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A B S T R A C T

We investigate how the fatigue limit of notched specimens calculated with the Theory of Critical Distance
(TCD) changes when variations in the value of the critical distance itself are considered. We motivate our
study by showing how attempts at introducing a plastic zone correction in the derivation of the formula for
the critical distance lead to a new length which can be significantly larger than the original one. The predictions
effected with both lengths were not found to be so different, though. And this led us to study circular holes
and V-notches, for which solutions for the ratio 𝐾𝑓∕𝐾𝑡 can be derived analytically.
1. Introduction

The method of the critical distance or volume, pioneered by Neu-
ber [1] and Peterson [2], has become a very powerful and reliable
tool in the celebrated form proposed by Professor David Taylor [3].
As is well known, this provides, as a first step, a formula to obtain
the critical distance for the material in terms of two clearly defined
characteristics, namely, the plain fatigue limit of the material and the
threshold value of the stress intensity factor. This formula is arrived at
when one, basically, applies Peterson’s idea to a (long) crack, for which
Linear Elastic Fracture Mechanics (LEFM) gives a clear cut propagation
criterion. See also the previous work of Tanaka [4].

The second step advocated in the Point Method variant of the
critical distance technique is to apply the recommendation of Peterson
literally, i.e., derive the stress profile in front of the notch and raise
the applied load until, at a depth (beyond the notch root) equal to the
critical distance, the stress reaches the plain fatigue limit of the ma-
terial. The notched fatigue limit is the reference applied stress needed
to achieve this. Of course, in the majority of cases these calculations
are nowadays done using a Finite Element program. Obviously, this
was not available to Peterson or Neuber and thus they had to rely on
a limited range of notch solutions and different approximations and
simplifications to arrive at their respective formulas, which featured
characteristic lengths that were typically correlated with the ultimate
tensile strength of the material [5–8]. We have described elsewhere [9]
how this process of correlation was fraught with difficulties.

The formula furnished by Taylor represents, by comparison, a mas-
sive improvement on this account, and it is fair to say that the critical
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distance method in the definitive formulations of the Point, Line or
Area methods has become the tool of choice in practice to calculate
the fatigue strength of notched components.

We want to ascertain how sensitive the predicted notched fatigue
limit is with respect to possible variations in the critical distance. These
variations could arise from errors or uncertainties in the experiments
to obtain it, for example. Or it could result from other considerations,
as in the present paper. We believe this exploration provides valuable
insight into the working of the method itself and gives a good indication
of why it works so well in the majority of cases.

2. Nomenclature

𝐾 = Stress Intensity factor
𝛥𝐾 = Stress Intensity factor range
𝛥𝐾𝑡ℎ = Threshold value of the Stress Intensity factor range
𝐾𝑓 = Fatigue notch factor
𝐾𝑡 = Elastic stress concentration factor
𝐾𝑝 = Effective Stress Intensity factor for the notional crack
𝐿 = Critical distance
𝐿∗ = Critical distance with plastic zone correction
𝑟𝑝 = Monotonic plastic zone size (estimation)
𝑟𝑌 = Distance from the crack tip where the elastic stress

distribution equals the material’s yield strength
𝑟∗ = Distance from the crack tip where the elastic–plastic

stress distribution equals the plain fatigue limit of
the material
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Fig. 1. First estimation of the plastic zone size.

𝑅 = Stress ratio of the fatigue cycle
𝑌 = Geometry correction factor
𝛥𝜎𝐹𝐿 = Plain fatigue limit of the material
𝛥𝜎𝑁𝐹𝐿 = Notched fatigue limit
𝜎𝑌 𝑆 = Material’s yield strength

3. Plastic zone correction to the critical distance

Our point of departure is the realization that, in the derivation of
the expression for the critical distance for fatigue through the LEFM
threshold condition, it is implicitly assumed that the material behaves
in a purely elastic manner. However, most materials deform plastically
once the stresses rise to values high enough around the crack tip.

Consider the variation of the stress 𝜎𝑦 in front of the crack tip. It
will reach the material’s yield strength, 𝜎𝑌 𝑆 , at some distance from
the crack tip, 𝑟𝑌 , and it is assumed that, in the simplest case of an
elastic, perfectly plastic material, this is the highest stress the material
can sustain. Then it should be clear the force due to the stress shown
shaded in Fig. 1 would be lacking in the force balance in the 𝑦-direction.
Thus the stress curve must be shifted to the right, so that equilibrium is
reinstated. As it is well known, this leads to the following reestimation
of the (monotonic) plastic zone size

𝑟𝑝 = 2𝑟𝑌 = 1
𝜋

(

𝐾
𝜎𝑌 𝑆

)2
(1)

For fatigue loading, reverse plastic flow occurs upon reversal of the
load in each cycle. This has been analyzed by Rice [10, see his Figure
22]. Suppose loading is reduced by an amount 𝛥𝐾 to a lower level
𝐾 − 𝛥𝐾. If crack tip blunting by plastic deformation is neglected, the
stress concentration factor is effectively infinite, and reverse plastic
flow ensues as soon as the load starts reducing, giving rise to a new
zone of reversed plastic deformation inside the plastic zone created by
the previous loading. Reloading from 𝐾−𝛥𝐾 to 𝐾 restores the situation
to the original monotonic plastic zone.

Irwin [12] proposed that the effect of the plastic zone could be
accounted for by considering a notional effective crack slightly larger
than the actual crack, extending up to the center of the reestimated
plastic zone. Thus the crack behaves as if its length were (𝑎 + 𝑟𝑌 ); see
Fig. 2. An effective stress intensity factor, 𝐾𝑝, is obtained by inserting
the longer crack length into the 𝐾 expression for the geometry of
interest. Then, the elastic–plastic stress distribution ahead of the plastic
zone is (see Saxena [11, p. 16])

𝜎𝑦 =
𝐾𝑝

√

2𝜋(𝑟 − 𝑟𝑌 )
(2)

where

𝐾 = 𝑌 (𝑎 + 𝑟 ) 𝜎
√

𝜋(𝑎 + 𝑟 ) (3)
2

𝑝 𝑌 𝑌
Since the geometry correction factor, 𝑌 , depends on the effective
length, which, in turn, depends on the stress intensity factor, an iter-
ative procedure is usually required to solve for 𝐾𝑝; see Anderson [13,
p. 64], Kumar [14, p. 107] or Sun and Jin [15, p. 133]. Nevertheless,
there are closed-form solutions for some important cases. For example,
for the infinite plate with a crack subjected to remote stress 𝜎,

𝐾𝑝 =
𝜎
√

𝜋𝑎
√

1 − 1
2

(

𝜎
𝜎𝑌 𝑆

)2
(4)

or for the edge crack in a semi-infinite plate

𝐾𝑝 =
1.1215 𝜎

√

𝜋𝑎
√

1 − 0.6289
(

𝜎
𝜎𝑌 𝑆

)2
(5)

It can be seen that the adjusted or effective stress intensity factors
reduce to the usual LEFM form when small scale yielding conditions
prevail (𝜎∕𝜎𝑌 𝑆 ≪ 1).

Now, in order to obtain the expression for the critical distance, we
write the LEFM condition for crack propagation, namely, that the stress
intensity range be equal to the threshold value, and seek the point 𝑟∗

at which a horizontal line at height equal to the plain fatigue limit of
the material, 𝛥𝜎𝐹𝐿, intersects the stress-distance curve,

𝛥𝜎𝐹𝐿 =
𝛥𝐾𝑡ℎ

√

2𝜋(𝑟∗ − 𝑟𝑌 )
(6)

then

𝑟∗ = 1
2𝜋

(

𝛥𝐾𝑡ℎ
𝛥𝜎𝐹𝐿

)2
+ 𝑟𝑌 = 1

2𝜋

(

𝛥𝐾𝑡ℎ
𝛥𝜎𝐹𝐿

)2
+ 1

2𝜋

(

𝐾
𝜎𝑌 𝑆

)2
(7)

where 𝐾 in the last term on the right hand side would be the maximum
value of the stress intensity factor in the fatigue cycle. This can also be
written in terms of the range and the 𝑅-coefficient, 𝐾 = 𝛥𝐾𝑡ℎ∕(1 − 𝑅),
so that 𝑟∗ can be expressed in a more compact fashion

𝑟∗ = 1
2𝜋

(

1
𝛥𝜎2𝐹𝐿

+ 1
(1 − 𝑅)2 𝜎2𝑌 𝑆

)

𝛥𝐾2
𝑡ℎ (8)

In his Point Method (PM), Taylor calls 𝐿∕2 the distance in the stress-
distance curve where the stress takes the value of the plain fatigue limit.
Then, according to the above calculations, the critical distance with the
plastic zone correction, 𝐿∗, would be

𝐿∗ = 1
𝜋

(

1
𝛥𝜎2𝐹𝐿

+ 1
(1 − 𝑅)2 𝜎2𝑌 𝑆

)

𝛥𝐾2
𝑡ℎ (9)

Please, bear with us a little more and note that the objective of this
paper is not to propose a new formula for the critical distance, but
to explore what happens when (not unreasonable, we hope) variations
in it are introduced: we have checked this alternative definition in a
number of cases, see Tables A.1 and A.2 in the Appendix, expecting
that the estimations of the notched fatigue limits effected with it would
be really off by a significant amount, given that predictions with the
orthodox formula are generally so good. But this does not seem to be
the case.

Table A.2 shows our calculations and the comparison between the
notched fatigue limits obtained for a variety of notches manufactured
with the materials given in the previous table. There are some instances
where 𝐿∗ is more than twice 𝐿 and yet the notched fatigue limits
predicted by the Point Method with such different lengths are pretty
similar. See for example the results for circular holes in Brass 30/70
reported by Murakami [16]. The average error (in absolute value), with
respect to the experimental data, is smaller using the usual formula
for the critical distance, 9.70% with 𝐿 versus 13.49% with 𝐿∗. And
only in 14 cases out of the 60 analyzed were the predictions with 𝐿∗

better than those effected with 𝐿. But still it seemed to us that, given
∗
that on average 𝐿 came out to be 48% bigger than 𝐿, the differences
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Fig. 2. Notional crack and the elastic–plastic crack tip stress distribution in front of the crack tip (After Saxena [11, Figure 1.9]).
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Fig. 3. Circular hole.

in the predicted notched fatigue limits were not all that big (again on
average). We found that intriguing, and thus we decided to see if we
could check the method at least in some simple cases. It turns out there
are analytical solutions that we could use in two important geometries,
namely, the circular notch and the rounded V-notch.

4. Circular hole

For the simple case of a circular hole in a thin plate of infinite width
under the action of a tensile load (Fig. 3), the stresses at any point (𝑟, 𝜃)
from the center of the hole are given by Kirsch’s solution [17, p. 91]:

𝜎𝑟 =
𝜎
2

(

1 − 𝑎2

𝑟2

)

+ 𝜎
2

(

1 + 3𝑎4

𝑟4
− 4𝑎2

𝑟2

)

cos 2𝜃 (10)

𝜎𝜃 = 𝜎
2

(

1 + 𝑎2

𝑟2

)

− 𝜎
2

(

1 + 3𝑎4

𝑟4

)

cos 2𝜃 (11)

𝑟𝜃 = − 𝜎
2

(

1 − 3𝑎4

𝑟4
+ 2𝑎2

𝑟2

)

sin 2𝜃 (12)

The maximum stress occurs at the edge of the hole (𝑟 = 𝑎), in the
plane perpendicular to the applied stress (𝜃 = ±𝜋∕2) and at this point

= 𝜏 = 0, and 𝜎 = 3 𝜎. The distribution of the circumferential
3

𝑟 𝑟𝜃 𝜃, 𝑚𝑎𝑥 d
tress in this plane is thus

𝜃 = 𝜎
(

1 + 1
2
𝑎2

𝑟2
+ 3

2
𝑎4

𝑟4

)

(13)

To apply the Point Method one checks the value of the stress at a
distance 𝐿∕2 from the notch root. Hence, putting 𝑟 = 𝑎+𝐿∕2, we have

𝜎𝜃 = 𝜎
(

1 + 1
2

𝑎2

(𝑎 + 𝐿∕2)2
+ 3

2
𝑎4

(𝑎 + 𝐿∕2)4

)

(14)

Now, the critical distance hypothesis says the notched fatigue limit,
𝛥𝜎𝑁𝐹𝐿, is the applied cyclic stress range for which the range of stress at
the point at a distance 𝐿∕2 beneath the notch root becomes equal to
the plain fatigue limit of the material, 𝛥𝜎𝐹𝐿. Thus, using the previous
equation, we can write

𝛥𝜎𝑁𝐹𝐿

(

1 + 1
2

𝑎2

(𝑎 + 𝐿∕2)2
+ 3

2
𝑎4

(𝑎 + 𝐿∕2)4

)

= 𝛥𝜎𝐹𝐿 (15)

And from here we can calculate the fatigue notch factor, 𝐾𝑓 , as a
function of 𝐿 and 𝑎:

𝐾𝑓 =
𝛥𝜎𝐹𝐿

𝛥𝜎𝑁𝐹𝐿

= 1 + 1
2

𝑎2

(𝑎 + 𝐿∕2)2
+ 3

2
𝑎4

(𝑎 + 𝐿∕2)4
(16)

We normalize with respect to the stress concentration factor, 𝐾𝑡 = 3, to
llow further comparisons later
𝐾𝑓

𝐾𝑡
= 1

3

(

1 + 1
2

𝑎2

(𝑎 + 𝐿∕2)2
+ 3

2
𝑎4

(𝑎 + 𝐿∕2)4

)

(17)

which can obviously be written in terms of the non dimensional param-
eter 𝑎∕(𝐿∕2) = 2𝑎∕𝐿:

𝐾𝑓

𝐾𝑡
= 1

3

(

1 + 1
2

(

1
𝑎∕(𝐿∕2)

+ 1
)−2

+ 3
2

(

1
𝑎∕(𝐿∕2)

+ 1
)−4

)

(18)

q. (17) has been plotted in Fig. 4. This graph confirms something that
s well known: that when the notch is sufficiently large compared with
he ‘‘microstructure’’, little notch sensitivity is observed. In the present
ontext, this means that the notch fatigue limits predicted are very
nsensitive to the value of 𝐿. This is to say, it does not really matter
hich value we use for 𝐿, the notched fatigue strength predicted will
ary little, for sufficiently large notches.

However, the graph also shows that for very small holes there will
e a more strong influence of the particular value of 𝐿 chosen for the
alculation. See, for example, the line corresponding to 𝑎 = 0.1 mm,
hich marks the upper frontier of the darkest blue region, at the left

ower side of the figure. Notice its pronounced gradient in the region
here 𝐿 is very small. This steepness, however, can be a bit misleading,
nd a better idea of how big this influence is can be gained as follows.
iven the values of the ratios between 𝐿∗ and 𝐿 shown in Table A.1, we
ecided to see what would happen if the value of the critical distance
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Fig. 4. 𝐾𝑓 ∕𝐾𝑡 for the circular hole as a function of 𝐿 and 𝑎.
Fig. 5. Difference in 𝐾𝑓 ∕𝐾𝑡 when calculated using 1.5𝐿 instead of 𝐿.

used in the Point Method were to be increased (or reduced) by as much
as one half. This is most easily done here. Since 𝐾𝑓∕𝐾𝑡 depends really
only on the parameter 2𝑎∕𝐿, for any value of this parameter we can
calculate 𝐾𝑓∕𝐾𝑡 and compare it with the value that we would obtain
using 2𝑎∕1.5∕𝐿 instead. This is shown in Fig. 5. It can be seen that the
biggest difference is about 15.6%, when the hole diameter is about 3
times 𝐿. We just notice that this is within the error interval of about
20% usually quoted when assessing the accuracy of the critical distance
techniques.

5. V-notch

Several researchers [18–20] have pointed out that, in the vicinity of
a V-notch tip, stress distributions are very similar: there are ‘‘universal
features’’. The stress concentration factor 𝐾𝑡 introduces the informa-
tion about the remote applied loads and the overall geometry in the
4

stress solution near the notch root, much in the same way that the
Fig. 6. V-notch.

stress intensity factor introduces the information about the crack size,
component geometry and applied stresses into the universal crack tip
stress field (the so-called K-field).

Filippi, Lazzarin and Tovo [21] have given explicit formulas for
calculating the circumferential stress along the bisector of notches
having opening angles 2𝛼 (see Fig. 6) equal to 0, 45, 90 and 135
degrees:

2𝛼 = 0◦
𝜎𝑚𝑎𝑥
2
√

2
𝜌0.5

[

(𝑥 + 0.5𝜌)−0.5 + 0.5𝜌(𝑥 + 0.5𝜌)−1.5
]

(19)

2𝛼 = 45◦
𝜎𝑚𝑎𝑥
3.221

𝜌0.4950
[

1.0514(𝑥 + 0.4286𝜌)−0.4950

+ 0.4820𝜌0.9369 (𝑥 + 0.4286𝜌)−1.4319
]

(20)

2𝛼 = 90◦
𝜎𝑚𝑎𝑥
3.874

𝜌0.4555
[

1.2976(𝑥 + 0.3333𝜌)−0.4555

+ 0.3957𝜌0.8894 (𝑥 + 0.3333𝜌)−1.3449
]

(21)
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Fig. 7. 𝐾𝑓 ∕𝐾𝑡 for the V-Notch as a function of 𝐿 and 𝜌 (2𝛼 = 0).
Fig. 8. 𝐾𝑓 ∕𝐾𝑡 for the V-Notch as a function of 𝐿 and 𝜌 (2𝛼 = 45◦).
2𝛼 = 135◦
𝜎𝑚𝑎𝑥
4.940

𝜌0.3264
[

2.040(𝑥 + 0.2𝜌)−0.3264

+ 0.2091𝜌0.8934 (𝑥 + 0.2𝜌)−1.2198
]

(22)

Although these equations are strictly only valid for infinite notched
plates, the results have been shown to be quite accurate for finite speci-
mens, at least up to the point where the stress becomes equal to the net
stress on the minimum cross section of symmetrical doubled-notched
specimens.

It is convenient to write formally the equations above as

𝜎𝜃 = 𝜎𝑚𝑎𝑥 𝑓𝛼(𝑥, 𝜌) = 𝐾𝑡 𝜎𝑛𝑜𝑚 𝑓𝛼(𝑥, 𝜌) (23)

where 𝜎𝑚𝑎𝑥 has also been expressed as the product of the stress concen-
tration factor 𝐾𝑡 and the applied nominal stress 𝜎𝑛𝑜𝑚. Now, as claimed
before, the notched fatigue limit 𝛥𝜎𝑁𝐹𝐿 is the value of applied nominal
stress which makes the stress at the distance 𝐿∕2 equal to the plain
fatigue limit of the material, 𝛥𝜎𝐹𝐿, according to the Point Method. We
thus write

𝛥𝜎 (𝑥 = 𝐿∕2) = 𝛥𝜎 = 𝐾 𝛥𝜎𝑁 𝑓 (𝐿∕2, 𝜌) (24)
5

𝜃 𝐹𝐿 𝑡 𝐹𝐿 𝛼
Then we see that
𝐾𝑓

𝐾𝑡
= 𝑓𝛼(𝐿∕2, 𝜌) (25)

This can be plotted for the four angles for which the functions 𝑓𝛼(𝐿∕2, 𝜌)
can be obtained from Eqs. (19) to (22) above. Notice that, again, they
can be written in a more revealing form as functions of the single non
dimensional parameter 𝜌∕(𝐿∕2) = 2𝜌∕𝐿. For example, for 2𝛼 = 45◦, we
would have

𝑓45◦ =
𝜎𝑚𝑎𝑥
3.221

[

1.0514
(

1
𝜌∕(𝐿∕2)

+ 0.4286
)−0.4950

+ 0.4820
(

1
𝜌∕(𝐿∕2)

+ 0.4286
)−1.4319

]

(26)

Figs. 7 to 10 show 𝐾𝑓∕𝐾𝑡 as a function of 𝐿 and 𝜌 for the four angles
chosen. Let us recall that 𝐾𝑡 does not depend on 𝐿. It just depends
on 𝜌 (and the notch angle, of course). We can see that, roughly, the
comments made for the circular hole are applicable here too. There is
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Fig. 9. 𝐾𝑓 ∕𝐾𝑡 for the V-Notch as a function of 𝐿 and 𝜌 (2𝛼 = 90◦).
Fig. 10. 𝐾𝑓 ∕𝐾𝑡 for the V-Notch as a function of 𝐿 and 𝜌 (2𝛼 = 135◦).
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a plateau, an extended tableland where 𝐾𝑡∕𝐾𝑓 varies very smoothly
with 𝐿 for any value of 𝜌. But there is also a pronounced fall at the
left edge of the plateau. The ‘‘blue wall’’ of the figures corresponds to
the situation where the root radius is very small and there is almost a
singularity in the stress field. Fatigue propagation is therefore tightly
controlled by the threshold condition. Thus errors in 𝐿 should be less
forgiving.

Again, we check what happens if the value of the critical distance
used in the Point Method were increased (or reduced) by as much as
one half. And, as before, since 𝐾𝑓∕𝐾𝑡 depends solely on 2𝜌∕𝐿, as per
Eq. (26) for 2𝛼 = 45◦, and likewise for the other angles, we calculate
𝐾𝑓∕𝐾𝑡 for every value of 2𝜌∕𝐿 and then recalculate again 𝐾𝑓∕𝐾𝑡 but
this second time using 1.5𝐿∕2, i.e., 2𝜌∕1.5∕𝐿 for the non dimensional
parameter. We then compare it with the value that we obtained in the
first place.

The results are shown in Figs. 11 to 14. Now, of course, for the
sharpest angles of 0◦, the difference between the two calculations tends
to 22.48%, corresponding to (

√

1.5 − 1), when 𝜌 tends to zero, as
6

expected. And the ‘‘error’’ peaks at 24.25% for 2𝜌∕𝐿 = 0.46. The results
re pretty similar for 45◦. The differences diminish as the angle of the
otch becomes wider. For the case 135◦, they are everywhere below
5%. We notice that, for the four notch angles studied, when the tip
adii becomes larger than 𝐿 (i.e. 2𝜌∕𝐿 ≥ 2), the difference between
aking the calculations with 𝐿 or 1.5𝐿 becomes smaller than 20%. Just

o put this in context, note that the average value of 𝐿 for 67 steels
eported by Susmel in Appendix A of his book [22] is 0.141 mm, the
aximum and minimum being 0.782 and 0.005 mm, respectively.

It has not escaped our notice that the specific pairing we have
ostulated in defining the non-dimensional variable above, namely
∕(𝐿∕2), implies that the same differences could also arise from changes
n the notch tip radius, 𝜌, rather than in 𝐿. This would provide some

additional rationale for using two common simplifications in the FEA
analysis of components in the context of TCD, namely, the use of rela-
tively coarse meshes and defeaturing (see [23–25]). We are referring to
the fact that typical element sizes used in industry for routine analyses

by Finite Elements need not be too dense. Also, to the use of models
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Fig. 11. Difference in 𝐾𝑓 ∕𝐾𝑡 when calculated using 1.5𝐿 instead of 𝐿. V-notch with
𝛼 = 0◦.

Fig. 12. Difference in 𝐾𝑓 ∕𝐾𝑡 when calculated using 1.5𝐿 instead of 𝐿. V-notch with
𝛼 = 45◦.

here some features of the real component are missing or simplified,
uch as, for example, employing a model where a corner with a finite
oot radius is represented without the radius.

. Conclusions

• We have analyzed the sensitivity of fatigue limits of notched
specimens calculated with the Theory of Critical Distance with
respect to variations in the value of the critical distance itself.

• Introducing a plastic zone correction in the derivation of the
formula for the critical distance leads to a new length which can
be significantly larger than the original one.

• However, it is found that such differences in the value of the
critical distance do not carry over into the computed value of the
notched fatigue limits.

• For a wide range of notches, the value of the critical distance
used for calculating the notched fatigue strength does not actually
seem to be so critical.
7

Fig. 13. Difference in 𝐾𝑓 ∕𝐾𝑡 when calculated using 1.5𝐿 instead of 𝐿. V-notch with
2𝛼 = 90◦.

Fig. 14. Difference in 𝐾𝑓 ∕𝐾𝑡 when calculated using 1.5𝐿 instead of 𝐿. V-notch with
2𝛼 = 135◦.

• This has been established by looking at circular holes and V-
notches, for which solutions for the ratio 𝐾𝑓∕𝐾𝑡 can be derived
analytically.

• It would appear that building graphs such as those depicting the
sort of tableland distribution for 𝐾𝑓∕𝐾𝑡 shown above could be
useful in fatigue analyses of practical components.
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Table A.1
Materials and geometries of notched components from the literature.

Material 𝛥𝜎𝐹𝐿 𝜎𝑌 𝑆 𝛥𝐾𝑡ℎ 𝐿 𝐿∗ Geometrya Loading 𝑅 Reference
(MPa) (MPa) (MPa) (mm) (mm)

0.46% C steel annealed 480 284 10.42 0.150b 0.257 CHB Rot. Bending −1 Murakami [26]
0.13% C steel 362 206 11.00 0.294c 0.521 CHB Rot. Bending −1 Murakami [26]
Al alloy 2017-T4 313.8d 368.7 11.51 0.428i 0.506 CHB Rot. Bending −1 Murakami [16]
Brass 70/30 245.2d 103 6.39 0.216i 0.522 CHB Rot. Bending −1 Murakami [16]
0.37% C steel 470 328e 15.36 0.340f 0.515 CHB Rot. Bend., Axial −1 Endo [27]
1045 steel 606 466 13.84 0.166 0.236 CHP Axial −1 DuQuesnay et al. [28]
Al alloy 2024-T351 248g 360 7.09 0.260 0.291 CHP Axial −1 DuQuesnay et al. [28]
Al 7075 516h 595 7.76 0.072i 0.086 CHB Axial −1 Chaves et al. [29]
Stainless steel 632 467 15.03 0.180j 0.262 CHB Axial −1 Chaves et al. [30]
Mild steel 400 293.4k 12.88 0.330 0.483 ENP Axial −1 Frost et al. [31,32]
Mild steel(2) 446 339.7l 12.99 0.270 0.386 CNB Axial −1 Frost et al. [31,32]
Al alloy B.S. L 65 300m 432.3l 4.19 0.062c 0.070 CNB Axial −1 Frost [33]
SM41B steel 326 194 12.36 0.458 0.781 CNP Axial −1 Tanaka et al. [34]
15313 steel 440 380 12.01 0.237 0.316 CNB Axial −1 Lukas et al. [35]
Al alloy AA356 231n 192 3.95 0.093 0.127 CNB Rot. Bending −1 Atzori et al. [36]

aCHB = center hole in cylindrical bar, CHP = center hole in plate, ENP = edge notched plate, CNB = circumferential notch in cylindrical bar, CNP = center notch in plate.
b[3].
c[22].
dFatigue endurance at 3 ⋅ 107 cycles.
e[37].
f[38].
gFatigue endurance at 107 cycles.
hFatigue endurance at 106 cycles.
iEstimated as 𝐿 = 3.12𝐷∕2 (see [9]).
j[39].
k[40].
l[33].
mFatigue endurance at 50 ⋅ 106 cycles.
nFatigue endurance at 2 ⋅ 106 cycles.
Table A.2
Comparison of notched fatigue limits predicted with 𝐿 and 𝐿∗.

Material Ref. Notch Notched fatigue limit Remarks

Depth Radius Experimental Point Method (𝐿) Point Method (𝐿∗)

(mm) (mm) 𝛥𝜎𝑁
𝐹𝐿 (MPa) 𝛥𝜎𝑁

𝐹𝐿 (MPa) Error (%)a 𝛥𝜎𝑁
𝐹𝐿 (MPa) Error (%)a

0.46%C steel [26] 0.02 0.02 470.0 468.2 −0.4 475.5 1.2
0.025 0.025 452.0 462.8 2.4 473.2 4.7
0.04 0.04 422.0 443.4 5.1 464.7 10.1
0.05 0.05 402.0 429.2 6.8 457.8 13.9
0.1 0.1 362.0 362.8 0.2 417.1 15.2
0.25 0.25 314.0 263.6 −16.1 319.3 1.7

0.13%C steel [26] 0.04 0.04 344.0 352.8 2.6 358.7 4.3
0.05 0.05 344.0 348.6 1.3 357.0 3.8
0.1 0.1 294.0 322.6 9.7 345.6 17.6
0.25 0.25 256.0 252.4 −1.4 300.1 17.2

Al 2017-T4 [16] 0.05 0.05 294.2 307.7 4.6 309.2 5.1
0.1 0.1 245.2 294.3 20.0 298.9 21.9

Brass 70/30 [16] 0.05 0.05 235.4 230.2 −2.2 241.8 2.7
0.1 0.1 215.8 205.1 −5.0 234.1 8.5
0.25 0.25 196.2 153.2 −21.9 203.4 3.7

0.37%C steel [27] 0.05 0.05 390.0 456.4 17.0 463.4 18.8
0.25 0.25 300.0 344.2 14.7 388.4 29.5

1045 steel [28] 0.12 0.12 360.0 446.3 24.0 495.2 37.5
0.25 0.25 310.0 344.6 11.2 391.0 26.1
0.5 0.5 276.0 278.1 0.8 307.7 11.5
1.5 1.5 248.0 228.0 −8.1 238.8 −3.7

Al 2024-T351 [28] 0.12 0.12 160.0 207.6 29.7 212.9 33.1
0.25 0.25 124.0 165.6 33.6 172.3 38.9
0.5 0.5 124.0 129.8 4.7 134.8 8.7
1.5 1.5 90.0 99.2 10.3 101.2 12.4

Al 7075 [29] 0.5 0.5 190.0 200.7 5.6 206.0 8.4
1.00 1.00 188.0 186.4 −0.8 189.1 0.6
1.5 1.5 170.0 181.6 6.8 183.4 7.9

Stainless steel [30] 0.5 0.5 320.0 296.3 −7.4 331.9 3.7
1.00 1.00 308.0 254.5 −17.4 274.0 −11.0
1.5 1.5 282.0 240.0 −14.9 253.3 −10.2

(continued on next page)
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Table A.2 (continued).
Material Ref. Notch Notched fatigue limit Remarks

Depth Radius Experimental Point Method (𝐿) Point Method (𝐿∗)

(mm) (mm) 𝛥𝜎𝑁
𝐹𝐿 (MPa) 𝛥𝜎𝑁

𝐹𝐿 (MPa) Error (%)a 𝛥𝜎𝑁
𝐹𝐿 (MPa) Error (%)a

Mild steel [31] 5.08 0.102 100.4 99.5 −0.9 122.0 21.6 b 𝐾𝑡𝑛 = 14.3, V-angle=55◦

5.08 0.254 108.0 95.6 −11.5 116.1 7.5 𝐾𝑡𝑛 = 9.2, V-angle=55◦

5.08 0.508 100.4 98.1 −2.3 114.6 14.1 𝐾𝑡𝑛 = 6.7, V-angle=55◦

5.08 1.27 123.6 114.2 −7.6 124.9 1.0 𝐾𝑡𝑛 = 4.5, V-angle=55◦

5.08 7.62 185.2 189.4 2.3 193.6 4.5 𝐾𝑡𝑛 = 2.2, V-angle=55◦

Mild steel (2) [31] 5.08 0.05 115.8 128.4 10.9 152.9 32.0 𝐾𝑡𝑛 = 13.8, V-angle=55◦

5.08 0.1 108.0 123.5 14.3 149.3 38.2 𝐾𝑡𝑛 = 11.2, V-angle=55◦

5.08 0.254 115.8 119.3 3.0 141.3 22.0 𝐾𝑡𝑛 = 7.5, V-angle=55◦

5.08 0.508 115.8 125.4 8.2 142.9 23.4 𝐾𝑡𝑛 = 5.4, V-angle=55◦

5.08 1.27 131.2 150.4 14.7 161.9 23.4 𝐾𝑡𝑛 = 3.6, V-angle=55◦

Al alloy B.S. L 65 [33] 5.08 0.1 46.4 41.2 −11.3 42.8 −7.7 𝐾𝑡𝑛 = 11.2, V-angle=55◦

5.08 0.2 46.4 46.7 0.7 48.0 3.5 𝐾𝑡𝑛 = 8.3, V-angle=55◦

5.08 0.508 61.8 61.8 0.1 62.6 1.4 𝐾𝑡𝑛 = 5.4, V-angle=55◦

5.08 1.27 92.6 87.2 −5.8 87.7 −5.3 𝐾𝑡𝑛 = 3.6, V-angle=55◦

SM41B steel [34] 3.00 0.16 120.0 109.8 −8.5 143.8 19.8 𝐾𝑡𝑛 = 9.9, Elliptical
3.00 0.39 120.0 105.5 −12.1 137.6 14.6 𝐾𝑡𝑛 = 6.7, Elliptical
3.00 0.83 110.0 108.6 −1.3 134.4 22.2 𝐾𝑡𝑛 = 4.8, Elliptical
3.00 3.00 150.0 143.1 −4.6 158.0 5.4 𝐾𝑡𝑛 = 2.7

15313 steel [35] 0.015 0.015 440.0 443.8 0.9 444.6 1.0
0.03 0.03 440.0 442.3 0.5 446.5 1.5
0.05 0.05 420.0 434.7 3.5 444.8 5.9
0.07 0.07 330.0 420.6 27.5 438.1 32.8
0.2 0.2 280.0 341.2 21.8 378.0 35.0
0.4 0.4 300.0 301.9 0.6 334.3 11.4
0.75 0.75 320.0 310.3 −3.0 333.8 4.3

Al AA356 [36] 0.24 0.1 114.8 102.3 −10.9 118.3 3.0 𝐾𝑡𝑔 = 4.3, V-angle=79.9◦
0.63 0.18 109.8 65.5 −40.4 73.6 −33.0 𝐾𝑡𝑔 = 5.4, V-angle=59.2◦
1.3 0.09 44.8 34.9 −22.1 40.7 −9.1 𝐾𝑡𝑔 = 13.1, V-angle=60.3◦
2.9 0.08 17.7 13.4 −24.5 15.7 −11.3 𝐾𝑡𝑔 = 36.4, V-angle=68.3◦

aError = (Predicted-Experimental)/Experimental×100.
𝐾𝑡𝑛, stress concentration factor referred to net area. 𝐾𝑡𝑔 referred to gross area.
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