CPU temperature swept a wider interval than in Figure 2 but always
below Tlimit-
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Figure 3. Example of test for case (b)—active cooling—and 64-bit-OS/OpenCV /SqueezeNet
combination. (i) The CPU temperature clearly benefits from the fan hysteresis cycle, keeping the
CPU frequency stable, in contrast with the top plot in Figure 2. (ii) Stable throughput and CPU usage
are achieved, in contrast with the center plot in Figure 2. (iii) Histograms summarizing the plots above.

5. Indoor Tests: Results and Analysis

Indoor experiments were conducted under stable ambient temperature. Considering every
possible combination of the aforementioned OSs, DL frameworks, and CNNs (ArmNN v20.05 did
not support SqueezeNet at the moment of performing these tests. Thus, we specifically employed
v20.08 for this CNN) along with the two general cases, (a) and (b), a total of 80 inference scenarios were
characterized. For all of them, the tests were properly extended until reaching steady-state performance.
As an example, the longest indoor test lasted 5340 s for 32-bit OS/OpenCV /ResNet-50 with no cooling.
The results are summarized in Figures 4-7 and discussed below. Note that Figure 6 only shows the
average steady-state CPU frequency for case (a) given that this parameter always keeps at its maximum
(1.5 GHz) when active cooling was applied. Likewise, Figure 7 only depicts the fan usage for case (b).
As a general comment, the variability of these results demonstrate the importance of carefully selecting
a set of hardware and software components suitable for the target application.

*  Throughput. Figure 4 shows the average steady-state throughput (expressed in frames per
second) for cases (a)—no cooling—and (b)—active cooling. As expected, there is a clear inverse
correlation between the complexity of the models, reflected by the rightmost column in Table 1,
and the average frame rate: the higher the network complexity, the lower the throughput.
As pointed out in Section 3.3, the accuracy does not follow such correlation so markedly. Thus,
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throughput is not always traded off for a more precise inference. In such cases, the global
performance is significantly degraded. Tables 3 and 4 show the best combination of OS and DL
framework for each CNN. Remarkably, Tengine achieves the highest throughput in all cases but
one (ResNet-50, no cooling), for which anyway Tengine performs closely to ArmNN. Note that,
as expected, active cooling always leads to better performance than no cooling, no matter the
combination considered. However, this is not the case for the 64-bit OS versus 32-bit OS. Indeed,
with no cooling, many combinations performed better on the 32-bit OS. We conjecture that this
is due to the specificity of each framework when it comes to exploiting the underlying system
architecture. Finally, note that there are combinations for which active cooling is particularly
beneficial. For instance, this is the case of OpenCV on the 64-bit OS, for which active cooling
improves the throughput by approximately 82% on average for the five CNNs, with an absolute
maximum of approximately 90% for ResNet-18. Interestingly, the average improvement for
OpenCV on the 32-bit OS is only 27.5%.

e  CPU usage. Figure 5 shows the average and standard deviation of the steady-state CPU
usage. This metric is particularly interesting because it provides information about the available
CPU power to carry out other tasks. The first aspect to point out is that, generally speaking,
the application of active cooling hardly affects the average CPU usage. However, it does
have an impact on the standard deviation, in particular for the 64-bit OS, achieving greater
stability—i.e., smaller standard deviation—at steady state. Note that Tengine, in addition to
achieving the highest frame rates, is the most efficient framework in terms of CPU usage for the
majority of combinations. By contrast, ArmNN is the less efficient in most of the cases.

e  CPU frequency. The average CPU frequency (The fact that we calculate the average explains the
granularity of values of the CPU frequency, which actually takes instantaneous values from a
reduced set within the interval [600 MHz, 1.5 GHz]) for case (a)—no cooling—is shown in Figure 6.
This metric is directly related with power consumption. For the 32-bit OS, ArmNN operates at
the lowest frequency for four out of the five network models whereas OpenCV runs at the highest
frequency also for four of the CNNs. Interestingly, this changes for the 64-bit OS, on which
OpenCV operates at the lowest CPU frequency for four models and NCNN clearly reaches the
highest frequency in all cases. Again, keep in mind that for case (b)—active cooling—the CPU
frequency never decreased from its maximum value, i.e., 1.5 GHz.

e  Fan usage. Figure 7 shows the values of FU(%) for case (b)—active cooling. This parameter
determines the extra consumption required for precluding thermal throttling. Note that NCNN
is the framework demanding the lowest usage of active cooling in most of the cases for both the
32-bit and 64-bit OSs. By contrast, ArmNN is clearly the framework requiring the longest time of
fan for the 32-bit OS. Concerning the 64-bit OS, OpenCV presents high fan usage—not necessarily
the highest—for the five CNN models. Globally, the values of FU(%) range from 33% to 65%.

Two important conclusions can be drawn from the above discussions. First, active cooling is
worth it as long as its power consumption is affordable. Note that the extra consumption with respect
to no cooling stems from two sources: (i) the consumption associated with the fan to prevent thermal
throttling; (ii) the higher consumption derived from the fact the CPU constantly operates at its highest
frequency. If affordable, active cooling always improves the throughput, with a significant increase in
some cases. Second, Tengine seems to be the best option, no matter the OS version or whether active
cooling is applied. This framework achieves the best throughput at the lowest CPU utilization in most
scenarios, with moderate CPU frequency in case of no cooling, and moderate fan usage in case of
active cooling.
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Table 4. Combinations achieving maximum throughput for case (b)—active cooling.
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(b)—active cooling.
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6. Outdoor Tests: Results and Analysis

Outdoor visual inference typically suffers from unregulated ambient temperatures that can
affect the processor performance. According to the results presented in the previous section,
thermal throttling can be prevented through active cooling. However, there are power budgets
in outdoor application scenarios—e.g., remote environmental monitoring—that could not afford the
extra consumption of the fan. Thus, we conducted a number of outdoor tests to evaluate the impact of
ambient temperature sweeping a wide variation interval while performing continuous CNN processing
on the RPi4B with no active cooling.

The setup for outdoor tests is shown in Figure 8. The whole system was placed in a black cardboard
box for protection and homogenization of the temperature of all the components. Following the same
procedure described in Section 4.1, we periodically monitored the instantaneous CNN runtime,
the CPU temperature and frequency, and the ambient temperature.

Figure 8. Experimental setup for outdoor tests. The whole system was placed in a black cardboard box
for protection and temperature homogenization.

Figure 9 shows an example of collected temporal data. It corresponds to approximately 520 min
of continuous inference with 32-bit OS/Tengine/SqueezeNet. In this particular test, the ambient
temperature inside the box ranged from 38 °C in direct sun in the afternoon to 21 °C at night.
The throughput correspondingly varied from 17.7 fps to 22.5 fps. To better understand this temperature
dependency, Figure 10 depicts throughput and CPU frequency as a function of the ambient temperature.
Data on the y-axis represent the average of all the measurements taken for each step of 1 °C (x-axis).
The correlation is evident: higher ambient temperature gives rise to worse inference performance (blue
dots) due to thermal throttling expressed in terms of CPU frequency (green dots).

The proposed metric to analyze the impact of ambient temperature is the maximum relative
throughput variation, denoted by ATh(%). It measures the loss of throughput with respect to the
maximum value recorded during a particular experiment, i.e., Thyay. Thus, ATh(%) is expressed
as follows:

Thmax — Thiin

ATh(O/O) = Tma-x X 100 (2)

where [Thyiy, Thmay| represents the range of throughput variation during the corresponding
outdoor test.
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Figure 9. Example of temporal evolution of throughput and simultaneously monitored ambient
temperature for the 32-bit-OS/Tengine/SqueezeNet combination in outdoor test with no cooling.
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Figure 10. Throughput and CPU frequency vs. ambient temperature for the outdoor test shown in
Figure 9.

Note that the conducted outdoor tests were time-consuming—typically a few hours were
required for ambient temperature to vary in a wide interval—and strongly dependent of
external thermal conditions—it was difficult to replicate experiments sweeping the same range
of temperatures. Eventually, we were able to successfully complete tests for three representative
combinations of framework/model on the 32-bit OS: Tengine/SqueezeNet, Tengine /MobileNet-v2,
and OpenCV /ResNet-50. This covers from a case featuring low CPU usage and high throughput,
i.e.,, Tengine/SqueezeNet, to a combination characterized by a high computational load such as
OpenCV /ResNet-50, with Tengine/MobileNet-v2 as an intermediate case. For these combinations,
we were able to reproduce similar conditions, with the ambient temperature always in the range
22 °C-36 °C. Figure 11 summarizes the results. It shows the average throughput for each temperature
step normalized with respect to its maximum, that is, Thy,y. This maximum occurred at 22 °C
in all cases; the particular values of throughput at this point are included in the plot. Likewise,
the minimum occurred at 36 °C in all cases; the particular values of throughput at that point are
also included in the plot. The corresponding values of ATh(%) are reported in Table 5. Remarkably,
the impact of varying ambient conditions on continuous inference is not negligible at all. Even for
the lightest model (SqueezeNet), ATh(%) takes a value of 19.3%. ResNet-50 on OpenCV is even more
sensitive to the ambient temperature, with ATh(%) reaching 27.7%. Depending on the requirements at
application level, this variation could be critical to continuously meet the expected performance in real
operation conditions.
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Figure 11. Average throughput normalized with respect to Thy,;y as a function of the ambient
temperature. The maximum and minimum values of throughput, which occurred at 22 °C and
36 °C, respectively, are also displayed for each curve.

Table 5. Values of ATh(%) (defined in Equation (2)) for the three combinations of outdoor tests conducted.

Framework/Network ATh

Tengine/SqueezeNet-vl.1  19.3%
Tengine/MobileNet-v2 19.5%
OpenCV /ResNet-50 27.7%

7. Conclusions

In this study, we demonstrate that thermal effects cannot be neglected when it comes to designing
embedded vision systems for real application scenarios. Thermal throttling can notably decrease the
throughput during long-term continuous inference, with further degradation in case of high ambient
temperature. Active cooling can prevent it, but at the cost of extra power consumption. In both
cases—no cooling and active cooling—the resulting performance varies significantly depending
on the OS, software framework, and CNN model. Thus, benchmarking and tests conducted
under real operation conditions become fundamental to gain reliable insight about the expected
behavior. Future work will address the development of techniques to maximize the performance of
embedded systems tailored for remote sensing in terms of throughput, accuracy, and battery lifetime.
These techniques will cover from advanced temperature and power managing algorithms to dynamic
adaptation of the image resolution according to the scene content to optimize the use of the available
computational power.
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