
Object Oriented Specification based on Restrictions: Participation and
Interaction

J. TORRES, J.A. TROYANO, M. TORO, R. CORCHUELO, A. DURÁN
Departamento de Lenguajes y Sistemas Informáticos

Universidad de Sevilla
Avd. Reina Mercedes s/n 41012 Sevilla

SPAIN

Abstract: - We show in this paper an object oriented model (and an associate language called TESORO) based
on several kinds of restrictions. We describe the template of an object class using four types of restrictions: a)
static restrictions that allow us to express a state invariant, b) transition restrictions that describe the
relationship between the previous and following states of an event occurrence, c) participation restrictions that
specify the possible ways of evolution, and d) interaction restrictions that describe the way in which objects
synchronise and communicate among them. Another important characteristic of our model is the differentiation
between individual and collective features of objects. In this sense when we specify the template of a class, we
can describe individual restrictions that have an effect only on an object, or we can describe collective
restrictions that have an effect on a set of objects or even on a whole class of objects.

Key-Words:Restriction,participation,interaction,communication of objects. CSCC'99 Proceedings, Pages:6441-6445

1 Introduction
Object oriented development is a popular approach
in Software Engineering, it has been successfully
used in all the phases of software development
from analysis to implementation.

Particularly in the analysis phase, in recent years
have appeared several specification languages
based on object oriented concepts, like OOZE[1],
Z++[9], TROLL[6], LCM[4], OASIS [10], etc.

In this paper we do not aim to present another
object oriented specification language. On the
contrary we are going to present an object model
that combines object oriented features and
restrictions.

Objects are the principal pieces in our model. An
object has a structure defined by means of
attributes, and a behaviour described by means of
events. Classes are sets of objects with the same
structure and behaviour. Actually, we do not
specify objects, we specify the features of classes
of objects, describing templates of classes. Once we

have the description of a class, we can define an
object as an instance of this class.

A whole system is a set of objects that can be
created and destroyed. We assume that all the
objects that exist in every single moment evolve
concurrently. However, the internal behaviour of an
object is sequential [3].

Events are the points that determine the
evolution of every object and of the whole system.
Objects can participate in events, and this
participation can provoke a change in their states.
In the same event can participate one or more
objects, this aspect provides synchronisation and
communication among objects.

Our communication model among objects is
based on multi-part synchronous interactions[5].
With this kind of interactions we can synchronise
several objects with their participation in the same
event. These objects will negotiate the values of the
parameters of the event and this negotiation will
imply the communication of values among objects.
This approach is not new, and has been presented

in several proposals, for example: synchronisation
between two processes with communication of
value (CSP[7]), or rendezvous n-ary asymmetric
(LOTOS[8]). These two proposals have in common
that the number of parts in the communication is
static, that is, we have to know how many objects
(process in LOTOS and CSP) are going to
participate in the same event. However, our
communication model is more flexible, because we
do not have to specify the number of objects that
will participate in an event, this number is dynamic
and it will be determined at the time of the event
occurrence.

The organisation of this paper is that follows.
This introduction is the first section. In the second
section we are going to present a classification of
the restrictions that we can use to specify the
structure and behaviour of a class of objects. In
third and fourth sections we present two of the
most interesting characteristics of our language:
participation restrictions and interaction
restrictions. Finally, in the fifth section we extract
the main conclusions of this work.

2 Types of restrictions
Our model allows us to specify a system using
classes and objects. We can impose restrictions on
the structure of the objects in a similar way that in
Data Base specifications[2], and restrictions on the
behaviour of the objects like in concurrent
systems[7],[8].

Depending on the way in which restrictions limit
the structure and behaviour of objects, we can
establish the next classification:

a) Static restrictions: With this kind of restrictions
we can limit the set of possible states in which
objects of a class can be. According to the
scope of application, we have three kinds of
static restrictions:
 Individual static restrictions: These

restrictions are defined in the template of a
class and establish relationships among the
values of the attributes of each object of this
class. These restrictions are evaluated
individually.

 Collective static restrictions: These
restrictions limit the state of the whole class
of objects (no only the state of an individual
object). We define collective static
restrictions by means of predicates evaluated
over multi-sets of attributes (all values that
takes an attribute for each object of the
class). For example, we can express that the
sum of the values that takes an attribute for
each object of a class do not go beyond a
limit.

 Inter-class static restrictions: With these
restrictions we can describe structural
relationships among classes of objects. We
specify these restrictions by means of
predicates over multi-sets of values of
different classes. With a inter-class static
restriction, for example, we can specify that
the number of objects of a class must be
greater than the number of objects of another
class.

b) Transition restrictions: These kind of
restrictions relate two states, present state and
next state. Like static restrictions, we can
establish transition restrictions at the object
level (individual), at the class level (collective)
and at the system level (inter-class).

c) Participation restrictions: With these
restrictions we can specify when and how an
object is able to participate in events. We can
express participation restrictions using three
mechanisms:
 Permissions: That are logical expressions

associated to an event. These expressions are
evaluated over the values of the attributes of
an object and over the parameters of the
event. If the permission is true, the object
will be able to participate in the event.

 Dynamic restrictions: With this kind of
restrictions we are able to describe an order
relationship in the event participation of an
object. We use process algebra operator to
specify behaviour expressions.

 Obligations: With permissions and dynamic
restrictions we only can express possibility
of participation, but we can not express
certainty of participation. Now, with
obligations, we specify conditions that if

they are true, assure us the participation of
an object in a certain event.

The behaviour of an object can not violate none of
the participation restrictions imposed to its class.
But these are not the only restrictions that we have
to safeguard, we also have to guarantee that static
restrictions are not violated. Due to the
participation in an event can provoke a change of
state, its participation only will be possible if the
change of state that it causes do not violate any
static restriction. In this sense, we can say that
static restrictions are implicit participation
restrictions.

d) Interaction restrictions: These kind of
restrictions describe which objects will
participate in the same event and which roles
play each one of them.

3 Participation restrictions
Through participation restrictions we will be able to
express when an object is disposed to participate in
an event. We can use three different mechanisms,
permissions, dynamic restrictions}, and
obligations.

3.1 Permissions
Permissions are logical expressions associated to
events (actually to channels that are abstracts views
or types of events). These expressions are evaluated
over the values of the attributes of an object and
over the parameters of a channel. If a permission is
true, it will make possible the participation of the
object in an event through the channel. The way in
which this participation will affect to the state will
depend on the enabled transition.

Permissions are restrictive mechanisms, because
they limit the participation of an object in events
depending on its state. For example, we permit the
participation of an object of a class Server in an
event of the channel service(req_res:nat), only if
the number of requested resources (the parameter
req_res) is smaller than the number of available
resources (the variable attribute avl_res):

 req_res<=avl_res => service(req_res)

3.2 Dynamic restrictions
With permissions and transitions we can specify

state machines to describe the behaviour of a class
of objects. However, there is a more compact way
to do this using dynamic restrictions. These
mechanisms allow us to describe an order
relationship in the event participation of an object.

Dynamic restrictions are specified by means of
processes. A process has a name and its behaviour
is described by a behaviour expression. In this type
of expressions, events are the operands and they are
combined using a set of operators with a predefined
semantic [7],[8].

A behaviour expression has the following abstract
syntax:

 behav_exp : event
 | behav_expr[]behav_expr
 | behav_expr|||behav_expr
 | behav_expr;behav_expr
 | behav_expr *

The operator '[]' denotes choice, the operator '|||'
denotes interleaving, the operator ';' represents
sequential composition, and '*' means iteration.

 For example, we can specify the behaviour of a
vending machine with the following behaviour
expression:

 (coin; (coffee [] chocolate)) *

3.3 Obligations
Obligations are (like permissions) logical
expressions associated to channels. With this
mechanism we are able to describe an obligatory
participation in a event. If an obligation (evaluated
for a concrete object o and a concrete event cn(v))
is true, the object o is obliged to participate in the
event cn(v).

For example, given a class Client of a library, we
can oblige to its objects to participate in the event

return_book when he has more than three books
(attribute variable number_books):

 number_books > 3 => return_book

4 Interaction restrictions
In our model, it is possible that more than one
object participate in the same event. Interaction
restrictions let us to specify how many objects (and
how) can participate in an event.

Through interaction restrictions, we can say how
many classes are involved in the same channel c,
and how the objects of these classes decide the
values of parameters of the event (through the
channel c) in which they are going to participate.

Given a channel c, each class cli of objects
involved in it has a local view of c, denoted ci. All
local views of a channel c have not to be equal,
because from the point of view of each class, all
parameters of a channel are not interesting. So,
these local views are a syntactic mechanism that let
us specify which aspects (parameters) of a channel
are interesting for a class.

In fact, with interaction restrictions, we establish
relationships among the different local views of a
channel, composing the global (or system) view of
the channel. To do this we only have to link the
parameters of a local view to the equivalent
parameters of other local views.

For example, given a library system, with two
important classes, the Book class and the Client
class. There is an action (event) in which object of
both classes are going to coincide, this action is the
loan of a book to a client. From the point of view of
the class book we can assume that it is only
important to know that somebody want to get it. So
the local view of the channel may be:

 be_lent()

However, from the point of view of the client, it is
also important to say the book that he wants. So the
local view of the channel may be:

 request(b:Book)

the global view of the channel (named loan) will
be determined by the following interaction
restriction:

 Client(c).request(b)= loan:Book(b).be_lent

where we are saying that the object b of the class
Book can participate in a loan event at the same
time that the object c of the class Client. Besides,
we are saying that the identification of b must
coincide with the parameter b of the Client's local
view of the channel.

In this example, the global channel will have the
following structure:

 loan(c:Client, b:Book,)

Actually, what we manage with an interaction
restriction is to merge local participation
restrictions of several classes (imposed to local
views of a channel) into a unique participation
restriction (imposed to the global view of the
channel).

To allow the occurrence of an event through a
channel that involves several classes there must be
at least one object of each class disposed to
participate in that event.

If there are more than one objects of a class
disposed to participate in that event they will be
able to do it. So, although the number of classes
involved in an interaction restriction is always
static, the number of objects that can participate in
the same event is dynamic, and it will depend on
the local participation restrictions of each object.

5 Conclusions
In this paper we have shown the main
characteristics of an object oriented model based on
several kinds of restrictions. We have only
presented two kinds of restrictions: participation
restrictions, and interaction restrictions, but the
whole model includes also static and transition
restrictions.

By means of static restrictions we can limit the
set of possible states of an object, specifying logical
predicates that can not be violated.

Through transition restrictions we establish
relationships between two states, the present state (the
state before the occurrence of an event) and the next
state (the state after the occurrence of the event).

With the help of participation restrictions we will
be able to express when an object is disposed to
participate in an event.

Finally, through interaction restrictions we can
describe the way in which objects synchronise and
communicate among them.

The other important conclusion is the difference
between individual and collective characteristics of
a template. In our model there are two levels of
specification, the individual level and the collective
level. We can express properties at the individual
level, involving only one object of the class, and
properties at the collective level, involving a set of
objects of a class or even the whole class of objects.

A more extensive definition of TESORO can be
found in the PhD. Thesis [11] which presents the
formal semantic of it, and [12] which studies
inheritance aspects of TESORO.

References:
[1] A. Alencar and J.A. Goguen. OOZE: An

Object Oriented Z Environment. ECOOP'91
Proceedings, vol. 512, pp. 180-199, 1991.

[2] S. K. Das. Deductive Databases and Logic
Programming. Addison-Wesley, 1992.

[3] H.-D. Ehrich and A. Sernadas. Local
Specification of Distributed Families of
Sequential Objects. In Recent Trends in Data
Type Specification, Proc. 10th Workshop on
Specification of Abstract Data Types. Pp.
219-235. Springer, LNCS 906, 1995.

[4] R.B. Feenstra and R.J. Wieringa. LCM 3.0: a
Language for Describing Conceptual Models.
Technical Report IR-344, Faculty of
Mathematics and Computer Science, Vrije
Universiteit, Amsterdam, December 1993.

[5] N. Francez and I.R. Forman. Interacting
Processes. A Multiparty Approach to
Coordinated Distributed Programming.
Addison-Wesley, 1996.

[6] T. Hartmann, J. Kusch, G. Saake and P.
Hartel. Revised Version of the Conceptual
Modeling and Design Language TROLL. Pro.
ISCORE Workshop WS'94}, pp. 89-104,
1994.

[7] C.A.R. Hoare. Communicating Sequential
Processes. Prentice-Hall International Series
in Computer Science, 1985.

[8] ISO - Information Processing Systems Open
Systems Interconnection - LOTOS, A Formal
Description Technique Based on the
Temporal Ordering of Observational
Behaviour. ISO 8807, 1988.

[9] K. Lano. Z++, an Object-Oriented Extension
to Z. In J. Nicholls editor, Z User Meeting.
Workshops in Computing. Springer-Verlag,
1991.

[10] O. Pastor, F. Hayes, S. Bear. OASIS: An
Object-Oriented Specification Language.
Proceeding of the II Conference CAiSE, pp.
348-363. Manchester, UK. May 1992.

[11] J. Torres. Especificaciones Orientadas a
Objetos basadas en Restricciones: prototipado
en un lenguaje orientado a procesos. PhD.
Thesis. Universidad de Sevilla. Diciembre de
1997.

[12] J.A. Troyano. Herencia y Clasificación en un
Lenguaje de Especificación Orientado a
Objetos. PhD. Thesis. Universidad de Sevilla.
Junio de 1998.

