
An Automated Approach for Verification of Software
Requirements?

Amador Durán, Antonio Ruiz, and Miguel Toro

Departamento de Lenguajes y Sistemas Informáticos, Facultad de Informática y Estadística,
Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, España

{amador,aruiz,mtoro}@lsi.us.es

Abstract In this paper, we present an automated approach for the verification of
software requirements. This approach is based on the representation of software
requirements in XML and the usage of the XSLT language to automatically verify
some desired quality properties. These ideas have been implemented inREM, an
experimental requirements management tool that is also described in this paper.

1 Introduction

Paraphrasing Boehm [5], requirements validation and verification can be informally
defined by the questions "Am I building the right requirements?" (validation) and "Am
I building the requirements right?" (verification).

In other words, the goal of requirements validation is to ensure that requirements
documents containactual requirements and that these requirements areall the known
requirements by the time the requirements documents are baselined.

On the other hand, the goal of requirements verification is to ensure the quality of
requirements according to desired quality properties. Some of these quality properties
have to do with requirements semantics but others have to do with syntactic, structural
or pragmatic aspects of requirements (see [12] for a complete classification of quality
properties of requirements).

Verification of semantic properties of requirements is closely related to require-
ments validation (distinction between requirements verification of semantic properties
and requirements validation is sometimes subtle and many authors use both terms in-
terchangeably) and requires human participation, whereas verification of non–semantic
properties should be as automated as possible.

In this article, we present an automated approach for the verification of some quality
properties of requirements. Most of these properties can be classified as non–semantic,
but we have also developed some heuristics to check potential problems with some
semantic properties. Our approach is based on the emergent technology built around
XML [4] and its companion language XSLT [3].

The rest of the article is organized as follows. First, we briefly describe the basics of
XML and XSLT needed to understand the following sections. Then, we describeREM,

? This work is partially funded by the Spanish CICYT projectGEOZOCOTIC 2000–1106–
C02–01 and by the international CYTED projectWEST.

an experimental requirements management tool [8, 9], the XML model of requirements
used byREM and how XSLT can be used to verify some quality properties of require-
ments expressed in XML. Finally, we discuss some related work, present some results
and point out future work.

2 XML and XSLT

2.1 XML Basics

There are millions of web pages written in HTML available in Internet. In these web
pages, pure information is mixed with formatting elements, making the automatic pro-
cessing of information very difficult. XML [4] is a language designed for representing
pure information in Internet. Information in XML is represented byelements. An XML
element is made up of a start tag, an end tag, and other tags or data in between. For
example, for representing the information about a book, we might have the following
XML element namedbook:

<book isbn="1-234-56789-0">
<author>Miguel de Cervantes</author>
<title>El Quijote</title>

</book>

As you can see, the information about a book is between the<book> and</book>
tags and it is easy to parse by a computer program. Theauthor and title elements
are considered as children of thebook element, thus forming a hierarchy. An XML
document must always have one and only oneroot elementat the top of its hierarchy.

In order to allow information interchange between two or more parties using XML,
they must agree about element grammar and semantics. Element grammar is specified
as regular expressions in DTDs (Document Type Definitions) [4]. For example, the
DTD fragment for the previous XML data would be the following:

<!ELEMENT book (author+,title)>
<!ATTLIST book isbn ID #REQUIRED>

<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

where it is stated that abook element can contain one o moreauthor elements and
only onetitle element. An XML element can also have attributes. For example,isbn is
defined as a required identification attribute ofbook, i.e. there cannot exist two books
with the same value for theisbn attribute in the same XML document. Those elements
that contain only text are said to contain#PCDATA, that stands forparsed character
data.

2.2 Transforming XML

There are many situations in which XML data need to be transformed. For example,
for presenting XML data as an HTML page. XSLT [3] is a language based on trans-
formation patterns. An XSLT stylesheet, which is also a an XML document, searches

for patterns in the XML data and applies programmed transformations, thus generating
some output results. For example, if we wanted to show information about books in a
web browser, we could apply the following XSLT transformation rule:

<xsl:template match="book">
<xsl:value-of select="title"/>
(ISBN <xsl:value-of select="@isbn"/>)
was written by
<xsl:value-of select="author[1]"/>

</xsl:template>

The informal semantics of this XSLT rule are "when you find abook element, generate
its title in boldface, then its ISBN attribute (notice the @ prefix for attributes), and then
its first author in emphasized mode". In the XSLT code, text literals like HTML tags
can be mixed with element values, which are obtained by means of thexsl:value-of
statement. If we applied this XSLT rule to the previous XML data, the result of the
transformation would be something like this when rendered in a web browser:

El Quijote (ISBN 1-234-56789-0) was written byMiguel de Cervantes

Although there are many more details about XML and XSLT, we think that this brief
introduction should be enough for those readers not familiar with XML technologies in
order to understand the rest of this article.

3 REM: An XML–based Requirements Management Tool

REM (REquirements Manager) is an experimental requirements management tool de-
veloped by one of the authors [8, 9]. InREM, a requirements engineering (RE) project
is considered to be composed by three documents:

1. a customer–oriented requirements document (therequirements document[13]),
usually containing requirements in natural language expressed in terms of cus-
tomer’s vocabulary, also known asC–requirements[7].

2. a developer–oriented requirements document (thespecification document[13]),
usually containing requirements models and more technical information, also called
D–requirements[7].

3. a registry for detected conflicts and negotiation support.

In REM, C–requirements and conflicts are expressed in natural language using pre-
defined requirements templates and some linguistic patterns (see [9] for details). For
expressing D–requirements, we have chosen a subset of the UML [6]

3.1 REM Architecture

REM documents,i.e. RE projects composed by the three documents previously de-
scribed, are stored in relational light–weight databases. When the user creates a new
REM document, the basic structure is taken from aREM base document(see figure 1),

������

���
��������

���
��������

������������
��������

������������
��������

����
��¢�������

����
��¢�������

���
����

���
����

�����������
��� ����

���

�����������
��� ����

���

���
����

���
����

�����������
��� ����

���

�����������
��� ����

���

���
���

���
���

�¡�������¢ ������������
�������

������������
����������� ��������

��� ������

	��

���������

	��

���������
��������

���

��������

���

��� ����
��������

��� ����
��������

Figure1. REM Architecture

that can be empty or can contain the mandatory sections of software requirements stan-
dards like [1] or [15]. Any ordinaryREM document can be selected as a base document,
so users can create their own base documents or reuse otherREM documents.

In order to provide immediate feedback on user actions,REM generates XML data
corresponding to the document being edited, applies an external XSLT stylesheet that
transforms XML data into HTML and shows the resulting HTML to the user. In this
way, whenever the user changes a requirements document, he or she can see the effects
immediately.

In the same way theREM base document can be customized, the user can also
change document appearance by selecting or creating different external XSTL stylesheets.
The default XSLT stylesheet generates a highly hyperlinked document, making naviga-
tion of requirements documents easier (see right side of figure 2).

Other configurable aspect ofREM is the language of the user interface. The user
can choose it by selecting an external resource dynamic link library (DLL). At this
moments, we have developed two external resource DLLs forREM, one in Spanish
and one in English.

3.2 REM User Interface

The user interface ofREM presents two different views to the user (see figure 2). On
the left, the user can see a tabbed view with three tree views, one for each requirements
document in the RE project. On the right hand, the result of the XSLT transformation
of the XML data is presented to the user in a embedded web browser.

In any of the three tree views, the user can directly manipulate objects by drag and
drop or by context menus. Only actions that have sense can be performed, following

�������� �������
�������� �������

��� ���

��� ���

������ ���� ��� �
������ ���� ��� �

�����¡� ����
�����¡� ����

Figure2. REM User Interface

a correct–by–constructionapproach, thus increasing quality and avoiding verification
effort.

For example, actions of use case steps can be of three different classes (see figure
4): actor action, if the action is performed by an actor;system actionif the action is
performed by the system, oruse case action, if the action consists of performing other
use case,i.e. an use caseinclusionor extension[6]. Actor actions and use case actions
can be created only if some actor or some use case have been previously created. In
general, objects can be created by using context menus on potential parents or by using
the creation toolbar.

4 XML Model of Requirements in REM

REM is based on an UML [6] model of requirements (a partial view of this model is
shown in figure 4). The main object class of the model is theRequirements Document,
that is composed by a sequence ofREM objects (see figure 3).

We have translated our UML model of requirements into a relational schema and
into a DTD. As an example, theUseCase class in figure 4 has been translated into the
following DTD element definition:

<!ELEMENT rem:useCase (
rem:name, rem:version, rem:authors?, rem:sources?, rem:comments?,
rem:importance, rem:urgency, rem:status, rem:stability,
rem:isAbstract?, rem:triggeringEvent,
rem:precondition, rem:postcondition,
rem:frequency, rem:step*)>

<!ATTLIST rem:useCase oid ID #REQUIRED>

REM object

C-Requirement

D-Requirement

Conflict

Section/appendix

Paragraph/glossary item

External graphic file

Stakeholders-related object

Stakeholder

Organization

Meeting

Objective

Information storage requirement

Constraint requirement

Functional requirement (use case)

Nonfunctional requirement

Actor

Traceability matrix

Object type

Value type

Association type

System operation

Figure3. Classification of objects inREM

Many of the elements in the previous DTD fragment (comments, triggeringEevent,
pre andpostcondition), contains only text,i.e. natural language. InREM, text can be
composed by any combination of free text, references to other objects and TBD (To Be
Determined) marks, defined as follows:

<!ELEMENT rem:text (#PCDATA|rem:ref|rem:tbd)*>
<!ELEMENT rem:ref (#PCDATA)>

<!ATTLIST rem:ref oid IDREF #REQUIRED>
<!ELEMENT rem:tbd EMPTY>

where therem:ref element must have a required attribute calledoid that it is declared
as anIDREF, i.e. a reference to other element with a matching identification attribute
value. AnIDREF attribute is very similar to aforeign keyin relational databases.

Therem:tbd element is declared as anEMPTY element,i.e. it cannot have neither
subordinate elements nor data. It is simply a mark.

The DTD elements corresponding to use case steps and actions of figure 4 have
been described as follows:

<!ELEMENT rem:step (
rem:number, rem:condition?,
(rem:systemAction | rem:actorAction | rem:useCaseAction),
(rem:stepException*),
rem:comments)>

<!ATTLIST rem:step oid ID #REQUIRED>

name

version

comments

REMObject

importance

urgency

status

stability

C-Requirement

isAbstract

triggeringEvent

precondition

postcondition

frequency

UseCase
 Step
*

{ordered}

0..1

description

Condition

*

description

termination

Exception

Action

1..1

1..1

description

ActorAction

description

performance

SystemAction

{disjoint}

Actor

UseCaseAction

*

*

1..1

1..1

...

...

{disjoint}

{disjoint}

Stakeholder

Trace

*

sources

*

authors

source

1..1

1..1
 target

Figure4. UML model of use cases inREM

<!ELEMENT rem:systemAction (
rem:description, rem:performance?)>

<!ELEMENT rem:actorAction (rem:description)>
<!ATTLIST rem:actorAction actor IDREF #REQUIRED>

<!ELEMENT rem:useCaseAction EMPTY>
<!ATTLIST rem:useCaseAction useCase IDREF #REQUIRED>

<!ELEMENT rem:stepException (
rem:condition,
(rem:systemAction | rem:actorAction | rem:useCaseAction),
rem:termination,
rem:comments)>

<!ATTLIST rem:stepException oid ID #REQUIRED>

Elements not defined in the previous DTD code (condition, description, termina-
tion, etc.) are defined as containing only text. For example:

<!ELEMENT rem:condition (#PCDATA|rem:ref|rem:tbd)*>

5 Using XSLT as a Requirements Verification Language

In the following sections we describe how some of the quality factors described in [10]
can be automatically verified using XSLT when requirements are electronically stored
in XML format according to theREM DTD.

5.1 Unambiguity

A requirement is unambiguous if and only if has only one possible interpretation [1].
This is obviously a semantic property of a requirement and cannot be verified auto-
matically, but we can give somehints about potential ambiguities in a requirements
document.

We agree with Leite [11] in the importance of understanding the language of the
problem and in the importance of building a glossary (calledLanguage Extended Lex-
icon, LEL, in [11]). Following Leite, the glossary should follow two principles: the
principle of circularity, (the glossary must be as self–contained as possible) and the
principle of minimal vocabulary(use as much glossary items as possible in your re-
quirements descriptions). Leite’s principles cannot guarantee unambiguity, but they can
help to build unambiguous, understandable, verifiable, consistent, concise, and cross–
referenced requirements [10].

XSLT can be used to measure glossary circularity (GLC) and minimality of vocab-
ulary (MOV). GLC can be measured as the ratio between glossary items and references
to glossary items from other glossary items. The following XSLT code, where we have
declared two variables for the sake of readability, can be used for this purpose:

<xsl:variable name="GLO"
select="count(//rem:glossaryItem)"/>

<xsl:variable name="REF"
select="count(//rem:glossaryItem//rem:ref)"/>

<xsl:value-of
select="format-number($REF div $GLO, ’#0.00’)"/>

where the expression//rem:glossaryItem is an XPath expression [2] meaning "any
rem:glossaryItem element descendant of the root", whereas the expression//rem:glos-
saryItem//rem:ref means "anyrem:ref element descendant of anyrem:glossaryItem
descendant of the root". In XPath, the language for building navigation expressions over
XML trees, an element is considered as descendant of other element if it is its child at
any level of depth in the hierarchy.

A similar ratio between the number of references to glossary items in requirements
and the number of requirements can be used to measure MOV. From the MOV view-
point, it is also possible to detect those "suspicious" requirements that do not have any

reference to any glossary item in their text. Since those requirements are not using the
vocabulary of the customer, they should be checked for potential problems of ambi-
guity or understandability [10]. For example, if we want to know what use cases are
"suspicious", we can use the following XSLT code:

<xsl:template match="rem:useCase[not(.//rem:ref)]"/>
Use case
<xsl:value-of select="rem:name"/>
does not use any glossary item

</xsl:template>

where the match expression uses brackets to select only those use cases with no de-
scendant references. Another possibility is to determine a threshold value for the num-
ber of references per requirement and consider as suspicious all requirements with a
number of references under the threshold. In that case, the match expression would be
rem:useCase[count(.//rem:ref) < m], with m being the MOV threshold.

5.2 Completeness

A requirements document is complete if it includes [10]:

1. Everything that the software is supposed to do,i.e. all the requirements
2. Responses of the software to all classes of input data in all realizable situations
3. Page numbers, figure and table names and references, a glossary, units of measure

and referenced material
4. No sections marked as TBD

In our approach, the third completeness condition is partially satisfied by means of
the correct–by–constructionparadigm ofREM: figure and table names are automat-
ically generated, references are automatically inserted and updated, and the user can
easily create a glossary. If we want to be sure about the existence of a section named
Glossary, we can apply the following XSLT code:

<xsl:choose>
<xsl:when test="//rem:section[rem:name=’Glossary’]"/>

There is a glossary
</xsl:when>
<xsl:otherwise>

There is no glossary
</xsl:otherwise>

</xsl:choose>

where the structure formed byxsl:choose, xsl:when andxsl:otherwise is basically an
if–else–endif statement with multipleelse branches. Notice that if we want to check
the existence of an element we cannot use an XSLT template. If there is no such an
element, the template will never match and we will have no output.

Similar XSLT code can be used to verify if requirements documents areorganized
[10], i.e. if they have mandatory sections in the mandatory order with mandatory con-
tent.

The fourth condition of completeness, the absence of TBD marks, can be easily
verified using XSLT. If we want to know how many TBD marks are in a requirements
document we can apply the following XLST code:

There are
<xsl:value-of select="count(//rem:tbd)"/>
TBD marks

that would generate in the output the number of occurrences of elements of typerem:tbd
anywhere in the XML data. If we want to be more precise and we want to know what
use cases have TBD marks inside their text and how many TBD marks they have, we
could write the following XSLT code:

<xsl:template match="rem:useCase[.//rem:tbd]"/>
Use case <xsl:value-of select="rem:name"/>
has <xsl:value-of select="count(.//rem:tbd)"/>
TBD marks

</xsl:template>

in which the select expression "rem:useCase[.//rem:tbd]" means "any use case with
at least one descendant of typerem:tbd".

5.3 Traceability

In [10], a requirements document is said to betraceableif and only if it is written in
a manner that facilitates the referencing of each individual requirement. SinceREM
assigns automatically an unique identifier to every requirement (the required identifier
attributeoid, see the DTD for use cases), this quality factor does not have to be verified
explicitly.

What it must be checked is if the origin of every requirement is clear,i.e. if re-
quirements aretraced [10]. In our UML model of requirements, anyREM object can
be traced to and from otherREM objects and to their human sources and authors (see
figure 4). Checking if a requirement has sources and authors and if it is traced to or
from other requirements is easy with XSLT. For example, the following XSLT template
will match all use cases with no human sources:

<xsl:template match="rem:useCase[not(rem:sources)]">
Use case
<xsl:value-of select="rem:name"/>
has no sources

</xsl:template>

And this XSLT template will match all non functional requirements not traced to
otherREM objects:

<xsl:template match="rem:nonFunctionalRequirement">
<xsl:if test="not(//rem:trace[@source=current()/@oid])">

Non functional requirement

<xsl:value-of select="rem:name"/>
is not traced to any object

</xsl:if>
</xsl:template>

In REM, traces are defined as elements with two required attributes of typeIDREF,
namelysource and target. The user ofREM can also use traceability matrices for
visual checking of non–traced requirements.

5.4 Other verifiable quality factors

Applying the same ideas, other quality factors defined in [10] can be verified using
XSLT, for example:

– What requirements are not annotated with relative importance, relative stability or
version.

– What requirements have potentially ambiguous words in their description, likeeasy
to, user–friendly, etc. by means of XSLT string functions likecontains [3].

– If use cases are not well structured,i.e. if there are too few or too manyincludesor
extendsrelationships.

– What use cases have too few or too many steps, or too much exceptions,i.e. too
many alternative courses.

6 Related Work

Most work on automated requirements verification is based on Natural Language Pro-
cesssing (NLP), like [14] or [12]. Those approaches, focused on semantic analysis of
requirements, usually make requirements engineers write requirements in a subset of
natural language, demand many computer resources and have not been widely adopted
in industry.

The Automated Requirement Measurement (ARM) tool [16], is probably the most
related work to the approach presented in this article. It is a simple yet powerful tool
that scans requirements documents searching forindicators, i.e. words that have been
identified as indicators of good or bad quality properties.

Our approach does not use NLP but an open, simpler and lighter technology like
XML/XSLT. We can offer the same functionality of ARM plus all additional verifica-
tion described in this paper, and the user ofREM can defined his or her own XSLT
verification stylesheets. From a practical point of view, we think that our results are
useful for the average requirements engineer.

7 Conclusions and Future Work

In this article we have briefly presented an automated approach for the verification of
software requirements. Our approach is based on a open technology like XML and
XSLT. In fact, if requirements are represented in XML using a different DTD, many

of the XSLT code presented in this paper should be easily adapted. Our approach does
not need hard computer resources and it has proved to be useful when used with our
students at the University of Seville.

Our future work is focused in developing quality metrics, so we can detect potential
problems with requirements comparing quantitative values. We expect to identify some
useful metrics soon by applying data mining techniques to the requirements documents
generated by our students.

References

[1] IEEE Recommended Practice for Software Requirements Specifications. IEEE/ANSI Stan-
dard 830–1998, Institute of Electrical and Electronics Engineers, 1998.

[2] XML Path Language (XPath) 1.0. W3C Recommendation, November 1999.
[3] XSL Transformations (XSLT) 1.0. W3C Recommendation, November 1999.
[4] Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation, Octo-

ber 2000.
[5] B. W. Boehm. Verifying and Validating Software Requirements and Design Specifications.

IEEE Software, 1(1):75–88, 1984.
[6] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.

Addison–Wesley, 1999.
[7] J. W. Brackett. Software Requirements. Curriculum Module SEI–CM–19–1.2, Software

Engineering Institute, Carnegie Mellon University, 1990.
[8] A. Durán. A Methodological Framework for Requirements Engineering of Information

Systems (in Spanish). PhD thesis, University of Seville, 2000.
[9] A. Durán, B. Bernárdez, A. Ruiz, and M. Toro. A Requirements Elicitation Approach Based

in Templates and Patterns. InWER’99 Proceedings, Buenos Aires, 1999.
[10] A. Davis et al. Identifying and Measuring Quality in a Software Requirements Specifica-

tion. In Proceedings of the 1st International Software Metrics Symposium, pages 141–152,
1993.

[11] J. C. S. P. Leiteet al. Enhancing a Requirements Baseline with Scenarios. InProceedings
of the 3rd IEEE International Symposium on Requirements Engineering (RE’97), 1997.

[12] F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and S. Ruggieri. Achieving Quality in Natural
Language Requirements. InProceedings of the 11 th International Software Quality Week,
1998.

[13] B. L. Kovitz. Practical Software Requirements: A Manual of Content & Style. Manning,
1998.

[14] N. A. Maiden, M. Cisse, H. Perez, and D. Manuel. CREWS Validation Frames: Patterns
for Validating Systems Requirements. InFourth International Workshop on Requirements
Engineering: Foundation for Software Quality (RESFQ), 1998.

[15] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer, and R. Stevens.Software
Engineering Standards. Prentice–Hall, 1994.

[16] L. Rosenberg, T. Hammer, and J. Shaw. Software Metrics and Reliability. In9th Interna-
tional Symposium on Software Reliability Engineering, 1998.

