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This work presents an event-triggered controller for spacecraft rendezvous hovering phases. The goal is to

maintain the chaser within a bounded region with respect to the target. The main assumption is that the chaser

vehicle has impulsive thrusters. These are assumed to be orientable at any direction and are constrainedby dead-zone

and saturation bounds. The event-based controller relies on trigger rules deciding when a suitable control law is

applied. The local control law consists on a single impulse; therefore the trigger rules design is based on the

instantaneous reachability to the admissible set. The final outcome is a very efficient algorithm from both

computational burden and footprint perspectives. Because the proposed methodology is based on a single impulse

control, the controller invariance is local and assessed through impulsive systems theory. Finally, numerical results

are shown and discussed.

Nomenclature

A, B = state and control matrices for Cartesian relative
dynamics

AD, BD = state and control matrices for relative orbit
element dynamics

a = semimajor axis
D = relative orbit element state
D = admissible set region of attraction
Ddz = dead-zone set
e = eccentricity
F xz, F y = state increment reachable set

Gxz, Gy = instantaneous reachability indicators

gw�⋅� = multivariate polynomials in D states
L�⋅� = length of a given interval
SD = admissible set
t = time
U, V = similarity transformation matrices
X = Cartesian relative state
x, �x, y, �y, z, �z = polytopic constraints bounds

Z = jump set
ΔD = relative orbit element state increment
ΔV = impulse
ΔV = dead-zone value

ΔV = saturation value

ΔS = intersection set between admissible set and
instantaneous reachable set

Δ� = instantaneous reachable set

Δ�
sat = instantaneous reachable set accounting for con-

trol limitations
δxz, δy = trigger rules threshold

Λsat = set of admissible control variables with respect
to control limitations

ΛS = set of admissible control variables with respect
to SD

ΛS
sat = set of admissible control variables with respect

to SD and control limitations
λxz, λy = control variables

μ = Earth gravitational constant
ν = true anomaly
Φ�ν; ν0� = state transition matrix from ν0 to ν

Subscripts

dz = dead-zone constraint
sat = dead-zone and saturation constraints
xz = in-plane motion
y = out-of-plane motion

Superscript

� = state after control

I. Introduction

S PACECRAFT rendezvous operations have played a key role in
the space exploration (see [1] for an historical review). In fact,

new mission concepts have arisen with the increasing popularity of
CubeSats in both industry and academia (see [2]). For example, the
novel mission concept proposed by [3] includes plans to design an
autonomous on-orbit reconfigurable telescope. Thus, the ability of a
spacecraft to compute control commands on-board is a key compo-
nent for novel rendezvous operations.
This paper is focused on the hovering phase of rendezvousmission

(see [4]). During the rendezvous mission, this phase permits a pause
useful for observing the target satellite or waiting for the order to
continue the mission in safe conditions. A critical feature of the
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hovering phase to be ensured by the control algorithm is the safety of
themission thatmainly consists in avoiding collisionwhilewaiting in
the vicinity of the leader spacecraft. To achieve such goals, the
chaser’s relative position should be maintained within a restricted
zone away from the target with minimal fuel consumption. This
hovering region has to be defined in a local frame attached to the
leader positionwhile it should exclude the leader spacecraft for safety
reasons.
Regarding propulsion devices, chemical thrusters (for large and

heavy spacecraft) and cold gas thrusters (for lightweight spacecraft)
are being employed nowadays for geocentric space proximity oper-
ations, [5]. In both cases, the control signal can be modeled in an
impulsive way with adequate accuracy. Additionally, the impulse
amplitude is constrained not only by saturation but also by the
minimum impulse bit (minimum force that the thruster can apply).
This dead-zone constraint makes the rendezvous planning problem
nonconvex and difficult to tackle by conventional methods (see [6]).
Vast literature on impulsive rendezvous exists. References [7,8]
designed passive collision avoidance trajectories, Ref. [9] studied
the tradeoff of several rendezvous performance indexes (fuel con-
sumption, flight time, and safety), Ref. [10] developed a switching
control strategy guaranteeing closed-loop stability, and Ref. [11]
designed a six-degree-of-freedom controller based on flatness theory.
Some relevant works on impulsive control can also be found in the
field of spacecraft flight formation, see [12,13].
Regarding the hovering phase, strategies such as the “pogo” or

“teardrop” approaches have been proposed in [4,14]. These
approaches are fuel inefficient as the satellite remains in the hovering
zone by means of a systematic impulsive control that implements a
bouncing-on-the-zone-frontiers strategy. On the contrary, in [15] the
relative orbits’ periodicity property is exploited tomaintain the chaser
spacecraft in the hovering zone without control effort in absence of
disturbances. In this aim, the relative motion invariants are used as
parameters of the relative orbits in the framework of linearized
relative motion accordingly with [16,17]. Using convenient param-
eterization of [16], Ref. [18] employed polynomial positivity tech-
niques to compute the coordinates of natural periodic relative orbits
within a polytopic region. This methodology has also been extended
to nonperiodic relative orbits (see [19]). However, the LMI condi-
tions modeling the set membership constraints for a relative orbit
have been demonstrated to be numerically cumbersome for space-
craft on-board computation devices. For this reason, in [20], an
implicitizationmethodwas employed to formally describe the admis-
sible set of constrained orbits as polynomial inequalities in terms of
the relative state. Finally, Ref. [15] designed a global stability con-
troller, based on a three impulsive sequence, for the previously
described admissible set.
Rendezvous impulsive control has been studied in the last decade

using different approaches such as the model predictive control
(MPC) framework (see [15] and references therein) or the hybrid
systems framework [21]. The controllers from the literature deliver
periodically the control impulse to be executed. Although stability
has been demonstrated in such frameworks, it appears thatmost of the
controls are filtered by the thruster’s limitations (the minimum
impulse bit in particular). This leads to a slight degradation of the
controller performances or even to critical situations closed to insta-
bility. In addition, it could be desirable to reduce control computa-
tions [22]. Under this new requirement, the event-based control
methodology has emerged as an alternative to classical periodic
controllers. In this control paradigm, the commands are computed
aperiodically, thus reducing communications between sensors, con-
trollers, and actuators (see [23] for the basics). The event-based
methodology can be effectively combined with feedback policies
(see [24]) or MPC schemes as in [25]. More specifically, event-based
control is gaining momentum among the spacecraft control commu-
nity with attitude control applications (see [26,27]).
The main purpose of this paper is to extend and complete the

preliminary results presented in the conference papers of [28,29],
which aimed to overcome some drawbacks of the global stabilizing
controller proposed by [15]. In particular, using [15] global control-
ler, the set membership conditions are only ensured after the

N-impulse maneuver (N ≥ 3). Moreover, unnecessary impulses
may be commanded when the spacecraft is close enough to the
hovering region. To address these issues, an event-based predictive
controller for spacecraft rendezvous hovering phases is designed in
this work. Because the proposed controller is local, the main
assumption is that the chaser vehicle is already in the hovering region
vicinity.
The key components of the proposed event-based predictive con-

troller are, on the one hand, a set of rules triggering the control
decision based on target set proximity and reachability criteria. On
the other hand, the computation of a single control impulse is the
second leg of this controller. An advantage of the resulting event-
based algorithm is the low level of numerical complexity, which leads
to a reduced computation burden. As a matter of fact, target set
proximity and reachability conditions rely on univariate polynomial
roots computation, whereas the single control impulse computation
boils down to a low-dimension linear program. Finally, using impul-
sive systems theory (see [30]), the primal single impulse control
invariance, in a local way, is assessed.
This paper is structured as follows. Section II introduces the

impulsive relative motion model and the algebraic description of
constrained orbits. Section III presents the event-based predictive
controller composed by the control law and trigger rules. Section IV
assesses the invariance of the primal single impulse approach.
Section V proposes and analyses numerical results of interest.
Finally, Sec. VI concludes the paper with some remarks.

II. Relative Motion and Constrained Orbits

In this section, the relative motion model between two spacecraft
on Keplerian orbits is presented and parameterized in a convenient
manner. Then, the set of relative constrained orbits is formally
described by means of implicitization techniques.

A. Relative Motion

In orbit proximity operations the vehicles are considered close
because the ratio of the relative distancewith respect to the semimajor
axis is very small. This fact allows to linearize the relative dynamics
around the target orbit. If the relative dynamics model only includes
Keplerian effects, the classic Tschauner–Hempel linear time-varying
(LTV) system [31] can be employed. For this particular LTVmodel, a
formal fundamental matrix is described in the literature and a given
transition matrix was proposed in [32].

1. Relative Dynamics and State Transition

The chaser spacecraft relative motion, denoted by Sf, is expressed
with respect to the local frame attached to a passive target with its
position denoted by Sl. The local frame fSl; x; y; zg, denoted as local
vertical/local horizontal (LVLH), evolves around the Earth-centered
inertial frame, fO; I;J;Kg, along the target spacecraft orbit. Note
that z is the radial vector (positive toward the center of the Earth), y is
the cross-track vector (opposite to the orbit angular momentum), and
x is the in-track vector completing a right-handed system (see Fig. 1).
Under Keplerian assumptions, the relative motion between two

spacecraft can be expressed by means of the Tschauner–Hempel
equations (see [31]). Considering that the vehicles are close enough,

Fig. 1 Inertial Earth-centered and LVLH frames.
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i.e., k ~OSlk2 ≫ k ~SlSfk2, these equations can be linearized to obtain

the following linear time-varying dynamics:

_X�t� � A�t�X�t� (1)

where the state vectorX represents the relative position and velocity

in the LVLH frame X�t� � �x�t�; y�t�; z�t�; _x�t�; _y�t�; _z�t��T . In this

work, the transitionmatrix of Eq. (1) dynamics is exploited. To obtain

this matrix, a similarity transformation is applied:

~X�ν� � U�ν�X�t�; with U�ν� �
�
ρI3 03
ρ 0I3 �k2ρ�−1I3

�
(2)

where �⋅� 0 � �d�⋅�∕dν�, k2 �
�����������������������������
μ∕a3�1 − e2�3

p
, ρ � 1� e cos ν, and

I3 denotes the identity matrix. The variables a and e are the target

orbit semimajor axis and eccentricity, respectively. The similarity

transformation of Eq. (2) is a change of the independent variable from

time t to true anomaly of the target spacecraft, ν, which defines its

position through the orbit. In this framework, the transition matrix

can be analytically obtained (see [32]) so that

~X�ν� � Φ�ν; ν0� ~X�ν0�; ν0 ≤ ν (3)

2. Parameterizing the Relative Motion

In [18], the relative position has been explicitly expressed in a

convenient manner as

~x�ν� � d1�1� ρ�sν − d2�1� ρ�cν � d3 � 3d0J�ν�ρ2;
~y�ν� � d4cν � d5sν;

~z�ν� � d1ρcν � d2ρsν − 3ed0J�ν�sνρ� 2d0 (4)

where sν � sin ν, cν � cos ν, and J�ν� is given by

J�ν� ≔
Z

ν

ν0

dτ

ρ�τ�2 �
�����
μ

a3

r
t − t0

�1 − e2�3∕2 (5)

As the classic orbital elements, the parameters di�i � 05� describe
the chaser relative orbit in terms of its instantaneous shape and

position; see [16] (Chapter 2). This fact makes the vector D �
�d0; d1; d2; d3; d4; d5�T a relevant state when aiming to constrain

relative orbits. Note that a linear transformation, between the relative

state ~X and the vector D, exists as

~X�ν� � V�ν�D�ν� (6)

with

V�ν� �

2
66666666664

0 sν�1� ρ� −cν�1� ρ� 1 0 0

0 0 0 0 cν sν

2 cνρ sνρ 0 0 0

3 2cνρ − e 2sνρ 0 0 0

0 0 0 0 −sν cν

− 3esν
ρ −sν�1� ρ� 2ec2ν − e� cν 0 0 0

3
77777777775

Since detV � 1 − e2 ≠ 0; ∀e ∈ �0; 1�, Eq. (6) represents a similarity

transformation andD is a proper state vector with its own dynamics

governed by AD�ν�

D 0�ν� �

2
6666666664

0 0 0 0 0 0

0 0 0 0 0 0

− 3e
ρ2

0 0 0 0 0

3
ρ2

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
7777777775

|����������������������{z����������������������}
AD�ν�

D�ν� (7)

and its own transition matrix ΦD�ν; ν0�,

D�ν� �

2
666666664

1 0 0 0 0 0

0 1 0 0 0 0

−3eJ�ν� 0 1 0 0 0

3J�ν� 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
777777775

|��������������������������{z��������������������������}
ΦD�ν;ν0�

D�ν0� (8)

3. Impulsive Control

Typically, for space hovering operations, the chaser spacecraft is

controlled by chemical engines providing a high level of thrust during

a short period of time with respect to the target orbit period. In

practice, this fact leads to an extremely fast velocity change, which

can be modeled in an impulsive way

X��t� � X�t� � BΔV�t�; B � �03; I3�T (9)

where 03 is the square null matrix. Applying the changes of variable

given by Eqs. (2) and (6), an impulse at instant ν produces an

instantaneous change in the state D as

D��ν� � D�ν� � BD�ν�ΔV�ν� (10)

with

BD�ν� � V−1�ν�U�ν�B (11)

which can be further developed as

BD�ν� �
1

k2�e2 − 1�ρ

2
66666664

ρ2 0 −esνρ
−2cν − e�1� c2ν� 0 sνρ
−sν�2� ecν� 0 2e− cνρ
esν�2� ecν� 0 ecνρ− 2

0 −�e2 − 1�sν 0

0 �e2 − 1�cν 0

3
7777775

(12)

Equation (10) shows that a given impulsive control, ΔV, will have a
different impact (in theD space) depending on the application instant

ν. This is due to the control matrix BD time dependence. Addition-

ally, the impulse amplitude has to comply with the following con-

ditions on dead-zone and saturation:

ΔV ≤ kΔVk2 ≤ ΔV (13)

where it is assumed that the thruster can be pointed at any direction.

4. Decoupling the Relative Motion

Observing Eq. (4), one can notice that the in-plane, xz, and out-of-
plane, y, relative motions are decoupled. These motions are repre-

sented by the state subvectors Dxz � �d0; d1; d2; d3�T and Dy �
�d4; d5�T , respectively. Consequently, the control matrix given by

Eq. (12) can be decomposed into two submatrices for both the

in-plane and out-of-plane motions:
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BD;xz�ν� �
1

k2�e2 − 1�ρ

2
664

ρ2 −esνρ
−2cν − e�1� c2ν� sνρ
−sν�2� ecν� 2e − cνρ
esν�2� ecν� ecνρ − 2

3
775 (14)

BD;y�ν� �
1

k2�e2 − 1�ρ
�
−�e2 − 1�sν
�e2 − 1�cν

�
(15)

B. Constrained Orbits

In this work, the control objective is to maintain the spacecraft

hovering inside a predefined polytopic subset of the relative position

space. Thereafter, a cuboid is considered without loss of generality:

x ≤ x�t� ≤ �x; y ≤ y�t� ≤ �y; z ≤ z�t� ≤ �z; ∀ t ≥ t0 (16)

If the target is a space vehicle (it could also just be a reference

position), the cuboid fx; �x; y; �y; z; �zg should not contain the origin

in order to avoid collisions. Themost economicalway to hoverwithin

a given region is that the chaser spacecraft evolves on naturally

constrained periodic orbits. In [18], the periodic orbits are described

by the necessary and sufficient periodicity condition, namely,

d0 � 0. Note that this periodicity condition defines the set of equi-

librium points in the state-space D [cf. dynamic equation (7)].

Inserting the changes of variables of Eqs. (2) and (6) into the

polytopic constraints, given by Eq. (16), one obtains the constraints

inequalities expressed in the D space. Therefore, the admissible set

SD can be formally described as

SD ≔

8><
>:

x ≤ Vx�ν�D ≤ �x

D ∈ R6 d0 � 0; y ≤ Vy�ν�D ≤ �y

z ≤ Vz�ν�D ≤ �z

; ∀ ν

9>=
>; (17)

where Vx, Vy, and Vz are the first three rows of V, divided by ρ,
respectively. Equation (17) states that the admissible set SD repre-

sents all of the periodic relative orbits constrainedwithin the hovering

region given by Eq. (16). The reader can note that, as a subset of

equilibrium set, SD is invariant by nature in absence of control. On

Fig. 2, a few elements of SD are depicted. The admissible set SD is

described by linear but time-varying conditions on the state D. In

[20], an implicitization method (see [33]) is employed to obtain the

envelope of each linear constraint composing the admissible set given

by Eq. (17). As a consequence, a semi-algebraic (free of the inde-

pendent variable ν) description of the admissible set is available as

SD �
n
D ∈ R6jd0 � 0jgw�D� ≤ 0;∀w ∈ fx; �x; y; �y; z; �zg

o
(18)

The admissible set SD has been demonstrated to be a closed
convex set (see [15]). The functions gw�D� are multivariate poly-
nomials in d1; d2; d3; d4, and d5:

gx�dxz; e; x� �
X
β∈N3

6

θβ�e; x�dβ
xz (19)

g �x�dxz; e; �x� �
X
β∈N3

6

�θβ�e; �x�dβ
xz (20)

gy�d4; d5; e; y� � �d4 − ey�2 � d25 − y2 (21)

g �y�d4; d5; e; �y� � �d4 − e �y�2 � d25 − �y2 (22)

gz�d1; d2; z� � d21 � d22 − z2 (23)

g�z�d1; d2; �z� � d21 � d22 − �z2 (24)

where dxz � �d1; d2; d3�T . The degree of the multivariate polyno-

mials gx�⋅� and g �x�⋅� is 6 for both cases. The set N3
6 is described as

N3
6 ≔ fβ ∈ N3:

P
3
j�1 βj ≤ 6g, and its cardinality is

�
9

6

�
. Each term

of these polynomials reads θβi d
βi;1
1 d

βi;2
2 d

βi;3
3 , βi ∈ N3

6. For further

details about the envelopes computation and admissible set bounda-
ries characterization, refer to [15].

III. Event-Based Predictive Controller

The proposed event-based predictive controller aims to compute
and trigger a control impulse only when it is necessary in order to
stabilize the admissible set SD. Roughly speaking, the event-based
philosophy consists in the following rules:
If the state belongs to the admissible set, no action is performed.
On the contrary, if the state does not belong to admissible set, a

control decision is triggered based on the following conditions:
1) If the admissible set is reachable and certain reachability indica-

tors (which are made clear in subsequent sections) fall below a
threshold, the control acts.
2) If the admissible set is currently unreachable but it is predicted to

be reachable at any time during the next 2-π time period, the con-
troller will wait for that opportunity.
3) If the previous conditions are not met, a backup controller is

used to ensure the stability.
This section develops the different metrics to evaluate the admis-

sible set reachability and proximity. Determining the admissible set
reachability makes sense only when the spacecraft is outside of it;
thus the trivial case of null control is not considered. Then, a proper
set of trigger rules, based on the previous metrics, is developed.

Fig. 2 Constrained periodic relative orbits.
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Finally, the single impulse optimal computation is presented and its

numerical efficiency assessed.
Note that, as the in-plane and out-of-plane motions are decoupled

[see Eqs. (7) and (11)], they are often treated separately in the rest of

the paper.

A. Reachability Conditions

The trigger rules design is based on theSD reachability conditions.

To establish these conditions, the reachable set is described in the

following sections. This reachable set is defined as the set of states

that can be reached with a single control impulse, from a current state

D, accounting for the thruster capabilities. Firstly, the instantaneous

reachable set will be addressed. This set is the reachable set at the

current time ν. The instantaneous reachability condition is then

derived by determining if there is an intersection between the instan-

taneous reachable set and the admissible set SD. The 2-π period

reachable set is obtained by extending the instantaneous reachable set

properties. Then, the 2-π period reachability conditions are stated.

Note that the latter set can be also seen as a region of attraction.

1. Instantaneous Reachable Set

This section describes the instantaneous reachable set for both the

out-of-plane and in-plane motions accounting for the thruster’s sat-

uration and minimum impulse bit:

Δ�
sat�D; ν;ΔV� � Δ�

sat;xz�D; ν;ΔV� × Δ�
sat;y�D; ν;ΔV� (25)

a. Out-of-Plane Motion. The out-of-plane motion, represented by

Dy � �d4; d5�T , is naturally periodic; thus an out-of-plane impulse

ΔVy � λy ∈ R (thevariable λy is chosen to represent the out-of-plane
impulse for notation consistencywith the in-plane case) does not alter

the orbit periodicity:

D�
y �Dy; ν; λy� � Dy � λyBD;y�ν� (26)

where BD;y ∈ R2 is given in Eq. (15). The out-of-plane impulse

allows the state Dy to instantaneously change through the line Δ�
y :

Δ�
y �Dy; ν� � fD�

y �Dy; ν; λy� ∈ R2 s:t: Eq:�26�; λy ∈ Rg (27)

However, the impulse amplitude is constrained due to dead-zone and

saturations conditions. The set Λsat;y describes the out-of-plane

thruster dead-zone and saturation conditions such that

Λsat;y � �−ΔV;−ΔV� ∪ �ΔV;ΔV� (28)

Note that Λsat;y does not depend on ν. By usingΛsat;y, one can define

the out-of-plane instantaneous reachable set

Δ�
sat;y�Dy; ν� � fD�

y �Dy; ν; λy� ∈ R2 s:t:λy ∈ Λsat;yg (29)

which is composed of two segments of the line Δ�
y .

b. In-Plane Motion. The in-plane motion is described by the state
subset Dxz � �d0; d1; d2; d3�T . As stated previously in the literature

[15,21], periodicity (also studied under Earth’s oblateness effects

[34]) is a desirable property to hover around a specified region.

Consequently, the in-plane control aims to steer the system to a

constrained periodic orbit with a single in-plane impulse. After an

in-plane impulse ΔVxz � �ΔVx;ΔVz�T , the in-plane state D�
xz is

given by

D�
xz�Dxz; ν;ΔVxz� � Dxz � BD;xz�ν�ΔVxz (30)

where BD;xz ∈ R4×2 is given by Eq. (14). To obtain a periodic orbit,

the state d0 is systematically steered to zero after each in-plane

control impulse:

d�0 �d0; ν;ΔVxz� � d0 � Bd0;xz�ν�ΔVxz � 0 (31)

with Bdi;xz ∈ R2 being the first row ofBD;xz. An impulse satisfying

Eq. (31) can be written in a general form as

ΔVxz�d0; ν; λxz� � λxzB
⊥
d0;xz

�ν� � ΔV0
xz�d0; ν� (32)

where λxz ∈ R is the in-plane control variable,B⊥
d0;xz

∈ R2 describes

the kernel space of Bd0 ;xz (it is chosen as kB⊥
d0;xz

k2 � 1), and

ΔV0
xz ∈ R2 is any particular solution of Eq. (31). Note that ΔV0

xz

always exists since the first entry of BD is ρ∕�e2 − 1�k2 < 0 for 0 ≤
e < 1 and ν ∈ �0; 2π�. Using this periodicity-pursuing strategy,
Eq. (30) can be expanded as

D�
xz�Dxz; ν; λxz� � Dxz � BD;xz�ν�

h
λxzB

⊥
d0 ;xz

�ν� � ΔV0
xz�d0; ν�

i
(33)

Then, considering an unconstrained control, the in-plane
instantaneous reachable set can be described as a one-dimensional
set:

Δ�
xz�Dxz; ν� � fD�

xz�Dxz; ν; λxz� ∈ R4 s:t: Eq: �33�; λxz ∈ Rg
(34)

Again, dead-zone and saturation constraints are formally
described by the set Λsat;xz such that

Λsat;xz�d0; ν�
�

n
λxz ∈ R s:t:ΔV ≤ kλxzB⊥

d0;xz
�ν� � ΔV0

xz�d0; ν�k2 ≤ ΔV
o

�
h
�λxz;1�d0; ν�; λxz;1�d0; ν�� ∪ �λxz;2�d0; ν�; �λxz;2�d0; ν�

i
(35)

being λxz;1, λxz;2, �λxz;1 and �λxz;2

λxz;1; λxz;2 � −�B⊥
d0;xz

�TΔV0
xz

�
���������������������������������������������������������������������������
��B⊥

d0;xz
�TΔV0

xz�2 − kΔV0
xzk22 � ΔV2

q
(36)

�λxz;1; �λxz;2 � −�B⊥
d0;xz

�TΔV0
xz

�
���������������������������������������������������������������������������
��B⊥

d0;xz
�TΔV0

xz�2 − kΔV0
xzk22 � ΔV2

q
(37)

Note that the dependencies with d0 and ν have been omitted for the
sake of clarity. Therefore, the instantaneous in-plane reachable set,
accounting for dead-zone and saturation, is given by

Δ�
sat;xz�Dxz; ν� �

n
D�

xz�Dxz; ν; λxz� ∈ R4 s:t:D�
xz � Dxz

� BD;xz�ν��λxzB⊥
d0;xz

�ν� � ΔV0
xz�d0; ν��;

λxz ∈ Λsat;xz�d0; ν�
o

(38)

2. Admissible Set Reachability Conditions

For the sake of clarity, the time dependence ν and state dependence
D are omitted in this section.
A necessary and sufficient condition for the admissible setSD to be

reachable from the current state is that the following sets ΔS
sat;xz and

ΔS
sat;y are nonempty:

ΔS
sat;xz � Δ�

sat;xz ∩ SDxz
(39)

ΔS
sat;y � Δ�

sat;y ∩ SDy
(40)

where SDxz
and SDy

denote the SD projections in the Dxz and Dy

spaces, respectively. The sets ΔS
sat;xz and ΔS

sat;y are defined as the
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intersection of the setsΔ�
sat;xz andΔ�

sat;y (which are parameterized by a

single parameter, λxz or λy) with SD, the semi-algebraic set from

Eq. (18), respectively. Consequently, if nonempty, the setsΔS
sat;xz and

ΔS
sat;y are line segments parameterized by λxz and λy. To obtain a

tractable characterization of the previously defined sets, the follow-
ing sets are stated:

ΔS
xz � Δ�

xz ∩ SDxz
(41)

ΔS
y � Δ�

y ∩ SDy
(42)

As Δ�
xz and Δ�

y are lines in their respective spaces [see Eqs. (34) and

(27)] and the admissible set SD is described through its envelope

[cf. Eq. (18)], the sets ΔS
xz and ΔS

y are given by

ΔS
xz � fD�

xz�λxz� ∈ Δ�
xzjgx�D��λxz�� ≤ 0; g �x�D��λxz�� ≤ 0;

gz�D��λxz�� ≤ 0; g�z�D��λxz�� ≤ 0g (43)

ΔS
y � fD�

y �λy� ∈ Δ�
y jgy�D��λy�� ≤ 0; g �y�D��λy�� ≤ 0g (44)

The property ofD� belonging toSD boils down to formal conditions

on the control variables λxz and λy such that λxz ∈ ΛS
xz � �lxz; lxz�

and λy ∈ ΛS
y � �ly; ly�.

Remark 1: If nonempty, the connectedness of ΛS
xz and ΛS

y and

consequently of the sets ΔS
xz and ΔS

y is ensured by the convexity

of SD.
The intervals ΛS

xz and ΛS
y are computed such that

∀λxz ∈ �lxz; lxz�:fg �x�λxz� ≤ 0; gx�λxz� ≤ 0; g�z�λxz� ≤ 0; gz�λxz� ≤ 0g
(45)

∀ λy ∈ �ly; ly�:fg �y�λy� ≤ 0; gy�λy� ≤ 0g (46)

The univariate polynomials gw�⋅� are obtained by introducing
Eqs. (33) and (26) into the polynomial expressions g �x�d1; d2; d3�,
gx�d1; d2; d3�, g�z�d1; d2�, gz�d1; d2�, g �y�d4; d5�, and gy�d4; d5�,
respectively. Therefore, the intervals bounds lxz, lxz, ly, and �ly can

be computed as roots of the univariate polynomials arising in
Eqs. (45) and (46), respectively. The out-of-plane (gy, g �y) and radial

(gz, g�z) constraints are quadratic polynomials in λy and λxz, respec-
tively,whereas the in-track (gx,g �x) constraints are sextic polynomials

in λxz. Following remark 1, the existence of two real roots is ensured if

the setsΔS
xz andΔS

y are nonempty. On the contrary, the absence of real

roots reveals that ΔS
xz and ΔS

y are empty sets. Note that polynomial

roots computations are efficiently executed with most of numerical
scientific libraries.
Taking into account the dead-zone and saturation conditions of

Eqs. (35) and (28), SD is instantaneously reachable if and only if the

sets ΔS
sat;xz and ΔS

sat;y are nonempty:

ΔS
sat;xz � fD�

xz�λxz�jλxz ∈ ΛS
sat;xzg (47)

ΔS
sat;y � fD�

y �λy�jλy ∈ ΛS
sat;yg (48)

where ΛS
sat;xz � ΛS

xz ∩ Λsat;xz and ΛS
sat;y � ΛS

y ∩ Λsat;y. Since Λsat;xz

and Λsat;y are not connected sets, their intersections with ΛS
xz and ΛS

y

do not yield connected sets either

ΛS
sat;xz � �lxz1; lxz2� ∪ �lxz3; lxz4� (49)

ΛS
sat;y � �ly1; ly2� ∪ �ly3; ly4� (50)

To assess the SD proximity, it is useful to define the following
variables measuring the total length of the intervals composing

ΛS
sat;xz and ΛS

sat;y:

Lxz � len�ΛS
sat;xz�; Ly � len�ΛS

sat;y� (51)

These indicators suggest that the admissible set is reachable if and
only if both of them differ from 0:

ΔS
sat � ΔS

sat;xz × ΔS
sat;y ≠ ∅ ⇔ Lxz ≠ 0 ∧ Ly ≠ 0 (52)

However, the lengths Lxz and Ly are not well-posed indicators to

effectively assess SD proximity by detecting SD reachability oppor-
tunities in a continuous manner. This is because SD, though a convex
set, is defined as the interior region resulting from the intersection of

several semi-algebraic sets described by multivariate polynomials
(19–24). As a consequence, SD may have edges and vertices where

the disjoint lines ΔS
sat;xz and ΔS

sat;y (intersections of the instantaneous

reachable set with SD) could instantaneously vanish; thusLxz andLy

are not guaranteed to be continuous functionswith time. To overcome
this issue, alternate instantaneous reachability metrics (employed in

Sec. C as instantaneous reachability indicators) are defined as

Gxz �
�
maxfg	x ; g	�x ; g	z ; g	�z g; if Lxz > 0;

0; if Lxz � 0;

Gy �
�
maxfg	y ; g	�yg; if Ly > 0;

0; if Ly � 0

Gν;xz �
dGxz

dν
; Gν;y �

dGy

dν
(53)

where

g	x � min
λxz

gx�λxz� s:t: λxz ∈ ΛS
sat;xz;

g	�x � min
λxz

g �x�λxz� s:t: λxz ∈ ΛS
sat;xz;

g	y � min
λy

gy�λy� s:t: λy ∈ ΛS
sat;y;

g	�y � min
λy

g �y�λy� s:t: λy ∈ ΛS
sat;y;

g	z � min
λxz

gz�λxz� s:t: λxz ∈ ΛS
sat;xz;

g	�z � min
λxz

g�z�λxz� s:t: λxz ∈ ΛS
sat;xz (54)

that is g	x , g	�x , g
	
y , g

	
�y , g

	
z , and g

	
�z are theSD univariate polynomials, in

λxz and λy, minimums for λxz ∈ ΛS
sat;xz and λy ∈ ΛS

sat;y. These mini-

mums are computed through a zeros search (roots computation) of
the SD polynomials derivative with respect to λxz or λy, respectively.
The variables Gxz and Gy are guaranteed to be continuous signals

over time. Note that, due to the max operator in Eq. (53), Gν;xz and

Gν;y derivatives shall not be continuous in general.

Figure 3 illustrates the reachability conditions (and associated
metrics) for the in-plane motion at three different instants (ν1, ν2,
ν3). Considering that the state is close enough to the admissible set,D
can be assumed near the equilibrium, e.g., jd0j ≈ 0 (quasi-equilib-
rium assumption). Therefore, in this illustration, the state D is
assumed to be constant over time. It can be observed that

Lxz�D; ν1� > Lxz�D; ν2� > Lxz�D; ν3� � 0 (with Gxz�D; ν1� <
Gxz�D; ν2� < Gxz�D; ν3� � 0). This suggests that the single impulse

must be applied before the length Lxz vanishes (or equivalently Gxz

becomes null) and SD becomes unreachable with a single impulse.
However, at ν � ν3 where SD is instantaneously unreachable, reach-

ability opportunities are predicted to come along the next orbit period
as it was that assumed D is constant. Under this quasi-equilibrium
assumption, both signals Lxz and Gxz are 2π periodic: Lxz�ν�≈
Lxz�ν� 2π� andGxz�ν� ≈ Gxz�ν� 2π�. This is due to the 2-π perio-
dicity of the D state control matrix BD�ν� � BD�ν� 2π� [see

Eq. (11)] and the quasi-equilibrium assumption. Consequently,
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new control opportunities are expected at the instants 2π � ν1 and

2π � ν2 again. This statement also applies to the out-of-planemotion

that is naturally periodic.

B. Region of Attraction

In the previous section, instantaneous reachability conditions to

SD and related metrics have been established for a given time ν.
Extending the previous conclusions, this section establishes the

admissible set region of attraction D. The region of attraction is

defined as the set of states D from which SD is instantaneously

reachable for a short period of time taking place along the next 2-π
period:

D � Dxz ×Dy (55)

where

Dxz ≔
�
D ∈ R4:D ∈= SDxz

;

Z
ν�2π

ν
Lxz�Dxz�τ�; τ� dτ ≠ 0

	
(56)

Dy ≔
�
D ∈ R2:D ∈= SDy

;

Z
ν�2π

ν
Ly�Dy; τ� dτ ≠ 0

	
(57)

Note that the in-plane stateDxz varies if d0 ≠ 0; see Eq. (8). Such an
attractive setD is of particular interest for the set of triggering rules to

be defined in the sequel. As a matter of fact, if the current state

belongs to D, the impulsive control can be postponed for another

reachability opportunity, over the next 2-π period, even if SD is not

instantaneously reachable at the moment.
The definition of Eq. (55) also provides the condition for the state

D to belong to the region of attraction D:

Z
ν�2π

ν
Lxz�Dxz�τ�;τ�dτ ≠ 0 ∧

Z
ν�2π

ν
Ly�Dy;τ�dτ ≠ 0⇔D∈D

(58)

For the sake of computational efficiency, the previous integrals of

Eqs. (56) and (57) are approximated through a discretization scheme:

1

2π

Z
ν�2π

ν
Lxz�Dxz�τ�; τ� dτ ≈

XnL
p�1

Lxz�Dxz�νp�; νp�;

1

2π

Z
ν�2π

ν
Ly�Dy; τ� dτ ≈

XnL
p�1

Ly�Dy; νp�;

νp � ν� 2πp

nL
; nL ∈ N (59)

Using the previous approximation, a sufficient condition for the state

D to belong to the region of attraction D can be stated:

νp � ν� 2πp

nL
; nL ∈ N;

8>>>>><
>>>>>:

XnL
p�1

Lxz�Dxz�νp�; νp� ≠ 0;

XnL
p�1

Ly�Dy; νp� ≠ 0;

⇒ D ∈ D

(60)

The condition given by Eq. (60) is the one employed in the upcoming

event-based control algorithm.

C. Single-Impulse Control Computation

Subsequently, the single-impulse programs to be solved are pre-

sented. By using the previously defined sets ΛS
sat;xz and ΛS

sat;y, in the

control variables spaces, it can be shown that the single impulse

control programs can be easily computed with only a few objective

function evaluations.

1. Out-of-Plane Control

To steer the state Dy to the admissible set SDy
at time ν, the

following program is considered:

min
λy

kΔVy�λy�k1;

s:t:

8>><
>>:
D�

y �Dy; ν; λy� ∈ SDy
;

ΔVy � λy;

λy ∈ Λsat;y

(61)

The constraints of Eq. (61) are equivalent to λy ∈ ΛS
sat;y [see Eq. (50)];

hence

min
λy

jλyj; s:t:λy ∈ ΛS
sat;y (62)

where the optimal candidates are the intervals composing ΛS
sat;y,

given by Eq. (50), extrema:

Λ	
y � fλy1; λy2; λy3; λy4g (63)

The optimal solution can be easily found by evaluating four times the

objective function and choosing the value that yields the minimum:

λ	y � argmin
λy∈Λ	

y

�jλyj� (64)

2. In-Plane Control

To steer the in-plane stateDxz to the admissible set SDxz
at time ν,

the following program is considered:

min
λxz



ΔVxz�λxz�



1
;

s:t:

8>>><
>>>:
D�

xz�Dxz; ν; λxz� ∈ SDxz
;

ΔVxz�Dxz; ν� � λxzB
⊥
d0;xz

�Dxz; ν� � ΔV0
xz�Dxz�;

λxz ∈ Λsat;xz�Dxz; ν�
(65)

As in the out-of-plane case, the constraints of Eq. (65) are equivalent

to λxz ∈ ΛS
sat;xz; see Eq. (49). Expanding the objective function yields

min
λxz

�
jλxzB⊥

d0;x
� ΔV0

xj � jλxzB⊥
d0;z

� ΔV0
z j
�
; s:t: λxz ∈ ΛS

sat;xz

(66)

Fig. 3 Sketch illustrating the admissible set instantaneous reachability
for ν1 ≤ ν2 ≤ ν3.
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where the optimal candidates are the intervals composing ΛS
sat;xz

extrema and the points where the objective function slope changes

due to the presence of the absolute value function

Λ	
xz �

n
λxz1; λxz2; λxz3; λxz4;−ΔV0

x∕B⊥
d0;x

;−ΔV0
z∕B⊥

d0;z

o
(67)

thus the optimal solution is given by

λ	xz � argmin
λxz∈ΛS

sat;xz∩Λ	
xz

�

λxzB⊥
d0;x

� ΔV0
x



�

λxzB⊥
d0;z

� ΔV0
z



� (68)

Note that only six objective function evaluations are required to find

the optimal solution.

3. Coupled Motion Control

In previous cases, the control is assumed to be purely applied either

as in-plane or out-of-plane. In the case where in-plane and out-of-

planemotions require to be controlled at the same time, the following

approach is proposed. Its aim is to account for the coupling of the in-

plane and out-of-plane motions through the control constraints in

Eq. (13) while preserving the low complexity level of problems (62)

and (66).
First recall that each control is systematically computed to steer the

satellite on a periodic orbit, by satisfying Eq. (31); thus the in-plane

control structure is given by Eq. (32). Then, the impulsive control

ΔV ∈ R3 is given by

ΔV�λxz; λy� �
h
B⊥
d0;x

�Dxz; ν�λxz � ΔV0
x�Dxz; ν�; λy; B⊥

d0;z
�Dxz; ν�λxz

� ΔV0
z�Dxz; ν�

i
T

Consequently, when the relative motion is coupled, the following

program is considered to compute the control:

min
λxz;λy

kΔV�λxz; λy�k1;

s:t: ΔV � �B⊥
d0;x

λxz � ΔV0
x; λy; B

⊥
d0;z

λxz � ΔV0
z �T;

ΔV ≤ kΔVk2 ≤ ΔV;

λxz; λy ∈ ΛS
sat (69)

where dependencies with time, ν, and the in-plane state Dxz have

been omitted for the sake of clarity. Then, as the reachability con-

ditions are met for both the in-plane and out-of-plane motion, the

search set ΛS
sat ∈ R2 is nonempty and is described by

ΛS
sat � ΛS

sat;xz × ΛS
sat;y

which is a nonconnected set composed of four convex components.

These four components are boxes of R2 whose vertices are the given

16 couples �λxz; λy�:

f�λxz; λy�i�1;: : : ;16g
� f�λxz;λy� s:t: λxz; λy ∈ fλxz1;λxz2;λxz3;λxz4g× fλy1; λy2; λy3;λy4gg

Then, the approach consists in assessing the control constraints of

Eq. (13) at f�λxz; λy�i�1; : : : ;16g, which are the vertices of the four ΛS
sat

components. Thanks to the convexity property of the four compo-

nents of ΛS
sat, if any of these vertices meet Eq. (13) conditions, the

optimization problem has a nonempty solution space. The optimal

one is chosen among the admissible vertices. On the contrary, if none

of these vertices is admissible, a policy prioritizing the in-plane

motion control over the out-of-plane one is applied.

D. Event-Based Control Algorithm

The event-based control algorithm is composed of the single
impulse control law presented in Sec. III associated to the trigger
rules. These trigger rules are designed to achieve a threefold objec-
tive. Firstly, they have to ensure the in-plane (68) and out-of-plane
(64) control programs feasibility when executed. Secondly, unnec-
essary commands must be avoided. Finally, Zeno phenomena should
be precluded.
The proposed trigger rules are summarized in Algorithm 1. The

computation and execution of a control impulse takes place when
certain conditions are met. Each time the spacecraft leaves the
admissible set SD, based on Eq. (18), the instantaneous reachability
indicators �Gxz; Gy;Gν;xz; Gν;y� are checked. IfGxz orGy is equal to

or above the predefined thresholds, δxz or δy, respectively, and
growing (Gν;xz > 0 or Gν;y > 0), a single impulse is commanded

through program (68) or (64). Note that the thresholds should be
negative δxz ≤ 0 and δy ≤ 0. Otherwise, if Gxz � 0 or Gy � 0, the

reachability over one target orbit period is assessed; e.g., the belong-
ing of state D to D is evaluated. If it is the case that D ∈= D (SD is
unreachable over the next 2-π period), the controller of [15], which
globally stabilizes SD with three periodical impulses, is commanded.
The choice of the thresholds δxz and δy will impact the controller

behavior. If they are very negative, the single-impulse law is triggered
more frequently. Otherwise, if the thresholds are close to zero, the
single-impulse law will be triggered at a slow pace, which could
potentially increase the controller efficiency.However, there exists an
upper bound for the triggering thresholds in order to ensure that the
single-impulse law is triggered. This upper bound could be computed
by finding the highest possible values of Gxz and Gy along a target

orbit period over thewhole domainD. Choosing the thresholds below
these upper bounds guarantees that the single impulse control will
always be commanded forD ∈ D at some time between ν and ν� 2π

δxz < min

�
sup
D∈D

� max
ν∈�0;2π�

Gxz�Dxz; ν��
	
;

δy < min

�
sup
D∈D

� max
ν∈�0;2π�

Gy�Dy; ν��
	

(70)

IV. Invariance of the Single Impulse Approach

In this section, the invariance of the primal single impulse
approach is assessed. Firstly, the well-posed behavior of the system
is studied by using some fundamental results of hybrid impulsive
systems. Next, some invariance results for the single-impulse
approach, even in the case of continuous disturbances, are demon-
strated. These proofs require checking certain conditions for both the
out-of-plane and in-plane motion.

Algorithm 1: Trigger rules

Input:D, ν

Output: control decision
1: if D ∈ SD then

2: Wait.
3: else if D ∈= SD andD ∈ D then

4: if Gxz�D; ν� ≥ δxz and Gν;xz�D; ν� > 0 and Gy�D; ν� ≥ δy and
Gν;y�D; ν� > 0 then

5: Solve Eqs. (68) and (64), apply ΔVxz and ΔVy.

6: else if Gxz�D; ν� ≥ δxz and Gν;xz�D; ν� > 0 then

7: Solve Eq. (68) and apply ΔVxz.

8: else if Gy�D; ν� ≥ δy and Gν;y�D; ν� > 0 then

9: Solve Eq. (64) and apply ΔVy.

10: else
11: Wait.
12: end if
13: else if D ∈= SD andD ∈= D then

14: Apply the global stabilizing controller of [15].
15: end if
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A. Well-Posedness for Hybrid Impulsive Systems

The impulsively controlled relative motion between two space

vehicles can be recasted as an hybrid impulsive system composed
of the continuous flow dynamics given by Eq. (7) and the instanta-
neous state changes of Eq. (10). As a consequence, themain results of
[30] regarding invariance principles for hybrid impulsive systems

apply to the case under study. Consider the following hybrid impul-
sive system:

D 0�ν� � AD�ν�D; D�0� � D0 ∈ D; �ν;D�ν�� ∈= Z;

ΔD�ν� � BD�ν�ΔV�ν�; �ν;D�ν�� ∈ Z (71)

whereΔD denotes the instantaneous change on the stateD due to an
impulse. For the previously presented single impulse approach,

the so-called jump set Z is given by the trigger rules defined in
Algorithm 1. Note that the problem is time dependent, although the
system coefficients are 2-π periodic.
One can precisely write the setZ for the out-of-plane and in-plane

dynamics (resp. Zy and Zxy), so that Z � Zy × Zxz:

Zy � f�ν;D�ν��:D ∈= SDy
;D ∈ Dy;Gy�D; ν� ≥ δy;Gν;y�D;ν� > 0g

(72)

Zxz�f�ν;D�ν��:D∈=SDxz
;D∈Dxz;Gxz�D;ν�≥δxz;Gν;xz�D;ν�>0g

(73)

The initial condition D0 is assumed to lie in the admissible set
region of attractionD � Dy ×Dxz. If the initial condition is not inD,

the stabilizing controller of [15] is applied, which is out of the scope
of this work; thus the case is not considered.
Following ([30] Chapter 2, p. 13), the assumptions guaranteeing

the well-posedness of the state jump time instants are satisfied. The

first assumption (A1) states that the trajectory can only enter the jump
set through a point that belongs to its closure but not from the jump set
itself. However, due to the jump setZ form and noting the definition
ofD, points on its closure but not in the set can only possibly be on the

boundary of SD, where the dynamics is stationary (since d0 � 0).
Therefore, they cannot leave SD and enter the jump set. The closure
of Z is described for a state D ∈ D, by Gi�D; ν� � δi and
Gν;i�D; ν� > 0, being i the subscript for xz or y. Moreover, by

definition, Gi�D; ν� is a continuous function in terms of ν and D.
Consequently, the only way for the stateD to reach the jump set is to
go through its closure. The second assumption (A2) from [30]
(Chapter 2, p. 13) requires ensuring that when a trajectory intersects

the jump set it exits Z without returning to it (at least for some finite
time). In the proposed approach, the jump setZ is defined outside the
admissible set so that Z ∩ SD � ∅. When the state trajectory enters
the jump set, the computed control impulse sends back the state to
the admissible set SD. Therefore, the assumption A2 is satisfied

by the control law construction. As both assumptions are verified,
the resetting times are ensured to be well-defined. The Zeno phe-
nomenon is precluded as well because after one jump the state is
placed outsideZ in theSDwhere the dynamics is stationary. All these

arguments guarantee that the solution to (71) exists and is unique over
a forward time interval.
Next, the invariance of the single impulse approach is analyzed

with and without disturbances. It holds that the trigger law makes the
admissible set invariant and attractive, even in the presence of dis-
turbances, under certain conditions of the involved sets. These con-
ditions are assessed in the sequel taking into account the problem

parameters fx; �x; y; �y; z; �zg, e, ΔV, and ΔV.

B. Invariance Under the Single Impulse Approach

Next, a result guaranteeing the existence of an attractive invariant
set for (71) is shown. It is not possible to use [30] (Chapter 2,

p. 38) due to the time-varying nature of the system.
Assumption IV.1: Every state in the neighborhood of SD can reach

SD using one unconstrained impulse over a 2-π period.

In other terms, for a given state D in the vicinity of SD, the set

�D� F∞� ∩ SD ≠ ∅, where F∞ is the state increment uncon-

strained reachable set (see Appendix A). For the out-of-plane motion

F∞
y is the whole space R2. For the in-plane motion F∞

xz is a conic

surface (see Appendix A for definitions and descriptions).
Remark IV.1: If assumption IV.1 is not satisfied for some states in

the closed vicinity of SD, those states do not belong to D by

definition. Consequently, there exist paths that escape SD without

any opportunity to be steered back to SD with a single impulse. In

such condition, invariance cannot be guaranteed.
To provide invariance results, the dead-zone set Ddz needs to be

declared. This set is defined as the set of states from where all the SD

reachability opportunities over a 2-π period fall below the dead-zone

threshold. This setmay exist or not depending on the conditions given

in Appendix B.
Theorem 1: Consider the impulsive dynamic system given by

Eq. (71). Define the setM � D ∪ SD. If the dead-zone set is empty,

Ddz � ∅, then for D�0� ∈ M, it holds that D�ν� → M as ν → ∞.
Proof: Consider assumption IV.1. Therefore, for any state in the

SD vicinity, there exist an unconstrained control steering the state

back to SD over the next 2-π period: �D� F∞� ∩ SD ≠ ∅. For

states very close to SD, the control is small enough so that

�D� F dz� ∩ SD ≠ ∅. At this point, two cases are possible: the set

�D� F sat� ∩ SD may be empty or not. Recalling that the dead-zone

set is described by

Ddz � fD ∈ R6:�D� F dz� ∩ SD ≠ ∅ ∧ �D� F sat� ∩ SD � ∅g
(74)

then, if the dead-zone set is empty, any state in the closed neighbor-

hood ofSD verifies �D� F sat� ∩ SD ≠ ∅. In other terms, the closed

neighborhood of SD belongs to D:

∂D ∩ ∂SD � ∂SD (75)

Consequently, any SD escape trajectory is guaranteed to enter D.
Noting that the set D is contractive to SD terminates the proof.
Theorem 1 indicates that, under the event-based control laws, the

admissible set is attractive and invariant and the union set M is

invariant.
Remark IV.2: If the dead-zone set is nonempty, some states at

the boundary of SD belong to Ddz so that ∂D ∩ ∂SD ≠ ∂SD and

∂Ddz ∩ ∂SD ≠ ∅. Then, there exist SD escape trajectories without

entering the region of attractionD. Therefore, the invariance property

cannot be generally ensured by the local controller and the global

control may be triggered.

C. Invariance Under Disturbances

Next, the hybrid system (71) is modified to account for continuous

dynamic disturbances

D 0�ν� �AD�ν�D�w�ν;D�ν��;D�0� �D0 ∈D �ν;D�ν�� ∈= Z;

ΔD�ν� � BD�ν�ΔV�ν�; �ν;D�ν�� ∈ Z

(76)

where w�ν;D�ν�� is an unknown Lipschitz continuous disturbing

function, which is assumed to behave in a way such that it does not

modify the assumptions validity guaranteeing the well-posedness of

the jump times and the absence of Zeno behaviour for system (71).

Firstly, the invariance can only be ensured if theorem 1 conditions

hold. Then, SD is attractive and the set M is an invariant set under

the following condition: the continuous disturbances function w�⋅�
has to be bounded such that φD�ν;D0;w� ∈ M for D0 ∈ SD and

ν ∈ �ν0; ν0 � 2π�, being φD the bundle of flow trajectories under the

disturbances. Such a conjecture is only a necessary to ensure invari-

ance under disturbances. As a matter of fact, remaining in the SD

region of attraction, D, ensures that an opportunity will raise during

the next orbital period as the jump setZ lives inD. However, the case
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where the disturbances causes the state to drift away D, before such
opportunity comes up, is also probable.

V. Numerical Experiments

In this section, the simulation results using the proposed event-
based controller are presented. The section is divided into three parts
to analyze the effect of themain parameters (e,ΔV,ΔV) affecting the
controller performances. The simulations are run in MATLAB, with
an i7-8700 3.2 GHz CPU, using the Simulink model [35], which is
based on the nonlinear Gauss variational equations accounting for
Earth J2 oblateness effects and atmospheric drag as disturbances
sources w.
The scenario parameters common to all the simulations are the

following: the Earth gravitational constant (μ � 398;600.4 km3∕s2),
the leader orbit elements (hp � 605 km, i � 98°, Ω � 0°, ω � 0°),

the leader initial true anomaly (ν0 � 0°), the follower initial relative
state on theLVLH frame (X0 � �300 m;400 m;−40 m;0 m∕s;0 m∕s;
0 m∕s�T), and the hovering box bounds (x � 50 m, �x � 150 m,
y � −25 m, �y � 25 m, z � −25 m, �z � 25 m). Regarding atmos-

pheric drag, the target and chaser ballistic coefficients are assumed to

be similar to the International Space Station,Bt � 139.80 kg∕m2, and

Automated Transfer Vehicle, Bc � 175.90 kg∕m2.
The vehicle starts outside SD and reaches the admissible set

during an approach phase (carried out by the global stabilizing
controller). Once the vehicle enters SD, the hovering phase (which
is the scope of thiswork) beginswith the activation of the event-based
controller.
Regarding the event-based controller parameters, the trigger rules

are evaluated at a sampling rate of (Δν � 1°), the SD instantaneous
reachability thresholds are chosen as (δxz � −3, δy � −100) and the

discretization parameter to evaluate Eq. (60) is taken as (nL � 100).
The hovering phase lasts for 10 target orbit periods (νf � ν0 0�
10 ⋅ 2π). Note that ν0 0 is the hovering phase initial instant. On the

other hand, the global stabilizing controller parameters are the num-

ber of impulses (N � 3), true anomaly interval between impulses

(τI � 30°), true anomaly interval between sequence of impulses

(τS � 5°), and true anomaly interval to achieve periodicity (τE �
5°), see [15]. The studied parameters are the eccentricity e, the dead-

zone ΔV, and the saturation ΔV in Secs. A, B, and C, respectively.

The specific parameter values are detailed in each paragraph.

A. Impact of the Eccentricity

Because of its important role in the relative dynamics [see Eq. (7)],

the control matrix BD given by Eq. (11), and the admissible set

description [see Eqs. (19–24)], the eccentricity impact is assessed

in this section. To this end, 50 simulations for different eccentricities

equispaced between 0 and 0.6 have been carried out. The dead-zone

and saturation values are chosen as ΔV � 10−3 m∕s and ΔV �
0.1 m∕s.
Firstly, the event-based controller behavior is studied and then

compared with the global controller proposed in [15]. Simulation

results for e � 0 and e � 0.6 are presented in Fig. 4. At each case,

only the hovering phase trajectory is represented and analyzed. Let us

recall that the approach phase is ensured using a proper controller as

the globally stabilizing one from [15]. In Fig. 4a the polytopic

constraints are respected, whereas in Fig. 4b a violation arises near

the upper left corner though the trajectory naturally returns to the

hovering region. However, the global controller is not triggered. This

translates to the fact that even if the admissible set is not reachable

(the spacecraft is outside of the hovering zone) it will be in the next

a)

b)

Fig. 4 Trajectory for a) e � 0 and b) e � 0.6. Hovering impulses scale 10:1 with respect to approach impulses.
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period (D ∈ D). The event-based controller behavior can be seen in
Fig. 5. This figure shows the instantaneous reachability signalsGxz and
Gy along with the triggered impulses ΔVxz and ΔVy. The instanta-

neous reachability signalsGxz andGy evolve quasi-periodically. This

confirms the assumption that the state is in the equilibrium set (or very
close to it) and the range of control evolves periodically as suggestedby
the control matrix BD [see Eq. (11)].
Figure 6 counts the number of calls to the single impulse controller

and to the global controllermade by the event-based algorithmduring
the hovering phase. Consequently, the number of triggering events is
counted. This number is between 6 and 19, with an average of 10.3
events. One can note that the global controller is never called during
all the simulated cases. In other terms, the use of the local event-based
controller (through the primal single impulse approach) permits to
not lose track of the admissible set. This illustrates the robustness and
invariance of the set D even in the presence of disturbances.
Then, the event-based controller (by even studying very reactive

thresholds δxz � −300, δy � −104) performance is compared with
the periodic global stabilizing controller (considering two different
tuning parameter values τI � 30°, 5°) proposed in [15]. The con-
troller’s accuracy is presented in Fig. 7. During the hovering phase,
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Fig. 5 The variables Gxz, Gy, kΔVxzk1, and kΔVyk1 for a) e � 0 and b) e � 0.6.
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Fig. 6 Number of calls to each control law for the event-based controller.
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the hovering condition (the spacecraft position respects the polytopic
constraints) is tested. Let us recall that the relative stateD belonging
to the admissible set, SD, implies that the relative state position is
within the hovering zone. Figure 7 shows the percentage of time the
chaser spacecraft remains within the hovering zone (cuboid). The
event-based controller shows its superiority by ensuring an accuracy
over 96.00% (97.91% for reactive thresholds) of the hovering time in
almost all caseswith an averagevalue of 98.66% (99.62% for reactive
thresholds). For the other controllers, the hovering mean time results
are 95.43 and 91.38% (for τi � 5° and τi � 30°, respectively). These
values may be unacceptable, because each 1% of constraints viola-
tion corresponds to an excursion time between 10minutes (for e � 0)
and 40 minutes (for e � 0.6). Note that the target perigee altitude is
fixed; thus the semimajor axis and orbit period increase with the
eccentricity. An explanation for this accuracy loss is that the global
controller does not account for the thruster’s minimum impulse bit.
Consequently, most of the computed controls are not executed due to
the dead-zone filtering (impulses below the dead-zone value are
nullified) as it can be observed in Fig. 8. As a matter of fact, the
global controllers compute a total number of 723 and 203 impulsive
controls during the hovering phase (depending on the parameter τi
but not on the eccentricity value). However, only 3–21 of them are
relevantwith respect to theminimum impulse bit. On the contrary, the
event-based controller computes between 6 and 19 controls for the
nominal casewhile the reactive controller triggers 2 impulses more in
average. It is worth noting that the number of relevant impulses is of
the same magnitude for all the controllers while the accuracy clearly
improves with the event-based approach.
The hovering phase fuel consumption, measured as J �P
N
i�1 kΔVik1, is shown in Fig. 9. The cost is shown for both the

event-based controller and global controllers (before and after dead-
zone filtering). Before the dead-zone filtering (w/o filter), only the
computed consumption is shown. The actual fuel consumption cor-
responds to the cases after dead-zone filtering. The event-based
controller consumption is almost equivalent to the global controller
actual consumption. More precisely, the event-based control con-
sumes, at most, less than 4.5 cm∕s for 0 ≤ e ≤ 0.1, and less than
2 cm∕s for e > 0.1 typically. Similar results are yielded by the
reactive thresholds that assure less than 3 cm∕s for 0 ≤ e ≤ 0.1
and the same performance for e > 0.1 in average.
One of main arguments for the development of an event-based

control algorithm is the enhancement in terms of numerical efficiency.
The event-based controller computational load is composed of the
trigger rules evaluation (at the specified sampling rate) and the in-plane
or out-of-plane controls computation (when required). The most com-
putationally consuming task is the trigger rules evaluation lasting an
average of 5.895 ms (see Table 1), whereas the computation times of
the in-plane and out-of-plane controls are negligible in comparison
(with average values of 0.0299 and 0.1314 ms, respectively). One can

note that theworst trigger rules computational time highly differs from

the mean. This can be explained by the fact that in the case where the

reachability over one period has to be computed through Eq. (59), the

trigger rules evaluation time increases significantly.

Table 2 shows the cumulated computation times during the hovering

phase (10 periods) for the different controllers. The cumulated com-

putation times for the event-based controller are between 6 and 79 s,

whereas the global predictive controller spends between 223 and 266 s

(for τi � 5°), and between 60 and 72 s (for τi � 30°). The superiority
of the event-based controller with respect to the global controllers is

justified by the fact that at five times (Δν � 1°) the global controller
sampling rate (τI � 5°), the event-based controller computational time

is 20 times lower (in average). By selecting τi � 30°, the global
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Fig. 7 Polytopic constraints satisfaction time percentage of the event-

based and periodic controllers for different eccentricities.
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Fig. 8 Number of impulses of the event-based and periodic controllers
for different eccentricities.Filter ≡ impulsesbelowdead-zone nullified;
w/o filter ≡ impulses below dead-zone not nullified.
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Fig. 9 Cost of the event-based and periodic controllers for different
eccentricities.Filter ≡ impulses belowdead-zone nullified;w/o filter ≡
impulses below dead-zone not nullified.

Table 1 Event-based computation times

Module
Mean,
ms

Standard deviation,
ms

Min,
ms

Max,
ms

Trigger rules 5.895 15.91 0.622 118.6
In-plane control 0.0299 0.0624 0.0270 0.5813
Out-of-plane control 0.1314 0.0299 0.0209 0.4824
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controller computational time is three times higher than the event-

basedonewhile the control accuracy is significantly lowerwith nogain

in fuel consumption to mitigate these observations.

B. Impact of the Dead-Zone

As shown in Sec. IV, the dead-zone can significantly impact the

event-based controller behavior. This is the reason why a parametric

analysis onΔV is carried out for e � 0.004 andΔV � 0.1 m∕s. The
dead-zone impact is assessed by simulating 50 values of ΔV, loga-
rithmically equispaced between 10−4 and 10−2 m∕s.
Figure 10 shows that the hovering fuel consumption increases

gradually from 1.5 to 3 cm∕s when the dead-zone threshold reaches

0.45 mm∕s. Above this value, a quick raise to 4 cm∕s happens. This
consumption stays steady until the dead-zone threshold reaches

3 mm∕s from where it increases gradually to 7 cm∕s. In a general

way, the fuel consumption trend is to increase as the dead-zone is

enlarged. Another trend showed by Fig. 10 is decrease of the impulses

number as ΔV increases. This highlights a reduction of triggering

opportunities when the dead-zone band is higher. In other terms, the

event-based control algorithm is less sensitive and reactive as the dead-

zone band is enlarged.However, in the proposed study, the reactivity is

not directly correlated with the accuracy of the control scheme. In fact,

Fig. 11 shows that the hovering zone constraint satisfaction time

percentage is globally high with values above 97% (with several ones

of 100%). It is also seen, in Fig. 10, that the single impulse strategy is

always commanded at all cases. It can be concluded that the behavior

of the event-based controller could be affected in terms of reactivity

and consumption if the dead-zone band is enlarged, but the control

performances remain reasonably good. Note that the dead-zone value

is an intrinsic property of the chosen spacecraft thrusters for the

mission. Nonetheless, a different value can be set in the control

algorithm to tune the behavior of the controller and thrusters.

C. Impact of the Saturation

Finally, for a given dead-zone threshold, ΔV � 10−3 m∕s, and
eccentricity, e � 0.004, the impact of the saturation value ΔV is

analyzed. To this end, 50 saturation values logarithmically equi-

spaced between 10−3 and 10−1 m∕s are evaluated.

In Fig. 12, two different trends can be observed. Firstly, when the

saturation value is lower than 1 cm∕s, the number of event-based

calls increases as the saturation band enlarges. When the saturation

value is closer to the dead-zone value, the global controller is called

Table 2 Cumulated computation times for the hovering phase

Controller
Mean,

s
Standard deviation,

s
Min,
s

Max,
s

Event-based 21.223 13.831 5.811 79.128

Global τi � 5° 245.60 11.231 222.98 265.84

Global τi � 30° 66.500 3.143 60.427 72.191
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Fig. 10 Cost and control calls of the event-based controller for different
dead-zone values.
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Fig. 11 Polytopic constraints satisfaction time percentage of the event-
based controller for different dead-zone values.
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Fig. 12 Cost and control calls of the event-based controller for different
saturation values.
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Fig. 13 Polytopic constraints satisfaction time percentage of the event-
based controller for different saturation values.
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frequently due to the lesser available control region. The fuel con-
sumption follows exactly the same trend. It is also observed, in
Fig. 13, a correlation between global controller calls and the loss of
control accuracy. Additionally, the accuracy is maximal and steady
when the saturation value enlarges the control region enough.
If the saturation value is greater than 1 cm∕s, the fuel consump-

tion, number of control calls, and accuracy remain steady. It is
concluded that the saturation does not affect the behavior and control
performances above a given value. This fact can help to choose the
thruster with respect to its capabilities.

VI. Conclusions

In this paper, an event-based predictive controller for the spacecraft
rendezvous hovering phase has been presented. The event-based
control architecture is composed of trigger rules calling a suitable
control law. The trigger rules are based on the monitoring the state
and the admissible set reachability, and the preferred control law is a
single impulse approach. For instance, it has been highlighted that the
resulting event-based algorithm has a high computational efficiency.
In fact, the computations involve polynomial roots computation (for
the instantaneous reachability) and the cost evaluation in a small
number of admissible solutions of a given small-dimensional linear
program. This fact makes the proposed controller suitable for the
embeddedness on spacecraft computational devices.
The properties of the single impulse control approach have been

assessed in Sec. IV. The well-posedness of the proposed controller
was demonstrated. Moreover, under nominal scenario parameters,
the single impulse strategy, along with the associated trigger rules,
makes the admissible set attractive (even in the presence of weak
enough disturbances). This fact has also been remarked under
numerical simulationswith dynamic disturbances. These simulations
emphasize the superiority of the event-based controller performances
in terms of accuracy and computational efficiency (with similar fuel
consumption and number of relevant impulses) when compared with
the global stabilizing method of [15]. Finally, it has been highlighted
that the thruster capabilities, via dead-zone and saturation parame-
ters, may have an impact in the mission performance.
An extension of thiswork could possibly be to robustify the control

and trigger rules with respect to the presence of impulses mishaps. To
this end, a robust formulation with disturbance estimation as [36],
combined with state uncertainty minimization as in [37], could be
considered. Finally, another possible future work is the explicit
consideration of Earth’s oblateness within our formulation by adding
the periodicity condition given by [34].

Appendix

The aim of this Appendix is to expose the geometry of the 2-π
period reachable sets. These sets are relevant to describe the region of
attraction D and thereafter the so-called dead-zone set Ddz. More-
over, conditions of existence of the dead-zone set are provided. These
conditions depend mainly to the dead-zone threshold ΔV.

Appendix A: Reachable Set over One Period

Following [29], it is convenient to define the reachable set over a
2-π period F � F xz × F y. The reachable set is expressed with

respect to the state increment ΔD � D� −D ∈ R6.

A.1. Out-of-Plane

The out-of-plane state increment is defined as ΔDy �
D�

y −Dy � �Δd4;Δd5�T

ΔDy�ν; λy� � λyBD;y�ν� �
λy
k2ρ

�−sν; cν�T (A1)

Exploiting [33], an implicit form of Eq. (A1) with respect to the
independent variable is obtained:

fy�ΔD; λy� �
Δd24

�λy∕k2
�������������
1 − e2

p
�2

� fΔd5 � �eλy∕k2�1 − e2��g2
�λy∕k2�1 − e2��2 − 1

� 0 (A2)

Equation (A2) describes the equation of an ellipse for given fixed

parameters e, λy. Define the out-of-plane state increment reachable

set as

F y�Λ� ≔ fΔDy ∈ R2:fy�ΔDy; λy� � 0; ∀λy ∈ Λ ⊆ Rg (A3)

where the set Λ refers to the allowable values for the out-of-plane

control, λy. If both dead-zone and saturation constraints are taken into
account [see Eq. (28)], then the reachable set is a function of the

interval set Λsat;y:

F sat;y � F y�Λsat;y� (A4)

It is also convenient to describe the dead-zone reachable sets, states
increments with a control below the dead-zone thresholdΔV, and the
unconstrained reachable set as, respectively,

F dz;y � F y��−ΔV;ΔV ��; and F∞
y � F y�R� (A5)

Remark that F∞
y is the whole Dy space, R

2.

A.2. In-Plane

The in-plane state increment is defined as ΔDxz � D�
xz −Dxz �

�Δd0;Δd1;Δd2;Δd3�T . As the periodicity tracking strategy is
applied [see Eq. (33)], then the in-plane state increment is given by

ΔDxz�ν; λxz;Dxz� � BD;xz�ν�
�
λxzB

⊥
d0;xz

�ν� � ΔV0
xz�d0; ν�

�
(A6)

where it should be noted thatΔDxz depends on the actual state due to

d0. As a consequence, the 2-π. period in-plane reachable state (in the
ΔDxz space) is

F xz�Λ� ≔ fΔDxz ∈ R4:ΔDxz s:t:Eq:�80�;∀λxz ∈ Λ ⊆ Rg (A7)

Λ is again an interval set of the allowable values for the in-plane
control variable, λxz. To account for dead-zone and saturation con-

straints, interval set Λ is given by Eq. (35). Consequently, the con-

strained reachable set is

F sat;xz � F xz�Λsat;xz�d0; ν�� (A8)

The dead-zone and unconstrained reachable sets are also defined,
respectively, as

F dz;xz � F xz��λxz;1�d0; ν�; λxz;2�d0; ν���; F∞
xz � F xz�R� (A9)

Note thatΔd0 � −d0 due to the periodicity tracking strategy. This
fact makes the d1d2d3 space the relevant one when applying the in-

plane impulse. A further geometric description can be made under
the quasi-steady assumption. Assuming that jd0j ≈ 0, the part of the
control impulse that compensate for d0 can be neglected as

kλxzB⊥
d0;xz

k2 ≫ kΔV0
xzk2, then

ΔDxz�ν; λxz� ≈ λxzBD;xz�ν�B⊥
d0 ;xz

�ν� � λxz
k2ρ

�0;−sν; cν; 2� ecν�T

(A10)

Equation (A10) can be implicitizedwith respect to ν and λxz bymeans

of a Groebner basis (see [38]) to obtain the implicit equation that

describe the state increment surface:
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fxz�ΔDxz� � 4Δd21 � �4 − e2�Δd22 � 2eΔd2Δd3 − d23 � 0

(A11)

Equation (A11) is a conical surface in the Δd1Δd2Δd3 space being
the Δd3 axis the apex if e � 0. It provides an approximation for the
in-plane unconstrained reachable set over a 2-π period:

F∞
xz ≈ �ΔDxz ∈ R4:fxz�ΔDxz� � 0� (A12)

Because the control variable λxz was lost due to implicitization, this
analytical description cannot be extended to account for dead-zone
and saturation constraints. But, as a matter of fact, F sat;xz and F dz;xz

are sections of the F∞
xz.

Appendix B: Dead-Zone Set

The dead-zone set Ddz � Ddz;xz ×Ddz;y is defined as the set of
states from where all the SD reachability opportunities over a 2-π
period fall within the dead-zone threshold. This set is of particular
importance because, whenever D ∈ Ddz, the global controller is
called (see Algorithm 1). As it is shown in the sequel, this set may
or may not exist depending on the conditions developed thereafter.

B.1. Out-of-Plane

Using a formal notation, the out-of-plane dead-zone set is
defined as

Ddz;y ≔ fDy ∈ R2:Dy ∈= SDy
;Dy ∈= Dy; �Dy 
 F dz;y� ∩ SDy

≠ ∅g
≔ fDy ∈ R2:Dy ∈= SDy

; �Dy 
 F sat;y� ∩ SDy
� ∅;

�Dy 
 F dz;y ∩ SDy
≠ ∅g (B1)

Following [29], the contractive setDy can be expressed in terms of the
following Minkowski sum:

Dy � SDy

 F sat;y (B2)

For simplicity, the summation has been considered because the out-
of-plane state increment reachable set over one period [see Eq. (A4)]
does not depend on the current state Dy. Since F sat;y is the covered

region between two ellipses (which is closed), it is deduced that the
out-of-plane dead-zone set only exists,Ddz;y ≠ ∅, if SDy

⊂ F dz;y by

convexity of Eq. (B2) Minkowski sum. This is an important con-
clusion because only theminimum impulse bit (which depends on the
thruster capabilities) could degrade the out-of-plane event-based
controller behavior. For example, consider the case where e � 0,
then both SDy

and the interior region of F y are circles of radius

maxfjyj; j �yjg and ΔV∕k2, respectively. It can be easily seen that

SDy
⊂ F dz;y ifΔV > k2 maxfjyj; j �yjg. Figure B1 shows a casewhere

the out-of-plane state is within the contractive set and another case
where the out-of-plane state is within the dead-zone set (thus, SDy

is

unreachable over the 2-π period). Figure B2a presents the nominal
scenario (simulated in Sec. V) where the dead-zone set vanishes
(Ddz;y � ∅). Figure B2b shows a case where the dead-zone value

Fig. B1 F sat;y, F dz;y, and SDy
for a � 7011 km, e � 0.004, �y � −y � 25 m, ΔV � 7.5 ⋅ 10−2 m∕s, ΔV � 0.1 m∕s. a) Dy � �−50; 50�T ∈ Dy;

b) Dy � �−25; 25�T ∈ Ddz;y.

Fig. B2 Dy,Ddz;y, and SDy
for a � 7011 km, e � 0.004, �y � −y � 25 m, ΔV � 0.1 m∕s. a) ΔV � 10−3 m∕s; b) ΔV � 7.5 ⋅ 10−2 m∕s.
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is augmented considerably; thus the dead-zone set Ddz;y has a rel-

evant size.

B.2. In-Plane

Using the previous notation, the in-plane dead-zone set is defined

as

Ddz;xz≔fDxz∈R2:Dxz∈=SDxz
;Dxz∈=Dxz;�Dxz
F dz;xz�∩SDxz

≠∅g
≔fDxz∈R2:Dxz∈=SDxz

;�Dxz
F sat;xz�∩SDxz
�∅;

�Dxz
F dz;xz∩SDxz
≠∅g (B3)

Under the quasi-steady assumption, the in-plane contractive setDxz

can be approximated as

Dxz ≈ SDxz

 F sat;xz if jd0j ≈ 0 (B4)

Note that the in-plane state increment reachable set is independent

of the current state. However, in this case, the Minkowski sum is

composed of a convex closed set, SDxz
, with some sections of the

conic surface (due to dead-zone and saturation) given by Eq. (A11).

Because a cone is an open surface, no conclusions can be yielded

about possible event-based controller degradation causes. This

degradation could be caused due to a combination of the dead-zone

threshold and the problem topology. Figure B3 shows a case where

the in-plane state iswithin the in-plane contractive setDxz (Fig. B3a)

and another situation where the state is within the in-plane dead-

zone set Ddz;xz (Fig. B3b). Figure B4 shows a case where the dead-

zone does not exist (Fig. B4a) and another where it exists (Fig. B4b).
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