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19 Abstract 
 

20 Microcystins (MCs) and cylindrospermopsin (CYN) are among the most frequent toxins 
 

21 produced by cyanobacteria. These toxic secondary metabolites are classified as 
 

22 hepatotoxins and cytotoxin, respectively. Furthermore, both may present the ability to 
 

23 induce damage to the nervous system. In this sense, there are many studies manifesting 
 

24 the potential of MCs to cause neurotoxicity both in vitro and in vivo, due to their 
 

25 probable capacity to cross the blood-brain-barrier through organic anion transporting 
 

26 polypeptides. Moreover, the presence of MCs has been detected in brain of several 
 

27 experimental models. Among the neurological effects, histopathological brain changes, 
 

28 deregulation of biochemical parameters in brain (production of oxidative stress and 
 

29 inhibition of protein phosphatases) and behavioral alterations have been described. It is 
 

30 noteworthy that minority variants such as MC-LF and -LW have demonstrated to exert 
 

31 higher neurotoxic effects compared to the most studied congener, MC-LR. By contrast, 
 

32 the available studies concerning CYN-neurotoxic effects are very scarce, mostly 
 

33 showing inflammation and apoptosis in neural murine cell lines, oxidative stress, and 
 

34 alteration of the acetylcholinesterase activity in vivo. However, more studies are 
 

35 required in order to clarify the neurotoxic potential of both toxins, as well as their 
 

36 possible contribution to neurodegenerative diseases. 
 

 

37 Keywords: cyanotoxins, MCs, CYN, nervous system, ecotoxicology, environmental 
 

38 risk. 
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42 1. Introduction 

 

43 Cyanobacteria are a group of Gram-negative prokaryotes capable of growing 
 

44 under almost every environmental condition (Chorus and Bartram, 1999). Due to 
 

45 climate change and anthropogenic activities, their presence is increasing (Davis and 
 

46 Gobler, 2016). As a consequence, there is an enhancement of the production of toxic 
 

47 secondary metabolites of great importance for the ecotoxicology known as cyanotoxins 
 

48 (Duy et al., 2000). These toxins are classified as hepatotoxins (e.g. microcystins, 
 

49 nodularins), cytotoxins (e.g. cylindrospermopsin), neurotoxins (e.g. anatoxin-a, 
 

50 homoanatoxin, saxitoxins), dermatotoxins (e.g. lungbyatoxin) or irritant toxins (e.g. 
 

51 lipopolysaccharides) (Testai et al., 2016). There are different exposure routes for 
 

52 cyanotoxins, being the most important the oral route. In fact, many aquatic organisms 
 

53 are able to live in presence of cyanotoxins, and some of them have proved to 
 

54 bioaccumulate these secondary metabolites, acting as a reservoir for animals higher up 
 

55 the trophic chain, and also for humans (Berry and Lind, 2010; Gutiérrez-Praena et al., 
 

56 2013). However, dermal, inhaling or even parenteral exposures are also possible 
 

57 (Buratti et al., 2017). Thus, the variety of targets and exposure routes together with the 
 

58 rise of cyanobacterial proliferations make of cyanotoxins a serious concern for animal 
 

59 livestock, human activities and public health (Testai et al., 2016). 

 

60 In the last decades, the toxic effects of cyanotoxins on the nervous system have 
 

61 been widely studied, not only those caused by the so-called neurotoxins with well- 
 

62 defined mechanisms of action in this system such as anatoxins (ATX) and saxitoxins 
 

63 (STX), but also, by other cyanotoxins with different target organs (Florczyk et al., 
 

64 2014). Neurotoxicity could be described as ‘any adverse effect on the central or 
 

65 peripheral nervous system caused by chemical, biological or physical agents’ (Costa et 
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66 al., 2008). The keys to the brief communication within the nervous system are the 
 

67 generation of a   potential of action as   a quick response of dendrites to the 
 

68 neurotransmitters released from contiguous neurons, and its fast travelling for the 
 

69 neuronal axon for its release afterwards (Kem, 2000). 

 

70 In this sense, among all the cyanotoxins, microcystins (MCs) and 
 

71 cylindrospermopsin (CYN) have proven to exert damage in the nervous system as well, 
 

72 in spite of not being considered as neurotoxins per sé. These are very common 
 

73 cyanotoxins (Table 1) able to put health at risk due to their ubiquity (Gutiérrez-Praena et 
 

74 al., 2013), as previously demonstrated in different human poisoning cases. The most 
 

75 serious episode associated with human exposure to MCs occurred when 126 people 
 

76 were intoxicated at a haemodialysis clinic in Caruaru (Brazil), causing the death of 
 

77 almost half of them. All patients presented malaise, weakness, dizziness, vertigo, 
 

78 tinnitus, mild deafness and, in severe cases, visual disturbance and blindness, grand mal 
 

79 convulsions, and gastrointestinal and hepatic symptoms (Pouria et al., 1998; Carmichael 
 

80 et al., 2001). Most of these symptoms have a neuronal origin, standing out the possible 
 

81 MCs-crossing the blood-brain barrier (BBB) as several authors have reported (Feurstein 
 

82 et al., 2009; 2010; 2011; Zhao et al., 2015a), causing their toxic effects. 

 

83 In the case of CYN, the most important outbreak occurred in Palm Island 
 

84 (Australia) in 1979, when 146 people were hospitalized with symptoms of malaise, 
 

85 vomits, anorexia, and hepatomegaly after drinking from a water supply that contained a 
 

86 CYN-producing Cylindrospermopsin raciborskii strain (Bourke et al., 1983; Griffiths 
 

87 and Saker, 2003). However, it is important to mention that CYN was also present in the 
 

88 Caruaru outbreak, possibly contributing to the neurological affectation reported (Bláha 
 

89 et al., 2009) although it is hard to differentiate the effects caused for each toxin in the 
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90 symptoms observed, as both toxins are often present together in nature (Gkelis and 
 

91 Zaoutsos, 2014; Trainer and Hardy, 2015; Loftin et al., 2016; Buratti et al., 2017). Due 
 

92 to the low molecular weight of CYN, it might be able to cross the BBB. In fact, CYN 
 

93 was detected in brains of two fish species (Guzmán-Guillén et al., 2015; da Silva et al., 
 

94 2018). Thus, although not being considered as neurotoxins, both cyanotoxins have 
 

95 demonstrated its neurotoxic potential in different in vitro and in vivo experimental 
 

96 models, increasing the interest of the scientific community in this matter. Taking into 
 

97 account all these facts, the aim of the present work was to gather the existent knowledge 
 

98 about the potential to exert neurotoxic effects of both toxins from 1998 to 2018. 

 

99 2. Microcystins 

 

100 Microcystins (MCs) are cyclic heptapeptides molecules containing a 
 

101 hydrophobic C20 D-amino acid commonly known as ADDA (3-amino-9-methoxy-2,6,8- 
 

102 trimethyl-10-phenyldeca-4,6-dienoic acid), crucial for the toxicity of these cyanotoxins 
 

103 due to their interaction with protein phosphatases (Song et al., 2006) (Fig. A). More 
 

104 than 246 isoforms of MCs have been detected (Spoof and Catherine, 2017), mainly 
 

105 differing in the L-amino acids at positions 2 and 4, causing differences in toxicokinetic 
 

106 and toxicodynamic properties (Rinehart et al., 1994). These compounds are the most 
 

107 widespread cyanobacterial toxins detected in freshwaters (Spoof and Catherine, 2017), 
 

108 being many the cyanobacteria genera capable of synthesize them: Microcystis, 
 

109 Plankthotrix, Anabaena, Nostoc, Aphanizomenon, Anabaenopsis, Rivularia and 
 

110 Fisherella, among others (Sivonen and Jones, 1999; Rao et al., 2002; Carey et al., 2007; 
 

111 Bittencourt-Oliveira et al., 2014; Cirés et al., 2014). 

 

112 The most known mechanism of action of MCs is the protein serine/threonine 
 

113 phosphatases inhibition, able to cause phosphoprotein-deregulation, which leads to 
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114 tumor promotion and apoptosis (MacKintosh et al., 1990; Vichi et al., 2016). 
 

115 Furthermore, the potential of MCs to increase reactive oxygen species (ROS) and to 
 

116 reduce glutathione (GSH) levels, causing oxidative stress and, therefore, apoptosis, has 
 

117 already been demonstrated (Puerto et al., 2011; Wang et al., 2013; Li et al., 2015; Liu et 
 

118 al., 2016; Qian et al., 2018). Although being considered as hepatotoxins, MCs can 
 

119 damage other organs such as intestines, heart or kidneys (Moreno et al., 2003; Atencio 
 

120 et al., 2008; Qiu et al., 2009; Li et al., 2011a; Zeng et al., 2014). In this sense, it has 
 

121 been demonstrated that MCs require organic anion transporting polypeptides (OATPs 
 

122 for humans/ Oatps for rodents) in order to cross cell membranes (Chen and Xie, 2016). 
 

123 The OATP1B1 and OATP1B3 are common in liver cells, while OATP1A2 is thought to 
 

124 be the responsible for the transport of MC-LR, across the BBB and the kidneys, for 
 

125 example (Fischer et al., 2005; Feurstein et al., 2009). This means that significant 
 

126 amounts of MCs could reach the brain across the BBB and induce brain pathology, 
 

127 depending on the type and expression of OATPs/Oatps at the BBB, the blood- 
 

128 cerebrospinal fluid barrier, and the neuronal cell membrane (Bronger et al., 2005; Huber 
 

129 et al., 2007; Westholm et al., 2009). Most of the existent studies have been carried out 
 

130 using MC-LR, due to its major presence and its wide demonstration of causing 
 

131 neurotoxic effects in several experimental models, although other more toxic congeners 
 

132 such as MC-LW and MC-LF have also been studied (Feurstein et al., 2009; 2010; 2011; 
 

133 Rozman et al., 2017). This can be due to the hydrophobicity of MC-LF and MC-LW. 
 

134 Structure variations and differences in molecular properties such as 
 

135 hydrophilicity/hydrophobicity can lead to a modification on molecular interactions with 
 

136 lipid membranes (Vesterkvist and Meriluoto, 2003) modifying PP-inhibitory activity 
 

137 (Díez-Quijada et al., 2019). 
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138 Concerning to their effects in the nervous system, Florcyk et al. (2014), Hu et al. 
 

139 (2016) and Mello et al. (2018) have reviewed the main mechanisms of neurotoxicity of 
 

140 MCs at different levels. Firstly, neurotransmission, by causing effects on GABAergic 
 

141 neurons. Secondly, neurochannels, by affecting the ionic concentrations in and outside 
 

142 the cells. Linked to this, signal transduction, as a consequence of the deregulation of 
 

143 Ca2+, which, by activating calcineurin leads to apoptosis. Moreover, the production of 
 

144 oxidative stress, by deregulating several antioxidant enzymes such as catalase or 
 

145 superoxide dismutase (SOD). And  finally, cytoskeleton disruption, by alteration of 
 

146 structural brain proteins such as Tau. However, important contributions have been made 
 

147 lately, confirming these mechanisms using mostly in vivo experimental models. In this 
 

148 sense, the studies carried out using different animal models (mice, fish) revealed an 
 

149 important effect on the neurotransmission induced by MC-LR (Wu et al., 2016; Qian et 
 

150 al., 2018; Shin et  al.,  2018; Wang et al., 2018), together with an enhancement in 
 

151 oxidative stress in mice (Shin et al., 2018; Wang et al., 2018), and cytoskeleton 
 

152 disruption in the case of rats (Zhang et al., 2018) (Fig. B). 

 

153 2.1. Neurotoxicological in vitro studies performed with microcystins 

 

154 Table 2 shows the different in vitro assays performed with MC-LR and some 
 

155 other congeners in different neuronal cell lines and primary cultures. The in vitro studies 
 

156 are relatively recent, comprising a range of ten years (2009-2018) (Table 2). This fact 
 

157 demonstrates the   importance   that   MCs   have   lately   acquired   concerning   their 
 

158 neurotoxicity nowadays. Thus, it is possible to find different studies carried out in 
 

159 permanent cell lines (PC12, BV-2, N2a, GT1-7, and SH-SY5Y) and in several primary 
 

160 cell cultures. It is also important to remark that all the toxins used in these studies are 
 

161 commercial standards with a purity >95%, which guarantees that the results reported are 
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162 due to the MC itself and not to other potential bioactive compounds that can be present 
 

163 in cyanobacterial extracts (Falconer, 2007). Furthermore, it is important to highlight that 
 

164 no studies have been performed using extracts in vitro. 

 

165 2.1.1 Cell viability studies after exposure to MCs 

 

166 Cell death caused by MCs in neuronal cells has been studied by different assays. 
 

167 Occupying an important place in these studies are the cytotoxicity assays. As it can be 
 

168 observed in Table 2, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) 
 

169 reduction assay, the lactate dehydrogenase (LDH) release assay, and the cell counting 
 

170 kit-8 (CCK-8) test have been used to explore the cytotoxicity of MC congeners in 
 

171 several neuronal cell lines. In primary cell lines, Feurstein et al. (2009) found that MC- 
 

172 LF, -LW, and -LR induced a concentration-dependent decrease of primary murine WBC 
 

173 when exposed to 0-5 µM MCs for 48 hours, being MC-LF the most potent toxin. 
 

174 Rozman et al. (2017) also evidenced the different cytotoxicity induced by the MC-LW 
 

175 and MC-LF congeners in primary rat astrocytes exposed to 0-10 µM MCs for 24 hours. 
 

176 However, these authors did not find any significant reduction of viability in cells 
 

177 exposed to MC-LR. On the contrary, Cai et al. (2015) found a concentration-dependent 
 

178 reduction of cell viability in primary hippocampal neurons, although the MC-LR 
 

179 concentrations used were higher (0-30 µM) than in the previous study. Despite this, Li 
 

180 et al. (2015a) used lower concentrations of MC-LR (0-3 µM) in the same cellular 
 

181 model, remarking that they only found a reduction of cell viability at the highest 
 

182 concentration assayed after 48 hours of exposure. These same authors also evaluated the 
 

183 LDH release, showing that this release increased with the MC-LR concentration. 
 

184 However, Zhang et al. (2018) observed that only the highest concentration (10 µM MC- 
 

185 LR) induced a significant loss of viability in SH-SY5Y cells exposed for 24 hours. This 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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186 fact would indicate that the cellular model could play a role in the MC-LR toxicity, 
 

187 being more sensitive those cells derived from the hippocampus. 

 

188 Concerning permanent cell lines, different patterns have been observed. Thus, 
 

189 Takser et al. (2016) found that murine microglial BV-2 cell line suffered a decrease in 
 

190 cell viability when exposed to 0-10 µM MC-LR during 72 hours. Furthermore, these 
 

191 same authors revealed that the N2a cell line presented an even more significant 
 

192 reduction of viability after 72 hours of exposure, establishing possible differences 
 

193 between cells from different origins. The results obtained by Ding et al. (2017) were 
 

194 especially remarkable,   finding   that   MC-LR   induced   a   concentration-dependent 
 

195 reduction of viability in GT1-7 cells exposed up to 1 µM MC-LR during 48 hours. In 
 

196 this study, the MC-LR concentrations used were pretty lower than those used by the rest 
 

197 of the authors. Thus, the main target of MC-LR in the nervous system seems to be the 
 

198 limbic system, since cells from hypothalamus and hippocampus have proven to be the 
 

199 most sensitive. 

 

200 2.1.2 Effects of MCs in different proteins 

 

201 Many of the presented studies deal with the fact that MCs need to enter the 
 

202 neuronal cells to exert their toxic effects. It is well known that MCs use OATP/Oatp to 
 

203 get into cells. In this sense, Feurstein et al. (2009) stated that primary murine whole 
 

204 brain cells (WBC) presented, at least, five Oatps, and demonstrated the role of these 
 

205 transporters in the toxicity induced by different MC congeners. Lately, the same authors 
 

206 employed primary murine neurons and cerebellar granule neurons (Feurstein et al., 
 

207 2010; 2011), and demonstrated that MC-LF, -LW, and –LR produced a significant PPs 
 

208 inhibition at different concentrations, being MC-LF the most potent toxin and MC-LR 
 

209 the   least   one.   Concerning   MC-LR,   Meng   et   al.   (2011),   in   differentiated   rat 
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210 neuroendocrine PC12 cells, and Zhang et al. (2018), in human neuroblastoma SH-SY5Y 
 

211 cells, found that this toxin inhibited the PP2A in a concentration-dependent manner. 
 

212 However, MCs uptake has been also shown by imaging techniques. Thus, Rozman et al. 
 

213 (2017) confirmed the uptake of different MCs congeners by immunochemistry in 
 

214 primary rat astrocytes. Moreover, Ding et al. (2017) and Zhang et al. (2018) used the 
 

215 western-blot technique to demonstrate the penetration of MC-LR in hypothalamic 
 

216 neuronal mouse cells 1-7 (GT1-7) and SH-SY5Y cells, respectively, analyzing the PP1 
 

217 and PP2A catalytic subunits, which appeared reduced as the toxin concentration 
 

218 increased. 

 

219 Inhibition of PP2A activity has been described as the main toxic mechanism of 
 

220 MCs (Yoshizawa et al., 1990), which is related to the selective destruction of 
 

221 microtubules, leading to cell death. Different proteins are involved in cellular 
 

222 organization, and among them, one of the most relevant is Tau. This abundant 
 

223 microtubule-associated protein which main function to stabilize the microtubules 
 

224 assembly, is less effective the more phosphorylated Tau is (Buée and Delacourte, 2001), 
 

225 being associated with microtubule dysfunction and cell death (Feurstein et al., 2011). 
 

226 These last authors found, in primary murine cerebellar granule neurons (CGNs), that 
 

227 MC congeners induced Tau hyperphosphorylation at lower concentrations than the 
 

228 needed for PP2A inhibition, which could evidence that specific proteins from the 
 

229 nervous system display more sensitive response to MCs. However, these concentrations 
 

230 did not lead to significant cell death by apoptosis (activation of caspase-3/7 was absent); 
 

231 although disruption of the neurite network was observed, which is in agreement with the 
 

232 findings of Rozman et al. (2017) in primary rat astrocytes. Meng et al. (2011) also 
 

233 established   the   connection   between   the   inhibition   of   PP2A   and   Tau   protein 
 

234 hyperphosphorylation in differentiated PC12 cells. Furthermore, these authors studied 
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235 afterwards Tau phosphorylation through the p38-mitogen-activated protein kinase (p38- 
 

236 MAPK), reporting that MC-LR exposure induced p38-MAPK activation, although at 
 

237 higher concentrations than those required for the inhibition of PP2A. Thus, they 
 

238 established that this could be an indirect mechanism of Tau hyperphosphorylation. In 
 

239 addition, they also found that the heat-shock protein 27 (HSP27), responsible of actin 
 

240 cytoskeleton remodeling, was also increased due to the activation of p38-MAPK, 
 

241 contributing to the cell disruption caused by MC-LR. Related to this, Meng et al. (2013) 
 

242 demonstrated that the previously described activation of p38-MAPK by MC-LR in 
 

243 PC12 cells was downstream of ROS-dependent signaling cascades. More recently, 
 

244 Zhang et al. (2018) confirmed the activation of the p38-MAPK in SH-SY5Y cells 
 

245 exposed to MC-LR. Moreover, these authors also found that MC-LR activates the c-Jun 
 

246 N-terminal kinase (JNK), a protein associated with the induction of cell death by 
 

247 apoptosis. Besides, MC-LR induced the phosphorylation of the glycogen synthase 
 

248 kinase-3 (GSK-3β), contributing to the dissociation of the regulatory subunit B55α from 
 

249 the PP2A and its degradation, facilitating Tau hyperphosphorylation. 
 

250 2.1.3 Involvement of MCs in the [Ca2+]i levels: 
 

251 Intracellular calcium ([Ca2+]i) levels are crucial for cell survival. In this sense, 

252 Ding et al. (2001) indicated that MC-LR is implicated in Ca2+ release from 

253 mitochondria and the activation of Ca2+/calmodulin-dependent protein kinase, which 
 

254 triggers cell death by apoptosis in hepatocytes. Thus, Cai et al. (2015) found a 

 

255 concentration-dependent Ca2+ mobilization in primary hippocampal neurons exposed to 

256 0-30 µM MC-LR. These authors demonstrated that the increase of [Ca2+]i levels could 
 

257 be due mainly to its mobilization from the endoplasmic reticulum. Mitochondria 
 

258 seemed not to play an important role in the cascade of [Ca2+]i. This fact is in agreement 
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259 with the results obtained in the previously described MTT assays (Feurstein et al., 2009, 
 

260 2011; Takser et al., 2016), since authors described a concentration-dependent loss of 
 

261 cell viability, but only a few observed significant differences against the control groups. 
 

262 In addition, Li et al. (2015a) reported that MC-LR participated in the activation of the 

 

263 Ca2+/calmodulin-dependent protein   phosphatase,   calcineurin   (CaN),   through   the 

264 mobilization of [Ca2+]i levels, leading to the activation of an apoptotic caspase cascade. 
 

265 In this sense, Feurstein et al. (2011) found that MC-LF and MC-LW induced a 
 

266 concentration-dependent increase of caspase-3/7 activity in primary murine CGNs. 
 

267 Furthermore, Rozman et al. (2017) also observed apoptosis in primary rat astrocytes 
 

268 exposed to different MC congeners. However, these authors did not propose any theory 
 

269 about the apoptosis pathway. These findings could be in agreement with the reports of 
 

270 Cai et al. (2015) and Li et al. (2015a) concerning Ca2+ mobilization and apoptosis. 

 

271 Summarizing, MC-LW and –LF have proven to exert higher neurotoxic effects 
 

272 in vitro than MC-LR. However, since MC-LR is the most abundant congener in nature, 
 

273 all the studies presented in Table 2 have been carried out using this cyanotoxin. The 
 

274 way these toxins reach the nervous system is not fully elucidated yet, although several 
 

275 authors demonstrated the participation of OATPs/Oatps in their transport, together with 
 

276 an inhibition of the protein phosphatase. Once inside neuronal cells, MCs have shown to 
 

277 disrupt several proteins participating in the cellular structure (PP2A, Tau, p38 MAPK, 
 

278 HSP27, GSK-3β, etc.), inducing cytoskeleton remodeling and cell death. In addition, 
 

279 cellular disruption has been demonstrated as well by cytotoxicity and apoptosis assays. 
 

280 Both mechanisms could be associated with the increment of [Ca2+]i levels. However, it 
 

281 is noteworthy that cells affected by MCs are mainly those present in the limbic system, 
 

282 pointing out this system as a possible target for MCs. 
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283 2.2. Neurotoxicological in vivo studies performed with microcystins in aquatic 
 

284 animals 

 

285 Several works have investigated so far MCs potential neurotoxicity in different 
 

286 fish species, mainly in zebrafish (Danio rerio) (Table 3). The first studies reporting the 
 

287 chronic effects of dissolved MC-LR on the fish behavior were performed by Baganz et 
 

288 al. (1998, 2004). Behavioral studies are important to establish the lowest level of 
 

289 disturbance. In this sense, these authors observed that MC-LR induced a decrease of 
 

290 daytime and nighttime activity in D. rerio after their exposure to high concentrations, 
 

291 while at low ones, that reduction at night was compensated by a rise in their daytime 
 

292 activity. On the contrary, at high concentrations, Leucaspius delineatus reduced its 
 

293 activity during the daytime, increasing at night, whereas a rise was reported during both 
 

294 day and night at low concentrations. These compensative responses could be explained 
 

295 as an escape strategy or as a consequence of some changes in the spatial orientation to 
 

296 deal with alterations in the medium conditions, represented by the presence of MCs. 
 

297 However, the decreased motility observed at high MC-LR concentrations may be 
 

298 interpreted as an attempt to save energy, needed maybe to biotransform the toxin, which 
 

299 is a possible reason why glutathione-S-transferase (GST) activity appeared enhanced. 
 

300 L. delineatus showed greater sensitivity than D. rerio, as it responded earlier and for a 
 

301 longer period of time (Baganz et al., 2004). 

 

302 Neurotoxicity of pure MC-LR at the proteomic level was firstly demonstrated in 
 

303 zebrafish brains after chronic exposure (30 days) by Wang et al. (2010) and in 
 

304 developing zebrafish larvae after 96 hours post-fertilization exposure by Li et al. 
 

305 (2011b). Furthermore, chronic exposure seemed to interfere concomitantly with signal 
 

306 transduction, leading to apoptosis, transport and protein degradation, and increasing the 
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307 PP activity at higher toxin concentrations by PP2Cα2 overexpression (Wang et al., 
 

308 2010). Li et al. (2011b) suggested a potential involvement of creatine kinase (CK) and 
 

309 dihydropyrimidinase-like 2 (DRP2) in the neurotoxicity induced by MC-LR, which 
 

310 were upregulated in larvae of zebrafish. The CK seemed to be correlated with increased 
 

311 energy requirements, and DRP2 with axonal outgrowth, cell migration, neuronal 
 

312 growth, and pathfinding. In this sense, a decreased expression of DRP2 has been 
 

313 reported in schizophrenia, Alzheimer disease, the Down syndrome, and affective 
 

314 disorders (Johnston-Wilson et al., 2000; Lubec et al., 1999). 

 

315 Pavagadhi et al. (2012) studied the influence of sub-lethal concentrations of 
 

316 dissolved MC-LR and MC-RR (0-10 µg/L) on several oxidative stress parameters in the 
 

317 brain of zebrafish adults such as GST, glutathione peroxidase (GPx), glutathione 
 

318 reductase (GR) and superoxide  dismutase (SOD) activities.  Generally, most of the 
 

319 parameters followed a bell-shaped curve for both toxins, with peaks at different 
 

320 concentrations. Most of these enzyme activities rose at lower concentrations and 
 

321 decreased at the highest (5 and 10 µg/L). However, discrepancies between GPx and GR 
 

322 activities were observed as the effects of MC-LR were more prominent in GPx activity 
 

323 while GR activity was more enhanced after exposure to MC-RR. These variations could 
 

324 probably be due to the biochemical adaptive response of the organisms to MCs 
 

325 exposure depending on their specific toxicity. 

 

326 A more recent study has shown that accumulation of MC-LR in zebrafish larvae 
 

327 led to hypoactivity with alteration of the cholinergic system, showed by decreased 
 

328 dopamine (DA) and ACh levels, and increased AChE activity, which could also yield to 
 

329 hypoactive muscular contraction and behavioral responses (Wu et al., 2016). In 
 

330 addition, and similar to previous works, their proteomic analysis suggested that this 
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331 neurotoxicity could be related to neuron maturation, axon growth, and cytoskeleton 
 

332 regulation. Nevertheless, if these effects induced by MC-LR could be of parental 
 

333 transmission or not was later clarified by chronic exposures of adult zebrafish to 
 

334 environmentally relevant concentrations of MC-LR (1-25 µg/L), demonstrating, for the 
 

335 first time, the toxin accumulation and developmental neurotoxicity in offspring (Wu et 
 

336 al., 2017). The mechanisms by which these transgenerational effects are exerted could 
 

337 be by interrupting the neuronal development and/or by hampering the neurotransmitter 
 

338 systems (as shown by decreases in DA and serotonin levels, and in AChE activity). 
 

339 Moreover, exposure of zebrafish embryos to similar concentrations of MC-LR for 90 
 

340 days led to several histopathological damages in the brain (Yan et al., 2017). Despite 
 

341 lacking the clear cerebral cortex of higher vertebrates, fish cerebra rule complex 
 

342 behavior such as escaping from predators, swimming, and feeding modulation. Thus, it 
 

343 would make sense that the ultrastructural changes detected in this study could have 
 

344 impaired the function of nerve fibers in zebrafish exposed to MC-LR. These authors 
 

345 suggested that the disruption of the GABA pathway might be also implicated in the 
 

346 mechanism of MC-LR-induced neurotoxicity (Yan et al., 2017). The stress response in 
 

347 fish is regulated by the hypothalamic-pituitary-adrenal (HPI) axis, which modulates 
 

348 cortisol levels (Yan et al., 2012; Chen et al., 2016), having both important functions in 
 

349 behavior and development. In addition, cross-talk among the nervous, endocrine, and 
 

350 immune systems have been previously reported in fish (Steenbergen et al., 2011). In this 
 

351 sense, Liu et al. (2015), Zhao et al. (2015b), Su et al (2016) and Chen et al. (2018) 
 

352 observed altered transcription of genes along the HPI axis in zebrafish,  mostly of 
 

353 gonadotropin hormone, which is also a modulator of the reproductive behavior. 
 

354 Moreover, Chen et al. (2018) observed, for the first time, that MC-LR altered cortisol 
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355 levels. Thus, neurotoxicity of MCs  could have an impact on  endocrine disruption, 
 

356 influencing the autonomic nervous system activity. 

 

357 Apart from D. rerio and L. delineatus, the effects of pure MC-LR have been also 
 

358 described in whitefish (Coregonus lavaretus). Thus, MC-LR induced an up-regulation 
 

359 of the protein expression of the glial fibrillary acidic protein (gfap), suggesting neuronal 
 

360 toxicity, although no changes were observed in the expression of MiR124-3p (Florczyk 
 

361 et al., 2018). Thus, after damage to the central nervous system (CNS), astrocytes 
 

362 normally act by reaction with a quick synthesis of gfap, whereas the most abundant 
 

363 microRNA in the nervous system, MiR124, is involved in brain development and 
 

364 neuronal regulation. These results provide new information to understand the role of 
 

365 microRNAs in the mechanisms of MC-LR-induced neurotoxicity, and they suggest that 
 

366 MiR124-3p cannot be considered as a biomarker of MC-LR-induced brain injury. 

 

367 In agreement with the findings in vitro, Fischer et al. (2005) demonstrated, in 
 

368 oocytes of the frog Xenopus laevis, that human OATP1A2, expressed in endothelial 
 

369 cells of the BBB, mediates the transport of MC-LR into the brain. Furthermore, they do 
 

370 not rule out that other transporters, as Oatp1c1/OATP1C1, may be also involved in this 
 

371 function. 

 

372 Studies conducted with lyophilized cyanobacterial cultures containing MCs are 
 

373 scarcer compared to those performed with pure MCs. In this regard, Fischer and 
 

374 Dietrich (2000) detected, for the first time, MC protein-adducts in the brain of carp 
 

375 (Cyprinus carpio) acutely exposed to a freeze-dried culture of M. aeruginosa containing 
 

376 MC-LR, although no pathological changes were observed in brain. Later, Gélinas et al. 
 

377 (2012) studied several antioxidant parameters and AChE activity in brain after exposure 
 

378 of juvenile rainbow trout (Oncorhynchus mykiss) to crude extract from M. aeruginosa 
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379 containing MC-LR (0-5 µg/L) for 96 hours. No significant changes were observed in 
 

380 GST activity or in LPO levels, and a decrease in AChE activity only occurred at the 
 

381 highest concentration assayed. However, an evident reduction of the protein-bound 
 

382 phosphate at all concentrations assayed was found, which could lead to a diminishment 
 

383 of protein phosphatase activity. Contrarily, after acute exposure to MC-LR isolated 
 

384 from M. aeruginosa by dissolving the toxin in water and intraperitoneally, Kist et al. 
 

385 (2012) demonstrated that zebrafish brain suffered an increase of AChE activity only 
 

386 when dissolved, being relevant as its over-expression can promote apoptosis. According 
 

387 to the authors, AChE effect in brain may be indirectly caused by the calcineurin, present 
 

388 in the zebrafish brain. In agreement with Gélinas et al. (2012) but in discordance with 
 

389 Kist et al. (2012), Qian et al. (2018) reported a decrease in AChE levels in larvae of the 
 

390 same species after exposure to a M. aeruginosa culture containing MC-LR. This could 
 

391 have, as a consequence, a reduction of the gene transcription of ache, together with a 
 

392 concentration-dependent decline of the nicotinic acetylcholine receptor a-7 (chrna7) 
 

393 transcription, being this, at least, one of the possible causes of the slowing down of the 
 

394 swimming speed. Besides, neuronal development and differentiation effect, impaired 
 

395 synapse formation, astroglia effect and a concentration-dependent   reduction of 
 

396 dopamine were observed; together with an effect of the dopaminergic system in the 
 

397 zebrafish larvae. Differences in locomotion were observed in the embryos of the same 
 

398 species exposed to Planktothrix agardhii containing MC-LR and MC-YR, and to M. 
 

399 aeruginosa containing MC-LR (Jonas et al., 2015). 

 

400 The neurotoxic effects of pure MC-RR on aquatic organisms have been far less 
 

401 investigated in comparison to pure MC-LR, and they are somehow contradictory. 
 

402 Although Cazenave et al. (2006) reported the brain of Corydoras paleatus as the most 
 

403 affected organ after exposure to dissolved MC-RR by increases on lipid peroxidation 
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404 (LPO) levels and decreases in GST activity, they were not able to detect the toxin in 
 

405 brain of this species (Cazenave et al., 2005). In agreement with this study, Cazenave et 
 

406 al. (2008) found that exposure of Jenynsia multidentata to MC-RR led to oxidative 
 

407 stress and altered locomotor activity. The hyperactivity observed at low doses suggests 
 

408 an escaping from the stress of MC-RR exposure, while the reduced swimming activity 
 

409 together with the increased detoxification at higher doses may represent a reallocation 
 

410 of energy (Cazenave et al., 2008), response that was obtained as well in previous studies 
 

411 carried out, in this case, with MC-LR (Baganz et al., 1998, 2004). In addition, fish 
 

412 hyperactivity could be also a result of the alert reaction caused by the presence of MC- 
 

413 RR in the fish brain, showing for the first time that MC-RR, although being more 
 

414 hydrophilic than MC-LR, is able to cross the BBB in J. multidentata (Cazenave et al., 
 

415 2005). 

 

416 Up to date, only one study has evaluated the effect on the fish brain after 
 

417 exposure to MC-RR extracted from freeze-dried crude algae (Okogwu et al., 2014). 
 

418 Carassius auratus showed a reduction of the total antioxidant capacity in brain 
 

419 combined with a hypoxia-reoxygenation process. A decrease in the SOD and GPx levels 
 

420 was observed during reoxygenation, as myoglobin and neuroglobin were upregulated 
 

421 both during hypoxia and reoxygenation, which might help to the detoxification process 
 

422 of reactive nitrogen species and ROS, being of use in the fight against oxidative stress. 

 

423 Generally, the effects of both pure MCs and those from cyanobacterial blooms 
 

424 have been shown in the central and peripheral nervous systems of several fish species, 
 

425 although different sensitivity was observed among them. Main observations were 
 

426 changes in behavior, oxidative stress parameters, genes involved in energy requirements 
 

427 and axonal growth, and in cholinergic and dopaminergic systems, together with 
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428 disruption of the GABA pathway. These, together with MC-LR accumulation in fish 
 

429 brain and offspring, could explain the observed transgenerational changes and 
 

430 developmental neurotoxicity of MC-LR. Compensation responses in the circadian 
 

431 rhythm of fish have been also reported, with a generally increased activity at low doses 
 

432 and the opposite at high doses. In any case, the neurotoxic effects of MC-RR have been 
 

433 less investigated than those of MC-LR, in spite of being one of the most common 
 

434 congeners. More studies are needed to clarify the ability of MC-RR to cross the BBB in 
 

435 other aquatic species, given its differential detection in the two fish species studied. 
 

436 Moreover, comparative studies of the neurotoxicity induced by exposure to pure MCs or 
 

437 to cyanobacterial extracts could help to clarify MCs crossing of the BBB in aquatic 
 

438 organisms. The potential energy reallocation in the brain of MCs-exposed organisms 
 

439 also deserves further research, together with its effect on the endocrine system because 
 

440 of the damage caused in the HPI axis. Furthermore, investigating the inhibition of 
 

441 OATP-mediated MCs transport could be of interest to provide an option for 
 

442 neurotoxicity prevention. 

 

443 2.3. Neurotoxicological in vivo studies performed with microcystins in terrestrial 
 

444 animals 

 

445 Nowadays, several in vivo studies have been carried out focusing on the 
 

446 neurotoxic potential MCs can exert in terrestrial animals (Table 4). Many of them have 
 

447 been performed in nematodes (Li et al., 2009a, b; Ju et al., 2013, 2014; Moore et al., 
 

448 2014; Saul et al., 2014), mice (Shin et al., 2018; Wang et al., 2018) and rats (Li et al., 
 

449 2012a, b; Wang et al., 2013; Li et al., 2014; Li et al., 2015b; Zhang et al., 2018) using 
 

450 pure MC congeners, mainly MC-LR. This is probably due to the fact that, although a 
 

451 total of 246 variants of MCs have been described so far (Meriluoto et al., 2017), MC- 
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452 LR has demonstrated to be one of the most toxic structural variants, contributing on 46- 
 

453 99.8% of the total MCs in natural waters (Ufelmann et al., 2012). Considering that 
 

454 cyanotoxins are not found isolated in nature but together with other substances 
 

455 produced in cyanoblooms, very few studies have been conducted using cyanobacterial 
 

456 biomass cultures or their extracts for terrestrial animal exposure (Pašková et al., 2008; 
 

457 Wang et al., 2008; Ju et al., 2014; Zhao et al., 2015). 

 

458 Approximately a third part of these studies have been  performed using the 
 

459 nematode Caernorhabditis elegans as experimental model and almost under the same 
 

460 experimental conditions. This may be due to its short lifespan and its usage as an 
 

461 environmental bio-indicator, reacting to a variety of environmental stimuli (Mutwakil et 
 

462 al., 1997; Graves et al., 2005). Moreover, C. elegans only presents 302 neurons, and the 
 

463 complete writing diagram for chemical and electrical connections is available (White et 
 

464 al., 1986). It is also important to highlight that, as a liver-lacking animal, the neurotoxic 
 

465 effects were more obvious (Saul et al., 2014). 

 

466 The first study performed in C. elegans exposed to pure MC-LR reported a 
 

467 decrease in the chemotaxis to NaCl and diacetyl and in the thermotaxis in a 
 

468 concentration-dependent manner, suggesting damage on the corresponding sensory 
 

469 neurons (Li et al., 2009a). These effects were probably caused by the disruption of ASE 
 

470 and AWA sensory neurons, responsible for the chemotaxis, while an impairment of 
 

471 sensory neurons AFD and interneuron AIY, responsible for the thermotaxis, was 
 

472 reported as well (Satterlee et al., 2001; Li et al., 2009a), demonstrating a genetic control 
 

473 of these neurons by MC-LR. According to these results, Li et al. (2009b) reported a 
 

474 significant   decrease   of   lifespan   and   body size   after   exposure   to   the   highest 
 

475 concentrations of MC-LR assayed, together with a decrease of the head thrash and body 
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476 bend after exposure to low concentrations. Moreover, effects on generation time, brood 
 

477 size and stress parameters were also observed. Ju et al. (2013) reported that low 
 

478 concentrations of MC-LR produced a significant decrease of body bend and head thrash 
 

479 frequency after 8 hours of exposure while, after 24 hours, all concentrations did, 
 

480 showing a time-dependent response. Moreover, the morphology effects caused by 
 

481 different neurotransmitters after exposure to MC-LR were evaluated and, although no 
 

482 structural alterations were observed in the cholinergic, serotonergic, dopaminergic and 
 

483 glutamatergic systems, a GABAergic neuronal loss and aberrant neuronal morphology 
 

484 were observed after exposure to the highest concentration of MC-LR. Furthermore, this 
 

485 study revealed that MC-LR induced 1) adverse effects on the transportation and location 
 

486 of GABA altering unc-47, unc-46, and unc-30 gene expression and 2) alteration of both 
 

487 the inhibitory and excitatory GABA receptors decreasing unc-49 and exp-1 expression 
 

488 levels. This effect on GABA could lead to the effects previously observed in the 
 

489 locomotor behavior. In agreement with these results, Ju et al. (2014) reported a 
 

490 significant decrease of different autonomic functions, such as body bend and touch 
 

491 response, move length, pharyngeal pumping frequency and defecation period interval 
 

492 (only after 24 hours of exposure to the highest concentration of MC-LR). These authors 
 

493 demonstrated, exposing to a filtrate of M. aeruginosa culture containing MCs, that the 
 

494 response opposed to the one obtained with pure MC-LR, observing an increase in 
 

495 locomotive behavior and pumping activity and no alteration of sensory functions. These 
 

496 differences could be due to 1) the higher concentration present in the biomass compared 
 

497 to pure MC-LR used (300 vs 100 μg/L), 2) the presence of other active substances, and 
 

498 3) the presence of several MC congeners, such as MC-RR and MC-YR. In addition, 
 

499 Moore et al. (2014), demonstrated alteration to diacetyl after exposure to MC-LR, 
 

500 showing an alteration of the function of the AWA sensory neuron. However, the effects 
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501 on the chemotaxis to benzaldehyde after exposure to MC-LR, regulated by AWC 
 

502 neurons, was not observed, highlighting the fact that AWC and AWA neurons act as 
 

503 independent targets. Moreover, these effects were compared to the ones caused by the 
 

504 exposure to MC-LF, suggesting a more potent effect by MC-LF than MC-LR. Up to 
 

505 date, only this neurotoxicity study has been carried out with this congener in nematodes, 
 

506 despite MC-LF is transported more efficiently into the neurons (Feurstein et al., 2010). 
 

507 Furthermore, Saul et al. (2014) obtained a significant decrease in all life trait variables, 
 

508 measured at different periods of the nematode life cycle, only at the highest 
 

509 concentration of MC-LR assayed. They investigated widely the variation in the gene 
 

510 expression, reporting an enhancement of 125, among which was unc-30, related to the 
 

511 GABAergic response, and a decrease of 76. Although these results may seem 
 

512 contradictory to the ones obtained by Ju et al. (2013), as they described a diminish of 
 

513 unc-30 gene expression, it is important to highlight that the duration of the stress 
 

514 exposure is essential for their regulation, being the possible cause for their discordance 
 

515 (Nadal et al., 2011). Moreover, Saul et al. (2014) also reported a down-regulation in let- 
 

516 7 expression, which could play a role in the development and the reproductive 
 

517 processes, contributing, therefore, to the effects observed in the brood size and growth. 
 

518 Their results manifested that many of the affected genes by MC-LR are involved in 
 

519 neurogenesis, signaling or neurological behavior processes, reinforcing those results 
 

520 previously obtained by Li et al. (2009a) and Ju et al. (2013), where MC-LR played an 
 

521 important role in the neuromodulating action. 

 

522 In general, the different behavioral studies agree that MC-LR produced a 
 

523 decrease in autonomic (body bend, head thrash, move length, pharyngeal pumping, 
 

524 touch response) and sensory (chemical, thermal) functions reflecting an alteration in the 
 

525 nervous system functions to generate appropriate behaviors from sensory signals in 
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526 nematodes (Li et al., 2009a;b; Ju et al., 2013, 2014; Moore et al., 2014). Therefore, MC- 
 

527 LR at environmentally relevant concentrations, could affect the nervous system 
 

528 regulation to receive, process, integrate and interpret sensory signals, as suggested by 
 

529 the gene expression results (Li et al., 2009a;b; Ju et al., 2013; Saul et al., 2014; Hu et 
 

530 al., 2016). It is important to point out that not always a variation in the gene expression 
 

531 can be translated to a change in protein levels, being required complementary studies in 
 

532 order to assure the neurotoxic role of this toxin (Saul et al., 2014). Although previous 
 

533 studies confirmed the suitability of the C. elegans test as a neurotoxicity screening test 
 

534 for MCs (Ju et al., 2014), it should be taken into account that this experimental model is 
 

535 much simpler than the mammals-nervous system. 

 

536 The only neurotoxicity study performed in birds was carried out in Japanese 
 

537 quail exposed to Microcystis biomass containing MC-LR, MC-RR, MC-YR and MCs- 
 

538 similar compounds (Pašková et al., 2008). This study focused on the determination of 
 

539 oxidative stress, where a significant enhancement was reported in cytochrome P-450- 
 

540 dependent 7-ethoxyresorufin O-deethylase (EROD) levels in the brain after acute and 
 

541 sub-chronic exposure at medium concentrations of MCs. The LPO levels were also 
 

542 enhanced after acute and sub-chronic exposure, so did the GSH levels, decreasing, 
 

543 nonetheless, after acute exposure. Howbeit, no significant changes were observed in 
 

544 GST activity in this organ. In general, a rise in the oxidative stress parameters was 
 

545 described by these authors in brain (Pašková et al., 2008). Oxidative stress as a 
 

546 mechanism of toxic action of MCs has been widely studied in other organs such as liver 
 

547 or kidney in different species (Li et al., 2003; Jos et al., 2005; Skocovska et al., 2007; 
 

548 Weng et al., 2007; Prieto et al., 2009); however, these investigations are very scarce in 
 

549 brain. The increase of ROS could be involved in the mitochondrial dysfunction and 
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550 activation of calpain and Ca2+/ calmodulin-dependent protein kinase II (Ding and Nam 
 

551 Ong 2003), generating damage in the brain structure and neurological functions. 

 

552 Mice exposed to pure MC-LR showed differences in the effects on hippocampus 
 

553 and cortex after oral exposure by drinking water with 1-40 µg/L MC-LR for a year 
 

554 (Wang et al., 2018). Histopathological changes were observed in the hippocampus 
 

555 (bright eosinophil-like angular shape and nuclear fragments) and in the cortex (shrunken 
 

556 bodies and pyknotic nuclei) dose-dependently. Likewise, MC-LR produced different 
 

557 impacts on mRNA transcription genes and in their protein expression (ATP6, COX3, 
 

558 CYTB, DNA polymerase ɣ (POLG), mitochondrial single-stranded DNA-binding 
 

559 protein (mtSSB) and mitochondrial transcription factor A (TFAM)), mainly affecting 
 

560 the hippocampus. In accordance with these results, Shin et al. (2018) described a dose- 
 

561 dependent neuronal loss in the same hippocampal cells due to several morphological 
 

562 changes, but in this case, after exposure to a cyanobacterial extract containing MC-LR. 
 

563 Moreover, several behavioral studies demonstrated memory impairment after Morris 
 

564 water maze (MWM) and passive avoidance tests. However, these effects were only 
 

565 observed after exposure to 4 µg/mL MC-LR, suggesting that the neuronal loss is not the 
 

566 main cause for these toxic effects in mice. After exposure to the same doses, no effects 
 

567 on spatial working and visual recognition memory were detected by Y-maze and novel 
 

568 object recognition tests, respectively. These effects were patent only in non-transgenic 
 

569 (non-Tg) mice compared to those overexpressing glutathione peroxidase (GPx Tg). 
 

570 Besides, in non-Tg group, these authors observed significant changes in oxidative stress 
 

571 biomarkers such as increased protein oxidation, LPO and ROS, together with a decrease 
 

572 of the GSH/Glutathione disulfide (GSSG) ratio. Moreover, the rise in SOD enzyme 
 

573 activity was more evident in non-Tg compared to the increase observed in GPx-1 Tg, 
 

574 while the enhancement of GPx enzyme activity was more visible in this last group of 
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575 mice. Furthermore, no proinflammatory tumor necrosis factor-α (TNFα) and allograft 
 

576 inflammatory factor-1 (Iba1) levels were affected after the MC-LR exposure. All of the 
 

577 results obtained in this study suggest that memory impairments in mice exposed were 
 

578 due to oxidative stress in spite of by neuroinflammation process, which could be 
 

579 confirmed by the enhancement of nuclear factor erythroid-derived 2 (Nrf2) observed in 
 

580 both exposed groups. In addition, the reduced responses of GPx-1 Tg compared to non- 
 

581 Tg mice suggest a possible prevention of memory impairment by compounds implied in 
 

582 antioxidant activity (Shin et al., 2018). 

 

583 Furthermore, it is important to highlight that, although not being 
 

584 neurotoxicological studies per sé, some studies exposing mice to pure MC-LR have 
 

585 proven its capacity to cause effects in the HPI axis at hypothalamic level, altering the 
 

586 neurohormonal control of reproduction (Wang et al., 2012; Xiong et al., 2014; Chen et 
 

587 al., 2016). 

 

588 In rats exposed to MC-LR after infusion into hippocampus presented longer 
 

589 periods of time searching the platform and shorter swimming distance in the target 
 

590 zone, but no significant differences in swimming speed were appreciated compared to 
 

591 the control group (Li et al. 2012a). This would point out the spatial learning and 
 

592 memory impairment caused by the exposure to the toxin. Furthermore, some neuronal 
 

593 injury was observed by shrunk nuclei and cellular edema or dissolved cell organelles, 
 

594 diminishing significantly the number of CA1 pyramidal cells in the hippocampus. 
 

595 Nonetheless, after exposure to the lowest dose, some morphological changes were 
 

596 appreciated in the neurons, like swollen and degranulated endoplasmic reticulum or 
 

597 puffed periplast. In fact, a more significant rise in oxidative stress parameters was 
 

598 reported after exposure to the highest concentration (LPO, CAT, GPx, and SOD) versus 
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599 the lowest (LPO and CAT). In agreement with these results, Li et al. (2012b) reported 
 

600 that chronic exposure produced neither changes in intake, body weight and overall 
 

601 mobility, nor visual and locomotor deficits, although they demonstrated the presence of 
 

602 this toxin in brain. However, treated rats did take longer to find the platform, mainly 
 

603 over the late days, spending less time in the target zone, which implies effects on spatial 
 

604 learning and memory as well. This impairment was also confirmed by the degeneration 
 

605 and apoptosis of hippocampal cells in rats exposed to MC-LR for 50 days. Furthermore, 
 

606 the authors observed the presence of proteins involved in neurodegenerative diseases 
 

607 such as septin 5, a-internexin and a-synuclein, and a PPs inhibition after exposure to 10 
 

608 µg/kg MC-LR, which may lead to Tau hyperphosphorylation, implied in the generation 
 

609 of Alzheimer’s disease. This is the first scientific study correlating MC-LR exposure to 
 

610 an age-associated neurodegenerative disorder. 

 

611 Additionally, Wang et al. (2013) reported a significant PPs activity enhancement 
 

612 after exposure to pure MC-LR in rats, in disagreement with the results obtained by Li et 
 

613 al. (2012b). This effect could be the cause for the reduction, at all concentrations, of the 
 

614 phosphorylation of GSK-3β in the hippocampus and, consequently, for the described 
 

615 long-term potential concentration-dependent effects, leading to a loss of neuronal 
 

616 plasticity. Moreover, this study showed, for the first time, the prevention of the 
 

617 neurotoxic effects caused by MC-LR by simultaneous treatment with a GSK-3β 
 

618 inhibitor. 

 

619 In agreement with Li et al. (2012a, b), an investigation of the effects of MC-LR 
 

620 on learning and memory ability in rats was performed by Li et al. (2014), obtaining that 
 

621 the rats exposed to the highest dose presented prolonged escape latencies on the third 
 

622 day of training, while those exposed to lower doses had shorter frequencies entering the 
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623 enlarged platform. Despite no significant differences in the number of damaged neurons 
 

624 were observed, an increase of astrocyte cells density in the hippocampus was reported 
 

625 after the exposure to the highest dose. This could be related to the increase of nitrogen 
 

626 reactive species, an inflammatory indicator, reported in the hippocampus at the same 
 

627 dose, playing a role in the central neuron system inflammatory reactions and affecting 
 

628 spatial memory impairment. 

 

629 The only study evaluating the transmission of the toxic effects of MC-LR in 
 

630 female rats to offspring was performed by Li et al. (2015b). In maternal rats, a decrease 
 

631 in the mean body weight gain was significant only at the highest dose of exposure. 
 

632 Respecting the behavior of the offspring, a significant reduction of the ability in the cliff 
 

633 avoidance test was observed, although no differences were perceived after the surface 
 

634 righting reflex and the negative geotaxis tests. However, no significant alterations in the 
 

635 locomotor activity were observed. In the MWM test, the frequencies in reaching the 
 

636 platform zone decreased dose-dependently in male offspring at all exposure doses, 
 

637 while in the case of female offspring, the diminishment of frequency was produced only 
 

638 after exposure to the highest doses, together with the effects on the swimming speed. 
 

639 Furthermore, although no evident pathological alterations in the hippocampus were 
 

640 observed, a significant increase of LPO and SOD levels were reported in male and 
 

641 female offspring after exposure to the highest dose, and an increase of LPO levels after 
 

642 5 µg/kg MC-LR exposures only in male subjects. 

 

643 Recently, Zhang et al. (2018) indicated an accumulation of MC-LR in the 
 

644 hippocampus after 24 hours of injection, causing demethylation of PP2Ac (inhibition of 
 

645 PP2Ac) and phosphorylation of GSK-3β (activation of GSK-3β). This could lead to the 
 

646 hyperphosphorylation of Tau, being in agreement with Li et al. (2012b) and Wang et al. 
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647 (2013). These results confirm the effects obtained, as mentioned above, in the SH- 
 

648 SY5Y in vitro model in the same study (Zhang et al., 2018). Moreover, going along 
 

649 with the results obtained in the MWM test by Li et al. (2012a, b, 2014, 2015b), a 
 

650 reduction of the swimming distance spent in the target zone was observed as well, in 
 

651 this case, after day 8 compared to day 6, producing, consequently, memory 
 

652 impairments. 

 

653 Although they represent a more realistic scenario, only two neurotoxicity studies 
 

654 have been carried out with MCs contained in extracts of cyanoblooms. In this sense, 
 

655 Maidana et al. (2006) used the step-down inhibitory avoidance test by injection of MC- 
 

656 LR containing raw extract. They reported a significant effect on long-term memory and 
 

657 the impairment of its retrieval at both doses assayed, while no significant changes were 
 

658 produced in short-term memory at any dose. Furthermore, using the radial arm maze to 
 

659 test the spatial memory, the number of working and reference memory errors increased 
 

660 only at day 8 of exposure at both concentrations, being probably caused by the 
 

661 accumulation of previous extracts-administrations. Surprisingly, an increase of the time 
 

662 spent to consume all the baits was reported in the same test only at the lowest dose. 
 

663 Moreover, these authors also studied different oxidative stress parameters, obtaining 
 

664 higher GST activity after exposure to the lowest dose compared to the highest. In the 
 

665 case of LPO levels, higher levels were obtained after exposure to the highest MCs dose, 
 

666 although the lower dose also caused lipid peroxidation. These parameters could be the 
 

667 cause for the increase of DNA damage observed after exposure to MCs in the comet 
 

668 assay, corroborating the role of oxidative stress in the neurotoxic effects produced by 
 

669 MC-containing extracts, as was previously demonstrated with pure MCs (Li et al., 
 

670 2012a, 2015b). In agreement with these oxidative stress results, Zhao et al. (2015a) 
 

671 obtained an increase in the LPO levels in the brain of the pups after maternal exposure 
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672 to MCs-extract, together with a decrease in the GSH levels and in AChE activity in the 
 

673 cerebral cortex. Moreover, although these authors verified the presence of MC-LR in 
 

674 the offspring brains, no changes were obtained in the PP activity after maternal 
 

675 exposure, which would be in disagreement with the PP activity enhancement reported 
 

676 by Wang et al. (2013) and its decrease reported by Li et al. (2012b) and Zhang et al. 
 

677 (2018). This could be due to the experimental subjects since in both cases the parameter 
 

678 was measured in a direct object, the adult rats, versus an indirect object, their pups; or 
 

679 the discordance in the administration route, being, in this case, subcutaneous. 
 

680 Furthermore, similar ultrastructural changes were obtained in brain offspring by Li et al. 
 

681 (2012a). Likewise, an alteration of proteins involved in neurodevelopment was detected 
 

682 as well, in agreement with Li et al. (2012b). 

 

683 Taken together, all the experiments conclude that MCs both pure and contained 
 

684 in cyanoblooms extracts produced important neurotoxic effects in several species by 
 

685 different exposure routes. Mostly, MCs caused oxidative stress and alteration of 
 

686 biochemical chains that ended up leading to huge effects such as hyperphosphorylation 
 

687 of Tau. In fact, most of them demonstrate the spatial learning and memory impairment 
 

688 by several behavioral tests. Howbeit, very few studies have been performed using other 
 

689 MC congeners   besides   MC-LR, isolated   and   contained   in   the   mixture   in   a 
 

690 cyanobacterial extract, although some of them have demonstrated to exert more severe 
 

691 neurotoxic effects, being the case of MC-LF for instance. 

 

692 3. Cylindrospermopsin 

 

693 Cylindrospermopsin consists of a tricyclic guanidine group combined with a 
 

694 hydroxylmethyl uracil group (Ohtani et al., 1992). Its structure presents a zwitterionic 
 

695 nature and a low molecular weight (415 Da) (Falconer and Humpage, 2006). This 
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696 cyanotoxin is produced by several cyanobacterial genera such as Cylindrospermopsis, 
 

697 Aphanizomenon, Umezakia, Chrysosporum, and Anabaena, among others (Harada et al., 
 

698 1994; Banker et al., 1997; Shaw et al., 1999; Schembri et al., 2001) (Fig. C). 

 

699 Despite being the liver its main target, many other organs such as kidneys, lungs, 
 

700 thymus, marrow bone, adrenal gland, gastrointestinal tract, immune and nervous 
 

701 systems, and heart have been described as potential targets as well (Hawkins et al., 
 

702 1985; Terao et al., 1994; Falconer et al., 1999; Humpage et al., 2000; Guzmán-Guillén 
 

703 et al., 2015). The most well-known mechanism of action for CYN is the protein and 
 

704 GSH synthesis-inhibition (Terao et al., 1994; Runnegar et al., 1995; Froscio et al., 
 

705 2003). In addition, due to its ability to enhance ROS production, this toxin can lead to 
 

706 DNA damage, causing cell death by apoptosis (Roos and Kaina, 2006; Gutiérrez-Praena 
 

707 et al., 2011; Puerto et al., 2011; Gutiérrez-Praena et al., 2012; Guzmán-Guillén et al., 
 

708 2013). Moreover, some studies have demonstrated the importance of its previous 
 

709 metabolic activation by the enzymatic complex cytochrome P-450, since it is able to 
 

710 exert genotoxic potential (Runnegar et al., 1995; Norris et al., 2002; Froscio et al., 2003; 
 

711 Humpage et al., 2005; Zegura et al., 2011; Puerto et al., 2018). As a cytotoxin, these 
 

712 effects could be also caused in the nervous system. Besides, it is important to notice that 
 

713 the chemical structure of CYN is more alike to neurotoxins than to hepatotoxins, as it 
 

714 was classified at first, not being unexpected for this cyanotoxin to also cause 
 

715 neurological disorders (Kiss et al., 2002). Furthermore, although it is not likely for CYN 
 

716 to cross the BBB by passive diffusion due to its hydrophilic properties (Banks et al., 
 

717 2009), its low molecular weight might play a role in its entrance to the nervous system. 
 

718 There are some studies pointing out its neurotoxicity in different in vitro and in vivo 
 

719 models, although the mechanisms for which CYN could exert neurotoxic effects in the 
 

720 brain remain unknown. 
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721 3.1. Neurotoxicological in vitro studies performed with cylindrospermopsin 

 

722 Up to date, in comparison with MCs, very few studies have brought to light the 
 

723 potential neurotoxicity CYN can exert (Table 5). Furthermore, most of them have been 
 

724 performed using extracts or cultures of Cylindrospermopsis raciborskii or 
 

725 Aphanizomenon ovalisporum. In this sense, the first study suggesting its neurotoxic 
 

726 effect was performed by Kiss et al. (2002), who exposed CNS neurons of two species of 
 

727 snail, Helix pomatia L. and Lymnaea stagnalis L., to a C. raciborskii purified fraction 
 

728 and ATX-a. They suggested that the purified fraction could be CYN, and although it 
 

729 had no direct effect on the membrane of the neurons, it decreased the ACh-induced 
 

730 membrane response, suggesting a neuroactive effect on the cell membrane for the first 
 

731 time. On the contrary, Vehovszky et al. (2013) reported that application of a CYN- 
 

732 producing strain to CNS preparations of H. pomatia (at 20 mg/mL) did not display the 
 

733 same cholinergic inhibitory effects, although these were observed after exposure to a 
 

734 non-CYN-producing C. raciborskii bloom, which authors attribute to some ATX-a like 
 

735 compound. 

 

736 In the case of CYN, contrary to MCs, there is only one work with pure toxin, 
 

737 performed by Takser et al. (2016). These authors evaluated in vitro the individual and 
 

738 combined effects of CYN, MC-LR and ATX-a, at environmentally relevant low 
 

739 concentrations (10 µM alone and 3.3 µM in mixture), in brain cell lines. Their findings 
 

740 revealed that CYN individually and the mixture containing CYN were 3-15 times more 
 

741 potent than the individual toxins, inducing apoptosis and inflammation in murine BV-2 
 

742 microglia cells and N2a murine neuroblasts cells. Besides, the latest were more 
 

743 sensitive to the mixture than BV-2 cells, causing a meaningful pro-inflammatory 
 

744 response to CYN and the mixture, demonstrating that low concentrations of CYN are 
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745 highly relevant for neurodegeneration. These outcomes could have potential 
 

746 implications in future research on neurodegenerative diseases. Nevertheless, care should 
 

747 be taken in the extrapolation of these in vitro results to in vivo circumstances, including 
 

748 human health effects, mainly concerning the developing brain where there is no BBB 
 

749 yet. 

 

750 3.2. Neurotoxicological in vivo studies performed with cylindrospermopsin 

 

751 Studies concerning CYN neurotoxicity in vivo are scarce (Table 5), although 
 

752 they provide interesting results. In this regard, White et al. (2007) reported that 7 day- 
 

753 exposure of Bufo marinus tadpoles to whole cell extracts or live cultures of 
 

754 C. raciborskii at 400 or 232 µg/L, respectively, appeared to decrease their activity 
 

755 levels, mostly swimming behavior, which could make them more vulnerable to prey, 
 

756 but also be used as an avoidance strategy from visually-oriented hunters. This effect, 
 

757 however, might have been caused by damage in some other organs. It is worth to 
 

758 mention that live C. raciborskii cultures contained a mixture of intra- and extracellular 
 

759 CYN, whereas the cell extracts only had extracellular CYN, and they also reported the 
 

760 presence of deoxy-CYN. This work by White et al. (2007) was the first one using 
 

761 amphibians as experimental model, whose changes in behavior gain relevance as they 
 

762 are usually the first indication of sublethal exposure (Henry, 2000), being a possible 
 

763 indicator of CYN neurotoxicity. In agreement with these results, Kinnear et al. (2007), 
 

764 using the same model and conditions, but nearly half the concentrations (200 and 107 
 

765 µg/L, for the cell extracts and the live cultures, respectively), reported a reduction in the 
 

766 swimming ability and un-coordination in tadpoles of B. marinus. They suggested that it 
 

767 could be due to the disintegration of the brain, as the encephalon had a loosely arranged 
 

768 matrix and brain cells were disintegrated and sometimes necrotic, showing a mix of the 
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769 outer matrix and inner cells, together with general organ failure. Besides, authors also 
 

770 hypothesized that degeneration of the gill epithelia could have led to suffocation, and 
 

771 finally to the consequently reduced activity. 

 

772 To our knowledge, there are only two studies concerning the neurotoxicity of 
 

773 CYN in fish. CYN was detected by ELISA in the brain of all tilapia fish (Oreochromis 
 

774 niloticus) exposed subchronically (14 days) by immersion to repeated concentrations 
 

775 (10 µg/L) of an A. ovalisporum culture containing CYN and deoxy-CYN (Guzmán- 
 

776 Guillén et al., 2015). As a result, a marked increase in LPO levels, and a reduction in 
 

777 AChE activity in tilapia brains was observed, although the inhibition of AChE activity 
 

778 was too low to induce neurological symptoms. In addition, signs of necrosis, 
 

779 vacuolization, chromatin condensation, cytoplasmic edema and mitochondrial swelling 
 

780 were reported as well. Recently, detection of CYN has also been reported in brains of 
 

781 the fish Hoplias malabaricus exposed by a single i.p. injection (50 µg/kg b.w.) to 
 

782 purified CYN or to extracts of a CYN-producing strain of C. raciborskii, even 7 and 14 
 

783 days after exposure (da Silva et al., 2018). In addition, detected CYN levels were higher 
 

784 after exposure to the extracts, which could point out the importance of other compounds 
 

785 in the extract (i.e. lipopolysaccharides) that might also affect CYN crossing of the BBB. 
 

786 Nonetheless, no significant effects were noticed on AChE activity after CYN exposure 
 

787 in any form tested, contrary to the results obtained by Guzmán-Guillén et al. (2015), 
 

788 which could be due to differences in the exposure concentrations and times (subchronic 
 

789 versus acute exposure) or in the fish species, although both studies agree on the rise of 
 

790 LPO levels. Moreover, GSH levels did not vary in H. malabaricus after exposure to 
 

791 CYN, but different responses were obtained for GST activity for extracts and pure 
 

792 CYN. To exert neurotoxic effects, toxins must be transported into cells or interact with 
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793 channels or receptors of the cell membrane (Stillwell, 2013), suggesting the interference 
 

794 of other compounds present in the extract (da Silva et al., 2018). 

 

795 Some neurological symptoms after exposure of alligators (Schoeb et al., 2002) 
 

796 and mice (Saker et al., 2003, Zagatto et al., 2012) to C. raciborskii strains have been 
 

797 attributed to CYN (Poniedzialek et al., 2012). However, it is important to clarify that 
 

798 neither of these studies proved the presence of CYN in those strains, so the reported 
 

799 effects might be due to different compounds present in the extracts or different 
 

800 secondary metabolites, such as STX. 

 

801 4. Conclusions 
 

 

802 This review summarizes, as far as we know, the reports available on the 
 

803 scientific literature dealing with the neurotoxicity assays performed in vitro and in vivo 
 

804 to elucidate the toxic effects that MCs and CYN can exert in the nervous system. In the 
 

805 case of MCs,  they have  proven to cause neurotoxicity by their  crossing using the 
 

806 OATPs, which are present in the BBB and in most neural cells, leading to a rise in the 
 

807 [Ca2+]i levels and, therefore, apoptosis. These cyanotoxins have demonstrated to exert 
 

808 neurotoxic effects mostly in the limbic system. In fact, some histopathological studies 
 

809 have described important damages in the hippocampus and in the cortex, together with 
 

810 global biochemical alterations, being especially  relevant Tau hyperphosphorylation, 
 

811 characteristic of some neurodegenerative diseases such as Alzheimer’s disease. On the 
 

812 other hand, these toxins have proven to cause damage in the hypothalamus as well, 
 

813 having an impact in other systems of the organism such as the reproductive or the 
 

814 endocrine. Furthermore, MCs have exerted a rise in oxidative stress and lipid 
 

815 peroxidation, together with neurotransmission alterations (DA, ACh and GABA levels), 
 

816 leading to autonomic and sensory responses. Thus, MCs not only cause effects in the 
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817 CNS but also in the peripheral nervous system. Furthermore, some other minor variants 
 

818 such as MC-LF or MC-LW require attention as well, since both have demonstrated to 
 

819 be even more toxic in neural cells, in spite of being less environmentally abundant. 
 

820 Special attention should be paid to the fact that very little studies have been carried out 
 

821 in vivo using one of the major congeners in nature, MC-RR. In the case of CYN, the 
 

822 number of studies performed is even scarcer, reporting deregulation of some oxidative 
 

823 stress parameters was observed together with alteration of AChE activity, which could 
 

824 be linked   to   the   histological   changes   observed.   Thus, although   neurotoxicity 
 

825 mechanisms for CYN are still unknown, it seems to be caused by damage in the CNS. 
 

826 For all mentioned above, further research is required in order to clarify the neurotoxic 
 

827 potential of several MC congeners and CYN, as well as their possible contribution in 
 

828 neurodegenerative diseases. 
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Table 1. 

 

 
 

Toxin 

 
 

Chemical structure 

Molecular properties 
Environmental concentrations 

Molecular 

weight 

[M+H]+ 

Molecular 

composition 

 

Kow 
BCF 

Plants 

In surface waters 

(µg/L) 

In mollusks and fish 

samples 
(ng/g d.w) 

 
 

MC-LR 

 

Cyclo(-D-Ala-L-Leu-D-erythro-β- 

methylAsp(iso-linkage)-L-Arg-Adda-D- 

Glu(iso-linkage)-N-methyldehydro-Ala 

 
 

995.5561 

 

C49H75N10O12 

 

2.16 

(Ward and 

Codd, 1999) 

Up to 

680.05±40.88 

(Romero-Oliva et 

al., 2014) 

 

Up to 2100 

(Faasen and 

Lurling 2013) 

 

Up to 130 in fish muscle 

(Roy-Lachapelle et al., 

2015) 

 

MC-LF 

Cyclo(-D-Ala-L- Leu -D-erythro-β- 

methylAsp(iso-linkage)-L-Fe-Adda-D- 

Glu(iso-linkage)-N-methyldehydro-Ala 

 

986.5234 

 

C52H72N7O12 

3.56 

(Ward and 

Codd, 1999) 

 

nf 

Up to 51 

(Graham et al., 

2010) 

Up to 300 in common carp 

(Gurbuz et al., 2016) 

 

MC-LW 
Cyclo(-D-Ala-L- Leu -D-erythro-β- 

methylAsp(iso-linkage)-L-Trp-Adda-D- 
Glu(iso-linkage)-N-methyldehydro-Ala 

 

1025.5343 

 

C54H73N8O12 

3.46 

(Ward and 

Codd, 1999) 

 

nf 
Up to 260 

(Faasen and 
Lurling 2013) 

Up to 15.5 in bivalves 

(Preece et al., 2015) 

 
MC-RR 

Cyclo(-D-Ala-L- Arg -D-erythro-β- 

methylAsp(iso-linkage)-L- Arg -Adda-D- 

Glu(iso-linkage)-N-methyldehydro-Ala 

 
1038.5731 

 
C49H76N13O12 

1.54 

(Liang et al., 

2011) 

Up to 

54.09±17.01 

(Romero-Oliva et 

al., 2014) 

Up to 16000 

(Graham et al., 

2010) 

Up to 463000 in silver 

carp 

(Xie et al., 2007) 

 

MC-YR 
Cyclo(-D-Ala-L-Tir-D-erythro-β- 

methylAsp(iso-linkage)-L- Arg -Adda-D- 
Glu(iso-linkage)-N-methyldehydro-Ala 

 

1045.5353 
 

C52H73N10O13 

 

nf 

 

nf 
Up to 343 

(Simiyu et al., 
2018) 

Up to 20000 in bivalves 

(Kim et al., 2017) 

 
 

CYN 

2,4(1H,3H)-Pyrimidinedione, 6-[(R)- 

hydroxy[2aR,3S,4R,5aR,7S)- 

2,2a,3,4,5,5a,6,7-octahydro-3-methyl-4- 

(sulfooxy)-1H-1,8,8b-triazaacenaphthylen- 
7-yl]methyl]-, rel-(-)- (9CI) 

 
 

416.1234 

 

C15H21N5O7S 

 
Highly water- 

soluble 

 

Up to 3.88±0.33 

(Cordeiro-Araújo 

et al., 2017) 

 

Up to 800 

(Shaw et al., 

2000) 

 

Up to 200 in crayfish 

(Saker ans Eaglesham, 

1999) 

Abbreviations: BCF: bioconcentration factor; d.w: dry weight; Kow : octanol/water partition coefficients; nf: not found; 



 

 
 
 
 

 
Table 2. 

 

Toxin 
Experimental 

model 

Experimental 

conditions 
Assays Performed Relevant results LC50 References 

 

Pure MC-LR 

Pure MC-LW 

Pure MC-LF 

 
Primary 

murine WBC 

 

0, 0.2, 0.4, 0.6, 

0.8, 1, 3 and 5 

µM for 48 hours 

 
MTT assay 

PPI assay 

At 5 µM, complete loss of cell viability by MC-LF, decrease of 

cell viability by MC-LR and MC-LW (54% and 33%, 

respectively). 

Decrease of cell viability after exposure to -LF, -LW and -LR 

to ≥ 200 nM, ≥ 400 nM and ≥ 600 nM, respectively. 

 

>10 µM 

3 µM aprox 

3 µM aprox 

 

Feurstein 

et al. 

(2009) 

Pure MC-LR 

Pure MC-LW 

Pure MC-LF 

Primary 

murine 

neurons 

0, 0.31, 0.63, 

1.25, 2.5, and 5 

µM for 48 hours 

 
PPI assay 

20% inhibition of PP activity at low MCs concentrations. 

Decrease of activity at 2.5 µM by 25% (-LR), 30% (-LW), and 

60% (-LF). 
Decrease of PP activity by 65% at 5 µM -LF. 

 
- 

Feurstein 

et al. 

(2010) 

 

 

 

 

Pure MC-LR 

Pure MC-LW 

Pure MC-LF 

 

 

 

 

Primary 

murine CGNs 

 

 

 

 
0, 0.2, 0.4, 0.5, 

0.6, 0.8, 1, 3, 5 

and 10 µM for 

48 hours 

 

 

 
MTT assay 

Apoptosis 

Morphology 

PPI assay 

Tau phosphorylation 

At 5 µM, decrease of cell viability by -LR (to 70%), -LW (to 

50%) and -LF (to 8%). 

3-5 µM -LF caused the highest level of apoptosis. Apoptotic 

nuclei at 5µM -LW while -LR did not induced them at any 

concentration assayed. 

Enhance of caspase-3/7 activity for -LF and -LW, and no 

changes for -LR. 

-LF caused a complete disintegration of the neurite network, 

whereas -LR induced a slight impairment. 

No statistical differences in PPI of -LR, while -LF induced a 

concentration-dependent inhibition from 2.5 µM. 

Tau phosphorylation fast and potent for -LF, being less evident 

for -LW, and with a low constant signal for -LR. 

 

 

 

 

>10 µM 

5 µM 

1.5 µM aprox 

 

 

 

 

Feurstein 

et al. 

(2011) 

 

 

 
Pure MC-LR 

 

 

Differentiated 

PC12 cells 

 

 
0, 0.1, 0.5, 1, 5 

and 10 µM for 6 

hours 

 
 

PPI assay 

Tau phosphorylation 

p38-MAPK activation 

Morphology 

MC-LR caused a concentration-dependent significant inhibition 

of PP2A by 27.4% at low concentrations, by 36.5% at 5 µM 

and by 60.5% at 10 µM, leading to Tau hyperphosphorylation. 

Drastic enhance of p38-MAPK phosphorylation with 10 µM 

MC-LR. 

Loss of the regular filamentous distribution and decrease of 

tubulin and actin fibers in the cytosol, enhancing in the 

periphery. 

 

 

 
- 

 

 

Meng et al. 

(2011) 

Pure MC-LR 
Differentiated 
PC12 cells 

0, 1, 2.5, 5, 7.5 
and 10 µM for 

ROS 
Tau phosphorylation 

MC-LR induced a concentration- and time-dependent alteration 
of intracellular ROS until 6 hours of exposure, recovering to the 

- 
Meng et al. 
(2013) 



 

 

 
 

  24 hours p38-MAPK activation baseline at 18 hours. A Tau phosphorylation was observed from 

1 hour of exposure, reaching the highest effect at 3 hours, and 

gradually decreasing to basal levels. 

Enhance of p38-MAPK activation from 1 to 24 hours of 

exposure. 

  

 
 

Pure MC-LR 

 

Primary 

hippocampal 

neurons 

 

0, 0.1, 0.3, 1, 3, 

10 and 30 µM 

for 24 hours 

 
MTT assay 

Calcium mobilization 

Decrease of cell viability by MC-LR in a concentration- 

dependent way. 

Enhance of apoptotic and necrotic neurons number with 1 µM 

MC-LR. The toxin induced a concentration-dependent 

intracellular calcium mobilization. 

 
 

10 µM aprox 

 
Cai et al. 

(2015) 

 

 

 
Pure MC-LR 

 

 
Primary 

hippocampal 

neurons 

 

 

0, 0.3 and 3 µM 

for 48 hours 

 
 

Proteome analysis 

CaN activity 

MTT assay 

LDH release 

Alteration of 45 proteins implied in calcium-ion signal 

transduction, apoptosis, oxidative stress response, and 

cytoskeleton structure. 
Enhance of CaN levels. 

Decrease of cell viability at the highest MC-LR concentration 

assayed. 

Enhance of LDH release with the increment of the 

concentration. 

 

 

 
- 

 

 

Li et al. 

(2015a) 

 

 
Pure MC-LR 

 

BV-2 cells 

N2a cells 

 
0, 0.1 and 10 

µM for 24, 48 

and 72 hours 

 

 
MTT assay 

BV-2 cells exposed to MC-LR never reached LD50 levels at any 

of the exposure times, but significant decrease of viability after 

24 hours at both MC-LR concentrations, and only at 10 µM 

after 48 and 72 hours. 
Decrease of cell viability after exposure to both concentrations 

assayed after 24, 48 and 72 hours in N2a cells. 

 

>10 µM 

10 µM aprox 

 

Takser et 

al. (2016) 

 
 

Pure MC-LR 

 
 

GT1-7 cells 

 

0, 0.01, 0.05, 

0.1, 0.5 and 1 

µM for 48 hours 

 
Toxin uptake 

CCK-8 test 

Uptake of MC-LR into cells was confirmed by western-blot, 

since it covalently bound to the PP1 and PP2A catalytic 

subunits. 

Decrease of cell viability in a concentration-dependent way. No 

affectation when deprived from the Oatp1a5 transporter. 

 
 

- 

 
Ding et al. 

(2017) 

 

Pure MC-LR 

Pure MC-LW 

Pure MC-LF 

 
Primary rat 

astrocytes 

 
0, 0.5, 2 and 10 

µM for 24 hours 

MTT assay 

Apoptosis 

Immunocytochemistry 

Morphology 

Intracellular localization of MCs using immunocytochemistry. 

Cytoskeletal disruption, decrease of cell viability and enhance 

of number of apoptotic cells after MC-LW and MC–LF 

exposure. 
MC-LR did not cause any of the alterations above. 

 
 

- 

 
Rozman et 

al. (2017) 

Pure MC-LR 
SH-SY5Y 
cells 

0, 5 and 10 µM 
for 24 hours 

Toxin uptake 
Tau phosphorylation 

Uptake of MC-LR into cells confirmed by western-blot, using 
PP1 and PP2A catalytic subunits-antibodies. 

- 
Zhang et 
al. (2018) 



 

 

 
 

   PPI assay 

LDH release 

Enhance of Tau phosphorylation the concentration of 

accumulated MC-LR. 

The PP2A activity was inhibited in a concentration-dependent 

way. 

The highest MC-LR concentration caused cell dead, related to 

Tau phosphorylation. 

  

 

 

Abbreviations: BV-2: cellosaurus cell line; CaN: calcineurin; CCK-8: cell counting kit-8 test; CGNs: cerebellar granule neurons; GT1-7: hypothalamic neuronal mouse cells 1-

7); LDH: lactate dehydrogenase; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; N2a: fast-growing mouse neuroblastoma cells; Oatp: organic-anion- 

transporting-polypeptide; p38-MAPK: P38 mitogen-activated protein kinases; PC12: pheochromocytoma of rat adrenal medulla; PP: protein phosphatase; PPI assay: protein 

phosphatase inhibition assay; ROS: reactive oxygen species; SH-SY5Y: Homo sapiens bone marrow neuroblast; WBC: whole brain cells. 



 

 
 
 
 

 

Table 3. 
 

 

Microcystin 

congener/Cyanobacteria 

 

Experimental 

model 

 

Experimental conditions 

 

Assays performed 
 

Relevant Results 

 
References 

Aquatic animals 

Pure MC-LR Zebrafish 

(Danio rerio) 

0.5, 5 or 15 µg/L for 25 days 

and 50 µg/L for 6 days, by 

oral and transdermal route 

Behavioral study The motility showed a dose-effect 

relationship and changes in the 

circadian rhythm 

Baganz et al. 

(1998) 

Pure MC-LR Zebrafish 
(Danio rerio) 

0.5, 5 or 15 µg/L for 17 days 

and 50 µg/L for 6 days, by 

oral and transdermal route 

Behavioral study Lower concentrations increased 

motility, whereas the highest one 

decreased the activity of both species. 

D. rerio was less sensitive. Despite D. 

rerio remained diurnally active, the 

swimming activity of L. delineatus was 

altered, reversing diurnal and nocturnal 
activity 

Baganz et al. 

(2004) 

Sunbleak 

(Leucaspius 

delineatus) 

Pure MC-RR Peppered catfish 

(Corydoras paleatus) 
0.5, 2, 5 or 10 µg/L for 24 

hours, by oral and 

transdermal route 

Oxidative stress 

parameters (GR, 

POD, GPx, CAT 
and LPO) and 

detoxification 

system (GST 

activity) 

Increased LPO levels in brain of 

exposed fish, and a general activation 

of the antioxidant enzymatic system 

Cazenave et 

al. (2006) 

Pure MC-RR Onesided livebearer 

(Jenynsia 

multidentata) 

0.01, 0.1 or 1 µg/g for 24 

hours, by oral route 

Swimming activity 

and detoxification 

system (GST 
activity) 

Low doses increased swimming 

activity, while the highest dose headed 

to small reduction after 20 hours 

Cazenave et 

al. (2008) 

Pure MC-LR Zebrafish 

(Danio rerio) 
2 or 20 µg/L for 30 days, by 

oral and transdermal route 

Protein expression Oxidative stress, dysfunction of 

cytoskeleton assembly and 

macromolecule metabolism, and 

interference with signal transduction 

and other functions in brain. The PP 
activity rose with MC-LR concentration 

Wang et al. 

(2010) 

Pure MC-LR Zebrafish 0.2, 0.5, 2 and 5 mg/L at 96 Protein and gene Upregulation of CKs and DRP2 Li et al. 



 

 

 
 

 (Danio rerio) hpf, by oral and transdermal 
route 

expression  (2011b) 

M. aeruginosa containing MC- 

LR 

Rainbow trout 

(Oncorhynchus 

mykiss) 

0.75, 1.8 and 5µg/L for 96 

hours, by oral and 

transdermal route 

Oxidative stress 

parameters (GST 

activity, LPO 

levels), PBP and 
AChE activity 

Neither GSH activity nor LPO altered. 

Lower levels of PBP and AChE 

Gélinas et al. 

(2012) 

M. aeruginosa containing MC- 

LR 

Zebrafish 

(Danio rerio) 
50 or 100 µg/L for 24 hours, 

by branchial and oral route 

AChE activity and 

protein and gene 

expression of 

whole brain 

Enhancement of the AChE activity 

depending on the exposure route 

Kist et al. 

(2012) 

Pure MC-LR and MC-RR Zebrafish 

(Danio rerio) 

0.1, 0.5, 1, 5 or 10 µg/L for 

4, 7 and 15 days, by oral and 

transdermal route 

Antioxidant 

enzymatic 

activities (GST, 

GPx, GR and 
SOD) 

A bell shaped curve of response for 

most of the parameters 

Pavagadhi et 

al. (2012) 

Crude algae containing MC-RR Goldfish 

(Carassius auratus) 

0, 50 or 200 µg/kg b.w., 

tested at 6, 12, 24 and 48 

hours, by intraperitoneal 

injection 

Glucose levels and 

antioxidant 

enzymatic 

activities (TAOC, 

SOD, CAT and 

GPx), 

histopathological 

study and protein 

and gene 

expression of 
globin proteins 

The injection before hypoxia and 

reoxygenation reduced antioxidant 

capacity in most organs. Myoglobin and 

neuroglobin mRNAs were induced in 

the brain 

Okogwu et 

al. (2014) 

Planktothrix agardhii containing 

MC-YR and MC-LR 

M. aeruginosa containing MC- 

LR 

Zebrafish 

(Danio rerio) 
0.3, 1, 3 or 10 g d.w./L for 

96 hours, by transdermal and 

oral route 

Behavioral study Slight increase of movement in 

zebrafish embryos 

Jonas et al. 

(2015) 

Pure MC-LR Zebrafish 

(Danio rerio) 
0.8, 1.6 or 3.2 µg/L for 120 

hpf, by transdermal and oral 

route 

Developmental 

toxicity and 

locomotor study, 

ACh and DA 

levels, protein and 

Hypoactivity of larvae and alteration of 

the cholinergic system 

Wu et al. 

(2016) 



 

 

 
 

   gene expression 

related to 
development, 

AChE activity 

  

Pure MC-LR Zebrafish 

(Danio rerio) 
0.3, 3 or 30 µg/L for 90 

days, by transdermal and 

oral route 

Histopathological 

study and protein 

and gene 

expression of 

GABA and 
glutamate 

Edematous and collapsed myelinated 

nerve fibers, distention of endoplasmic 

reticulum and swelling mitochondria in 

brain 

Yan et al. 

(2017) 

Pure MC-LR Zebrafish 

(Danio rerio) 
1, 5 or 25 µg/L for 60 days, 

by transdermal and oral 

route 

Behavioral study, 

protein and gene 

expression, levels 

of MC-LR, DA, 
GABA, serotonin, 

ACh and DOPAC, 

and AChE activity 

Parental exposure resulted in MC-LR 

accumulation and developmental 

neurotoxicity in offsprings 

Wu et al. 

(2017) 

M. aeruginosa containing MC- 

LR 

Zebrafish 

(Danio rerio) 

0.02, 0.04 or 0.08 OD 

values, for 4 days, by 

transdermal and oral route 

Locomotor 

behavioral study, 

gene expression, 

AChE and DA 

levels 

Affectation of both cholinergic and 

dopaminergic systems changes in the 

gene transcription of the nervous 

system, and a decrease of the locomotor 

activity in larval zebrafish 

Qian et al. 

(2018) 

 

Abbreviations: ACh: acetylcholine; AChE: acetylcholinesterase; b.w.: body weight; CAT: catalase; CKs: creatine kinases; DA: dopamine; DOPAC: dihydroxyphenylacetic 

acid; DRP2: dihydropyrimidinase-like 2; d.w.: dry weight; GABA: gamma-aminobutyric acid; GPx: glutathione peroxidase; GR: glutathione reductase; GST: glutathione-S- 

transferase; hpf: hours post-fertilization; LPO: lipid peroxidation; OD: optical density; PBP: protein-bound phosphate; POD: guaiacol peroxidase activity; SOD: superoxide 

dismutase; TAOC: total antioxidant capacity. 



 

 
 
 
 
 

 
Table 5. 

 

CYN/Cyanobacteria 
Experimental 

model 
Experimental conditions Assays performed Relevant Results References 

In vitro 

Crude extracts of 

C. raciborskii 
Neurons of Helix 

pomatia 

Extracts of both the bloom sample 

and the laboratory isolate of the 

bloom were diluted in 

physiological Helix saline and 

applied by perfusion at a constant 
flow rate 

Electrophysiological 

experiments 

No cholinergic alteration was 

observed with the CYN-producing 

strain 

Vehovszky et 

al. (2013) 

Pure CYN N2a murine 

neuroblastoma 

derived cells 

0.001, 0.1 and 10 µM for 24, 48 

and 72 hours 
MTT assay 

Apoptotic cell death 

TNF-α measurement 

Concentration and time-dependent 

decrease of cell viability after all time 

exposures to both 0.1 and 10 µM. 
Significant rise in proapoptotic 

caspases after exposure to 10 µM 

Takser et al. 

(2016) 

BV-2 microglia 

murine cells 

Concentration-dependent decrease of 

cell viability after all exposure times 

to both 0.1 and 10 µM. Significant 

rise in proapoptotic caspases after 

exposure to 10 µM 

In vivo 

Whole cell extracts of 

C. raciborskii and live 

cultures of C. raciborskii 

Bufo marinus 

tadpoles 
0-200 and 0-107µg/L, 

respectively, for 7 days, by 
transdermal route 

Histopathological study No mortality observed. Several 

histopathological changes in the 
encephalon 

Kinnear et al. 

(2007) 

Whole cell extracts of 

C. raciborskii 

Bufo marinus 

tadpoles 
0-400 µg/L for 7 days, by 

transdermal route 

Behavioral studies 

Toxin analysis 

Decrease in behavior scores 

Neither mortality nor growth rates 
were affected 

White et al. 

(2007) 

Live cultures of 

C. raciborskii 
0-232 µg/L for 7 days, by 
transdermal route 

Decrease in behavior scores 

Time-dependent increase in mortality 

Negative growth rates 

A. ovalisporum culture 

containing CYN 

Tilapia fish 

(Oreochromis 

nicotilus) 

10 µg/L for 14 days, by 

transdermal and oral route 

AChE activity, LPO, 

histopathological study 

and ELISA 

Inhibition of the AChE activity 

Rise in LPO levels 

Necrosis, hyperemia, haemorrhagia 

and edema 
CYN detection in all brain samples 

Guzmán- 

Guillén et al. 

(2015) 



 

 

 
 

Purified CYN (CYNp) and 

extract of C. raciborskii 

containing CYN (CYNex) 

Trahira 

(Hoplias 

malabaricus) 

Single dose of 50 µg/kg b.w. for 7 

and 14 days by intraperitoneal 

injection 

AChE activity, GST 

activity, LPO and ELISA 

Increase of AChE activity after 7 days 

of exposure to CYNex, decreasing 

after 14 days. 

Decrease of GST after 7 days of 

exposure to CYNex and increase after 

7 days of exposure to CYNex and 

after 14 days of exposure to CYNp 

and CYNex. 

Rise in LPO levels after 7 and 14 days 

of exposure to CYNp and CYNex. 
Detection of CYN in brain 

da Silva et al. 

(2018) 

 

Abbreviations: A. ovalisporum: Aphanizomenon ovalisporum; AChE: Acetylcholinesterase; BV-2: cellosaurus cell line; b.w.: body weight; C. raciborskii: Cylindrospermopsis raciborskii; 

CYN: cylindrospermopsin; CYNp: purified cylindrospermopsin; CYNex: extract containing cylindrospermopsin; GST: glutathione-S-transferase; LPO: lipid peroxidation; MTT: 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; N2a: fast-growing mouse neuroblastoma cells. 



 

 
 
 
 

 
Table 4. 

 

 

Microcystin 

congener/Cyanobacteria 

 

Experimental 

model 

 

Experimental conditions 

 

Assays performed 
 

Relevant Results 

 
References 

Nematodes 

Pure MC-LR Caenorhabditis 

elegans 

1, 10, 20, 40, 80 or 160 

µg/L for 24 hours in sterile 

culture plates 

Behavioral study and gene 

expression 

Decrease of chemotaxis to NaCl and 

diacetyl from 40µg/L 

Decrease of thermotaxis from 20µg/L 

Decrease of expression patterns of 

sensory neurons (ASE, AWA, AFD and 

AIY) 

Li et al. 

(2009a) 

Pure MC-LR Caenorhabditis 

elegans 

1, 10, 20, 40 or 80 µg/L in 

different periods of time, 

in sterile culture plates 

Behavioral study, 

morphological changes, 

gene expression and life-cycle 

indices 

Decrease of head thrash, body bends 

Decrease of body size 

Enhance of gfp gene expression 

Decrease of life span, brood size, 
generation time 

Li et al. 

(2009b) 

Pure MC-LR Caenorhabditis 

elegans 

0.1, 1, 10 or 100 µg/L for 

8 or 24 h, in 12-well sterile 

culture plates 

Behavioral studies, 

morphologic changes 

and gene expression 

Decrease of locomotion behavior 

Enhance of neuronal loss of GABAergic 

neurons, presenting aberrant neuronal 

morphology at 10-100 µg/L 

No changes in cholinergic, serotonergic, 

dopaminergic and glutamatergic neurons 

Decrease of Gene expression affecting 

GABAergic neurons 

Ju et al. 

(2013) 

Pure MC-LR Caenorhabditis 

elegans 

0.1, 1, 10 or 100 µg/L for 

24 or 72 hours, in sterile 

culture plates 

Behavioral study Decrease of body bends, move length, 

pharyngeal pumping frequency and 

touch response 

Alteration of the thermotactic behavior 

after 72 hours of exposure to 100 µg/L 

Ju et al. 

(2014) 

Microcystis aeruginosa culture 

containing MC-LR, MC-RR 

and MC-YR 

 
300 µg/L for 24 or 72 

hours, in sterile culture 

plates 

  

 
Enhance of motile and pumping activity 

 



 

 

 
 

Pure MC-LR Caenorhabditis 

elegans 

1, 10, 40, 80, 160, 320, 

500, or 1000 μg/L for 24 

hours, 
in sterile culture plates 

Function of sensory neurons Affectation of AWA sensory neurons, 

but not of AWC sensory neurons: MC- 

LF >MC-LR 

Moore et al. 

(2014) 

Pure MC-LF   

1, 10, 100, 160 or 320 

μg/L for 24 hours, in 

sterile culture plates 

   

Pure MC-LR Caenorhabditis 

elegans 

1, 50 or 100 µg/L in 

different periods for life 

cycle, in sterile culture 
plates 

Life-cycle indices and gene 

expression 

Decrease of lifespan, body length and 

brood size after 100 µg/L of exposure 

Alteration of genes expression after 100 
µg/L of exposure 

Saul et al. 

(2014) 

Birds 

Cyanobacterial biomass Japanese quail 0.045, 0.459, 4.605 or Oxidative stress parameters Alteration in brain, after acute exposure: Pašková et 

containing MC-LR, MC-RR, (Coturnix 46.044 µg/day for 10 or 30  Decrease of GSH, Enhance of TBARS, al. (2008) 

MC-YR and MCs similar coturnix days, by oral route  Enhance of EROD. After subchronic  

compounds japonica)   exposure: Enhance of GSH, Enhance of  

    GPx Enhance of TBARS, Enhance of  

    EROD  

Mammals 

MC raw extracts containing 

mainly [D-Leu1]MC-LR 

Rats 1 µL of extracts containing 

0.01 or 20 µg/L 

(equivalent to 0.045x10E- 

6 and 9.1x10E-5 µg/kg) by 

intrahippocampal injection 

Behavioral study, oxidative 

stress parameters and DNA 

damage 

Enhance of latency of long-term 

memory in rats exposed to 20 µg/L 

Decrease of latency of memory retrieval 

Enhance of working and reference 

memory errors after 8 days of exposure 

Enhance of GST activity in brain rats 

exposed to 0.01 µg/L 

Enhance of LPO content in brain rats 

exposed to 20 µg/L 

DNA damage in brain of both MCs 

doses treated rats 

Maidana et 

al. (2006) 

Extracted and purified MC-LR 

and MC-RR from blooms 

Rats 80 µg MC-LReq/kg b.w. 

injected i.v. 

The analysis was 

performed 1, 2, 4, 6, 12 

and 24 hours post-injection 

Determination of MCs content 

in different tissues by LC-MS 

MCs contents in brain (0.2%): 

2 > 24 > 1 > 12 > 6 ≈ 4 hours post- 

injection 

 
kidney>lung>stomach> liver> small 

Wang et al. 

(2008) 



 

 

 
 

    intestine> gonad> spleen> muscle> 
heart>brain 

 

Pure MC-LR Rats 1 µL containing 1 or 10 Behavioral study, Enhance of latencies to find the platform Li et al. 
  µg/L MC-LR (equivalent histopathological study and Decrease of swimming distance in the (2012a) 
  to 5x10E-6 or 5x10E-5 oxidative stress parameters target zone  

  µg/kg),  Swimming speed did not change  

  bilaterally injected into  Decrease of total hipoccampal neurons  

  hippocampal.  Highest MC-LR dose: Enhance of LPO,  

  Parameters were measured  Enhance of CAT, Enhance of GPx,  

  15 days post-injection  Enhance of SOD  

    Lowest MC-LR dose: Enhance of LPO,  

    Enhance of CAT  

Pure MC-LR Rats 1 or 10 µg/kg day i.p. 

injected for 50 days 

Behavioral study, 

histopathological study, protein 

expression, 

MC-LR content analysis 

Enhance of latencies to find the platform 

Decrease of swimming distance in the 

target zone 

Enhance of degeneration and apoptosis 

of hippocampal cells 

Hyperphosphorylation of tau 

41.6±8.45 ng/g d.w. of MC-LR was 

detected in brain of rats exposed to 10 
µg/kg day 

Li et al. 

(2012b) 

Pure MC-LR Rats 10 µL containing 5 or 25 

µg/L (equivalent to 

2.5x10E-4 or 1.25x10E-3 
µg/kg), by i.c.v. injection 

Electrophysiologycal studies Enhance of PPs activity 

Decrease of phosphorilated GSK-3β 

Decrease of LTP 

Wang et al. 

(2013) 

  
MC-LR + LiCl and 

SB216763 inhibitors of 
GSK-3β 

 
Inhibitors avoid effects produced by 

MC-LR 

 

Pure MC-LR Rats 0.2, 1 or 5 µg/kg every 2 

days for 8 weeks, by 

intragastric route 

Behavioral study, 

histopathological study and 

immunohistochemistry staining 

Enhance of escape latencies in 5 μg/kg 

MC-LR-treated rats 

Decrease of frequencies entering the 

enlarged platform in 1 and 5 μg/kg MC- 

LR-treated rats 
No significant differences in the number 

of damaged neurons 

Li et al. 

(2014) 



 

 

 
 

    Enhance of astrocyte density and NO 

concentration in hippocampus exposed 
to 5.0 μg /kg 

 

Pure MC-LR Rats 1, 5 or 20 µg/kg every 2 

days for 8 weeks, by 

intragastric route. Later the 

rats became pregnant of a 

non-exposed male 

Maternal toxicity and 

reproductive outcome, simple 

motor and locomotor activities, 

behavioral study and oxidative 

stress parameters 

Decrease of mean body weight gain in 

maternal rats. 

Decrease of number of pregnant rats 

Alteration of behavior and 

neurodevelopment in rat offsprings 

Enhance of MDA and SOD in 
hippocampus of offsprings 

Li et al. 

(2015b) 

Extracted and purified MC-LR 

from blooms 

Pregnant rats and 

pups 

10 μg/kg daily from day 8 

to postnatal day 15 
Oxidative stress parameters, 

determination of MC-LR, 

histopathological study and 

protein expression 

Enhance of MDA, Decrease of GSH 

andAChE activity 

No significant PPs changes 

3.75±0.94 ng/g d.w. were detected in 

brain of pup rats 

Morphological changes 

Alteration of proteins involved in 
neuronal processes in pup rats 

Zhao et al. 

(2015) 

Extracted and purified MC-LR 

from blooms 

Mice 1 µL containing 1-20 

ng/µL, by i.c.v. route. All 

parameters measured 3 

hours, 1 day, 3 day and 7 

day after exposure 

Behavioral study, 

histopathological study and 

oxidative stress parameters 

Decrease of memory impairment 

Morphological changes in hippocampal 

neurons from 10 ng/µL 

Enhance of protein oxidation, LPO, 
ROS, SOD, GPx and Nrf2 

Decrease of GSH/GSSG 

Shin et al. 

(2018) 

Pure MC-LR Mice 1, 5, 10, 20 or 40 µg/L 12 

weeks, by oral route 
Histopathological study and 

protein expression 

Pathological changes in hippocampus 

and cortical cells in a dose-dependent 

way. Differences between hippocampus 

and cerebral cortex in the affectation of 

mRNA and proteins expression: ATP6, 
COX3, CYTB, POLG, mtSSB and 

TFAM 

Wang et al. 

(2018) 

Pure MC-LR Rats 3 µL of 0.1 µg MC-LR/µL 

(equivalent to 1.5 µg/kg) 

via hippocampal injection. 

All parameters measured 

24 hours, before and after 

Protein expression and 

behavioral study 

Enhance of desmethylation of PP2Ac, 

phosphorylation of GSK-3β and tau, 

spatial memory deficit. 

Zhang et al. 

(2018) 



 

 

 
 

  exposure    

 

Abbreviations: AChE: acetylcholinesterase; ATP6: adenosine triphosphate-6 ; b.w.: body weight; CAT: catalase; COX3: cyclooxygenase-3 ; CYTB: Cytochrome B ; EROD: cytochrome 

P-450-dependent 7- ethoxyresorufin O deethylase; GLU: glucose; GPx: glutathione peroxidase; GSH: reduced glutathione; GSK-3β: Glycogen synthase kinase 3 beta; GSSG: oxidized 

gluthatione; GST: Glutathione-S-transferase; i.c.v.: intracerebroventricular; LPO: lipid peroxidation; LTP: long term period; MDA: malondialdehyde; mtSSB: mitochondrial single-

stranded DNA binding protein; NO: nitric oxide; POLG: DNA polymerase g; PP: protein phosphatase; PP2Ac: catalytic subunit of protein phosphatase 2A; ROS: reactive oxygen species; 

SOD: superoxide dismutase; TBARS: total thiobarbituric acid reactive species; TFAM: mitochondrial transcription factor A. 
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Table 1. Properties and environmental concentrations of some MCs congeners and CYN. 

Table 2. In vitro neurotoxicity studies after exposure to MCs. 

Table 3. In vivo neurotoxicity studies in several aquatic animal models exposed to MCs. 
 

Table 4. In vivo neurotoxicity studies in different terrestrial models exposed to MCs. 

Table 5. Neurotoxicity studies performed with CYN. 



 

 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 

 



 

 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure captions 

 
 
 

 

Figure captions: 
 

Figure A. Structure of MCs. 
 

Figure B. Main mechanisms of neurotoxic action of MCs. 

Figure C. Structure of CYN. 

Figure D. Main mechanisms of neurotoxic action of CYN. 


