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Abstract 

Context: Software applications exposing a high ability to be extended, changed or configured 

are usually referred to as Highly-Configurable Systems (HCSs). Testing techniques for HCSs 

aim at finding effective but manageable test suites that lead to the early detection of faults. 

Evaluating the effectiveness of these techniques in realistic environments is a must, but also a 

challenge due to the lack of HCSs with available code, configuration models and fault reports. 

Aim: In this chapter, we present the Drupal dataset, a collection of real-world data collected 

from the popular open-source Drupal framework. This dataset allows the assessment of 

variability testing techniques with real data of an HCS. Method: We collected extensive non-

functional data from the Drupal Git repository and the Drupal website, including code changes in 

different versions of Drupal modules (e.g., 557 commits in Drupal v7.22) and number of tests 

and assertions in the modules (e.g., 352 and 24,152, respectively). The faults found in different 

versions of Drupal modules were also gathered from the Drupal bug tracking system (e.g., 3,392 

faults in Drupal v7.23). Additionally, we provided the Drupal feature model as a representation 

of the framework configurability, with more than 2000 millions of different Drupal 

configurations; one of the largest attributed feature model published so far. With 125 citations 

since its publication, the Drupal dataset has become a helpful tool to researchers and 
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practitioners to conduct more realistic experiments and evaluations of HCSs. 

Keywords 

Highly-configurable systems, variability, testing, dataset, feature model, Drupal 

 

Background & Summary 

Highly-Configurable Systems (HCS) determines the ability of software applications to be 

extended, customized or configured [1]. Operating systems such as Linux [2] or development 

tools such as Eclipse [3] have been reported as examples of HCSs. Another prominent example 

of HCS is Software Product Lines (SPL) [4]. SPL engineering focuses on the development of 

families of related products through the systematic management of variability. For that purpose, 

feature models are typically used as the de facto standard for configurability modelling in terms 

of functional features and constraints among them [5]. The number of configurations in these 

models is potentially huge. This makes testing HCSs a challenge task. To address this problem, 

researchers have proposed numerous techniques to reduce the cost of testing in the presence of 

variability [1,3,6,7,8,9]. To evaluate these techniques, unrealistic experiments are usually carried 

out by researchers that employ synthetic feature models and data that introduce threats to validity 

and question their conclusions. This is due to the lack of real-world data available about HCSs 

that share code, test cases, detailed fault report or even a detailed documentation that enables the 

reproducibility of experiments in realistic environments [2]. 

 

In order to search for real-world HCSs with available code we followed the steps of previous 

authors and looked into the open source community. Particularly, we found the popular open-

source Drupal framework, a highly modular web content management written in PHP [10,11]. 
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Drupal has more than 30,000 modules that can be composed to form valid configurations of the 

system. Drupal provides detailed fault reports including fault description, fault severity, type, 

status and so on. The high number of the Drupal community members together with its extensive 

documentation have also been strengths to choose this framework, currently maintained and 

developed by a community of more than 630,000 users and developers. Drupal can be used to 

build a variety of web sites including internet portals, e-commerce applications and online 

newspapers. Drupal is composed of a set of modules. A module is a collection of functions that 

provide certain functionality to the system. According to the Drupal documentation, each module 

that is installed and enabled adds a new feature to the framework [11]. Thus, we propose 

modelling Drupal modules as features of the feature model.  

 

In this chapter, we present the Drupal dataset, a publicly available resource of valuable testing 

data about the Drupal framework and its modules. In particular, we provide the following 

information:  

1. The Drupal feature model. We model some of the main Drupal modules to features and 

represent the framework configurability using a feature model. The resulting model has 

48 features, 21 cross-tree constraints and represents 2.09E9 different Drupal 

configurations.    

2. Non-functional Drupal data. We report on extensive non-functional data extracted from 

the Drupal Git repository. For each feature under study, we report its size, number of 

changes (during two years), cyclomatic complexity, number of test cases, number of test 

assertions, number of developers and number of reported installations. The non-

functional data are modelled as feature attributes in the feature model. 
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3. History of Drupal faults. We present the number of faults reported on the Drupal features 

under study during a period of two years, extracted from the Drupal issue tracking 

system. Faults are classified according to their severity and the feature(s) that trigger it. 

Among other results, we identified 3392 faults in Drupal v7.23, 160 of them caused by 

the interaction of up to four different features. We replicated the study of faults in two 

consecutive Drupal versions, v7.22 and v7.23, to enable fault history test validations.  

 

As far as we know, the Drupal dataset has been used by numerous research articles to evaluate 

their HCS testing techniques. Proof of this are the 125 citations received since its first research 

publications [12,13,14]. Among others researches, Hierons et al. proposed a new testing 

technique to solve the many-objective optimisation problem that was evaluated with the Drupal 

dataset [15]. Previously, the same authors presented a proposal for obtaining the optimal 

selection of products from feature models using many-objective evolutionary optimization. The 

feasibility of this approach was assessed with data that included the Drupal dataset [16]. Fischer 

et al. performed an empirical assessment of similarity for testing software product lines and the 

Drupal dataset was key in their evaluation [9].  

 

Dataset Specification 

Subject Testing of highly-configurable systems 

Specific subject area Automated test case selection, prioritization and minimization of 

highly-configurable systems.  

Type of data Table 
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Model 

Figure 

How data were 

acquired 

Repository and bug tracking mining and literature review 

Software, console commands and manual data review 

Data format Link to the Drupal DataSet and experiments: 

https://github.com/belene/DrupalDataset 

Contains: 

Drupal feature model in SXFM format (XML format) 

Drupal feature model in FaMa format (XML format) 

Drupal feature data (CSV format) 

Drupal feature faults (CSV format) 

  

Analyzed 

Filtered 

Parameters for data 

collection 

We designed the Drupal feature module using 48 modules and 21 

dependencies identified among the modules. To analyse the 

effectiveness of non-functional data as bug predictors, we collected 

the commits made in modules and the faults recorded in two 

different versions of Drupal and in the period of two years, 

obtaining a total of 557 changes and 3,301 faults for Drupal v7.22. 

Description of data We followed a systematic approach and mapped each Drupal 

https://github.com/belene/DrupalDataset


6 

  

Information Classification: General 

collection module to a feature. We also used the dependencies defined in the 

information file of each Drupal module to model cross-tree 

constraints. We filtered the faults by feature name, framework 

version and dates. Then, the search was refined to eliminate the 

faults not accepted by the Drupal community. Next, we manually 

checked the bug reports of each candidate integration fault and 

discarded those not correctly identified. To obtain the number of 

changes made in each feature, we tracked the commits to the Drupal 

Git repository by using console commands. The rest of the data was 

obtained through the review of the official Drupal documentation 

and websites. 

Data source location Institution: University of Seville 

City: Seville 

Country: Spain 

Data accessibility The data are publicly available in a repository. But part of the data 

and their explanation are included in the article.  

Repository name: The Drupal Dataset 

Direct URL to data: https://github.com/belene/DrupalDataset 

Related research 

article 

Sánchez, Ana B., Segura, Sergio, Parejo, José A., Ruiz-Cortés, 

Antonio. Variability testing in the wild: The drupal case study. 

Software & Systems Modeling. 1 (2017) 173-194. 

https://doi.org/10.1007/s10270-015-0459-z 
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Ana B. Sánchez, Sergio Segura, and Antonio Ruiz Cortés. The 

Drupal Framework: A Case Study to Evaluate Variability Testing 

Techniques. Proceedings of the Eighth International Workshop on 

Variability Modelling of Software-Intensive Systems. 

https://doi.org/10.1145/2556624.2556638 

 

Value of the Data 

• Drupal dataset enables the evaluation of testing techniques for highly-configurable 

systems with real-world data from the community open-source.  

• Both, researchers and practitioners can benefit from these data. This dataset provides 

variability researchers and practitioners with helpful information about the distribution of 

faults and test cases in a real highly-configurable system. Also, it is a valuable asset to 

evaluate HCS testing techniques in realistic settings rather than using random variability 

models and simulated faults.   

• The data collected in the Drupal dataset can be used as good indicators of the fault 

propensity of a software application by using the history of faults and changes in different 

versions of Drupal.  

• The Drupal dataset can be useful in any analysis work of feature models. 

 

Data Description 

The Drupal dataset is publicly available in a Github repository: 

https://github.com/belene/DrupalDataset 

 

https://github.com/belene/DrupalDataset
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• DRUPALv4SXFM.xml: Drupal feature model in SXFM format. The model comprises 48 

features and 21 constraints. It can be found in the folder FMs of the DrupalDataset 

repository. 

• DRUPALv4FAMA.xml: Drupal feature model in FaMa format. The model comprises 48 

features and 21 constraints. It can be found in the folder FMs of the DrupalDataset 

repository. 

• DrupalFeaturesData.csv: A CSV File containing the Drupal modules considered in the 

dataset and, for each module, the size, the code cyclomatic complexity, the number of test 

cases and assertions, the number of reported installations, the number of commits made 

in Drupal versions v7.22 and v7.23, and the number of faults recorded in Drupal v7.22 

and v7.23. 

• DrupalFeatureFaults.csv: A CSV file containing for each Drupal module the number of 

collected faults classified by type (single or integration faults), severity (minor, normal, 

major and critical) and by Drupal version (v7.22 and v7.23). 

 

Experimental Design, Materials, and Methods 

Drupal feature model. According to the Drupal documentation, each module that is installed and 

enabled in the system adds a new feature to the framework [11]. Thus, we followed a systematic 

approach and proposed modelling Drupal modules as features of the feature model. Also, when a 

module is installed, new subfeatures can be enabled adding extra functionality to the module. 

These features are considered as children features of the module that contains them. The Drupal 

core modules that must be always enabled are represented as mandatory relations in the feature 

model. On the other side, all the modules that can be optionally installed and enabled in the 
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system are modelled as optional features in the model. In addition to this, Drupal modules can 

have dependencies with other modules, i.e. modules that must be installed and enabled for 

another module to work properly. These dependencies are modelled as cross-tree constraints in 

the form of requires in the feature model.  

 

Non-functional data. Drupal dataset also reports a number of non-functional attributes of the 

features selected for the Drupal feature models, namely:  

• Feature size. This provides a rough idea of the complexity of each feature and its fault 

propensity. The size of a feature was calculated in terms of the number of lines of code 

(LoC).  

• Cyclomatic Complexity (CC): This metric reflects the total number of independent logic 

paths used in a program and provides a quantitative measure of its complexity. We used 

the open-source tool phploc to compute the CC of the source code associated with each 

Drupal feature. Roughly speaking, the tool calculates the number of control flow 

statements (e.g. “if”, “while”) per lines of code.  

• Number of tests. We provide the total number of test cases and test assertions of each 

Drupal feature obtained from the output of the SimpleTest module. 

• Number of reported installations. This depicts the number of times that a Drupal feature 

has been installed as reported by Drupal users. This data was extracted from the Drupal 

website [10] and could be used as an indicator of the popularity or impact of a feature.  

• Number of developers. We collected the number of developers involved in the 

development of each Drupal feature. This could give us information about the scale and 

relevance of the feature as well as its propensity to faults related to the number of people 
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working on it. This information was obtained from the website of each Drupal module as 

the number of committers involved [10].  

• Number of changes. Changes in the code are likely to introduce faults. Thus, the number 

of changes in a feature may be a good indicator of its error proneness and could help us to 

predict faults in the future. To obtain the number of changes made in each feature, we 

tracked the commits to the Drupal Git repository. 

 

Faults in Drupal. The Drupal dataset collects the number of faults reported in the Drupal 

features. The information was obtained from the issue tracking systems of Drupal and related 

modules. We used the web-based search tool of the issue systems to filter the bug reports by 

severity, status, date, feature name and Drupal version. The search was narrowed by collecting 

the bugs reported in a period of two years and in two consecutive Drupal versions, v7.22 and 

v7.23, to achieve a better understanding of the evolution of a real system and to enable test 

validations based on fault history. Then, the search was refined to eliminate the faults not 

accepted by the Drupal community, those classified as duplicated bugs, non-reproducible bugs 

and bugs working as designed. Additionally, we identified and classified the faults into single 

(those caused by a Drupal model) and integration faults (those caused by the interaction of 

several modules). To mitigate possible misidentification of faults, we manually checked each 

candidate integration fault to discard those that did not correspond. 

 

For the sake of validation, the work was discussed with two Drupal core team members who 

approved the followed approach. We also may mention that the main author of the article has 

more than two year of experience in industry as a Drupal developer. 



11 

  

Information Classification: General 

Acknowledgments 

This work has been partially supported by the European Commission (FEDER), the Spanish 

Government under the project HORATIO (RTI2018-101204-B-C21) and the Andalusian 

R&D&I programs APOLO (US-1264651) and EKIPMENT (PR18-FR-2895).  

 

Competing Interests 

The authors declare that they have no known competing financial interests or personal 

relationships which have, or could be perceived to have, influenced the work reported in this 

article. 

 

References 

[1] Cohen, M. B., Dwyer, M. B., Shi, J. Constructing Interaction Test Suites for Highly-

Configurable Systems in the Presence of Constraints: A Greedy Approach.  Transactions on 

Software Engineering. 5 (2008), 633-650. https://doi.org/10.1109/TSE.2008.50. 

[2] She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K. The variability model of the 

linux kernel. International Workshop on Variability Modelling of Software-Intensive Systems. 

2010.  

[3] Johansen, M.F., Haugen, O., Fleurey, F., Eldegard, A.G., Syversen, T. Generating better 

partial covering arrays by modeling weights on sub-product lines. International Conference on 

Model Driven Engineering Languages and Systems. 2012. pp. 269–284. 

https://doi.org/10.1007/978-3-642-33666-9_18. 

[4] Svahnberg, M., van Gurp, L., Bosch, J. A taxonomy of variability realization techniques: 

research articles. Softw. Pract. Exp. 35 (2005) 705–754. 

https://doi.org/10.1109/TSE.2008.50
https://doi.org/10.1007/978-3-642-33666-9_18


12 

  

Information Classification: General 

https://dl.acm.org/doi/10.5555/1070904.1070905. 

[5] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S. Feature-oriented domain analysis 

(foda) feasibility study. Software Engineering Institute. 1990. 

[6] Yoo, S., Harman, M. Regression testing minimisation, selection and prioritisation: a survey. 

Software Testing, Verification and Reliability. (2012) 67–120. https://doi.org/10.1002/stv.430. 

[7] Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Le Traon, Y. Bypassing the 

combinatorial explosion: using similarity to generate and prioritize t-wise test configurations for 

software product lines. IEEE Trans. Softw. Eng. 7 (2014) 650-670. 

[8] Sánchez, A.B., Segura, S., Ruiz-Cortés, A. A comparison of test case prioritization criteria 

for software product lines. IEEE International Conference on Software Testing, Verification, and 

Validation. 2014 pp. 41–50. https://doi.org/10.1109/ICST.2014.15. 

[9] Fischer, S., Lopez-Herrejon, R. E., Ramler, R., Egyed, A. A Preliminary Empirical 

Assessment of Similarity for Combinatorial Iteraction Testing of Software Product Lines.  

IEEE/ACM 9th International Workshop on Search-Based Software Testing (SBST), 2016, pp. 

15-18. 

[10] Buytaert, D. Drupal framework. http://www.drupal.org. Accessed April 2020. 

[11] Tomlinson, T., VanDyk, J.K. Pro Drupal 7 Development. Tomlinson, Todd (et al.). 3rd 

edition. 2010. 

[12] Sánchez, Ana B., Segura, Sergio, Ruiz-Cortés, Antonio. The drupal framework: A case 

study to evaluate variability testing techniques. Proceedings of the Eighth International 

Workshop on Variability Modelling of Software-Intensive Systems. 2014, pp. 1-8. 

https://doi.org/10.1145/2556624.2556638. 

[13] Sánchez, Ana B., Segura, Sergio, Parejo, José A., Ruiz-Cortés, Antonio. Variability testing 

https://dl.acm.org/doi/10.5555/1070904.1070905
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/ICST.2014.15
https://doi.org/10.1145/2556624.2556638


13 

  

Information Classification: General 

in the wild: The drupal case study. Software & Systems Modeling. 1 (2017) 173-194. 

https://doi.org/10.1007/s10270-015-0459-z. 

[14] Parejo, José A., Sánchez, Ana B., Segura, Sergio, Ruiz-Cortés, Antonio, Lopez-Herrejon, 

Roberto E., Egyed, Alexander. Multi-objective test case prioritization in highly configurable 

systems: A case study. Journal of Systems and Software. (2016) 287-310. 

https://doi.org/10.1016/j.jss.2016.09.045. 

[15] Hierons, Robert M., Li, Miqing, Liu, Xiaohui, Parejo, Jose Antonio, Segura, Sergio, Yao, 

Xin. Many-Objective Test Suite Generation for Software Product Lines. ACM Trans. Softw. 

Eng. Methodol. 1 (2020) 46 pages. https://doi.org/10.1145/3361146. 

[16] Hierons, Robert M., Li, Miqing, Liu, Xiaohui, Segura, Sergio, and Zheng, Wei. 2016. SIP: 

Optimal Product Selection from Feature Models Using Many-Objective Evolutionary 

Optimization. ACM Trans. Softw. Eng. Methodol. 17 (2016), 39 pages. 

https://doi.org/10.1145/2897760. 

 

https://doi.org/10.1007/s10270-015-0459-z
https://doi.org/10.1016/j.jss.2016.09.045
https://doi.org/10.1145/3361146
https://doi.org/10.1145/2897760

