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Abstract
Diel vertical migration (DVM) is an important ecological phenomenon in which zooplankton migrate vertically to deal with 
trade-offs associated with greater food availability in shallow waters and lower predator risk in deep waters due to lower 
light availability. Because of these trade-offs, DVM dynamics are particularly sensitive to changes in light intensity at the 
water surface. Therefore, changes in the proportion of cloudy and sunny days have the potential to disrupt DVM dynamics. 
We propose a new membrane computing model that captures the effect of cloud cover on DVM in Daphnia, and we use 
it to explore the impacts of an increased proportion of cloudy days that are predicted to occur with climate change. Our 
2-dimensional, spatially explicit model integrates multiple trophic levels from abiotic nutrients to Daphnia predators. We 
analyzed the effect that different proportions of cloudy and sunny days throughout the summer have on our model. The model 
simulations suggest that an increase in sunny days promotes a high phytoplankton concentration near the surface but does 
not necessarily promote an increased abundance of Daphnia. Our model also suggests that a higher proportion of cloudy 
days would increase Daphnia abundance due to a shift in the vertical distribution of Daphnia populations towards superficial 
waters. Our results highlight that climate changes in multiple regions will affect animal migrations leading to altered food 
web dynamics in freshwater ecosystems, and emphasize the potential of membrane computing as a modeling framework for 
spatially and temporally explicit ecological processes.
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1 Introduction

Climate change is affecting ecosystems worldwide, trans-
forming habitats by altering the variability of weather condi-
tions such as cloud cover [24]. Changing weather patterns 
can have widespread effects on animal behaviors including 
the migratory behaviors of birds and mammals [6, 43, 47, 
67, 69]. A common form of animal migration in aquatic 
invertebrates is diel vertical migration (DVM), in which 
zooplankton migrate between deep and shallow waters. The 

mainstream hypothesis is that the purpose of DVM is to 
balance the decreased growth associated with lower phyto-
plankton concentrations in deep waters and the higher risk of 
predation associated with more phytoplankton-rich shallow 
waters [36, 41, 48, 50, 63].

Zooplankton tend to perform DVM when the benefits 
of obtaining food resources outweigh the costs associated 
with the perceived risk of predation [50, 63]. In addition to 
detecting food availability, zooplankton must detect preda-
tors; to do this, they rely on visual, mechanical and chemical 
cues (kairomones) [8, 10, 25, 26, 28, 36, 60]. In the case of 
the ubiquitous zooplankton Daphnia, DVM is principally 
regulated by ultraviolet radiation, with the concentration of 
kairomones in the water playing a secondary role [46, 70]. In 
this sense, Rose et al. [61] experimentally studied the effect 
of ultraviolet radiation and predator presence on DVM in 
Daphnia. They found a significant effect of ultraviolet radia-
tion on the vertical distribution of Daphnia, with more indi-
viduals in deep waters at high levels of radiation than at low 
levels. Similar mesocosm experiments support the hypoth-
esis that Daphnia remain in deeper waters in the presence 
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of ultraviolet radiation [23, 30]. However, other factors like 
temperature and food concentration can also affect DVM, 
which should be considered in models that describe the driv-
ers of DVM [39, 50].

Given the important role of ultraviolet radiation (which 
principally arrives at the water surface as part of the sunlight 
frequency spectrum) in driving DVM behavior in zooplank-
ton, an interesting question is how DVM might be affected 
by variation in cloud cover. This variation in cloud cover 
is an expected consequence of a potential alteration of pre-
cipitation events [71]. Multiple computational bioenergetics 
models have been developed to analyze the effects of light 
intensity and food concentration of DVM in Daphnia. Such 
models have been based on partial differential equations 
(PDE) [9, 57, 58, 63], machine-learning frameworks [27], 
and individual-based dynamics [29, 59, 60]. Most models 
focus on capturing the dynamics of DVM for a particular 
scenario and analyze the simulation results under different 
conditions of light and food concentration. However, addi-
tional perspectives have also been explored. To automate the 
construction of DVM models based on sensor data, Eiane 
et al. [27] trained an artificial neural network using a genetic 
algorithm. In addition, Morozov et al. [51] and Samanta 
et al. [63, 64] analyzed the stability of various autonomous 
PDE-based models on DVM dynamics and obtained a set 
of theorems that characterize the conditions for equilibria.

Most publications on membrane computing [55] focus 
on aspects of theoretical computer science and compu-
tational complexity [17, 45, 49, 52, 65]. However, this 
paradigm is also an outstanding framework to capture the 
spatio-temporal aspects of population dynamics in many 
species by representing spatial regions as membranes [3, 
7, 18–22, 31, 32, 34]. Nevertheless, the discrete nature 
of P systems makes it difficult to represent continuous 

quantities that are inherent to virtually any ecological pro-
cess. Therefore, it is necessary to introduce features in P 
systems modeling population dynamics that are capable of 
representing and processing continuous values [31, 34]. To 
this end, we propose a model in which the transition steps 
between computations are defined both by object rewriting 
rules that capture the dynamics of groups of individuals 
and discrete-time equations that handle continuous values.

In this work, we propose a membrane computing 
model to analyze the role that the incidence of light inten-
sity on the water surface has on Daphnia DVM. To our 
knowledge, our work is the first to address the effect of 
the annual proportion of cloudy days on Daphnia DVM 
behavior from the perspective of computational dynamical 
modeling and simulation. We consider three categories of 
light intensity: normal (i.e., days with typical summer light 
intensity), sunny (i.e., a higher proportion of sunny sum-
mer days), and cloudy (i.e., a lower proportion of sunny 
summer days). We focus our analysis on summertime 
dynamics, excluding wintertime when the surface of tem-
perate lakes often freeze, causing most Daphnia to exist 
as resting eggs on the lake bottom. We hypothesized that 
a high proportion of cloudy days will shift the center of 
biomass of Daphnia towards the lake surface, shortening 
the distance between the center of biomass of Daphnia 
and phytoplankton. A high perceived risk of predation is 
expected to limit DVM and drive Daphnia to deep waters, 
where their development is impeded due to low tempera-
tures and less abundant food (Fig. 1) [50]. In this scenario, 
the center of biomass of Daphnia and phytoplankton is 
expected to be large. We also hypothesize that the per-
ceived risk of predation would be inversely correlated 
with Daphnia biomass, indicating that predator avoidance 
maximizes Daphnia abundance even though food is more 
scarce in deep waters that are safe from predation.

Fig. 1  Hypothesized depths of 
the centers of biomass of Daph-
nia and phytoplankton for low 
cloud cover (a) and high cloud 
cover (b)
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2  Methods

We created a membrane computing model structured in three 
sets of object rewriting rules and discrete-time equations 
(modules), with each module capturing the dynamics of a 
trophic level (abiotic resources, phytoplankton and Daph-
nia). The membrane graph that defines the structure of a 
membrane computing model provides a natural manner to 
represent regions with different properties, and permits to 
express local phenomena in a straightforward way [18, 19, 
33, 34]. In the case of the present model, membranes rep-
resent regions in a bidimensional space, and the adjacency 
between membranes in this graph encodes naturally the 
adjacency between spatial regions. Likewise, objects are a 
natural manner to encode discrete entities such as animals 
or groups of animals [3, 18, 19, 34].

The proposed model integrates aspects whose dynam-
ics are captured using differential equations (such as light 
intensity and temperature), as well as others that are mod-
eled using rewriting rules (e.g. phytoplankton develop-
ment and Daphnia dynamics). Our model represents a 2D 

section of the lake of size depth × width, in which the 
depth of the lake is variable as a function of the water 
column. Abiotic resources (light intensity and nutrients) 
promote phytoplankton biomass. Light is in turn attenu-
ated by phytoplankton, impeding photosynthesis in deep 
waters. Phytoplankton growth is modulated by abiotic 
resources, water temperature and a carrying capacity fac-
tor that curbs algae proliferation at large concentrations 
of phytoplankton biomass. The Daphnia lifecycle con-
sists of egg, juvenile and adult development stages. Adult 
individuals lay eggs in function of their biomass. These 
eggs hatch into juveniles that, after a predefined number 
of hours, reach adulthood. Adult and juvenile individu-
als feed on phytoplankton, thus their biomass growth is 
modulated by phytoplankton biomass concentration plus 
a carrying capacity factor. Adult and juveniles migrate 
between shallow waters, where the concentration of phy-
toplankton is larger because of the higher light intensity, 
and deep waters, where they shelter from predators and 
harmful light intensity levels. The model mechanics are 
illustrated in Fig. 2.

Fig. 2  Conceptual diagram of 
model mechanics
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2.1  Parameter calibration

The model parameters and their values are listed as sup-
plementary material. We optimized the parameters of our 
model to maximize fitness with field data registers on Daph-
nia abundance, phytoplankton concentration, temperature, 
light intensity and nutrient concentration from the Jefferson 
Project at Lake George in NY, USA. Due to the sparsity of 
the data points and the variability in the temporal and spatial 
scales in the data (for instance, phytoplankton biomass was 
present as hourly average concentration through the water 
column in two different sites in the lake, while Daphnia 
abundance was calculated from monthly samples taken at 
specific depths), the use of this data for the numerical valida-
tion of the model is impractical.

2.2  Model description

The proposed model consists of a family of P systems 
defined as follows:

� = (H,G,T ,�,�,E,R,D0, {ConcPh(z, x, 0) ∣ 0 ≤ z ≤

depth
x
, 1 ≤ x ≤ width}, {I(0, 0), Conc

N
(0), Conc

P
(0)}),

where:

– H is a set of membranes representing the modeled lake 
hz,x, 0 ≤ z ≤ depthx, 1 ≤ x ≤ width , were depthx is the 
depth of the lake at the water column x.

– G = (V , S) is a graph on the membranes in H such as 
two membranes are adjacent if the vertical and horizon-
tal distances between them is zdiff and xdiff , respectively, 
considering the vertical and horizontal distances between 
membranes hz,x and hz′,x′ as |z − z�| and |x − x�| , respec-
tively (Fig. 3).

– T ≥ 0 is the simulation discrete time.
– � = {L,P,F,E,M} is an alphabet of configuration 

stages. These configuration stages represent abiotic 
resources, phytoplankton growth, Daphnia grazing 
(feeding), Daphnia laying eggs and Daphnia migrat-
ing, respectively. Each configuration is said to be in one 
of these stages, and the initial configuration is in stage 
L. To steer the non-deterministic semantics of P sys-
tems, rules can have an associated stage, meaning that 
they can only be applied on configurations in a given 
stage, and can set the stage of the next configuration. 
To denote that a rule is associated with a configura-
tion stage, we add a superscript to the membrane in 
the left-hand side of the rule, and the stage of the next 
configuration is denoted as a superscript to the mem-
brane in the right-hand side of the rule. As an example, 
[a]P → [b]F, a, b ∈ � denotes a rule associated with 
stage P that changes the configuration stage to F. Rules 
with no superscript on the left–hand side are not associ-

ated with any configuration stage and therefore can be 
applied on any configuration as long as the consumed 
objects exist, regardless of the stage of that configura-
tion.

– � is an alphabet of symbols described as follows:

• Dsi,t ,numi,t ,somati,t ,gonadi,t
 ,  0 ≤ t ≤ T  ,  s

i,t
∈ {J,A

k
},

{0 ≤ k ≤ DTTA}, num
i,t
∈ �

+ , somati,t, gonadi,t ∈ R
+ 

represent a Daphnia group i of numi,t individuals at 
instant t. si,t represents the development stage of 
individuals in the group (J for Juvenile and A for 
Adult). Daphnia Time To Adulthood (DTTA) rep-
resents the number of hours passed since eggs 
hatch until juveniles become adults and are able to 
lay eggs. Likewise, somati,t and gonadi,t represent 
the somatic (body) weight and gonad weight of the 
group. The incremental index i, 0 ≤ i ≤ #D , where 
#D represents the total number of Daphnia and egg 
groups that ever existed during a given computa-
tion, is an identifier that is unique for the group, 
i.e., two Daphnia or egg groups with the same 
identifier i cannot coexist throughout the entire 
computation.

• Eggl,eggn , 0 ≤ l ≤ DIT, eggn ∈ �
+ represent an egg 

group at instant t consisting of eggn eggs. Daphnia 
Incubation Time (DIT) represents the number of 
hours passed since eggs are laid until they hatch.

• PhConcPh(z,x,t) , 0 ≤ t ≤ T , ConcPh(z, x, t) ∈ R
+ repre-

sent the concentration of phytoplankton at coordi-
nates z, x and instant t.

• LI(0,t) , 0 ≤ t ≤ T , I(0, t) ∈ R
+ represent light inten-

sity at the water surface at instant t.
• NConcN (t)

, PConcP(t)
 , ConcN(t), ConcP(t) ∈ R

+ repre-
sent the concentration of nitrogen and phosphorus 
at instant t, respectively.

– E is a set of discrete-time equations that describe the 
relationships between the continuous quantities in the 
model. These equations are described for each one of 
the modules. It is important to highlight that the con-
figuration of the model is encoded on the objects and 
their associated subindexes; the rest of the continuous 
variables in the model express continuous quantities in 
the modeled system and are not persistent.

– R is a set of rewriting rules that describe the dynamics 
of Daphnia, eggs and phytoplankton. These rules are 
described for each one of the modules.

– D0 is a set of objects Dsi,0,numi,0,somati,0,gonadi,0
 that represent 

the i different groups of Daphnia in the system at the 
initial configuration. These groups are initially distrib-
uted across the membranes in H at random.



39Modeling diel vertical migration with membrane computing  

1 3

– {ConcPh(z, x, 0) ∣ 0 ≤ z ≤ depthx, 1 ≤ x ≤ width} repre-
sent the concentration of phytoplankton at the initial 
configuration of the system. Initially, each membrane 
in H contains an object PhConcPh(z,x,0).

– {I(0, 0), ConcN(0), ConcP(0)} represent light intensity at 
the water surface and concentration of nitrogen and phos-
phorus at instant 0. At the initial configuration, the top layer 
of membranes (e.g., membranes h0,x, 1 ≤ x ≤ width ) con-
tains a copy of object LI(0,0) , and each membrane in the 
system contains a copy of objects NConcN (0)

 and PConcP(0)
.

2.3  Module 1 – Abiotic resources

The first module captures the dynamics of the abiotic resources 
in the ecosystem (light intensity and nutrients), and is com-
posed of the following equations.

2.3.1  Light intensity

We denote the light intensity at the lake surface (in watts/ m 2 ) 
at instant t as I(0, t) . Light intensity at depth z, water column x 
and instant t is denoted as I(z, x, t) , and is given by Eq. 1 [53, 
62]:

Here, lw denotes the steepness of the diffusion of light inten-
sity across depths, and Att(z, x, t) denotes the attenuation of 
light at depth z, water column x and instant t.

2.3.2  Light attenuation

Light attenuation at depth z, water column x and instant t is 
denoted as Att(z, x, t) and is given by Eq. 2 [53]:

(1)I(z, x, t) = I(0, t) × exp(−lw × I(0, t) × Att(z, x, t))

(2)

Att(z, x, t) =

(
Turb × z + AttCoff ×

z∑

y=0

ConcPh(y, x, t)

)

Attenuation is the sum of two components: Turb × z , 
that represents water turbidity at depth z , and 
AttCoff ×

∑z

y=0
ConcPh(y, x, t) , that represents the attenua-

tion due to accumulation of phytoplankton biomass at depth 
z, water column x and instant t. Here, Turb is the intrinsic 
turbidity of water, AttCoff is the attenuation coefficient of 
phytoplankton, and ConcPh(y, x, t) is concentration of phy-
toplankton biomass at depth y, water column x and instant t.

2.3.3  Effect of light intensity on photosynthesis

The effect of light intensity on the photosynthetic activity of 
phytoplankton at a given depth z, water column x and instant 
t is modeled by Eq. 3 [53]:

where zmax is the maximum depth in the modeled lake.

2.3.4  Effect of nutrients on photosynthesis

For the sake of simplification, the concentration of nutri-
ents is assumed to be homogeneous across depths [68]. The 
effect of nutrient limitation on photosynthesis is modeled 
by Eq. 4 [72]:

with the values NutLima = NLima, NutLimb = NLimb 
for nitrogen and NutLima = PLima, NutLimb = PLimb 
for phosphorus. To determine which nutrient (nitrogen or 
phosphorus) effectively limits photosynthesis, the ratio 
between the concentrations of nitrogen and phosphorus 
ConcN(t)∕ConcP(t) is calculated. If this ratio is greater 
or equal than a given constant RatioNP , then the limiting 
nutrient is phosphorus; otherwise, the limiting nutrient is 
nitrogen.

(3)

LimLight(z, x, t) =LightLima

× (I(0, x, t) − I(z, x, t))∕(Att(z, x, t) × zmax)

(4)
LimNut(t) =NutLima × ConcNut(t)∕(NutLimb + ConcNut(t))

Fig. 3  Graphical representation 
of a section of the membrane 
graph G in a given configura-
tion, including the objects 
described in � . Membranes h

0,x
 

represent the regions of the lake 
section at the water surface
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2.3.5  Effect of water temperature on photosynthesis

The effect of water temperature on photosynthetic activity 
( LimTemp(z, t) ) is calculated by Eq. 5 [53]:

where Temp(z, t) represents the temperature at depth z and 
instant t (in Celsius degrees). Here, TOpt and TMax repre-
sent the optimal and maximum temperature values for photo-
synthesis. The term exp(−(TOpt − Temp(z, t))2∕TSteepness) 
is a Gaussian curve controlled by the steepness parameter 
TSteepness that peaks when the temperature is optimal, 
and the term (1 − 1∕1 + exp(−Temp(z, t) + TMax)) is a sig-
moidal function that increases the temperature penalty as 
the water temperature approaches the maximum tolerated 
temperature for phytoplankton. Therefore, photosynthetic 
activity reaches it maximum around the optimal temperature, 
and drops sharply as the maximum tolerated temperature is 
reached.

2.3.6  Update of abiotic resources

The following rules (6) update the values for light inten-
sity on the water surface and concentrations of nitrogen and 
phosphorus at instant t + 1 , and enable rules associated with 
the configuration stage P to be applied:

2.4  Module 2: phytoplankton

The second module captures the dynamics of phytoplankton 
biomass. It is composed of the following equations.

2.4.1  Rate of photosynthetic activity

The rate of photosynthetic activity at depth z, water col-
umn x and instant t ( Photo(z, x, t) , in μg /(l × h) ) is given by 
Eq. 8 [53]:

where ConcPh(z, x, t) is the concentration of phytoplankton 
biomass at depth z, water column x and instant t in μ g /l, and 
LimTemp(z, t) represents the effect of water temperature on 
photosynthetic activity.

(5)

LimTemp(z, t) = exp(−(TOpt − Temp(z, t))2∕TSteepness)

× (1 − 1∕(1 + exp(−Temp(z, t) + TMax)))

(6)[LI(0,t)]
L
z,x

→ [LI(0,t+1)]
P
z,x

(7)[NutConcNut(t)]
L
z,x

→ [NutConcNut(t+1)]
P
z,x
, Nut ∈ {N,P}

(8)
Photo(z, x, t) =LimNut(t) × LightLim(z, x, t)

× LimTemp(z, t) × ConcPh(z, x, t)

2.4.2  Concentration of phytoplankton

The concentration of phytoplankton at depth z, water column 
x and instant t + 1 ( Conc(z, x, t + 1) , in μg/l) is calculated by 
Eq. 9:

Here, ConcPhnoCC(z, x, t + 1) (in μg /(l × h) ) represents the 
concentration of phytoplankton before adjusting for car-
rying capacity and grazing, Graz(z, x, t) (in μg /(l × h) ) 
represents the phytoplankton grazed by Daphnia, 
DConsi(numi,t, si,t, z, x, t) (in μg /(l × h) ) represents the phy-
toplankton consumed by the Daphnia group i at instant t 
(described in Module 3), MortPh(z, x, t) , (in μg /(l × h) ) 
represents phytoplankton mortality as a function of nutri-
ent concentration temperature and light intensity, and 
CCPh(z, x, t) represents the carrying capacity of phytoplank-
ton. The concentration of phytoplankton at instant t + 1 is 
updated as defined by Rule 10:

2.4.3  Phytoplankton mortality

Phytoplankton mortality at depth z, water column x and 
instant t ( MortPh(z, x, t) , in μg/(l × h) ) is calculated by 
Eq. 11 [53]:

Here, IntMortPh is the intrinsic mortality rate of phytoplank-
ton. Phytoplankton mortality is directly proportional to the 
concentration of phytoplankton biomass ( ConcPh(z, x, t) ), 
and is modulated by the effects of light intensity 
( LimLight(z, x, t)∕I(0, x, t) ), concentrations of nitrogen and 
phosphorus ( LimNut(t) ) and temperature ( LimTemp(z, t) ) on 
the photosynthetic activity of phytoplankton.

2.4.4  Carrying capacity of phytoplankton

The effect of carrying capacity on the concentration of phy-
toplankton biomass at time t, water column x and depth z 
( CCPh(z, x, t) ) is calculated by Eq. 12:

(9)

ConcPhnoCC(z, x, t + 1) = (ConcPh(z, x, t) + Photo(z, x, t) −MortPh(z, x, t))

Graz(z, x, t) =
∑

i

DConsi(numi,t , si,t , z, x, t)

ConcPh(z, x, t + 1) =CCPh(z, x, t)

× (ConcPhnoCC(z, x, t + 1) − Graz(z, x, t))

(10)[PhConcPh(z,x,t)]
P
z,x

→ [PhConcPh(z,x,t+1)]
F
z,x
.

(11)

MortPh(z, x, t) = IntMortPh × ConcPh(z, x, t)∕LimNut(z, t)

× LimTemp(z, t) × LimLight(z, x, t)∕I(0, x, t)
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This equation is a sigmoidal function inversely propor-
tional to the concentration of phytoplankton biomass 
( PhConc(z, x, t) ), and is modulated by the parameters CCPh-
Coeff and CCPhInt.

2.5  Module 3: Daphnia

The third module captures Daphnia dynamics and is divided 
into two submodules: Daphnia biomass and Daphnia 
migration. For computational simplicity, it is assumed that 
Daphnia aggregate into groups of individuals, modeling 
their dynamics in terms of groups. Therefore, in our model 
each object represents a group instead of an individual. It is 
important to note that more than one group can potentially 
coexist at the same depth z, water column x and instant t. 
Daphnia are assumed to transit through three development 
stages (egg, juvenile, and adult), and each group consists of 
individuals at the same development stage. Eggs are con-
sidered to be inactive (they do not filter water, lay eggs or 
die) until they hatch into juveniles; juveniles and adults con-
sume phytoplankton, migrate and are subjected to mortality. 
Unlike adults, juveniles do not allocate gonad biomass (all 
their biomass is assumed to be somatic), do not lay eggs, and 
ultimately develop into adults if they survive to adulthood.

The biomass of a group consisting of numi,t Daphnia 
individuals at development stage si,t , depth z, water column 
x and instant t + 1 ( DBio(numi,t, si,t, z, x, t) , in μg/h) is mod-
eled by Eq. 13:

where DBioLoss(numi,t, si,t, z, x, t) represents the biomass 
lost on this group of numi,t Daphnia individuals before 
adjusting for carrying capacity, DCons(numi,t, si,t, z, x, t) 
represents the amount of phytoplankton biomass (in μ g) 
consumed by this group, and CCD(numi,t, si,t, z, x, t) repre-
sents the carrying capacity factor that limits the growth of 
Daphnia biomass.

2.5.1  Daphnia consumption

The amount of phytoplankton biomass consumed by a 
group of numi,t Daphnia individuals on development 
stage si,t at depth z, water column x and instant t per hour 
( DCons(numi,t, si,t, z, x, t) , in μg/l) is defined in Eq. 14.

(12)
CCPh(z, x, t) = 1 − 1∕(1 + exp(−ConcPh(z, x, t)

× CCPhCoeff + CCPhInt))

(13)

DBio(numi,t, si,t, z, x, t + 1)

= DBio(numi,t, si,t, z, x, t) + (DCons(numi,t, si,t, z, x, t)

− DBioLoss(numi,t, si,t, z, x, t)) × CCD(numi,t, si,t, z, x, t)

DFilt(si,t) represents the filtering rate per individual in ml/
(individual×h) , and PhConc(z, x, t) represents the concentra-
tion of phytoplankton biomass in μg/l. Therefore, it is neces-
sary to apply a conversion factor of 1000 ml/l. DFilt(si,t) is 
calculated by Eq. 15 [11]:

This expression is modulated by the parameters DFiltCo-
eff and DFiltExp, and DLength(si,t) represents expected the 
body length (in millimeters) of Daphnia on development 
stage si,t . The expected body length of a Daphnia individual 
at development stage si,t is calculated by Eq. 16 [11]:

where DWeightsi,t is the expected weight of Daphnia indi-
viduals in development stage si,t (in grams) and DLengthCo-
eff and DLengthExp are coefficients that modulate the rela-
tionship between Daphnia weight and length.

For a group of numi,t  Daphnia  individuals at 
development stage si,t  at depth z, water column x 
and instant t, biomass is divided into somatic bio-
mass(DSomBio(numi,t, si,t, z, x, t) , body weight) and gonad 
biomass (egg weight, DGonBio(numi,t, z, x, t) for adults and 
0 for juveniles). Both are expressed in μg/l. Somatic bio-
mass is defined in Eq. 17 (for juveniles) and Eq. 18 (for 
adults).

GonPropBiomass is a scaling factor and DGonPropmax is 
the maximum possible proportion of biomass allocated to 
gonad weight. This expression is directly proportional to the 
concentration of phytoplankton biomass ( ConcPh(z, x, t) ), 
and is limited by the parameter DGonPropmax . It is impor-
tant to remark that the semantics of this rule is cumulative, 
i.e., if multiple groups of Daphnia are present in membrane 
(z, x) at instant t, all of them will graze PhConcPh(z,x,t) , and 
ConcPh(z, x, t) will be decremented with each interaction. 
Therefore, Daphnia grazing is captured by Rule 20:

(14)
DCons(numi,t, si,t, z, x, t) = DFilt(si,t) × ConcPh(z, x, t)

× numi,t∕1000

(15)DFilt(si,t) =DFiltCoeff × DLength(si,t)
DFiltExp.

(16)DLength(si,t) = (DWeightsi,t∕DLengthCoeff)
DLengthExp

(17)

DSomBio(numi,t, Jk, z, x, t) = DCons(numi,t, Jk, z, x, t), 0

≤ k ≤ DTTA

(18)
DSomBio(numi,t,A, z, x, t) = DCons(numi,t,A, z, x, t)

− DGonBio(numi,t, z, x, t)

(19)

DGonBio(numi,t, z, x, t) = DCons(numi,t,A, z, x, t)×

min(DGonPropmax, max(0, ConcPh(z, x, t) × GonPropBiomass))
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2.5.2  Daphnia biomass loss

The amount of biomass lost by a group of numi,t Daph-
nia individuals at development stage si,t and located 
at depth z, water column x and instant t per hour 
( DBioLoss(numi,t, si,t, z, x, t) ) is calculated by Eq. 21:

Here, DCons (numi,t, si,t, z, x, t) represents the amount of 
phytoplankton biomass (in μ g) consumed by a group con-
sisting of numi,t Daphnia individuals at development stage 
si,t and located at depth z, water column x and instant t per 
hour, DMort represents the proportion of Daphnia biomass 
lost to natural mortality, DStarv(numi,t, si,t, z, x, t) repre-
sents Daphnia biomass lost to starvation per hour in μg/h 
and DPredRatio(z, x, t) represents the proportion of Daph-
nia biomass lost to predation per hour in μg/h as a function 
predator biomass.

DStarv(numi,t, si,t, z, x, t) is calculated by Eq. 22:

where DStarv is a weight that modulates Daphnia starvation 
and DWeightsi,t represents the expected weight of a Daphnia 
individual at stage st. Likewise, DPredRatio(z, x, t) is calcu-
lated by Eqn. 23:

where DPredRatio is a weight that modulates predation 
of Daphnia directly proportional to predator biomass 
( PredBio(z, x, t)).

2.5.3  Daphnia carrying capacity

The effect of carrying capacity on Daphnia biomass is cal-
culated by Eq. 24:

(20)

[Dsi,t ,numi,t ,somati,t ,gonadi,t
, PhConcPh(z,x,t)]

F
z,x

→

[Dsi,t ,numi,t ,somati,t+DSomBio(numi,t ,si,t ,z,x,t),gonadi,t+DGonBio(numi,t ,si,t ,z,x,t)
,

PhConcPh(z,x,t)−DCons(numi,t ,si,t ,z,x,t)
]E
z,x

(21)

DBioLoss(numi,t, si,t, z, x, t)

= DMort × DCons(numi,t, si,t, z, x, t)

− DStarv(numi,t, si,t, z, x, t) − DPredRatio(z, x, t)

× DBio(numi,t, si,t, z, x, t)

(22)

DStarv(numi,t, si,t, z, x, t) =DStarv × numi,t

× DWeightsi,t∕PhConc(z, x, t)

(23)DPredRatio(z, x, t) =DPredRatio × PredBio(z, x, t)

(24)

CCD(numi,t, si,t, z, x, t) = 1 − 1∕(1 + exp(−DCons(numi,t, si,t, z, x, t)

× CCDCoeff + CCDInt))

This sigmoidal function is modulated by the parameters 
CCDCoeff and CCDInt, and is analogous to the expression 
modeling carrying capacity in phytoplankton (Eq. 12).

2.5.4  Individual Daphnia in a group

Given a group of numi,t Daphnia individuals at development 
stage si,t and at depth z, water column x and instant t, the 
number of individuals in this group at instant t + 1 ( numi,t+1 ) 
is calculated by Eq. 25:

where DBioLoss(numi,t, si,t, z, x, t) is the biomass lost by this 
group at instant t and DWeightsi,t is the expected weight of 
each Daphnia individual at stage si,t . In this case, / represents 
the integer division. Since this number decreases over time, 
the number of Daphnia individuals in a group tends to 0, and 
the generational replacement of individuals in the system is 
implemented through new groups of juveniles that hatch 
from eggs and reach adulthood.

2.5.5  Daphnia eggs laid by a group

Daphnia groups of adults lay eggs that, in turn, hatch into 
juvenile and eventually develop into adult individuals. The 
number of eggs laid by a group of numi,t Daphnia adults at 
depth z, water column x and instant t is calculated by Eqn. 
26:

where DGonBio(numi,t, z, x, t) is the amount of Daphnia 
gonad biomass in the group and DEggWeight is the expected 
weight of each Daphnia egg. After DIT (for Daphnia Incu-
bation Time) hours, these eggs hatch and give place to a 
new group of N = DEgg(numi,t, z, x, t) Daphnia juveniles, 
as shown in Rules 27 and 28.

Likewise, after DTTA (for Daphnia Time To Adulthood) 
hours, these individuals become adults and are able to allo-
cate gonad biomass and, consequently, lay eggs, as shown 
in Rules 29 and 30:

(25)
numi,t+1 = numi,t − DBioLoss(numi,t, si,t, z, x, t)∕DWeightsi,t

(26)

DEgg(numi,t, z, x, t) = DGonBio(numi,t,A, z, x, t)∕DEggWeight

[DA,numi,t ,somati,t ,gonadi,t
]E
z,x

→ [DA,numi,t ,somati,t ,gonadi,t−DEgg(numi,t ,z,x,t)
,

Egg0,DEgg(numi,t ,z,x,t)
]M
z,x

(27)
[Eggl,DEgg(numi,t ,z,x,t)

]z,x → [Eggl+1,DEgg(numi,t ,z,x,t)
]z,x, 0 ≤ l ≤ DIT

(28)
[EggDIT,DEgg(numi,t ,z,x,t)

]z,x → [DJ0,numi,t ,DEggWeight×numi,t ,0
]z,x
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2.5.6  Daphnia migration dynamics

The dynamics of Daphnia migration are captured as fol-
lows. Each group of Daphnia individuals at Membrane hz,x 
explores its vicinity at maximum horizontal and vertical 
distances of xdiff and zdiff (in meters). Each membrane hz′,x′ 
in this vicinity is a candidate membrane. If the candidate 
membrane has a light intensity value lower or equal than 
Imax tolerable and a perceived risk of predation (calculated as 
PredBio(z, x, t) × I(z, x, t) ) lower or equal than PRPmax at 
instant t, then it is a viable candidate membrane, and the 
Daphnia group will migrate into the assessed membrane 
with a probability calculated by Eq. 31:

where log is the natural logarithm, PhConc(z, x, t) and 
PhConc(z�, x�, t) are the concentrations of phytoplankton bio-
mass in hz,x and hz′,x′ , and PhConcExpDiff is a parameter that 
represents the expected value of the difference between the 
phytoplankton concentrations in two membranes. Therefore, 
when the difference between concentrations of phytoplank-
ton biomass is equal to the expected value, the probability 
of migration is equal to 0.5. If the Daphnia group migrates 
to the candidate membrane, a random sample of not yet 
assessed membranes in the vicinity are explored.

To capture the semantics of migration dynamics, Rule 
32 is applied with probability PM(z, x, z�, x�, t):

3  Results

We implemented a simulator for this model in C++, and 
simulated the model for 2 years on a Sun Grid Engine 
(SGE) cluster. The area simulated was a section of the lake 
with maximum depth of 23 m across all water columns, 
and the simulations were executed with a spatial resolution 
of 1 m (that is to say, each membrane represents a 1 m × 1 
m area) and a temporal resolution of 1 h.

(29)

[DJk ,numi,t ,DEggWeight×numi,t ,0
]z,x → [DJk+1,numi,t ,DEggWeight×numi,t ,0

]z,x

0 ≤ k ≤ DTTA

(30)
[DDTTA,numi,t ,DEggWeight×numi,t ,0

]z,x → [DA,numi,t ,DEggWeight×numi,t ,0
]z,x

(31)

PM(z, x, z�, x�, t) = exp(− log(0.5) × (PhConc(z, x, t)

− PhConc(z�, x�, t))∕PhConcExpDiff)

(32)[Dsi,t ,numi,t ,somati,t ,gonadi,t
]M
z,x

→ [Dsi,t ,numi,t ,somati,t ,gonadi,t
]L
z�,x�

3.1  Linear mixed effect analysis

To explore the effects that the perceived predation risk 
( PRPmax ) and the proportion of cloudy days throughout the 
summer ( Propcloud ) have on the average depth of the center 
of biomass of Daphnia over time ( ADBDaphnia ), we built a set 
of linear mixed effect models using the nlme package [54] 
in R [56]. Since our model focuses on Daphnia migration 
dynamics, we only considered adult and juvenile individuals 
for the calculations of Daphnia abundance and center of bio-
mass, leaving eggs aside. In addition, egg biomass is not sig-
nificant in our model in comparison with biomass from adult 
and juvenile individuals, thus omitting eggs does not sig-
nificantly change biomass computations. For each response 
variable analyzed, we built two different linear models; first, 
we fixed perceived predation risk ( PRPmax ) and varied the 
proportion of cloudy days ( Propcloud ). Then, we swapped 
the fixed and random variables. Predation risk in Daphnia 
varied between null avoidance of predators (0), in which 
Daphnia solely maximizes food availability, and maximum 
avoidance of predators (1), in which Daphnia avoid preda-
tors at all costs. Likewise, the proportion of cloudy days 
throughout the year varied from 0 to 1. Using these models, 
we analyzed the role of these variables on the mean biomass 
of Daphnia and their average depth over time.

We also built a set of linear mixed effect models to ana-
lyze the role of phytoplankton concentration on the mean 
biomass of Daphnia and their average depth over time. 
These models are grouped in two sets. In the first set of 
models, the concentration of phytoplankton biomass was 
fixed. In the second set of models, the depth of the center of 
biomass of phytoplankton was fixed. In our model, the con-
centration of phytoplankton biomass is highly dependent on 
the light intensity at the surface. Therefore, in these models 
the random variable was set to PRPmax and not to Propcloud to 
maintain the assumption of independence between variables.

3.2  Analysis results

We observed that predation risk ( PRPmax ) impedes Daph-
nia from migrating to shallow waters, independent of the 
cloud cover. For low values of predation risk (0.01), Daph-
nia migrate regularly to the surface in search for food. On 
the contrary, for medium and high values of predation risk 
(0.41–1.00) Daphnia remain in deep waters (deeper than 10 
m) and rarely migrate to the surface. In contrast, the center 
of biomass of phytoplankton remains at a similar depth in 
both scenarios. The difference between these centers of 
biomass causes a lower abundance of Daphnia than in the 
high cloud cover scenario, where the overall phytoplankton 
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biomass is lower but shallow waters are more accessible to 
Daphnia (Fig. 4).

We also observed that Daphnia tend to migrate to deep 
waters in scenarios with low cloud cover. For the models 
where the proportion of cloudy days throughout the sum-
mer is fixed ( Propcloud ), our analysis indicates an inverse 
correlation between Propcloud and the average depth of 
the center of Daphnia biomass ( ADBDaphnia ) ( p < 0.001 ). 
Specifically, the depth of the center of Daphnia biomass 
is 9.8 m for Propcloud = −0.8 ; this decreases to 8.1 m for 
Propcloud = 0.8 . Our analysis also indicates a direct correla-
tion between Propcloud and the average abundance of Daph-
nia biomass over time ( AABDaphnia ) ( p < 0.001 ). As the pro-
portion of cloudy days rises, the increase in the abundance 
of Daphnia biomass is dramatic, going from 4.2 μg/l for 80% 
of sunny days to 13.65 μg/l for 80% of cloudy days (3.23-
fold increase). These results suggest that, perhaps counter-
intuitively, Daphnia are more abundant in scenarios with 
a large proportion of cloudy days throughout the summer. 
The reason is that a higher proportion of sunny days causes 
Daphnia to avoid shallow waters due to increased predation 
risk, despite the fact that these conditions produce the high-
est concentration of phytoplankton biomass.

However, our linear analysis of the model simulations 
indicates that the main factor driving DVM dynamics is 
perceived predation risk ( PRPmax ). This analysis suggests 
a close direct correlation between perceived predation risk 
and the average depth of Daphnia over time ( ADBDaphnia ) 
( p < 0.001 ). The estimated depth of the center of Daph-
nia biomass is 5.8 m for PRPmax = 0.01 and 12.1 m, for 
PRPmax = 0.41 (i.e., a 2.07-fold increase). Likewise, the 
analysis yields a negative correlation between perceived 
predation risk PRPmax and average abundance of biomass 
of Daphnia over time ( AABDaphnia ) ( p < 0.001 ). The con-
centration values range from 11.7 μg/l for PRPmax = 0.01 
to 6.69 μg/l for PRPmax = 0.41 (i.e., a 1.76-fold increase). 

These results suggest that, in our model, the proportion 
of cloudy days throughout the summer, although rel-
evant, plays a secondary role in Daphnia DVM dynamics 
and that predation risk is the main factor that drives this 
behavior. Finally, we also observed that a high concen-
tration of food is not necessarily correlated with a large 
abundance of Daphnia. The results also indicate that the 
average concentration of phytoplankton biomass over time 
( ACBphyto ) is inversely correlated with average abundance 
of Daphnia biomass over time ( AABphyto ) ( p < 0.001 ). 
In our simulations, the average abundance of Daphnia 
biomass varies from 12.3 μg/l when ACBphyto is 100 μg/l 
to 3.35 μ g/l when ACBphyto is 164 μg/l (i.e., a 3.68-fold 
decrease). To complement this analysis, we also meas-
ured the statistical significance of the inverse correlation 
between phytoplankton biomass and proportion of cloudy 
days throughout the year. The model indicates a strong 
direct correlation between the depth of the center of phy-
toplankton biomass and the depth of the center of Daphnia 
biomass ( p < 0.001 ). The values for ADBDaphnia range from 
8.1 m when the average depth of the center of phytoplank-
ton biomass is 0.03–10.4 m when the average depth of 
the center of phytoplankton biomass is 1.23 m (1.3-fold 
increase). In combination, these results suggest that cloud 
cover is possibly the main factor that drives abundance of 
phytoplankton. At the same time, larger values of phyto-
plankton biomass do not imply larger values of Daphnia 
abundance. One possible hypothesis is that low values 
of cloud cover promote phytoplankton growth, but at the 
same time, they reveal the presence of predators, which 
scare Daphnia away from the water surface where the con-
centration of phytoplankton biomass is higher. Therefore, 
Daphnia does not benefit from this increase in its food 
resources. The relationships between these variables are 
graphically represented in Fig. 5.

Fig. 4  Model predictions for the 
depth of the centers of biomass 
of Daphnia (red) and phyto-
plankton (green). a A scenario 
with low cloud cover. b A sce-
nario with high cloud cover
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4  Discussion

The impact of climate change on DVM is a growing area 
of research. However, the limited capacity to modulate and 
observe the behavior of animals in experiments and field 
studies necessitates computational dynamical models to 
examine patterns and processes at scales difficult to eluci-
date by any single or series of studies. One of the principal 
manners by which climate change could influence DVM 
dynamics and the distribution of zooplankton across depths 
is by altering the proportion of cloudy versus sunny days 
throughout the year due to altered precipitation patterns.

Membrane computing is an exceptional framework to 
capture the spatial dynamics of population dynamics, and 
its discrete nature permits to model groups of individuals as 
objects that interact among each other and with a spatially-
discrete environment and migrate across it. These properties 
make this computational framework an excellent candidate 
to model DVM. However, continuous quantities appear on 
virtually any ecological process, and DVM is not an excep-
tion. Thus, to capture the dynamics of DVM by simulat-
ing computations of a membrane computing model, it is 
necessary to include features capable of manipulating con-
tinuous variables such as light intensity, somatic and gonad 
weight, abiotic nutrient concentration and algae biomass. 
In this sense, we propose a membrane computing model 
with discrete-time equations to capture both the discrete and 
continuous aspects of DVM.

Our model confirms our a-priori hypothesis that a high 
proportion of cloudy days drives Daphnia to shallow waters, 
whereas a high proportion of sunny days drives Daphnia 
to deep waters. This result supports the observed effect of 
light intensity on the distribution of Daphnia biomass across 
depths in in vivo experiments. In particular, the analysis of 
our model simulations supports the observation that a low 
annual light intensity at the surface is correlated with a high 
proportion of Daphnia individuals in shallow waters [40, 44, 

61]. Likewise, our results are consistent with the observa-
tion that climatological events that dramatically diminish 
light intensity at the surface (such as storms and heavy rain-
fall) provoke substantial shifts on the vertical distribution of 
Daphnia towards shallow waters [61].

Our model contradicts the a-priori hypothesis that a high 
proportion of cloudy days would reduce Daphnia population 
numbers because of the lower photosynthetic activity and, 
therefore, lower phytoplankton concentrations. One explana-
tion is that high cloud cover levels impede the visual detec-
tion of predators and decrease the perceived risk of preda-
tion, encouraging Daphnia to migrate to shallow waters in 
search for high phytoplankton concentrations. This result is 
not consistent with the experimental observations that sug-
gest that lower cloud cover levels enable the development 
of larger populations of Daphnia through larger phytoplank-
ton concentrations and better visual perception of preda-
tors [23, 30, 61]. However, these works were limited to low 
phytoplankton concentrations, and do not cover the case in 
which food is not a constant limiting factor for Daphnia 
populations.

Our results suggest that the strategy of maximizing food 
intake yields larger Daphnia populations as opposed to the 
strategy of minimizing the risk of predation. Support for this 
was a direct correlation between the proportion of cloudy 
days and the abundance of Daphnia combined with the neg-
ative correlation between the perception of risk of predation 
and the abundance of Daphnia. This suggests that the impact 
of predation on Daphnia biomass is low in comparison with 
other elements in the system, such as food concentration and 
light intensity. Hansson and Hylander [40] obtained similar 
results when they observed that ultraviolet radiation is the 
major force that drives the vertical distribution of Daphnia, 
and the addition of different regimes of predator abundance 
does not change this distribution significantly.

The model simulations suggest that phytoplankton con-
centration is inversely correlated with Daphnia abundance. 

Fig. 5  Effect of different input 
variables in the model (x-axis) 
on the depth of the center of 
biomass of Daphnia (y-axis) 
and on Daphnia biomass (point 
size). a Effect of the proportion 
of cloudy days. b Effect of the 
depth of the center of biomass 
of phytoplankton
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This contradicted our a-priori hypothesis that a high con-
centration of food should imply a high abundance of Daph-
nia. Given that there exists a strong inverse correlation 
between phytoplankton concentration and proportion of 
cloudy days throughout the year, one explanation is that a 
low cloud cover promotes photosynthetic activity, which 
results in a high phytoplankton concentration. However, 
at the same time these low cloud cover levels drive Daph-
nia to deep waters, where phytoplankton concentration is 
lower. This result complements the aforementioned posi-
tive correlation between annual proportion of cloudy days 
and Daphnia abundance, and highlights one of the main 
assets of our model: the real-time interaction between phyto-
plankton dynamics and light intensity. Less surprisingly, the 
model analysis suggests a strong direct correlation between 
the depth of the centers of biomass of phytoplankton and 
Daphnia. This indicates that Daphnia actively migrate 
across depths in search for regions with high phytoplankton 
concentrations.

5  Conclusions

Climate change is disrupting animal migratory behav-
iors around the globe. Diel vertical migration (DVM) is 
an important process where aquatic invertebrates migrate 
between deep and shallow waters maximizing food con-
sumption and minimizing predation exposure. Here, we pre-
sent the first computational dynamical model that explicitly 
addresses the effects of climatic change in the annual pro-
portion of cloudy days on DVM dynamics in Daphnia. We 
selected membrane computing to model DVM because its 
discrete nature permits to easily represent groups of animals 
that migrate and interact with the environment and with each 
other, and include discrete-time equations to update the con-
tinuous quantities inherent to DVM throughout the model 
computations. Due to climate change, the frequency of 
drought conditions is increasing in some regions, and in oth-
ers, precipitation events are becoming more frequent [24]. 
Our model suggests that disruptions in the annual proportion 
of cloudy and sunny days due to changes in precipitation 
events will interact with natural stressors like predation risk 
and alter DVM dynamics. We found that high primary pro-
ductivity will be associated with a higher biomass of Daph-
nia in years with more cloudy days. However, in regions that 
are becoming more arid or experiencing a higher frequency 
of drought conditions, the lack of cloudy days or precipita-
tion may cause a spatial separation between Daphnia grazers 
and their food resources. Predation risk will magnify the 
disconnection between Daphnia grazers and phytoplank-
ton resources in regions that experience fewer precipitation 
events. Importantly, our results highlight that interactions 

between climate change and predation have the potential to 
dramatically disrupt food web dynamics due to changes in 
DVM in Daphnia zooplankton.

6  Future work

The current version of our model is 2-dimensional. This 
characteristic limits the incorporation of some 3-dimen-
sional important factors in aquatic ecosystems. For instance, 
water circulation dynamics and wind-driven circulation 
events alter the movement and distribution of nutrients, 
plankton and animals [1, 4, 14–16, 35]. Climate change has 
been shown to alter hydrodynamics in the ocean [66] and 
could potentially drive changes in DVM and primary pro-
ductivity in freshwater systems. As such, extensions of our 
model could expand to 3 dimensions and incorporate water 
circulation as a driver of DVM dynamics. Freshwater sys-
tems are also very spatially heterogeneous with respect to 
nutrient concentrations [2, 42]. A 3-dimensional extension 
of our model, including a third dimension of membranes, 
could include the effects of nutrients for freshwater systems 
that vary in their trophic state to determine how cultural 
eutrophication and climate change interact to affect DVM. 
Ultimately, our model provides a framework for building 
such extensions for further investigations.

Additionally, our current model represents Daphnia pre-
dation as a function inversely proportional to water depth. 
This stationary representation of Daphnia predators obvi-
ates the dynamics of these fisheries species such as bluegill 
(Lepomis macrochirus) [61]. In this sense, we propose to 
extend our current model by explicitly modeling groups of 
Daphnia predators as objects that can migrate across the 
membrane graph, feeding on Daphnia and reproducing by 
egg-laying in a lifecycle akin to that of Daphnia. We antici-
pate that such an extension of our model would change the 
predictions on Daphnia spatial distribution and biomass.

In a broader sense, membrane computing is an excep-
tional framework to model the dynamics of animal species 
moving across an area. Membrane graphs provide a natural 
mechanism to encode spatial regions. In this sense, there 
exist membrane computing models on population dynam-
ics that use a membrane graph to represent space [13, 18, 
21]. However, the usage of a membrane graph to represent 
a lattice of spatial regions is not common in the literature of 
membrane computing models in population dynamics, even 
though it is a widespread practice in agent-based modeling 
in fisheries [5, 12, 37, 38]. In this sense, we plan to apply 
membrane computing as a modeling framework for spa-
tially-explicit phenomena in population dynamics in aquatic 
ecosystems, using membrane grids to represent spatial and 
other types of regions.
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