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Effective-periodicity effects in Fibonacci slot arrays
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In this Letter, the transmission properties of a nonperiodic array of slots arranged in the form of a Fibonacci
sequence are investigated. By arranging the slots in this manner, an additional periodicity can be utilized,
resulting in corresponding resonance features in the transmitted signal. By investigating the transmission
response of a perforated metallic sheet over a broad frequency range (6–40 GHz), it is shown that this simple
one-dimensional chain supports two periodicities, one due to the regular periodic separation and one due to
average spacing—which is related to the golden ratio. This response replicates the resonant behavior of a
two-dimensional periodic array with a single nonperiodic array also creating new families of diffraction lobes in
the far-field region.
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Since the discovery of extraordinary optical transmission
(EOT) through periodically perforated metallic sheets [1]
there has been a focus on understanding and controlling the
transmission resonances in such structures [2]. The finding
that the resonant nature of the transmission through periodic
arrays of apertures was due not only to the aperture’s ge-
ometry but mostly to their arrangement opened a number of
opportunities for the development of the later field of meta-
surfaces and metamaterials [3,4]. A vast number of theoretical
and experimental studies have been focused on the transmis-
sion resonances of periodic arrangements of subwavelength
apertures cut into metallic sheets, including: one-dimensional
slit and holes arrays [5], two-dimensional hole arrays [6], and
single apertures [7].

Despite the large interest in periodic structures, there has
only been a limited interest in nonperiodic arrangements of
scatterers in the past. However, they have recently attracted
considerable attention due to possible additional control over
the electromagnetic properties. Nonperiodic or quasiperiodic
patterns can result in additional degrees of control of the wave
propagation—compared to the periodic case [8,9]. One of the
most common and well-known nonperiodic structures is the
Fibonacci sequence, which has been used as the basis of a
variety of previously investigated structures. These include:
metamaterial absorbers [10], dielectric multilayers [11,12],
slit arrays [13,14], and resonators/antennas [15–17]. There
has also been a strong interest in Fibonacci sequences in
photonic crystal structures [18–20].

An important distinction that separates random from
regular periodic arrays is the nonarithmetic sequence of
constructive/destructive features in their transmission spectra
[8]. In periodic arrays, they originate from the arithmetic
sequence that is followed by the onset of the diffraction modes
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associated with each periodicity. It has been shown that, in
some cases, the appearance of these grazing components in-
troduces energy redistributions responsible for transmission
zeros, which are also the origin of EOT phenomena in the
absence of surface plasmons [21]. These grazing wave com-
ponents have shown a great potential for the excitation of
surface lattice resonances when coupled to plasmonic media
[22]. As we will also show in the following, these energy
redistributions in nonperiodic arrays can also be associated
with pseudograting lobes, which can be tracked in frequency
in the form a maximum in the radiation diagram.

With the design of metasurfaces being based on transfor-
mation optics, it is important for antenna designers to be able
to model the behavior of large arrays to validate their designs.
In parallel, the optics community has put a considerable effort
into the characterization of quasicrystal arrangements as they
present short-range disorder whereas maintaining long-range
order, leading to well-defined diffractive behavior with the
potential for novel multiresonant phenomena. From a com-
putational perspective, they are a challenge as they require
the analysis of hundreds of coupled elements with very few
symmetries, if any. Let us focus, for instance, on the case of
one-dimensional Fibonacci chains of slots in a metal sheet.

The Fibonacci sequence is defined such that each number
is the sum of the two preceding ones (for example: Fn =
Fn−1 + Fn−2). One key feature of the Fibonacci sequence is
that when we take any two successive Fibonacci numbers,
their ratio tends to the golden ratio as n increases.

The golden ratio ϕ is an irrational number that is a solution
of the quadratic equation,

ϕ2 − ϕ − 1 = 0, (1)

given by

ϕ = 1 + √
5

2
≈ 1.618. (2)
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FIG. 1. Schematic showing the experimental sample: a perfo-
rated metallic sheet, depicting the slot separation dx and slot width
w. The periodicity along y is chosen such that it does not contribute
to the diffractive behavior whereas increasing the transmitted signal.

To create one-dimensional Fibonacci chains of slots, let us
define A and B as metal spacing and slot, respectively. The
Fibonacci sequence of spacings and slots is achieved at each
generation step by using the recurrent substitution given by

A → AB,

B → A,

which is initialized by an element A [23]. Further iterations
are created by concatenating the previous two iterations in the
sequence, for example: AB + A = ABA. This is further shown
by the first five iterations,

AB,

ABA,

ABAAB,

ABAABABA,

ABAABABAABAAB.

From this sequence, we can generate our array of slots by
identifying each A with a metal spacing and each B with a slot.
The iterations above show that there are two possible center-
to-center slot separations A and AA. For the case of notation,
these two slot separations will be represented as dx and 2dx,
and the slot width will be represented by w.

A finite chain of 30 slots was created by perforating a
metallic sheet with slot width w = 0.25dx and slot length ls =
2.4dx. Figure 1 shows a schematic of the idealized perforated
metallic sheet. To maximize the transmission signal through
the sample, additional rows of slots were added, although
the coupling between adjacent rows is negligible due to the
symmetry of the slots and the chosen [24]. Therefore, the
associated reciprocal space vector in the y direction does not
play any role at normal incidence. The value of dx was chosen

to be 20 mm with a slot width w of 5 mm, slot length l of
48 mm, and a center-to-center vertical separation dy of 68 mm.

If one studies the average spacing between the elements
in the array in the limit of small slot widths, one finds that
it corresponds to dxϕ, where ϕ is the golden ratio. This can
be observed when taking a ratio between the number of slots
and the total number of As in a sequence. For example, 34
slots correspond to 55 As, resulting in a ratio of 1.618. As we
will demonstrate below, it can been found that the position
of the features can be predicted by assuming that the array
presents two periodicities: one associated with the spacing dx

and one associated with the average spacing dxϕ such that
each of those can be represented by reciprocal space vectors,

km = 2πm

dx
, kn = 2πn

dxϕ
, (3)

with m and n being integer numbers. Then one could expect
a feature at frequencies for which k0 = km + kn for all val-
ues of m and n, although, in practice, we will expect their
coupling to free space radiation to decrease with their order.
This behavior allows one to replicate the resonant behavior
of a two-dimensional periodic array with a single nonperiodic
array.

From Eq. (3), it appears that the Fibonacci design may
give some advantages over the standard periodic arrays;
namely, additional resonances due to effective periodicities.
To demonstrate the above behavior, and to further understand
these nonperiodic structures, a numerical method of moments
(MoM) code was utilized.

The analysis of large nonperiodic arrays of scatterers is
a complex computational problem due to the large electrical
size (i.e., in terms of the wavelength). However, surface inte-
gral equation methods have been developed that allow for the
solution of scattering problems from the discretization of the
surface using analytical expansions of the fields on either side
[25]. In particular, for the system of interest here the method
of moments reduces the problem to finding the electric-field
distribution on the surface of each of the M slots that can be
shown to obey the following integral equation:

Jas(x, y) +
M∑

j=1

∫∫
η j

GM (x − x′, y − y′)

Esc
t (x′, y′, z = 0)dx′dy′ = 0 (x, y) ∈ ηi

(i = 1, . . . , M ), (4)

where Jas(x, y) is the surface current in the absence of the
slots (i.e., generated by the incident illumination on an infinite
perfectly conducting screen), GM (x, y) is the dyadic Green’s
function that relates the tangential electric field at the origin
with the electric current density at a given point and ηi is the
surface of the ith slot.

The MoM can be then applied by proposing a set of Nb

basis functions,

Esc
t (x, y, z = 0) ≈

Nb∑
l=1

e jl d jl (x, y) (x, y) ∈ η j, (5)
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which can also be used as testing functions to convert (4) into
a system of linear equations for the unknown weights e jl ,

M∑
j=1

Nb∑
l=1

�kl
i j e jl = pik (i = 1, . . . , M; k = 1, . . . , Nb),

(6)
where

�kl
i j =

∫∫
ηi

d∗
ik (x, y)

[ ∫∫
η j

GM (x − x′, y − y′)

× d jl (x
′, y′)dx′dy′

]
dx dy

× (i, j = 1, . . . , M; k, l = 1, . . . , Nb), (7)

and where

pik = −
(∫∫

ηi

d∗
ik (x, y)Jas(x, y)dx dy

)
× (i = 1, . . . , M; k = 1, . . . , Nb). (8)

Details on how to efficiently calculate the matrix elements
in (7) can be found elsewhere [25]. Once this system is solved,
the electric field on each of the slots can be obtained using (5)
as well as its Fourier transform and, in turn, the transmitted
power in a straightforward manner [26].

To demonstrate the effect of arranging our slots following
the Fibonacci sequence, we have calculated the transmission
response of three different one-dimensional slot arrays, two
periodic arrays, one with period dx and one with dxϕ, and
a Fibonacci array. Due to the frequency associated with the
onset of the n = 1 diffracted order of an array with dx =
20-mm periodicity being 15 GHz, the transmission response
was studied over a broad frequency range of 5.8–40 GHz with
the polarization perpendicular to the slots’ axis. The parallel
polarization was not investigated due to the slots not being
resonant in this orientation— in the array acting as a solid
metallic sheet for the frequency range of interest. Figure 2
shows the response for the three structures as well as the pre-
dicted modes for the Fibonacci array—using the expressions
in (3) which coincide with well-defined peaks of the Fourier
spectrum of the Fibonacci array. For ease of comparison, the
transmitted power is normalized to the maximum value.

For the case with constant period dx, there are clear and
strong resonances at 15 and 30 GHz: These are the funda-
mental resonances of the slots with period dx associated with
the onset of diffraction modes. When the period is increased
to dxϕ, the fundamental resonances shift down in frequency
to 9.2 and 18.5 GHz, respectively. For the dxϕ case, additional
higher-order modes (27.9 and 37.1 GHz) are visible due to the
longer period. The predicted features—using Eq. (3)—for the
Fibonacci array have been represented using dotted lines in
Fig. 2. To further verify the predicted modes, a fast Fourier
transform has been performed on the geometry associated
with a one-dimensional Fibonacci chain as can be seen in
Fig. 2. This allows us to have an estimate of the coupling
strength of the modes with plane-wave illumination; larger
Fourier amplitudes would be expected to give rise to stronger
coupling.

FIG. 2. (a) Normalized Fourier amplitude for a one-dimensional
Fibonacci chain. (b) Comparison of the transmission response from
a periodic slot array with period dx , period dxϕ, and a Fibonacci
slot array. The transmission is normalized to the maximum. All three
structures contain 30 slots in the array.

For the Fibonacci array, additional modes corresponding
to those predicted by Eq. (3) are present. These modes can
be observed—most prominently—in Fig. 3(a) at 20.7, 24.3,
and 35.7 GHz; however, poorly coupled modes are also ob-
served at the other predicted frequencies. All their positions
are shown with dotted lines.

Figure 3(a) shows the normalized transmitted power for ar-
rays with increasing slot numbers in the x direction. It is clear
that the resonant modes are not introduced by the increasing
number of slots. However, we find that the modes become
better defined as the number of slots increases, increasing
the relative depth and quality factor of the predicted minima.
Additional simulations were also run to identify the influence
of the slot width [Fig. 3(b)] and showed that this results in a
change in the coupling strength to the Fibonacci modes but
not to their frequency.

To confirm the results obtained from the simulations, i.e.,
the presence of additional resonances that lead to abrupt
changes in the far-field transmitted power, a sample was built
and measured. The slot array was fabricated by laser cut-
ting slots onto a 3-mm-thick copper sheet, whose thickness
and conductivity within the frequency range of interest can
be accurately approximated by a negligible-thickness perfect
electric conductor. The overall sample size was 1 m2 with 30
slots in each row and 14 rows.

The transmission of the sample was measured by using
a large-scale focused horn setup with a series of banded
horns. The spherical mirrors and horn antennas used for
the experiment produced a large beam diameter (resembling
plane-wave illumination), therefore, maximizing the illumi-
nation area of the sample [27]. To mimic the simulations, the
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FIG. 3. Calculated transmission response through a Fibonacci
slot array of (a) varying slot number (Nx) with parameters; dx = 20,
w = 5 mm, and slot length of 48 mm. (b) Varying the slot width from
0.025dx to 0.900dx , whereas keeping the total number of slots as 30.
The transmission is normalized to the maximum value in the range.

sample was illuminated at normal incidencewith the polariza-
tion perpendicular to the slots’ axis over a frequency range of
5.8–40 GHz.

Figure 4 shows the transmission spectrum under the afore-
mentioned experimental conditions. The blue curve shows the
data with a time-gating technique applied to remove unwanted
reflections from the testing room. As predicted from the mod-
eling, there are two strong resonances at 15 and 30 GHz.
These are the fundamental modes that would be present for
a periodic array of slots with dx = 20 mm. Additional modes
can be seen throughout the investigated frequency range (i.e.,
20.7, 24.6, and 26.7 GHz). The modes that have been found
experimentally are shown with gray arrows.

It is rather difficult to find the corresponding feature to all
vertical dashed lines shown on previous figures, but it is ap-
parent that some do present a correspondence in the measured
spectrum. Since the strength of the modes depends on the
coupling to the electric-field distribution on the slot and given
the decaying Fourier amplitude with the magnitude of the
mode’s wave vector, higher-order modes will be more difficult
to find experimentally due to the noise. Also, one needs to
consider the fact that the experiment was performed in an
environment that could not be introduced into the method of
moments analysis using a mirror setup which prevents us from
getting a perfect and phase-homogeneous plane wave. Due to
these factors and for a fair comparison, the MoM-predicted

FIG. 4. Transmission through the free standing 30 by 14 slot
array sample with parameters; dx = 20, w = 5 mm, slot length of
48 mm, and center-to-center vertical separation of 68 mm. The
array was illuminated at normal incidence with the polarization
perpendicular to the slots. The red curve shows the MoM-predicted
transmission that has been scaled down by a factor of 0.9, and the
blue curve shows the experimental data with a time gating applied.
The gray arrows indicate the modes predicted by Eq. (3) that coincide
with measured features.

transmission shown in Fig. 4 has been scaled down by a factor
of 0.9.

The presence of these resonances can be understood from a
far-field perspective as the onset of pseudograting lobes (i.e.,
directions at which the interference of the fields emitted by
each slot add up constructively). To confirm this hypothesis,
we have numerically studied the far-field radiation pattern
for two sample frequencies—20 and 40 GHz—finding many
large-emission peaks on the x-z plane as shown in Fig. 5. By
applying simple trigonometrics, one can extract the predicted
directions at which the combinations of the x-direction wave-
vectors km + kn shown in (3) would emit and have marked
them on the two figures with dashed lines. For ease of inter-
pretation, we have limited the combinations to m, n ∈ [−3, 3],
finding that each combination corresponds to one well-defined
far-field emission peak. For comparison, we show on the
right the radiation pattern of the equivalent one-dimensional
periodic array with the same geometrical parameters for the
slots and periodicity of dx = 20 mm for which one finds
three grating lobes (m = −1, 0, 1) at 20 GHz and four (m =
−2,−1, 0, 1, 2) at 40 GHz whose theoretical locations are
also marked with dashed lines. For the calculation of this far
field, we have used the exact procedure shown elsewhere [26]
from the approximate solution of the well-validated method
of moments in-house implementation.

It is worth noting that the indices of the Fibonacci wave
vectors are not monotonically distributed in the far field as
one finds in traditional periodic arrays for which larger in-
dices (higher modes) emit at larger angles which are closer
to grazing. Here, because of the combination of the two wave
vectors, we find that, at 40 GHz, the mode m, n = (3,−3) is
located near 25◦ which is somewhat close to the (1,0) mode
which is found at 22◦. Similar behavior is observed with the
modes (3,−2) and (0,3) at 41◦ and 44◦, respectively.
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FIG. 5. Angle-resolved far-field spectra of a Fibonacci array of 30 slots and the equivalent periodic array illuminated by a plane wave
obtained from the MoM for two different frequencies of 20 and 40 GHz. The black dashed lines show the pseudograting lobes predicted from
the integer combinations of the in-plane wave vectors in (3).

Among the additional constructive emission directions, we
find arguably high electric fields at 20 GHz for the angles
±16.6◦ and ±27.6◦ with −5.8 and −6.1 dB, respectively.
These correspond to m, n = (±1,∓1) and m, n = (0,±1),
which do not exist for the equivalent periodic arrays. An addi-
tional feature we find is that, although the array is not mirror
symmetric with respect to the y-z plane and, correspondingly,
the radiation pattern is not symmetric with respect to the zero
angle, the radiation maxima follow the symmetry of (3), and
each peak associated for any pair m, n is found for −m,−n
with the corresponding reversed angle.

This behavior could find applications in multidirectional
beam-forming devices, which could explore many more di-
rections than periodic metasurfaces for the same size of the
unit cell as well as diffractive surfaces for reduced radar cross
section.

To summarize, the transmission properties of a nonperiodic
array of slots in a conducting sheet arranged in the form of a
Fibonacci sequence have been investigated. It was predicted
that additional transmission modes due to an additional effec-
tive periodicity would be present, and that these would be re-

lated to the golden ratio. We, subsequently, demonstrated the
existence of these additional modes both numerically and ex-
perimentally. This effective second periodicity allows one to
replicate the resonant behavior of a two-dimensional periodic
array with a single nonperiodic array. We have also demon-
strated that this effect leads to a large number of high-output
directions in the radiation diagram of the Fibonacci arrays,
whose directions can be predicted from the grating wave-
vector combinations of the two periodicities of the sequence.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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