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Abstract. A two-stage method for detecting microcalcifications in
mammograms is presented. In the first stage, the determination of
the candidates for microcalcifications is performed. For this purpose,
a 2-D linear prediction error filter is applied, and for those pixels
where the prediction error is larger than a threshold, a statistical
measure is calculated to determine whether they are candidates for
microcalcifications or not. In the second stage, a feature vector is
derived for each candidate, and after a classification step using a
support vector machine, the final detection is performed. The algo-
rithm is tested with 40 mammographic images, from Screen Test:
The Alberta Program for the Early Detection of Breast Cancer with
50-um resolution, and the results are evaluated using a free-
response receiver operating characteristics curve. Two different
analyses are performed: an individual microcalcification detection
analysis and a cluster analysis. In the analysis of individual micro-
calcifications, detection sensitivity values of 0.75 and 0.81 are ob-
tained at 2.6 and 6.2 false positives per image, on the average,
respectively. The best performance is characterized by a sensitivity
of 0.89, a specificity of 0.99, and a positive predictive value of 0.79.
In cluster analysis, a sensitivity value of 0.97 is obtained at 1.77
false positives per image, and a value of 0.90 is achieved at 0.94
false positive per image. © 2009 SPIE and IS&T.

[DOI: 10.1117/1.3099710]

1 Introduction: Calcifications in Mammograms

Mammography has been shown to be the most effective
imaging modality for the early detection of breast cancer.'
It has been shown that when mammograms are indepen-
dently read by two radiologists (double reading), an 1ncre-
ment of sensitivity of up to 15% can be obtained.”” Be-
cause double reading by two radiologists skilled in
mammography is difficult to realize in most radiological
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centers, in recent years several computerized systems have
been developed to aid diagnosis by radiologists working in
mammography In such computer-aided diagnosis (CAD)
systems, it is of particular interest to detect microcalcifica-
tions due to the fact that, in studies analyzing the mammo-
graphic nature of missed cancers, clustered microcalcifica-
tions composed 19 to 31% of lesions missed in
screenmg " In the study by Bird, Wallace, and Yankasas,’
18% (six of 33) of the missed malignancies presented as
clustered microcalcifications were simply overlooked by
the radiologists. Microcalcifications may be inconspicuous,
owing to their small size and/or obscuration by overlying
fibroglandular tissues, and may be missed even by a dili-
gent radiologist.

Current commercial CAD systems have been designed
to include specific procedures for the detection of potential
malignancies in the breast, and as such, the detection algo-
rithms are heavily biased toward achieving high sensitivity,
thereby sacriﬁcing the specificity of any detection mark
placed. This is clearly evident in the analysis performed by
Freer and Uhssey, where it was observed that 97.4% of all
computer marks placed were dismissed by the radiologist,
and, according to their study, the majority of such false
positives is related to clustered microcalcifications.

The preceding arguments justify the significant effort
that researchers have focused on the detection of microcal-
cifications. Due to sustained effort, the sensitivity of detec-
tion has improved, with some recent papers reporting more
than 90% sensitivity. Nevertheless, the false-positive rate
remains high, J)emally when detecting individual
microcalcifications.

Mammographic CAD systems are based on either a one-
stage or two-stage model."’ In a one- stage model, after a
phase of feature extraction, the entire mammographic im-
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age undergoes a classification phase to decide whether a
region represents a microcalcification or not. Initial studies
on the detection of microcalcifications, which date from the
1970s, are based on a one-stage model: hard decision rules
have been applied to features that represent a given mam-
mogram locally, such as local maxima, contrast, and
compactness Methods proposed by Shen Rangayyan
and Desautels,'> Strickland and Hahn,"” and Kim er al.'

are examples of the one-stage model: they extract shape
features, features in the wavelet domain, or statistical fea-
tures, and then classify each region as a calcification or not.

The majority of recent methods for the detection of cal-
cifications in mammograms apply a two-stage model: first,
regions of interest (ROIs) are selected. Features are ex-
tracted from the ROIs, and then applied to a classifier to
decide if the ROIs represent microcalcifications.

Among the existing methods to select ROIs in mammo-
grams, due to the large number of related published papers,
we limit our interest to those based on statistics derived
from an analysis of the histogram; 15.16 analysis usmg Mar-
kov random fields;'""® and multiscale analysis. 121" Some
recent Works utilize mathematical morphology to detect
ROIs.

Cheng et al.,’ in their review on computer-aided detec-
tion and classification of microcalcifications, classify the
different features extracted from ROIs to detect microcalci-
fications into ten _,Broups: features of individual
microcalciﬁcations co-occurrence features;27 surround
region dependence features;*® gray-level run-length
features;”’ gray-level difference features;”  wavelet
features;®'  Gabor filter bank features;>”  scale- space
features;19 fractal dimension 3 and cluster features.**

The most significant features among a group of com-
puted features are usually obtained via the sequential for-
ward selectlon method or the sequential backward selection
method.'®* Some works have employed genetic algo-
rithms for feature selection, trying to maximize the area
under the receiver operating characterlstlcs (ROC) curve. 36
In this sense, Verma and Zhang recently published a
neural-genetic algorithm to find the most significant com-
bination of features.

Efforts have also been directed toward the development
of new classifiers to determine whether an ROI corresponds
to a microcalcification or not. In this sense, Hall® proposed
the use of fuzzy rules instead of hard decision rules. Gro-
hman and Dhawan® developed a convex-set-based neuro-
fuzzy algorithm for the classification of calcifications. Lee
et al.*® used a shape cognitron neural network to analyze
the shape of microcalcifications and clusters, and classify
them into the mahgnant or benign category. Tsujii, Freed-
man, and Mun®' proposed a trend-oriented radial-basis-
function neural network. There are also some interesting
works that try to determine the best classifier among a set
of classifiers,” or try to optimize a neural network to be
used as the classifier.*’ In recent years, support vector ma-
chines (SVMs) have been utilized as classifiers. 4=

We present a two-stage method. First, the candidates for
microcalcification are selected by means of a 2-D adaptive
filter and a new statistical measure. Then, a feature extrac-
tion step is performed, followed by classification using an
SVM. Classifiers based on the SVM have been utilized for
the detection of microcalcifications.**~*® The novelty of our
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Fig. 1 Scheme of the proposed algorithm for the detection of micro-
calcifications in mammograms. SBS is sequential backward selec-
tion. SFS is sequential forward selection. SVM is support vector
machine.

proposed method is not in the use of the SVM per se, but in
the features employed to classify with the SVM. Gurcan et
al.*” used high-order statistics, including skewness and kur-
tosis. In the present work, we propose a new statistical
feature called the tail ratio. Similar to the method of Gur-
can, Yardimci, and Cetin,48 the method proposed in this
work utilizes the prediction error of an adaptive filter to
detect microcalcifications; however, Gurcan et al. used the
test of Gaussianity to classify calcifications, whereas we
use an SVM. Furthermore, the algorithm for adaptive linear
prediction to compute the prediction error used in the
present work is different from that used by Gurcan,
Yardimci, and Cetin,48 as described in the following sec-
tions.

2 Methods: Detection of Microcalcifications in
Mammograms

Our algorithm to detect microcalcifications follows the
scheme shown in Fig. 1. The algorithm is divided into two
stages. The first stage focuses on the detection of candi-
dates for microcalcifications, and is divided into two parts:
precandidate detection and candidate detection. The second
stage consists of deciding whether a candidate is a micro-
calcification or not. This stage is performed in two steps: a
feature extraction procedure and the final classification
step. In the following sections, each part of the scheme in
Fig. 1 is explained in detail.

2.1 First Stage of the Algorithm
2.1.1 Detection of precandidates

As a first step in the algorithm a selection of precandidates
for microcalcifications is performed For this purpose, a
2-D linear prediction error filter 4950 4 applied, followed by
a thresholding step. A pixel is selected as a precandidate for
microcalcification if its predlctron error is greater than an
adaptively determined threshold.”' This is based on the ob-
servation that a microcalcification can be seen as a point of
nonstationarity in an approximately homogeneous region or
neighborhood in a mammogram. Such a pixel cannot be
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Fig. 2 Region of support (ROS) of size p; X p, for the predicted
pixel x(m, n).

predicted well by the linear predictor, and hence leads to a
high prediction error.

The given image is divided into M X N subimages that
are assumed to be approximately homogeneous. The adap-
tive 2-D linear predictor represents each M X N subimage
as a 2-D sequence x(m,n), with {m,n}={0,1,...,M
—-1;0,1,...,N—1}. The basic assumption in linear predic-
tive coding is that any pixel in an image may be predicted
as a linear combination of a few neighboring pixels. The
predicted value of a pixel x(m,n) at (m,n) is given by

fmn)= >, > ali,j)x(m—in-j), (1)
(i,j)e ROS

where a(i,j) are known as the prediction coefficients and

ROS represents the region of support of the predictor, as

shown in Fig. 2. The prediction error is

e(m,n) =x(m,n) —2(m,n), (2)

and the mean-squared prediction error is

e>=E[e*(m,n)], (3)

where E[-] is the expectation operator. The prediction error
values tend to have a smaller dynamic range and a more
nonuniform distribution than the original pixel values.™

The optimal prediction coefficients that minimize the
mean-squared error are obtained by solving the 2-D Yule-
Walker equations:

- o &peros
2 2 alirak=id=j)=] ; (k1) =(0,0)

(i.j) e ROS

(4)

where r(k,I) is the 2-D autocorrelation function of the
subimage, and £ is the mean-squared prediction error.
The computation of the prediction coefficients from this
relationship requires an estimate of the autocorrelation
function of the image.Sz’5 ? However, the coefficients may
be obtained directly from the data with the multichannel
Burg algorithm.49 In addition to computing the 2-D linear
prediction coefficients, the Burg algorithm may be used to
compute the prediction errors directly from the data. This is
advantageous in the present application, because the error
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Fig. 3 Initialization of prediction error vectors with the original image
pixels, in an MX N subimage for a 3X3 predictor. Each vector
el(k)=eb(k) (for k=0,...), of size p,X 1, is initialized to the corre-
sponding pixel values of the original image.

values provide the information required to select precandi-
dates for microcalcifications (the actual prediction model is
not required).

The multichannel version of the Burg algorithm calcu-
lates the optimal prediction coefficients for a p; X p, 2-D
predictor by computing the prediction errors of order p;.
The prediction errors are represented as vectors of size p,
X 1 and are computed recursively, beginning with the zero-
order prediction errors. The error values are initialized to
the original image, as shown in Fig. 3. The prediction er-
rors of higher orders are calculated by repeating recursively
the following three steps:49_51

1. Compute the covariance matrices for the forward and
backward prediction errors.

2. Calculate the prediction coefficient matrix.

3. Compute the backward and forward prediction error
vectors of the higher prediction order.

Once we know the prediction error values, we use them
as a measure of the stationarity of the image at the corre-
sponding points. Pixels where the prediction error is higher
than a dynamically determined threshold are considered to
be points of nonstationarity, and therefore, precandidates
for microcalcifications. The threshold is adaptively deter-
mined based on the local average intensity of the subimage,
local average value of the prediction error, and the average
intensity of the whole image.

2.1.2 Detection of candidates

Microcalcifications represent small points of high intensity.
Therefore, if we analyze the probability density function
(PDF) of the pixels belonging to a neighborhood surround-
ing a microcalcification, it is expected to have the right tail
(higher gray levels) longer than the left one. Based on this
observation, we propose a parameter called the tail-ratio,
TR, which is a relative measure of the tail length of a PDF.
There are some descriptors in the literature that measure the
heaviness of the tail of a PDF. The kurtosis coefficient is
often regarded as a measure of the heaviness of a distribu-
tion relative to the normal distribution; however, its inter-
pretation and use have been restricted to symmetric distri-
butions, because of its intrinsic comparison with the
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symmetric normal distribution. Another disadvantage with
kurtosis is that it is sensitive to outliers in the data, because
it is based on moments of the data. For any PDF f(x) with
finite moments, kurtosis is defined as:

__EX-E X))
{EdX - ExX) Y’

(5)

where the numerator and the denominator represent the sec-
ond and the fourth central moments of F, respectively, and
X are the data values.

Some authors have presented other robust measures of
kurtosis, but defined only for symmetric distributions, or
merely measuring the peakedness instead of the tail
weight.54’55

Other works overcome the problems mentioned by in-
troducing several measures of tail weight for univariate
continuous distributions that can be applied to symmetric as
well as asymmetric distributions.”® They define left-tail and
right-tail measures as measures of skewness that are ap-
plied to the half-portion of the probability mass lying to the
left or the right, respectively, of the median of the distribu-
tion, denoted as mp=F"'(0.5), where F(x) is the distribu-
tion function. Nevertheless, we have not found these mea-
sures capable of solving the problem of detecting
microcalcifications, because they are estimates of the heavi-
ness of the tail but not its length. Microcalcifications, as
described before, are characterized by a long right tail in
the local histogram. Therefore, to characterize the right tail,
we have developed the measure TR, defined as:

~ max(X) - F1(0.5)
~ F0.5) - min(X)’

(6)

where max(X) and min(X) represent the maximum and
minimum values of X, respectively, and F~! is the inverse
of the distribution function.

Because the size of a microcalcification is variable, the
neighborhood around the precandidates to calculate the lo-
cal histogram should be adaptive. According to the size of a
microcalcification, with the diameter varying from
0.1 to I mm, and according to the resolution of the data-
base of images to be used (50 wm in the present work),
microcalcifications can occupy from 3.2 to 314 pixels.
Therefore, we initially calculate the histogram and the pa-
rameter TR for a 3 X 3-pixel square around each precandi-
date. If TR is above the applicable threshold, the precandi-
date is considered to be a candidate for the subsequent steps
for the detection of microcalcifications. Otherwise, the
square box is increased in size, and TR is recalculated. This
procedure is repeated until one of the following two pos-
sible conditions is fulfilled: 1. the selection box reaches its
maximal area (specified as 20X 20 pixels in the present
work), or 2. TR is higher than the applicable threshold. This
procedure is summarized in Fig. 4. After this step, the can-
didates are prepared for subsequent classification as a mi-
crocalcification or not.

2.2 Second Stage of the Algorithm
2.2.1 Feature extraction

For each candidate for microcalcification, statistical texture
features are extracted that, after a selection procedure, will
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Fig. 4 Scheme to select the candidates for microcalcifications.

be the inputs to a classifier. To calculate these statistical
features we have approximated the PDF with a normalized
histogram, with bin size equal to 1. Specifically, the de-
scriptors chosen for each candidate are:

¢ Size of the square neighborhood (k) where TR ex-
ceeded the threshold.

e TR value.

e Interdistance ID: the parameter ID is based on the ob-
servation that pixels that have high intensity values
(above the 95th percentile) will belong to a microcal-
cification if they are close to one another. Therefore,
we define a parameter ID calculated as:

N
D=~ [(5-x)" + (-] )
i=1

where N is the number of pixels above the 95°th per-
centile, (x;,y;) are the coordinates of the pixels se-
lected, and (x,,y,) are the coordinates of the centroid
of the selected pixels. The smallest neighborhood is
9 pixels. This will be the case for tiny microcalcifica-
tions. In such a case, there will be only 1 pixel above
percentile 95. Therefore, ID=0. When microcalcifica-
tions are bigger, the neighborhood size grows. Then,
the number of pixels above the percentile 95 will be
higher. To maintain ID low, it is necessary for those
pixels to be near one another. In other words, the high-
est values cannot be dispersed but together, constitut-
ing the center of a microcalcification.

 Average of the mean slopes (MS): in the four possible
directions (North, South, East, and West), the mean
descending slope from the pixel with the maximum
value in the neighborhood k X k is calculated, and MS
is obtained as the average of the four values, accord-
ing to the equation
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1 1 n max—k/6
MS=—. ——— — 1) —x(n,

4 (k/6)+1 ,,:%nax Lx(n m) = x(n,m)]
n max+k/6

+ 2 [x(n+1m)—x(nm)]
m max—k/6

+ 2 [nm—=1)=x(nm)]
m=m max
m max+k/6

+ 2 Dm+ ) =x(em)] |, (8)
m=m max

where m max and n max are the coordinates of the
pixel with the maximum value within the neighbor-
hood. The interval we have chosen to average the
slope is k/6, because the estimated diameter of the
microcalcification is k/3 in the k X k square neighbor-
hood.

* Average of maximum slopes (max S): this feature rep-
resents the average of the maximum slopes in the
North, South, East, and West directions of a candidate
according to

max S = l( max [x(n—1,m) —x(n,m)]

n max=n=n max—k/6

+ max
n maxsn<=n max+k/6

[x(n+1,m) —x(n,m)]

+ max [x(n,m—1) = x(n,m)]

m max=m=m max—k/6

+ max [x(n,m+1) —x(n,m)]).

m max<m<=m max+k/6

)

e Entropy (Ent), defined as Ent:—Ejy:_lP(j)logz[P(j)],
where N represents the number of gray levels in the
image and P(j) is the probability of occurrence of
gray level j.

* Average height (AH) of the histogram within the k
X k neighborhood: this parameter is defined as

Iy 0))
" [max(X) - min(X)]’

where h represents the histogram of the data distribu-
tion X within the k X k neighborhood.

e Correlation with a Gaussian distribution (CG) with
standard deviation equal to k/6: although microcalci-
fications vary in form, it is considered to be a plau-
sible assumption that theg/ have a circularly symmetric
Gaussian distribution."™ Therefore, if a microcalcifi-
cation is present in the square region being analyzed,
the correlation evaluated between the Gaussian and
the image centered at the maximum within the square
will be close to 1 if both signals have their energy
normalized to 1.

e Contrast parameter (C), calculated as C=mean,
—m/meany+m, where mean; is the average value of
the pixels within the k X k square neighborhood, and m
represents the mean value of the pixels belonging to
the two-pixel-wide border of the square.
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e Dynamic range (DR), obtained as DR=max(X)
—min(X), where X represents the image values within
the k X k square neighborhood.

2.2.2 Feature selection

Not all of the ten features defined in Sec. 2.2.1 are used in
the subsequent classification step: a larger number of fea-
tures does not necessarily lead to better classification per-
formance. Hence, a feature selection procedure is applied.
In particular, we use the sequential forward selection (SFS)
and sequential backward selection (SBS) methods™ to ob-
tain the subset of features that gives the minimum classifi-
cation error. The classifier used is an SVM, which is ex-
plained in the next section.

SES is a bottom-up search procedure where one feature
at a time is added to the current feature set. At each stage,
the feature to be included in the feature set is selected from
the remaining available features that have not been added
to the feature set yet, such that the new enlarged feature set
yields a lower classification error as compared to the addi-
tion of any other single feature. The algorithm stops when
the addition of a new feature leads to an increase in the
classification error.

SBS is the top-down counterpart of the SFS method. It
starts with the complete set of features, and at each stage,
the feature that shows the least discriminative power is dis-
carded. The algorithm stops when removing another feature
leads to an increase in the classification error.

To analyze the two feature selection methods and to de-
termine the optimal feature set, we used five mammograms
and selected 230 microcalcifications and 400 points that
were not microcalcifications. These five mammograms
were not included in the experiments to obtain the final
classification results presented in Sec. 4. The 400 points
were all precandidates, that is, they had a prediction error
higher than the applicable threshold. Of the selected points,
184 microcalcifications and 320 nonmicrocalcifications
(that is, 80% of the data) were used as the training set for
the classifier, and the remaining 46 microcalcifications and
80 nonmicrocalcifications were used as the validation set
where the classification error is measured. The selection
performance was evaluated by five-fold cross-validation
(XVAL),58 where the procedure is repeated five times,
changing each time the training and the validation sets, and
the average results are computed. In this manner, the dis-
advantage of the sensitivity of the SBS and SFS methods to
the order of presentation of the training set is diminished.”®
To implement the SBS and SFS methods, a classifier is
required; for this purpose, an SVM was used, as explained
next.

The average error was calculated by counting the mis-
classifications and dividing by the total number of micro-
calcifications. SBS resulted in the feature set [tail ratio
(TR), average height (AH), correlation with a Gaussian dis-
tribution (CG), contrast (C), and dynamic range (DR)] with
an average error of 4.92%. SFS led to the best feature set
[mean slope (MS), correlation with a Gaussian distribution
(CG), contrast (C), dynamic range (DR), average height
(AH), and interdistance (ID)], with an average error of
4.13%. By analyzing the aggregation order that features
followed in the SFS method and how much the classifica-
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Fig. 5 Example of the results generated by the proposed algorithm
at each step. (a) 415 X 342-pixel portion of an original mammogram.
(b) Precandidates shown as black points surrounded by a circle. (c)
Candidates (selected by the tail-ratio parameter) marked by white
squares. (d) Final detected microcalcifications marked by black
squares.

tion error decreases when adding a new feature, one can
know the discriminative power of each feature. This order
and error percentage is: mean slope (MS) 7.61%, correla-
tion with a Gaussian distribution (CG) 6.34%, dynamic
range (DR) 5.08%, contrast (C) 4.76%, average height
(AH) 4.44%, and interdistance (ID) 4.13%.

2.2.3 Feature classification

The final step consists of the classification of each candi-
date as a microcalcification or not. For this purpose, a vec-
tor with the six features selected by SFS is prepared for
each candidate pixel. This vector is applied as the input to
an SVM classifier, whose outputs are “microcalcification”
and “nonmicrocalcification.”

Support vector algorithms59 constitute one of the impor-
tant advances in computational learning in the 1990s. The
SVM is the final step in a long research study known as
statistical learning, carried out mainly by Vapnik.60 Vector
machine formulation is based on the principle of structural
risk minimization (SRM), which has been shown to be bet-
ter than the principle of empirical risk minimization. Tradi-
tional classifiers, such as neural networks, suffer from the
generalization ability problem, and thus can lead to overfit-
ting, as a consequence of trying to minimize the empirical
risk. The main idea of SVMs is to separate the classes with
a surface that maximizes the margin between them. This is
an approximate implementation of SRM.

The idea is to map the training points into a high-
dimensional feature space where a separating hyperplane
(w,b), with w as the normal and b as the bias to the hyper-
plane, can be found that maximizes the margin or distance
to the closest data points. The closest data points are called
support vectors. The optimal separating hyperplane can be
represented as
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Table 1 Average number of precandidates, candidates, and de-
tected microcalcifications.

Number
Number Number of
of of detected
precandidates candidates microcalcifications
1399 194 72
n
f(x) =sign 2 ay;K(x,x;) +b |, (10)

i=1

where 7 is the number of training examples, y; is the label
value of example i, K represents the kernel, and the «;
coefficients must be found in a way to maximize a particu-
lar Lagrangian representation. Only those training ex-
amples that lie on the decision boundary, that is, the support
vectors, have nonzero «;.

If we admit that some vectors are misclassified, the op-
timal hyperplane equation can be defined as:

yilwx,+b)=1-§, &=0. (11)

Hence, to obtain the optimal hyperplane, the function that
should be minimized is

Iw|?+ D2 &, (12)
i=1

where ¢ represents a measure of the amount of violation of
the constraints, and D is a parameter that controls the
tradeoff between maximizing the margin and minimizing
the training error.

There are no techniques available to select the kernel. In
a large variety of applications, Gaussian kernels lead to

fROC
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Fig. 6 Free-response receiver operating characteristics (fROC)
curve with eight different values of the tail-ratio threshold (TR
=1.0,1.5,2.0,2.5,3.0,6.0,8.0,10.0) for individual microcalcification
detection. FP is the false-positive individual microcalcifications per
image.
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Table 2 Sensitivity, specificity, and positive predictive values (PPV) for different tail-ratio (TR) thresholds.

TR threshold

1.0 1.5 2.0 25 3.0 6.0 8.0 10.0

Sensitivity 0.91 0.92 0.89 0.81 0.75 0.42 0.31 0.22
Specificity 0.94 0.97 0.99 1.00 1.00 1.00 1.00 1.00
PPV 0.45 0.59 0.79 0.92 0.96 1.00 1.00 1.00

good results.”’ Thus, in this work, the kernel used is a
Gaussian function with variance equal to 2.0.

The SVM was trained with the same dataset (five mam-
mograms) that was used in the feature selection step.

3 Materials

A database of 45 digitized mammograms was obtained
from Screen Test: The Alberta Program for the Early De-
tection of Breast Cancer.®". They were digitized with a Lu-
miscan 85 laser scanner (Lumisys, Sunnyvale, California)
with a spatial resolution of 50 um and 12 bits per pixel.
The proposed algorithm was tested with 40 digitized mam-
mograms from this database. The other five mamograms
were discarded because microcalcifications from them were
used to train the SVM. The remaining 40 images contain an
average of 95 microcalcifications per image of different
nature and diagnosis. The average area of the microcalcifi-
cations is 0.017 mm? the standard deviation is
0.0056 mm?, the largest microcalcification has an area of
0.5625 mm?, and the smallest one has an area equal to
0.01 mm?. The results obtained with the proposed algo-
rithms were examined by an expert radiologist specialized
in mammography (Desavtels), to determine the accuracy of
detection.

4 Results

Figure 5 shows examples of the results generated by the
proposed algorithm at each step. Figure 5(a) shows a 415
X 342-pixel portion of an original mammogram. In Fig.
5(b), the precandidates obtained with the 2-D prediction
error filter can be seen as small black points. In Fig. 5(c),
we show the candidates (selected by the tail-ratio param-
eter) marked by white squares. In Fig. 5(d), the final result
of the detection of microcalcifications is shown. For a fur-
ther illustration of the whole procedure, in Table 1 the num-
ber of precandidates, candidates, and detected microcalcifi-
cations are shown.

We have preformed two different analyses on the
dataset: in the first one, individual microcalcifications are
detected, and in the second one, cluster analysis is per-
formed.

For the individual microcalcification analysis, a free-
response receiver operating characteristics (fROC) curve
was generated, representing the sensitivity values versus
the number of false positives per image. Eight points were
calculated for the fROC curve, varying the threshold on the
tail-ratio parameter as [1.0, 1.5, 2.0, 2.5, 3.0, 6.0, 8.0, 10.0].
The numbers of true and false positives were calculated by
counting each individual microcalcification and not clus-
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ters. We consider as true negatives those pixels that are
precandidates but the algorithm has rejected them. The
fROC curve obtained is shown in Fig. 6. In Table 2, the
values obtained for sensitivity, specificity, and positive pre-
dictive value (PPV) are presented. The best performance
was obtained with the TR threshold of 2.0, where a sensi-
tivity value of 0.89, a specificity value of 0.99, and a PPV
of 0.79 were obtained. Detection sensitivity values of 0.75
and 0.81 were obtained at 2.6 and 6.2 false positives per
image, on the average, respectively. The computational cost
of the algorithm, when run on a Pentium 4 at 3.06 GHz
with 1-GB DDR, was a processing time of 25 s per mam-
mogram, on the average.

To do the cluster analysis, we have considered as a clus-
ter three or more microcalcifications within a cm?. In clus-
ter analysis, another fROC curve was generated, represent-
ing the sensitivity values versus the number of false-
positive clusters per image. Six points were calculated for
the fROC curve, varying the threshold on the tail-ratio pa-
rameter as [1.5, 2.0, 2.3, 2.5, 3.0, 6.0]. The TR value of 1.5
instead of 1.0 was chosen as the lowest limit, because for
TR=1.0, the same sensitivity as for TR=1.5 was obtained,
but with more false positives. Tail ratio equal to 6.0 was
chosen as the highest limit, because no false positive was
obtained for this value. The numbers of true and false posi-
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Fig. 7 Free-response receiver operating characteristics (fROC)
curve with five different values of the tail-ratio threshold (TR
=1.5,2.0,2.3,2.5,3.0,6.0) for cluster detection. FP is the false-
positive clusters per image.
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Table 3 True positives per image (TP), false positives per image (FP), false negatives per image (FN),
sensitivity, and positive predictive value (PPV) for different tail-ratio (TR) thresholds.

TR threshold

1.5 2.0 2.3 2.5 3.0 6.0

TP 1.71 1.69 1.57 1.00 0.89 0.23

FP 5.11 1.77 0.94 0.60 0.29 0.00
FN 0.03 0.06 0.17 0.69 0.83 1.46
Sensitivity 0.98 0.97 0.90 0.57 0.51 0.13
PPV 0.25 0.49 0.62 0.63 0.76 1.00

tives were calculated by counting clusters and not indi-
vidual microcalcifications. The fROC curve is shown in
Fig. 7. In Table 3, the values obtained for true positives per
image, false positives per image, false negatives per image,
sensitivity, and PPV are presented. The best performance
was obtained with the TR threshold of 2.0, where a sensi-
tivity value of 0.97 was obtained at 1.77 false positives per
image, or with TR=2.3, where a sensitivity value of 0.90
was obtained at 0.94 false positives per image The best
sensitivity value is 0.98, obtained with TR=1.5, at 5.11
false positives per image.

The method proposed in this work was tested indepen-
dently by Martinez-Alvarez et al. 62 with a different dataset,
including 94 images with an average of 111 microcalcifica-
tions per image. A sensitivity of 95.87% was obtained at the
rate of 2.3 false positives per image for individual micro-
calcification detection.

5 Conclusions

We propose a method for the detection of microcalcifica-
tions in mammograms. The algorithm is divided into two
stages. In the first stage, candidates for microcalcifications
are obtained based on a 2-D linear prediction error filter
and the calculation of a new statistical measure named tail
ratio. The second stage consists of a feature extraction step
and a subsequent classification task. The feature vector, af-
ter a selection procedure, is formed by six descriptors,
which form the input to an SVM classifier, whose output
gives the detected microcalcifications.

40 mammograms are used to validate the algorithm in
this work. We perform two different analyses on the
dataset: individual microcalcification detection and cluster
analysis. The best performance obtained for individual mi-
crocalcification detection is a sensitivity value of 0.89, a
specificity value of 0.99, and a PPV of 0.79. For cluster
analysis, a sensitivity value of 0.97 is obtained at 1.77 false
positives per image, and a sensitivity value of 0.90 is
achieved at 0.94 false positives per image. This result is
comparable with the results provided by other methods
published in the literature that have achieved sensitivity of
about 90% at a false-positive rate that varies from 0.5 to 3
false-positive clusters per image:.9 Nevertheless, for the
range less than one false positive per image, our method
should be improved to become closer to the best methods
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present in the literature.® In any case, it is important to
note that this comparison is made with different databases.
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