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A B S T R A C T

During the last decades, hundreds of approximate algorithms have been proposed in the literature addressing
flow-shop-based scheduling problems. In the race for finding the best proposals to solve these problems, speed-
up procedures to compute objective functions represent a key factor in the efficiency of the algorithms. This
is the case of the well-known Taillard’s accelerations proposed for the traditional flow shop with makespan
minimisation or several other accelerations proposed for related scheduling problems. Despite the interest in
proposing such methods to improve the efficiency of approximate algorithms, to the best of our knowledge,
no speed-up procedure has been proposed so far in the hybrid flow shop literature. To tackle this challenge,
we propose in this paper a speed-up procedure for makespan minimisation, which can be incorporate in
insertion-based neighbourhoods using a complete representation of the solutions. This procedure is embedded
in the traditional iterated greedy algorithm. The computational experience shows that even incorporating the
proposed speed-up procedure in this simple metaheuristic results in outperforming the best metaheuristic for
the problem under consideration.
1. Introduction

The hybrid flow shop scheduling problem (denoted as HFSP) is one
of the most common and studied problem in the scheduling literature,
which arises from a natural extension of the traditional flow shop
scheduling problem. In the HFSP, there are 𝑛 jobs to be processed on
𝑚 stages, where each job follows the same route of stages. In each
stage, there are parallel machines which can process the jobs. The
problem then consists in finding the best schedule which minimises a
certain objective function. Due to its many applications in real man-
ufacturing fields as iron and steel production, textiles, paper making,
and chemicals (in this regard, see e.g. Bozorgirad & Logendran, 2016;
Long et al., 2018; Peng et al., 2018), hundreds of contributions have
been developed in the literature addressing this scheduling problem.
Most of them focused in proposing new methods to solve the problem
(Fernandez-Viagas & Framinan, 2020), since it was characterised as
NP-hard, in most cases. This is also the case of the objective un-
der consideration, makespan minimisation, whose NP-hard nature was
demonstrated by Gupta (1988) for two stages and at least two machines
in one. Note that, among the objective functions addressed in the
literature to solve the problem, the makespan minimisation is the
most employed one due to its close relationship with the maximi-
sation of machine utilisation and/or the minimisation of production
run. The problem under consideration can be denoted by 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥,
𝐹𝐹𝑚||𝐶𝑚𝑎𝑥, or 𝐹𝐻𝑚, (𝑃𝑀𝑘)𝑚𝑘=1||𝐶𝑚𝑎𝑥 (see Graham et al., 1979; Ruiz &
Vázquez-Rodríguez, 2010).

E-mail address: vfernandezviagas@us.es.

The literature proposing approximated algorithms to efficiently
solve this scheduling problem is very extensive. We refer in this
regards to the reviews carried out by Ribas, Leisten et al. (2010), Ruiz
and Vázquez-Rodríguez (2010). According to Fernandez-Viagas et al.
(2017), these proposals can be divided in either heuristics or meta-
heuristics depending if they naturally stop or not. Regarding the former,
several constructive and improvement heuristics have proposed to find
a fast solution of the problem as e.g. Acero-Dominguez and Paternina-
Arboleda (2004), Brah and Loo (1999), Fernandez-Viagas, Molina-
Pariente et al. (2018), Kizilay et al. (2015), Pan et al. (2014) and Santos
et al. (1996). Among them, the proposals developed by Fernandez-
Viagas, Molina-Pariente et al. (2018) (two Johnson-based Heuristics,
denoted by JbH1 and JbH2, and a Memory-based Constructive Heuris-
tic, MCH) highlight as the state-of-the-art heuristics for the problem.
Regarding the latter, we find also several proposals in the literature.
An example of Artificial Immune Systems and Ant Colony Optimisations
can be found in Alaykýran et al. (2007) and Engin and Döyen (2004),
respectively. Quantum algorithm, Particle Swarm Optimisation, Esti-
mation of Distribution Algorithm or Discrete Artificial Bee Colony have
also been proposed by Liao et al. (2012), Niu et al. (2009), Pan et al.
(2014), and Wang et al. (2013), respectively, while a local-search based
iterated algorithm has been proposed by Negenman (2001). Among all
these proposals, the Discrete Artificial Bee Colony (DABC), proposed
by Pan et al. (2014), is so far the best performing metaheuristic for
the problem under consideration. This efficiency was tested in an
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extensive computational evaluation comparing it with several other
metaheuristics proposed for the problem under consideration or related
one (as e.g. the ILS metaheuristic proposed by Naderi et al., 2010). In
fact, nowadays this DABC metaheuristic is probably the cornerstone
metaheuristic in the hybrid flowshop, where many variations of it
are state-of-the-art algorithms for several hybrid flow shop scheduling
problems (see e.g. Pan, 2016; Pan et al., 2017; Zhang et al., 2019). After
this DABC metaheuristic, some metaheuristics have also been proposed
in the literature as the Iterated Greedy (IG) proposed by Kizilay et al.
(2015) or the Chaos-enhanced Simulated Annealing (CSA) proposed
by Lin et al. (2021). The former metaheuristic was outperformed by
the DABC algorithm (see Kizilay et al., 2015), while we are not aware
of any previous comparison between DABC and CSA.

Despite the high number of proposals in the literature to solve the
problem under consideration, recent advances in the literature hint that
there is still room for new improvements. On the one hand, Fernandez-
Viagas et al. (2019) review and compare different representations of
the solutions used by the authors in the problem, as well as give some
recommendations for future approaches. In this regard, while the use
of a unique sequence to represent the solution is very extended in
the literature, its combination with complete representations in local
search phases is very scarce and is recommended by the authors. On
the other hand, it is worth highlighting that in the reduced version
of the problem when there is one machine in each stage (i.e. in the
flowshop scheduling problem), the mechanism proposed by Taillard
(1990) to accelerate approximated algorithms is still nowadays one of
the key factors to achieve an effective performance in every proposal
(Fernandez-Viagas et al., 2017). Although much effort has been made
to propose speed-up procedures for related flow-shop-based scheduling
problem (see e.g. Fernandez-Viagas & Framinan, 2015b; Fernandez-
Viagas et al., 2020; Naderi & Ruiz, 2010; Rios-Mercado & Bard, 1998),
to our best knowledge no success has been found so far for the problem
under consideration.

To tackle these opportunities, the contribution of this paper is four-
fold: we first present several definitions and theorems for the problem
under consideration. Secondly, based on these theoretical results, we
propose a speed-up procedure to reduce the complexity in insertion-
based mechanisms by 𝑂(𝑛). Thirdly, we develop a simple iterated
greedy algorithm to solve the problem using the previous speed-up
procedure. And finally, we perform a computational evaluation com-
paring our proposal with the most promising metaheuristics in the
literature, under the new set of instances proposed by Fernandez-Viagas
and Framinan (2020).

To deal with these issues, the paper is organised as follows: in Sec-
tion 2 we describe the problem under consideration. For this problem,
we present some new theoretical results in Section 3. These results
are used to propose a novelty speed-up procedure in Section 4. This
procedure is incorporated in a simple local-search-based metaheuristic
in Section 5, which is compared with the state-of-the-art metaheuristics
in Section 6. Finally, some conclusions are discussed in Section 7.

2. Problem description and background

The problem under consideration can be defined as follows. There
are 𝑛 jobs to be processed in each one of 𝑚 stages, following each job the
same route across the stages. Each job 𝜎 is composed of 𝑚 operation to
be processed in each stage of the shop. In stage 𝑖, there are 𝑚𝑖 identical
machines to perform the operations. Let 𝑂𝑖𝜎 denote the operation which
corresponds to job 𝜎 performed on stage 𝑖. The processing time of job

when is processed on stage 𝑖 is denoted by 𝑝𝑖,𝜎 .
The goal of the problem is to find the best schedule which minimises

he makespan, 𝐶𝑚𝑎𝑥. Since it is clear that at least one optimal solution
an be reached by considering semi-active schedules (see Pinedo, 1995
or a definition), we will use the term schedule in this paper to refer
xclusively to semi-active schedules. In this case, a schedule, , can be
ully defined by a sequence of jobs on each machine and consequently,
2

here are || different solutions represented by the following equation
Urlings et al., 2010):

| = (𝑛!)𝑚
𝑚
∏

𝑖=1

(

𝑛 + 𝑚𝑖 − 1
𝑚𝑖 − 1

)

(1)

n order to decrease the number of solutions to be explored for an
lgorithm, note that several authors have considered different rep-
esentations of the solutions in the HFS. In this regard, we refer
o Fernandez-Viagas et al. (2019) for a complete review and analysis
f them.

Considering a full representation of the solution formed by the
equences of jobs on each machine (denoted as 𝑆

1 by Fernandez-
iagas et al., 2019), let 𝛱𝑖𝑘 ∶= (𝜋𝑖𝑘1,… , 𝜋𝑖𝑘𝑗 ,… , 𝜋𝑖𝑘𝑛𝑖𝑘 ) denote the
equence of jobs in stage 𝑖 and machine 𝑘, where 𝑛𝑖𝑘 is the number
f jobs assigned to that machine. In this case, the completion time of
ach job 𝜋𝑖𝑘𝑗 on stage 𝑖 (i.e. operation 𝑂𝑖𝜋𝑖𝑘𝑗 ), denoted as 𝐶𝑖,𝜋𝑖𝑘𝑗 , can be
alculated as:

𝐶𝑖,𝜋𝑖,𝑘,𝑗 = max{𝐶𝑖−1,𝜋𝑖−1,𝑘,𝑗 , 𝐶𝑖,𝜋𝑖,𝑘,𝑗−1} + 𝑝𝑖,𝜋𝑖,𝑘,𝑗 ,

∀𝑖 ∈ {1,… , 𝑚}, 𝑘 ∈ {1,… , 𝑚𝑖}, 𝑗 ∈ {1,… , 𝑛𝑖𝑘}
(2)

with 𝐶0,𝜋0,𝑘,𝑗 = 𝐶𝑖,𝜋𝑖,𝑘,0 = 0.
A Mixed Integer Linear Programming model for the problem can be

stated as in Box I (Naderi et al., 2014).
where 𝑀 is a large number, 𝑋𝑖𝑗𝑙 is equal to 1 if job 𝑗 is processed
after job 𝑘 and 𝑋𝑖𝑗𝑘 (0 otherwise), while 𝑌𝑖𝑙𝑗 is 1 if job 𝑗 is assigned to
machine 𝑘 at stage 𝑖 (0 otherwise). Regarding the constraints, Eq. (M1)
impose that each job is processed in a unique machine on each stage.
The completion times are calculated by Eqs. (M2), (M3), and (M4).
The objective function (makespan) is defined in Eqs. (M5). Finally, Eqs.
(M6), (M7), and (M8) limit the variables of the model.

3. Preliminary theoretical results

In this section, we present some theoretical tools needed to propose
our methodology in Section 4. However, prior to prove some relevant
results for our proposal, several definitions are necessary. Firstly, once
a representation of the solutions 𝛱𝑖𝑘 has been defined, a schedule has
to be constructed by placing the jobs. The most traditional approach
in this regard is the forward schedule (see Definition 3.1). However,
in order to demonstrate some of the theoretical results included in
this paper, we will also make use of the reverse schedule (see Defini-
tion 3.2), also denoted as backward schedule (see e.g. Pan et al., 2014;
Wang et al., 2013; Xu et al., 2013 for previous uses of this approach),
which was originally proposed for the traditional flowshop (see Ribas,
Companys et al., 2010; Ribas et al., 2013). After that, we define two
important characteristics of the problem (critical set and path) and
based on them, we present several theorems.

Definition 3.1 (Forward Schedule). Given an instance  of the
𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and a solution 𝛱𝑖𝑘 ∶= (𝜋𝑖𝑘1,… , 𝜋𝑖𝑘𝑗 ,… , 𝜋𝑖𝑘𝑛𝑖𝑘 ), let
us define 𝐹 the forward schedule as the schedule obtained when this
solution is represented without forcing idle times, and in ascending
order of stages and jobs by applying Eq. (2). As usual, jobs are grouped
from the left to the right.

Definition 3.2 (Backward Schedule). Given an instance  of the
𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and a solution 𝛱𝑖𝑘 ∶= (𝜋𝑖𝑘1,… , 𝜋𝑖𝑘𝑗 ,… , 𝜋𝑖𝑘𝑛𝑖𝑘 ), let
us define 𝐵 the backward schedule as the schedule obtained when this
solution is represented without forcing idle times, and in descending
order of stages and positions (i.e. starting to represent the solution from
the last stage and the last job on each machine) by applying Eq. (3).
Jobs are then grouped from the right to the left (instead of from the

left to the right).



Expert Systems With Applications 187 (2022) 115903V. Fernandez-Viagas

w

r
t
i
m

a
s
r

D
p

minimise 𝐶𝑚𝑎𝑥

subject to
∑

𝑘∈{1,…,𝑚𝑖}
𝑌𝑖𝑘𝑗 = 1 𝑖 ∈ {1,… , 𝑚}, 𝑗 ∈ {1,… , 𝑛} (𝑀1)

𝐶𝑖𝑗 ≥ 𝐶𝑖−1,𝑗 + 𝑝𝑖𝑗 𝑖 ∈ {1,… , 𝑚} − {1}, 𝑗 ∈ {1,… , 𝑛} (𝑀2)

𝐶𝑖𝑗 ≥ 𝐶𝑖𝑙 + 𝑝𝑖𝑗 −𝑀 ⋅ (3 −𝑋𝑖𝑗𝑙 − 𝑌𝑖𝑘𝑗 − 𝑌𝑖𝑘𝑙) 𝑖 ∈ {1,… , 𝑚}, 𝑘 ∈ {1,… , 𝑚𝑖}, 𝑗, 𝑙 ∈ {1,… , 𝑛}|𝑙 > 𝑗 (𝑀3)

𝐶𝑖𝑙 ≥ 𝐶𝑖𝑗 + 𝑝𝑖𝑙 −𝑀 ⋅𝑋𝑖𝑗𝑙 −𝑀 ⋅ (2 − 𝑌𝑖𝑘𝑗 − 𝑌𝑖𝑘𝑙) 𝑖 ∈ {1,… , 𝑚}, 𝑘 ∈ {1,… , 𝑚𝑖}, 𝑗, 𝑙 ∈ {1,… , 𝑛}|𝑙 > 𝑗 (𝑀4)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑚𝑗 𝑗 ∈ {1,… , 𝑛} (𝑀5)

𝐶𝑖𝑗 ≥ 0 𝑖 ∈ {1,… , 𝑚}, 𝑗 ∈ {1,… , 𝑛} (𝑀6)

𝑋𝑖𝑗𝑙 ∈ {0, 1} 𝑖 ∈ {1,… , 𝑚}, 𝑗, 𝑙 ∈ {1,… , 𝑛}|𝑙 > 𝑗 (𝑀7)

𝑌𝑖𝑘𝑗 ∈ {0, 1} 𝑖 ∈ {1,… , 𝑚}, 𝑘 ∈ {1,… , 𝑚𝑖}, 𝑗 ∈ {1,… , 𝑛} (𝑀8)
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Table 1
Sequences of jobs on each machine for the example.
𝛱𝑖𝑘 Sequence

𝜋11𝑗 (1,4,6)
𝜋12𝑗 (2,3,5)
𝜋21𝑗 (2,5,6)
𝜋22𝑗 (1,4,3)
𝜋31𝑗 (2,4,6)
𝜋32𝑗 (1,5,3)

𝐶̄𝑖,𝜋𝑖,𝑘,𝑗 = max{𝐶̄𝑖+1,𝜋𝑖+1,𝑘,𝑗 , 𝐶̄𝑖,𝜋𝑖,𝑘,𝑗+1} + 𝑝𝑖,𝜋𝑖,𝑘,𝑗 ,

∀𝑖 ∈ {𝑚,… , 1}, 𝑘 ∈ {𝑚𝑖,… , 1}, 𝑗 ∈ {𝑛𝑖𝑘,… , 1}
(3)

ith 𝐶̄𝑚+1,𝜋𝑚+1𝑖,𝑘,𝑗 = 𝐶̄𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘+1
= 0.

We show an example of forward and backward in Figs. 1 and 2,
espectively. In this example we consider six jobs, three stages, and
wo machines per stages. The sequence of jobs followed on each stage
s shown in Table 1, which is represented in forward and backward
anner in both figures, respectively.

Next, two definitions, denoted as critical set and critical path,
re needed both to identify the importance of each operation in the
chedule and to be able to demonstrate some posterior theoretical
esults.

efinition 3.3 (Critical Set). Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥
roblem and a schedule , let us define  () the critical set of that

schedule as the set formed for all operations whose starting times
cannot be delayed without increasing the objective function of the
problem.

Let  and  denote two artificial nodes which represent the initial
and final operations, respectively. By using them, we can define the
critical path of a schedule as follows.

Definition 3.4 (Critical Path). Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥
problem and a schedule , let us define  () the critical path of that
schedule as the path formed by the operations in the critical set, which
allow us going from  to  without repeating any operation and always
moving to either the following job or stage.

Following with the previous example, we show the critical set
and path of the previous schedule in Figs. 3 and 4, respectively. The
critical path was introduced by Nowicki and Smutnicki (1996) in the
𝐹𝑚|𝑝𝑟𝑚𝑢|𝐶𝑚𝑎𝑥 problem and has been used for several approximated
3

algorithms for that objective function (see e.g. Grabowski & Wodecki, 𝐶
2004; Nowicki & Smutnicki, 1998, 2006), and recently by Fernandez-
Viagas et al. (2020) to propose a speed-up procedure for the flowshop
layout using other objective functions, which is the most related re-
search in the literature. However, this previous speed-up procedure
cannot be applied to the problem under consideration and we are not
aware of previous acceleration procedures in the HFS problem. To
cover this opportunity, we propose below several critical-path based
theorems to be able to develop a new speed-up procedure in Section 4.

Theorem 3.1. Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and a
schedule , then at least one critical path  () exists.

Proof. We start the proof considering the operation with maximum
completion time (or any of these operations in case there are several),
which consequently defines the 𝐶𝑚𝑎𝑥 of . According to Definition 3.3,
it is clear that this operation belongs to the critical set  (), as cannot
be delayed. In addition, the completion time of this operation can be
calculated using the following expression:

𝐶𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘
= max{𝐶𝑖−1,𝜋𝑖−1,𝑘,𝑛𝑖𝑘

, 𝐶𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘−1
} + 𝑝𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘 (4)

More specifically, this equation states that there is at least one
operation (𝑂𝑖−1,𝜋𝑖−1,𝑘,𝑛𝑖𝑘

or 𝑂𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘−1
), which is connected with 𝑂𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘

without adding any idle or waiting time, i.e. one of the following two
equations must be fulfil:

𝐶𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘
= 𝐶𝑖−1,𝜋𝑖−1,𝑘,𝑛𝑖𝑘

+ 𝑝𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘 (5)

𝐶𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘
= 𝐶𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘−1

+ 𝑝𝑖,𝜋𝑖,𝑘,𝑛𝑖𝑘 (6)

By Definition 3.3, this new operation must belong to set  (),
ince delaying this operation to the right would necessarily worsen the
akespan. Proceeding analogously, the completion time of a generic

peration 𝑂𝑖,𝜋𝑖,𝑘,𝑗 (with 𝑖 > 1 and 𝑗 > 1) belonging to  () can be
alculated by:

𝑖,𝜋𝑖,𝑘,𝑗 = max{𝐶𝑖−1,𝜋𝑖−1,𝑘,𝑗 , 𝐶𝑖,𝜋𝑖,𝑘,𝑗−1} + 𝑝𝑖,𝜋𝑖,𝑘,𝑗 (7)

nd again, either operation 𝑂𝑖−1,𝜋𝑖−1,𝑘,𝑗 or 𝑂𝑖,𝜋𝑖,𝑘,𝑗−1 joins to the previous
peration without adding waiting or idle time and therefore, this
peration must also belong to  (). This procedure can be repeated
ntil 𝑖 or 𝑗 are equal to 1. But in both cases a similar conclusion can
e obtained. Let beginning with case 𝑗 = 1 for a generic 𝑖 and 𝑘. In
his case, the completion time of operation 𝑂𝑖,𝜋𝑖,𝑘,1 is calculated by the
ollowing expression, as it is the first job in machine 𝑘:
𝑖,𝜋𝑖,𝑘,1 = 𝐶𝑖−1,𝜋𝑖−1,𝑘,1 + 𝑝𝑖,𝜋𝑖,𝑘,𝑗 (8)
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Fig. 1. Example of forward schedule with six jobs.
Fig. 2. Example of backward schedule with six jobs.
Fig. 3. Example of critical set.
Fig. 4. Example of critical path.
Which means that operation 𝑂𝑖−1,𝜋𝑖−1,𝑘,1 must be in  (). On the other
hand, in case 𝑖 = 1 the completion time of operation 𝑂1,𝜋1,𝑘,𝑗 can be
calculated by the following expression, as it is the first stage:

𝐶1,𝜋1,𝑘,𝑗 = 𝐶1,𝜋1,𝑘,𝑗−1 + 𝑝𝑖,𝜋𝑖,𝑘,𝑗 (9)

And again, operation 𝑂1,𝜋𝑖,𝑘,𝑗−1 must belong to  (). Applying the
procedure recursively, it finishes when we reach some operation 𝑂1,𝜋1,𝑘,1
also belonging to the critical set. I.e. we have moved from the final node
 to the initial node  crossing only operation in the critical set and
without both repeating any operation or moving to a previous stage
or job, which corresponds to the definition of the critical path (see
Definition 3.4). □

A result of this theorem is that the same makespan is obtained
constructing a solution from a representation of the solutions 𝛱𝑖𝑗 ,
regardless if it is schedule in a forward or backward manner (see
Corollary 3.1).

Corollary 3.1. Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem, then
the makespan obtained by the forward schedule  and its corresponding
backward schedule 𝐵 is the same.

Proof. The proof of this corollary is obvious in view of
Theorem 3.1. □

Finally, two more theoretical results are needed to prove that dis-
placing some operation, both in the forward and backward schedules,
would increase the makespan that time.
4

Theorem 3.2. Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and a
forward schedule 𝐹 , then displacing 𝑙 units any operation (excepting the
last one of the schedule) to the left would increases the total use of the system
or makespan, exactly the same 𝑙 units.

Proof. The proof is obvious using the same reasoning as applied in
Theorem 3.1. As a generic operation 𝑂𝑖,𝜋𝑖,𝑘,𝑗 is moved to the left, then
either 𝑂𝑖−1,𝜋𝑖−1,𝑘,𝑗 or 𝑂𝑖,𝜋𝑖,𝑘,𝑗−1 would be also moved to the left. The
procedure could be recursively extended until to displace the first job
of the schedule proceeding analogously than before (see example in
Fig. 5). □

Theorem 3.3. Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and a
backward schedule 𝐵 , then displacing 𝑙 units any operation (excepting the
last one of the schedule) to the right would increases the total use of the
system or makespan, exactly the same 𝑙 units.

Proof. The proof is obvious using the same reasoning as applied in
Theorem 3.2. □

4. Proposed speed-up procedure

In this section, we detail the proposed speed-up procedure, which
can be applied for full representations of the solutions (𝑆

1 ). This pro-
cedure makes use of the results obtained in Section 3 to highly reduce
the computational effort needed. After presenting the accelerations, we
incorporate the speed-up procedure in a insertion-based local search
with partial selection of operations.
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Fig. 5. Example of Theorem 3.2.
Firstly, let us suppose that operation 𝑂𝑖𝜎 of a solution 𝛱𝑖𝑘 (belonging
to job 𝜎) has previously been removed from stage 𝑖 and has to be rein-
serted in the same stage. Under this condition, the speed-up procedure
to re-insert this operation in every position is detailed as follows:

STEP1. Calculate the forward schedule (i.e. the completion time
𝐶𝑖,𝜋𝑖,𝑘,𝑗 of each operation 𝜋𝑖,𝑘,𝑗). Using the previous example,
in Fig. 6, we calculate the completion times 𝐶𝑖,𝜋𝑖,𝑘,𝑗 after
removing job five from the second stage.

STEP2. Calculate the backward schedule (i.e. the completion time
𝐶̄𝑖,𝜋𝑖,𝑘,𝑗 of each operation 𝜋𝑖,𝑘,𝑗) beginning with 𝑖 = 𝑚 and
𝑗 = 𝑛𝑖𝑘 for any 𝑘 ∈ 𝑚𝑖. In Fig. 7 we calculate the completion
times 𝐶̄𝑖,𝜋𝑖,𝑘,𝑗 after removing job five, i.e. 𝜎 = 5, from the
second stage.

STEP3. For each machine 𝑘 ∈ 𝑚𝑖

STEP 3.1. For each position 𝑗 ∈ [1, 𝑛𝑖𝑘]

STEP 3.1.1. Calculate the makespan incurred by introducing
job 𝜎 in position 𝑗 of machine 𝑘 (denoted as
𝐶𝑗𝑘
𝑚𝑎𝑥) by using Theorem 4.1 (detailed below).

See example of this calculation in Fig. 8.

𝐶𝑗𝑘
𝑚𝑎𝑥 = max{𝐶𝑚𝑎𝑥,max{𝐶𝑖,𝜋𝑖𝑘𝑗 , 𝐶𝑖−1,𝜎}+𝑝𝑖,𝜎+max{𝐶̄𝑖,𝜋𝑖,𝑘,𝑗+1 , 𝐶̄𝑖+1,𝜎}}

STEP4. Insert operation 𝑂𝑖𝜎 in position 𝑗 of machine 𝑘 (stage 𝑖) which
minimises 𝐶𝑗𝑘

𝑚𝑎𝑥.
STEP5. The new makespan is 𝐶𝑚𝑎𝑥 = min∀𝑗,𝑘{𝐶

𝑗𝑘
𝑚𝑎𝑥}.

Where Theorem 4.1 and its demonstration is stated as follows.

Theorem 4.1. Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and a
schedule  represented by 𝛱𝑖𝑘 with a makespan equals to 𝐶𝑚𝑎𝑥, then the
new makespan (𝐶𝑛𝑒𝑤

𝑚𝑎𝑥) obtained after inserting operation 𝑂𝑖𝜎 in position 𝑗
on the machine 𝑘 of stage 𝑖 is:

𝐶𝑛𝑒𝑤
𝑚𝑎𝑥 = max{𝐶𝑚𝑎𝑥,max{𝐶𝑖,𝜋𝑖𝑘𝑗 , 𝐶𝑖−1,𝜎} + 𝑝𝑖,𝜎 +max{𝐶̄𝑖,𝜋𝑖,𝑘,𝑗+1 , 𝐶̄𝑖+1,𝜎}} (10)

Proof. When inserting operation 𝜎 in position 𝑗 on the machine 𝑘 of
stage 𝑖, there are two possibilities:

1. No operation in  is affected.
2. We delay some operation in .

Regarding the first case, it is clear that the makespan stays the same if
no operation of the schedule has been affected by the insertion, with the
exception of an insertion in the last position of any machine in the last
stage (i.e. 𝑖 = 𝑚 and 𝑗 = 𝑛 ). In this last case, the new makespan should
5

𝑚𝑘
be the maximum between the last makespan (𝐶𝑚𝑎𝑥) and the completion
time of the new inserted operation (i.e. max{𝐶𝑚,𝜋𝑚,𝑘,𝑛𝑚𝑘

, 𝐶𝑚−1,𝜎} + 𝑝𝑚,𝜎).
As we have inserted the job in the last operation of the last stage, then
𝐶̄𝑚,𝜋𝑚,𝑘,𝑛𝑚𝑘+1

= 0 and 𝐶̄𝑚+1,𝜎 = 0 and Eq. (10) is satisfied.
Regarding the second case, according to Eq. (2), there are two oper-

ations which could be affected by this insertion which are either 𝜋𝑖+1,𝑘,𝑗
or 𝜋𝑖,𝑘,𝑗+1. The delay of these operations could potentially increase the
value of the new makespan according to Theorem 3.3 (note that in that
theorem is stated that a delay of any of these operations would delay
the backward schedule exactly that value). In order to calculate this de-
lay, firstly, we know that the new operation 𝜎 should start either when
the previous one in the same machine is finished or when the same
job in the previous stage finishes, i.e. max{𝐶𝑚𝑎𝑥,max{𝐶𝑖,𝜋𝑖𝑘𝑗 , 𝐶𝑖−1,𝜎}},
and it should therefore finish after this value plus its processing time,
i.e. max{𝐶𝑚𝑎𝑥,max{𝐶𝑖,𝜋𝑖𝑘𝑗 , 𝐶𝑖−1,𝜎}+𝑝𝑖,𝜎}. As a consequence, the posterior
operation (either 𝜋𝑖+1,𝑘,𝑗 or 𝜋𝑖,𝑘,𝑗+1) cannot start before this time and
then, all operations would be delayed. In addition, we know that the
time between this posterior operation and the end is defined by the
backward schedule, i.e. either 𝐶̄𝑖+1,𝜎 or 𝐶̄𝑖,𝜋𝑖,𝑘,𝑗+1 , respectively. Using
both issues and taking into account that the new makespan must be
greater than 𝐶𝑚𝑎𝑥, we have:

𝐶𝑛𝑒𝑤
𝑚𝑎𝑥 = max{𝐶𝑚𝑎𝑥,max{𝐶𝑖,𝜋𝑖𝑘𝑗 , 𝐶𝑖−1,𝜎} + 𝑝𝑖,𝜎 +max{𝐶̄𝑖,𝜋𝑖,𝑘,𝑗+1 , 𝐶̄𝑖+1,𝜎}} (11)

which is exactly Eq. (10). □

Regarding the complexity of inserting operation 𝑂𝑖𝜎 in every po-
sition of stage 𝑖, we know that the calculation of the forward and
backward schedules can be done in complexity 𝑂(𝑛⋅𝑚) (using a full rep-
resentation of the solutions, 𝑆

1 ) and the calculation of the makespan
has complexity 𝑂(1), as 𝐶𝑖,𝜋𝑖,𝑘,𝑗 and 𝐶̄𝑖,𝜋𝑖,𝑘,𝑗 are already known. So, the
final complexity of this procedure is 𝑂(𝑛 ⋅𝑚) instead of 𝑂(𝑛2 ⋅𝑚) of the
procedure without the accelerations, i.e. by using this procedure the
complexity of the insertion of operation 𝑂𝑖𝜎 in every position of stage
𝑖 is decreased by a complexity 𝑂(𝑛).

Once a procedure to accelerate the insertion of a job in every
position of the stage has been defined, we repeat this procedure for
several operations based on the following theorem:

Theorem 4.2. Given an instance  of the 𝐻𝐹𝑚||𝐶𝑚𝑎𝑥 problem and
a schedule  represented by 𝛱𝑖𝑘 with a makespan equals to 𝐶𝑚𝑎𝑥, then
removing an operation of a stage 𝑖, not belonging to any critical path of
, and re-inserting it in another position of that stage cannot decrease the
actual makespan.

Proof. The proof is obvious based on Theorem 3.1. As already known,
the critical path is formed by operations which join without any idle
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Fig. 6. Example of the completion times of a forward schedule in the speed-up procedure.
Fig. 7. Example of the completion times of a backward schedule in the speed-up procedure.
Fig. 8. Example of the calculation of the makespan using the speed-up procedure (operations are scheduled in backward manner).
or waiting time and cannot be compacted more. As a consequence,
the sum of the processing times of these operations is the makespan
of the solution. Hence, if both these operations cannot be compacted
more because they are related to each other, and no operation of the
critical path is removed or changed, then it is clear that the sum of the
processing times of the critical path cannot be reduced and its lower
bound is the previous makespan. □

With this in mind and taking into account that there could be
several critical paths, we design a local search method (denoted as
LSwS), selecting operations only in the critical set. These operations
are removed, one by one, and re-inserted in the same stage using the
previous speed-up method. This procedure is repeated until no more
improvements are found. Using the previous example, operations 𝑂1,2,
𝑂1,3, 𝑂1,5, 𝑂2,2, 𝑂2,5, 𝑂3,2, 𝑂3,3, 𝑂3,4, 𝑂3,5, and 𝑂3,6 (see Fig. 3) should
be removed from its corresponding stage and re-inserted in the best
position and machine of that stage, applying the speed-up procedure.
A detailed procedure of the insertion-based local search using these
accelerations is detailed in Fig. 9. As the number of operations in the
critical set (||) must be lower than or equal to 𝑛 ⋅ 𝑚 (total number of
operations), the complexity of this local search method is 𝑂(𝑛2 ⋅𝑚2), as
compared to 𝑂(𝑛3 ⋅𝑚2), which is the complexity of the same local search
method without using the speed-up procedure.

5. Application in an iterated greedy algorithm

In this section, we incorporate the proposed acceleration in a local-
search-based metaheuristic. More specifically, we consider a simple
iterated greedy algorithm. This algorithm was originally proposed
by Ruiz and Stützle (2007) (denoted as IG) and adapted to the problem
under consideration by Kizilay et al. (2015). Basically it consists in
carrying out a local search phase after a greedy diversification of the
solution. In this diversification phase, 𝑑 jobs are destructed (i.e. re-
moved from the actual sequence) and then constructed in the sequence
following a greedy procedure, where each destructed job is inserted
6

one by one in the best position. After performing the diversification
phase and the local search phase, a simple simulated annealing phase
is carried out to decide the reference sequence of the next iteration.
We have chosen such a simple metaheuristic due to the following two
reasons. Firstly, our objective is to analyse the influence exclusively of
the proposed speed-up mechanism in insertion-based local searches. In
this regard, the iterated greedy algorithm is a variant of the iterated
local search which is known to be one of the simplest metaheuristics
for scheduling problems. Therefore we avoid using more complex or
population-based metaheuristics, since some sophisticated phases could
disturb our purpose. Secondly, although the iterated greedy algorithm
was originally proposed for the permutation flowshop scheduling prob-
lem to minimise the makespan and despite its simplicity, it is one of
the best performing metaheuristics in scheduling problem and in fact
is state-of-the-art for several different problems (see e.g. Fanjul-Peyro
& Ruiz, 2010; Fernandez-Viagas & Framinan, 2015a, 2019; Fernandez-
Viagas, Valente et al., 2018; Huang et al., 2021; Mao et al., 2021; Zou
et al., 2021).

The proposed metaheuristic, denoted as IGwS, introduces an inten-
sive local search, using a full representation of the solution and the
previous speed-up procedure, in a destruction/phase mechanism, which
diversifies the solutions using a single sequence. To obtain a semi-
active schedule from the single sequence, we applied the First Available
Machine rule (FAM) and the First-In-First-Out rule (FIFO). According
to Fernandez-Viagas and Framinan (2019), this representation and
decoding procedure is denoted by 𝐹

4 (𝐹𝐴𝑀,𝐹𝐼𝐹𝑂). More specifically,
the proposal is composed of the following phases (see pseudo code in
Fig. 10):

• Initial solution: We use the traditional NEH algorithm, adapted
for the problem by Brah and Loo (1999), as the seed sequence.
Basically, following the LPT rule, jobs are inserted in the best
position of an initial empty partial sequence. Note that, following
the reasoning mentioned above, we have selected this initial algo-
rithm instead of the best heuristics for the problem (JbH1, JbH2,
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Fig. 9. Insertion-based local search using the proposed speed-up procedure.
or MCH) to simplify the proposal and analyse only the influence
of the new speed-up mechanism in the iterative procedure of the
metaheuristics. After obtaining this seed sequence, it is improved
by the original insertion-based local search method of the iterated
greedy algorithm. One by one, this method removes all jobs
in the sequence and reinserts them in the best position. This
iterative procedure (denoted as IterativeImprovement_Insertion)
is repeated until no more improvements are found. Let 𝛱 denote
the sequence obtained after this local search method. During this
initial procedure, we apply 𝐹

4 (𝐹𝐴𝑀,𝐹𝐼𝐹𝑂).
• Destruction phase: in each iteration, 𝑑 jobs are randomly removed

from the single sequence (𝐹
4 ). Let 𝛱𝐷 denote the jobs randomly

removed, and 𝛱𝑅 be the remaining jobs from 𝛱 after removing
jobs 𝛱𝐷.

• Construction phase: following a greedy procedure, the jobs in 𝛱𝐷

𝑅

7

are, one by one, re-inserted in the best position of sequence 𝛱 .
Let 𝛱𝐶 denote the sequence after this construction phase. Once
a single sequence is obtained (using 𝐹

4 ), we apply the FIFO and
FAM rules to obtain a full sequence (i.e. 𝑆

1 ), denoted by 𝛱𝐶
𝑖𝑘.

• Local search method using the proposed speed-up procedure (LSwS):
the proposed local search explained in the previous section (see
Fig. 9) is applied to 𝛱𝐶

𝑖𝑘. Let us denote by 𝛱 ′
𝑖𝑘 the obtained

sequence.
• Acceptance criterion: A simple simulated annealing criterion is

applied with a constant parameter denoted as 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. 𝛱𝐶

is then used as the reference sequence in the following iteration
(i.e. 𝛱 = 𝛱𝐶 ) if either the solution of the previous local search
has been improved in this iteration, or if a random number
between 0 and 1 is lower than:

exp{−(𝐶𝑚𝑎𝑥(𝛱𝐶
𝑖𝑘) − 𝐶𝑚𝑎𝑥(𝛱)) ⋅ 𝑛 ⋅ 𝑚 ⋅ 10

𝑇 ⋅
∑𝑚

𝑖=1
∑𝑛

𝑗=1 𝑝𝑖𝑗
}
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Fig. 10. 𝐼𝐺𝑤𝑆.
able 2
RPD values of implemented algorithms.
𝑛 𝑚 𝜆 = 0.003 𝜆 = 0.006

IG DABC CSA IGT IGTALL VBIH IGwS IG DABC CSA IGT IGTALL VBIH IGwS

40 5 1.46 1.65 3.99 1.86 2.07 2.04 1.20 0.92 1.23 3.74 1.47 1.39 1.46 0.87
40 10 2.36 2.57 5.63 3.12 3.27 3.51 2.02 1.71 2.14 5.64 2.54 2.72 2.64 1.48
40 15 3.41 3.27 6.45 4.11 4.39 4.68 3.18 2.51 2.68 6.05 3.42 3.62 3.58 2.52
40 20 3.34 3.69 7.47 4.23 4.57 4.54 3.56 2.55 2.99 6.88 3.40 3.85 3.61 2.68
80 5 0.09 0.05 −0.31 0.10 0.08 0.10 0.05 0.05 0.04 −0.71 0.04 0.04 0.04 0.03
80 10 3.25 3.29 7.66 5.46 5.24 5.36 2.44 2.40 2.64 7.36 3.57 3.96 3.83 1.85
80 15 3.25 2.87 6.63 4.77 4.99 4.96 2.65 2.55 2.44 6.55 3.32 3.77 3.42 2.11
80 20 4.21 3.62 7.42 5.39 5.59 5.60 3.40 3.10 2.97 7.47 3.67 4.28 4.10 2.75
120 5 0.07 0.03 0.16 0.07 0.07 0.07 0.01 0.02 0.02 0.20 0.02 0.02 0.02 0.00
120 10 0.68 0.48 1.82 1.29 1.30 1.33 0.31 0.34 0.40 1.60 0.59 0.67 0.65 0.18
120 15 4.05 3.73 7.80 6.47 6.47 6.50 2.87 3.24 3.20 7.49 4.43 4.93 4.82 2.32
120 20 4.71 3.84 7.93 6.13 6.22 6.16 3.67 3.54 3.55 7.45 4.50 4.77 4.84 2.75
160 5 0.06 0.02 −0.10 0.06 0.06 0.06 0.02 0.03 0.02 0.05 0.03 0.02 0.03 0.01
160 10 0.32 0.15 0.98 0.35 0.36 0.36 0.05 0.13 0.10 1.06 0.25 0.25 0.22 0.02
160 15 4.24 3.33 7.35 5.94 5.96 5.98 2.85 3.35 2.98 7.68 5.86 5.75 5.76 2.16
160 20 4.91 3.75 7.79 5.95 5.92 5.97 3.52 3.79 3.34 7.39 5.91 5.86 5.77 2.78
200 5 0.07 0.01 −0.11 0.05 0.05 0.05 0.03 0.05 0.01 −0.32 0.04 0.05 0.05 0.02
200 10 0.18 0.14 0.59 0.18 0.18 0.18 0.07 0.12 0.12 0.55 0.18 0.18 0.17 0.04
200 15 1.16 0.73 2.30 1.21 1.19 1.22 0.55 0.76 0.63 2.31 1.19 1.21 1.20 0.35
200 20 4.50 3.43 7.21 5.63 5.63 5.63 3.19 3.47 3.09 7.13 5.59 5.58 5.62 2.60
240 5 0.05 0.01 −2.19 0.01 0.01 0.01 0.01 0.03 0.00 −2.16 0.00 0.01 0.01 0.00
240 10 0.20 0.11 0.43 0.18 0.18 0.17 0.07 0.12 0.10 0.36 0.17 0.17 0.17 0.03
240 15 0.41 0.29 1.22 0.42 0.43 0.46 0.10 0.23 0.23 1.07 0.45 0.42 0.42 0.04
240 20 4.77 3.81 8.05 5.83 5.89 5.88 3.47 3.83 3.49 7.92 5.84 5.85 5.82 2.76

Average 2.16 1.87 4.01 2.87 2.92 2.95 1.64 1.62 1.60 3.87 2.35 2.47 2.43 1.26
8
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u

Table 3
Non-parametric Mann–Whitney tests.
Hypothesis Sample Size ARPD(Mean) ARPD(Median) Mann–Whitney U Significance

IGwS DABC IGwS DABC

IGwS = DABC (𝜆 = 0.003) 480 1.64 1.85 1.40 1.76 32198.00 0.025
IGwS = DABC (𝜆 = 0.006) 480 1.27 1.62 1.13 1.49 34383.00 0.000
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6. Computational evaluation

In this section, we analyse the performance of the proposed speed-
up procedure when it is incorporated in a simple iterated greedy
algorithm, IGwS. In order to check the efficiency of the proposal, we
first compare the following metaheuristics (according to Section 1):

• The simple iterated greedy algorithm without speed-up procedure
(IG) adapted by Kizilay et al. (2015).

• The DABC metaheuristic proposed by Pan et al. (2014).
• The CSA metaheuristic proposed by Lin et al. (2021).
• The IGT metaheuristic proposed by Öztop et al. (2020) for the

related 𝐻𝐹𝑚||
∑

𝐶𝑗 problem.
• The IGTALL metaheuristic proposed by Öztop et al. (2020) for the

related 𝐻𝐹𝑚||
∑

𝐶𝑗 problem.
• The VBIH metaheuristic proposed by Öztop et al. (2020) for the

related 𝐻𝐹𝑚||
∑

𝐶𝑗 problem.
• The proposed IGwS metaheuristic.

All these metaheuristics are again reimplemented and compared
nder the same conditions:

• Using the same computer and operating system (Microsoft Win-
dows 8.1 64 bit, in an Intel Core i7-3770 with 3.4 GHz, 16 GB
RAM).

• The same person has re-coded every comparison algorithm using
the same common functions and libraries.

• Using the same programming language (C# under Visual Studio
2019).

• Using the same set of instances. In this regard, we use the re-
cent set of big-size instances proposed by Fernandez-Viagas and
Framinan (2020). This set is composed of 240 instances varying
𝑛 ∈ {40, 80, 120, 160, 200, 240} and 𝑚 ∈ {5, 10, 15, 20} and with
10 instances for each combination of the parameters. The values
of processing times are generated using two different uniform
distributions: 𝑈 (1, 99) and 𝑈 (1, 40 ⋅ 𝑚𝑖).

• Using the same stopping criteria for all methods. More specif-
ically, the algorithms are stopped by two different time limits,
which depend on the size of the instances according to 𝜆 ⋅ 𝑛3 ⋅ 𝑚
milliseconds with 𝜆 ∈ {0.003, 0.006} (see Fernandez-Viagas &
Framinan, 2020 for similar approaches).

• Using the same parameters than the ones chosen in their original
corresponding contributions. In this regard, the proposed IGwS
has then not been recalibrated and assumes the original values
for the parameters (i.e. 𝑑 = 4 and 𝑇 = 0.4) of the traditional IG,
which is the worst case for the proposal.

In addition, each metaheuristic is run 10 times and the average values
are stored. Finally, the algorithms are compared using the Average
Relative Percentage Deviation (ARPD), defined by the following equa-
tion for the metaheuristic ℎ (with ℎ ∈ {𝐼𝐺(𝜆 = 0.003), 𝐼𝐺𝑤𝑆(𝜆 =
0.003), 𝐷𝐴𝐵𝐶(𝜆 = 0.003), 𝐼𝐺(𝜆 = 0.006), 𝐼𝐺𝑤𝑆(𝜆 = 0.006), 𝐷𝐴𝐵𝐶(𝜆 =
0.006)} and being 𝑈𝐵 the upper bound obtained in Fernandez-Viagas
& Framinan, 2020):

𝐴𝑅𝑃𝐷ℎ = 1
𝐼

𝐼
∑

𝑙=1

𝐶 𝑙ℎ
𝑚𝑎𝑥 − 𝑈𝐵
𝑈𝐵

⋅ 100,∀ ℎ = 1,… ,𝐻 (12)

Computational results in terms of ARPD are shown in Table 2, while
in Fig. 11 we show the evolution of the solutions obtained by each
9

algorithm (from the initial solution to 𝜆 = 0.006). The best result
s found by the new proposal IGwS, with ARPD equals to 1.64 for
= 0.003. For the same stopping criterion, the ARPD value of the

econd best metaheuristic (i.e. DABC) is 1.87 and the value obtained by
he same iterated greedy without speed-up procedure (i.e. IG) is 2.16.
imilarly, using the stopping criterion 𝜆 = 0.006, the proposed heuristic
ound the best result in term of ARPD, 1.26. In this case, the ARPD
alues found by DABC and IG are 1.60 and 1.62, respectively. In order
o establish the proposed procedure as a state-of-the-art metaheuristic
or the problem, a non-parametric Mann–Whitney test is executed.
esults are shown in Table 3. In both cases 𝜆 = 0.003 and 𝜆 = 0.006,

he hypothesis 𝐼𝐺𝑤𝑆 = 𝐷𝐴𝐵𝐶 is rejected with significance 0.017
nd 0.000, respectively. A similar result is found if the hypothesis
𝐺𝑤𝑆 = 𝐼𝐺 is checked, which is rejected using the same test with a
ignificance of 0.000, regardless the stopping criterion. Regarding the
volution of the performance of the metaheuristics for different CPU
imes, we observe in Fig. 11 the excellent convergence found by the
roposed algorithm. Thereby, e.g. its ARPD value decreases from 1.36
for 𝜆 = 0.005) to 1.26 (for 𝜆 = 0.006), as compared with 1.66 (for
= 0.005) and 1.60 (for 𝜆 = 0.006) obtained by DABC.

Finally, a last experimentation is carried out analysing the proposed
ocal search LSwS. In this experimentation, we compare the perfor-
ance of LSwS with the traditional insertion local search on 𝑆

1 , which
emoves and reinserts (one by one) every operation of a stage in the
est position of that stage. Both local search methods are initialised
ith the same initial sequence (LPT rule) and tested on the same set
f instances. Computational results are shown in Table 4. In average,
S and LSwS need 12.14 and 0.01 s, and obtain an ARPD of 12.12 and
2.18, respectively. More specifically, maintaining approximately the
ame quality of solution (this hypothesis cannot be rejected using a
ann–Whitney non-parametric test with 𝑝-value equals to 0.952), the

raditional local search method LS needs 1,212.33 times more CPU time
han the proposed local search LSwS.

. Conclusions

In this paper, we have tackled the traditional hybrid flow shop with
akespan minimisation and without additional constraints. For this
roblem, some specific definitions are first established with respect to
he construction of a schedule and the critical operations. Equipped
ith these concepts, we propose several theoretical results (five the-
rems and a corollary) to contribute to a deeper understanding of
his problem. All these theoretical results are considered to propose a
peed-up procedure for the problem, which can be applied using a com-
lete representation of the solutions. Finally, a simple iterated-greedy
etaheuristic is proposed including this speed-up procedure.

Under the same computer conditions, the proposed metaheuristic
s compared, in an extensive computational evaluation, with the most
romising metaheuristics developed either for the problem under con-
ideration or related scheduling problems (including, among others, the
ABC algorithm, and the same iterated greedy metaheuristic without

he speed-up procedure). The results show the excellent performance
f the proposed procedure, which statistically outperforms every other
etaheuristic. More specifically, the results have shown that embed-
ing the proposed speed-up procedure in a very simple metaheuristic
without specific knowledge of the problem) has been enough to obtain
he state-of-the-art metaheuristic for the problem under consideration.
s a consequence, further research lines could come in developing
ore efficient and advance metaheuristics successfully adapting the
ere proposed speed-up procedure.
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Fig. 11. Evolution curve of the implemented algorithms. 𝑌 -axis is shown in logarithmic scale.
Table 4
Comparison between an extensive insertion-based local search and the proposed local
search with speed-up procedure.
𝑛 𝑚 𝐴𝑅𝑃𝐷 𝐶𝑃𝑈𝑡𝑖𝑚𝑒𝑠

LS LSwS LS LSwS

40 5 23.31 23.91 0.03 0.00
40 10 22.11 22.29 0.12 0.00
40 15 23.08 23.22 0.22 0.00
40 20 23.04 23.09 0.38 0.00
80 5 8.89 8.96 0.20 0.00
80 10 24.06 24.26 0.75 0.00
80 15 20.50 20.49 1.68 0.01
80 20 20.38 20.32 3.06 0.01
120 5 5.50 5.43 0.66 0.00
120 10 10.63 10.66 2.47 0.01
120 15 22.14 22.27 5.19 0.01
120 20 18.93 19.12 9.41 0.01
160 5 5.06 5.03 1.42 0.00
160 10 7.16 7.15 5.43 0.01
160 15 18.72 18.62 12.35 0.01
160 20 18.45 18.49 22.68 0.02
200 5 3.24 3.22 2.76 0.01
200 10 5.47 5.45 10.82 0.01
200 15 9.23 9.14 24.64 0.02
200 20 17.24 17.28 44.30 0.03
240 5 2.86 2.85 4.77 0.01
240 10 4.95 4.96 18.67 0.02
240 15 6.60 6.60 42.57 0.03
240 20 17.37 17.40 76.70 0.03

Average 14.12 14.18 12.14 0.01
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