CAD Tool for Burn Diagnosis
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Abstract. In this paper a new system for burn diagnosis is proposed. The aim of
the system is to separate burn wounds from healthy skin, and the different types
of burns (burn depths) from each other, identifying each one. The system is
based on the colour and texture information, as these are the characteristics
observed by physicians in order to give a diagnosis. We use a perceptually
uniform colour space € 'u’v"), since Euclidean distances calculated in this
space correspond to perceptually colour differences. After the burn is
segmented, some colour and texture descriptors are calculated and they are the
inputs to a Fuzzy-ARTMAP neural network. The neural network classifies
them into three types of burns: superficial dermal, deep dermal and full
thickness. Clinical effectiveness of the method was demonstrated on 62 clinical
burn wound images obtained from digital colour photographs, yielding an
average classification success rate of 82 % compared to expert classified
images.

1 Introduction

For a successful evolution of a burn injury it is essential to initiate the correct first
treatment [1]. To choose an adequate one, it is necessary to know the depth of the
burn, and a correct visual assessment of burn depth highly relies on specialized
dermatological expertise. As the cost of maintaining a Burn Unit is very high, it
would be desirable to have an automatic system to give a first assessment in all the
local medical centres, where there is a lack of specialists [2], [3]. The World Health
Organization demands that, at least, there must be one bed in a Burn Unit for each
500000 inhabitants. So, normally, one Burn Unit covers a large geographic extension.
If a burn patient appears in a medical centre without Burn Unit, a telephone
communication is established between the local medical centre and the closest
hospital with Burn Unit, where he not-expert doctor describes subjectively the
colour, shape and other aspects considered important for burn characterization. The
result in many cases is the application of an incorrect first treatment (very important,
on the other hand, for a correct evolution of the wound), or unnecessary
displacements of the patient, involving high sanitary cost and psychological trauma
for the patient and family.



With the fast advances in technology, the Computer Aided Diagnosis (CAD)
systems are getting more popular. However, nowadays, the research in the field of
colour skin images is being developed slowly due to the difficulty of translating
colour human perception into objective rules, analyzable by a computer. That is why
automation of burn wound diagnosis is still an almost unexplored field. While there is
hardly bibliography about burn depth determination by visual image analysis and
processing [4] [5], one can find some research about the relationship between depth
and superficial temperature [6], or other works trying to evaluate burn depth by using
thermographic images [7], infrared and ultraviolet images [8], radioactive isotopes [9]
and Doppler laser flux measurements [10]. These techniques have limitation not only
in diagnosis accuracy but also in unallowable economical cost.

Talking more generally about colour skin image processing, one can find two main
applications in the literature [11]: the assessment of the healing of skin wounds or
ulcers [12-16], and the diagnosis of pigmented skin lesions such as nelanomas [17-
20]. The analysis of lesions involves more traditional image processing techniques
such as edge detection and object identification, followed by an analysis of the size,
shape, irregularity and colour of the segmented lesion. However, in wound analysis,
although it is necessary to detect the wound border and to calculate its area, analysis
of the colours within the wound site is often more important. Particularly, in the case
of burn depth determination, we are not going to focus on the shape of the burn,
because it is irrelevant in order to predict its depth. The main characteristics for this
purpose are the colour and texture information, as they are what physicians observed
in order to give a diagnosis.

The developed system consists of the following steps:

1. Image acquisition. We have developed a new protocol for standardizing the image
acquisition [2] [3].

2. Segmentation. Many segmentation algorithms have been proposed in the literature,
but none of them can be used as a standard, because most of them are highly
application dependent [21]. Particularly, when segmenting burn wounds, general-
purpose segmentation algorithms are less effective because there are only slight
differences between healthy and burnt skin, whereas there are other significant
borders in the image. That is the reason why in this paper we proposed a new
segmentation algorithm, which has been proven effective in segmenting burn
wound images. Section 2 is devoted to describe this new algorithm.

3. Classification. Once the burnt part is segmented, we extract from it representative
colour and texture descriptors, which will be the entries to a neural network
classifier that will give the depth. We explain feature extraction and classification
in Section 3.

2 Image Acquisition

The image acquisition is carrying out by means of a digital photographic camera. The
reasons for this choice are mainly due to its low cost to make feasible its practical
implementation and its easy use. Any non-specialised person must be able to acquire
data from the patient, because it is not possible to have an expert in each centre.



Once the acquisition system is selected, we had to specify a protocol to acquire the
image, that is, we have to develop a protocol to homogenise the patient information
that should go with each photograph and another one about the way of taking the
photograph. Medical specialists made the first one [2]. To determine the second one a
pilot study was done, where an interdisciplinary group composed by burn specialists
and non-specialists filled out questionnaires about image quality [2] [3]. The main
points in the resulting protocol were: distance between camera and patient
approximately of 40 cm, it should appear healthy skin in the image, the background
should be a green/blue sheet (the ones used in hospitals), the flash has to be on, the
camera should be placed parallel to the burn.

As with this system what we want to solve is the problem of diagnosing when a
patient arrives to the local medical centre in order to receive an adequate first
treatment, all the images used for validating our algorithms have been taken by
physicians within 24 hours of burn evolution.

It should be noted that we have tried to do the procedure as easier as possible for
physicians, what may mean that we have got more difficult images in order to
automatically analyse them. First of all and trying to be closer to a hypothetic
practical implementation of the system, the physicians, instead of us, took the
photographs. Depending on the room where the physicians took the photographs, the
illumination was different (some rooms had windows and some not). All of them have
typical fluorescent lights and to try to homogenise as much as possible the
illumination the flash had to be always on, so that the main quantity of light came
from it. The camera was a digital Canon Power Shot 600.

3 Segmentation Algorithm

The new colour segmentation algorithm that is proposed consists of four main steps:

1. Preprocessing step.

2. Conversion to a single channel image, where a pixel value is ameasure of the
similarity of its colour to the one to be segmented.

3. Automatic thresholding to achieve the segmented image.

4. Postprocessing step.

It must be emphasized that the colour to be segmented is obtained from a selection
box that the user has to select with the mouse. As it was pointed out in [22], it is very
difficult to develop a completely automatic system. The reason lies on the normal and
healthy skin colour properties. There is a large variability in the healthy skin, even
within the same human race. On the other hand, for a non-expert physician, in fact for
many people, it is easy to differentiate burnt skin from normal one, due to the
experience. The problem is to differentiate among the different depths of the burn. We
have represented some colour descriptors (H, S, u* v*,...) of fifty 49x49 pixel images,
belonging to both normal and burnt skin. In Figure la the chromatic coordinates of
the L'u"v" colour space are represented, and in Figure 1b the saturation versus the hue
coordinates are shown. It can be seen that there is a large variability in the colour
coordinates for the 50 small images of healthy skin, as well as a strong overlap among



healthy skin, blisters (superficial dermal) and brown-coloured full thickness burns'.
Therefore, we can conclude that it is necessary the help of the user by selecting the
colour of the burn to be segmented.
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Fig. 1. (a) Comparison of u" and v colour coordinates for 50 burn images per depth and
healthy skin, where (0) is superficial dermal (red), ( ) is superficial dermal (blisters), &) is
deep dermal, (x) is full thickness (creamy), (*) is full thickness (brown) and () is healthy skin.
(b) The same for saturation and hue coordinates

3.1 Preprocessing Step

Before segmenting the image, it is preprocessed to make the regions more
homogeneous. Therefore a low pass filter is required. But this filter must exhibit the
property of preserving edges unaltered. A filter that fit these two requirements is the
anisotropic diffusion filter [23]. Other low-pass filters, like gaussian, tend to blur the
whole image, losing border locations.

In order to perform the anisotropic diffusion, we follow the idea developed by
Lucchese and Mitra of separating the diffusion of the chromatic and achromatic
information [24] [22]. It calculates the hue and chroma components from the L'y
colour coordinate system. Once it has these two chromatic components, it forms a
complex quantity as p = clexp(jh), where ¢ and h denotes the chroma and hue

components respectively. The anisotropic diffusion is carried out by means of the
partial differential equations explained in [24] for the P and the lightness )
components. We have proven experimentally that doing the diffusion separately for
the chromatic and achromatic channels yields better results than diffusing in the R, G
and B planes.

! There are three main depths of burns that can present five different appearances: superficial
dermal (bright red colour or presence of blisters (usually brown colour)), deep dermal (pink-
whitish colour) and full thickness (beige-yellow colour or dark brown colour).



3.2 Single Channel Image Conversion

In this step a grey scale image is obtained from the diffused colour image. To this
aim, the L'u™v" diffused image must be transformed to a measure which, for each
pixel, is proportional to the similarity to the colour to be segmented.

The single channel image is based on the Euclidean distance from a colour pixel to
the centroid of the selection box selected by the user. To take into account the texture
information, instead of calculating the distance from a pixel to a particular colour, we
calculate the distance from a group of pixels to a mask of size IXL. The mask
represents a selection box in the area to be segmented, that is, a small selection done
with the mouse by the user in the burnt part of the image. This selection box must be
slid as a mask along the image and, for the pixel in the centre of the mask position,
the following operation must be performed:

n+A  m+A @
Sf(n,m)= z Zd(P(i,j),W(i, D
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where A =(L —1)/2 (L odd), p(i,j) represents a pixel in the image to be segmented

in L"u™v" colour coordinates, w(ij) is a pixel of the mask of size IXL, and d(Q)
represents the Euclidean distance between pixels p(i,j) and w(i,j).

3.3 Thresholding Operation

After applying the former algorithm, we have a grey scale image where pixels with
lowest values are those in the region to be segmented. As this image has been
carefully designed to emphasize the burnt regions, a thresholding operation should
suffice to get a good segmentation. Therefore, a thresholding process is applied to this
grey scale image in order to get the segmented area.

There are two possibilities to carry out the thresholding:

1. The user introduces the threshold manually. Most of the segmentation algorithms
in the literature work this way. Depending on the application, and normally on the
image, the threshold varies.

2. Automatic threshold selection. This is the most desired way to solve the
thresholding problem, although the most difficult. But, as we are involved in a
particular application and with images following a specific protocol, the finding of
an automatic threshold is easier to carry out. Actually, there are some general
purpose algorithms that do not need the introduction of a threshold. They usually
give good results when the colours of the image are well differentiated. In our case,
the colours of the different burn depths and healthy skin are very close to each
other, so the application of this kind of algorithms does not yield good results.



In previous works we have tested the images with manual thresholding. The results
were very good, which is normal, because we can choose the best threshold for each
image [25]. In further studies we developed an automatic thresholding algorithm
consisting in applying a modification of Otsu’s method [22]. Results in these cases
were also very good, but this algorithm is specific for the type of images we are
working with, because it makes the assumption that the histogram has three main
peaks: the most right one belonging to the background, the one in the middle
belonging to the healthy skin, and the most left one belonging to the burnt skin. So, in
case that the image does not follow the protocol correctly or that there is more than
one type of burn in the same photograph, the algorithm may fail.

In this work we present a new thresholding algorithm that can be useful not only
for this kind of images, but for any type of image. It uses Otsu’s method, but with a
previous step to find peaks in the histogram.

As the input image for thresholding is a grey scale image where pixels with the
lowest values belong to the region to be segmented, we want to determine the
threshold which isolates the most left significant peak in the histogram. In order to
carry out this task we first automatically find the most significant peaks in the
histogram. The algorithm that finds these peaks is summarized in the following steps:
1. Find all peaks in the histogram.

1. Select the peaks in the new curve formed by the peaks found in step 1.

2. Remove non-significant peaks. Those peaks whose values are less than 1% of the
maximum peak value are rejected.

3. Remove non-significant valleys. We calculate the minimum value of the pixels
between two peaks. If this minimum is greater than 75% of the minimum peak
value out of the two peaks, then no significant valley is considered.

Once we have found all the significant peaks in the histogram, we know that the
threshold found will be between the two most left peaks in the histogram. To find this
threshold, Otsu’s method is applied to the histogram between these two peaks. Otsu’s
method is an adaptive thresholding technique to split a histogram into two classes
[26].

3.4 Postprocessing Step

With this processing step, the segmentation result is smoothed by removing small
points that differ from their surroundings. To this end, a median filtering has been
employed.

4 Classification Part

Once the burn is segmented, we have to classify it into its depth. It has been proven
that physicians determine the depth of a burn based on color perception, as well as on
some texture aspects. This implies that if a color metric in accordance with human
perception is applied, we will get a color feature adequate to attain our goal of
classifying bum wounds. One of the color representation based on human color



matching is the CIE L'u™v" color space, since it was designed so that intercolor
distances computed using the ”[n]Z norm correspond to subjective color matching data.

In this study, we have employed a set of descriptors formed by first order texture
parameters extracted from the three coordinates of the L'u"v" color space as well as
from the hue and chroma measurements derived from them. More specifically, the
descriptors chosen are: mean of lightness (L*), mean of hue (#), mean of chroma (),
standard deviation of lightness (0;), standard deviation of hue (0;), standard deviation
of chroma (0) mean of u°, mean of v, standard deviation of u" (o,), standard
dev1at10n of v (0) skewness of hghtness (sp), kurtosis of hghtness (k;), skewness of
u (su) kurtosis of u (k,,) skewness of v (s,) and kurtosis of v .

Afterwards it has been necessary to apply a descriptor selection method to obtain
the optimum set for the subsequent classification.

4.1 Feature Selection

The discrimination power of these 16 features is analyzed using the Sequential
Forward Selection (SFS) method and the Sequential Backward Selection (SBS)
method [27] via the Fuzzy-ARTMAP neural network which is detailed in the
following subsection.

SFS is a bottomrup search procedure where one feature at a time is added to the
current feature set. At each stage, the feature to be included in the feature set is
selected among the remaining available features which have not been added to the
feature set. So the new enlarged feature set yields a minimum classification error
comparing to adding any single feature. The algorithm stops when adding a new
feature yields an increase of the classification error.

The SBS is the bp-down counterpart of the SFS method. It starts from the
complete set of features and, at each stage, the feature which shows the least
discriminatory power is discarded. The algorithm stops when removing another
feature implies an increase of the classification error.

To apply these two methods we have fifty 49x49 pixel images per each appearance
(as there are five appearances, in all we have 250 49%49 pixel images)2. The selection
performance is evaluated by fivefold cross validation (XVAL) [28]. In this sense, the
disadvantage of sensitiveness to the order of presentation of the training set, that the
SBS and SFS methods present [27], is diminished. To perform the XVAL method the
50 images per burn appearance are split into five disjoint subsets. Four of these
subsets (that is, 40 images per appearance) serve as training set for the neural
network, while the other one (10 images) is used as validation set. Then, the
procedure is repeated interchanging the validation subset with one of the training
subsets, and so on till the five subsets have been used as validation sets. The final
classification error is calculated as the mean of the errors for each XVAL run.

The results of applying the SFS and SBS methods are summarized in Table 1. The
average error is calculated counting the misclassifications and dividing by the total

2 The 250 49x49 pixel images are small images showing each one only one burn appearance
(no healthy skin or background). Each 49x49 pixel image has been validated by two
physicians as belonging to a particular depth.



number of images used to validate. Looking at Table 1 we choose the SBS feature set
(lightness, hue, standard deviation of the hue component, 4" chrominance component,
standard deviation of the v’ component, skewness of lightness) as the entries to the
neural network, due to the smaller average error.

Table 1. Results of SFS and SBS methods for feature selection

Method Feature set Average
error
SES Lx, H, oc, I/t*, V*,O'v, SL 2%
SBS L',H, oy u,0, s, 1.6%

4.2 Fuzzy-ARTMAP Neural Network

The classifier used is a Fuzzy-ARTMAP neural network. This type of network is
based on the Adaptive Resonance Theory developed by Grossberg and Carpenter.
Fuzzy-ARTMAP is a supervised learning classification architecture for analog-value
input pairs of patterns 9]. The reasons for this choice are that Fuzzy-ARTMAP
offers the advantages of well-understood theoretical properties, an efficient
implementation, clustering properties that are consistent with human perception, and a
very fast convergence. It has also a track record of successful use in industrial and
medical applications [30]. Other strongpoints of this type of neural network are the
small number of design parameters (the vigilance parameter, p,[J[0,1], and the
selection parameter, 0>0) and that the architecture and initial values are always the
same, independent of the application.

The input parameters are the features selected by the SBS method ", H, oy, u’,
0,, sy). The network classifies them into five regions (the first and the second
belonging to superficial dermal depth, the third to deep dermal, and the fourth and
fifth to full-thickness). So, the network has six neurons in the input layer, five neurons
in the hidden layer and five neurons in the output layer.

5 Experimental Results

This burn CAD tool was tested with 62 images (Caucasian race). The images are
digital photographs taken by physicians following the acquisition protocol. All the
images were diagnosed by a group of plastic surgeons, affiliated to the Burn Unit of
the Virgen del Rocio Hospital, from Seville (Spain). The assessments were validated
one week later, as it is the common practice when handling with burned patients.

5.1 Segmentation Results

Figs. 2 to 4 show the segmentation results for some images of the three types of
depth. Figs. a represent original images and Figs. b represent the segmented ones. In



the segmented images we have marked with yellow colour the segmented region. In
all the cases, the burn wound was segmented correctly from the normal skin. We have
fixed the number of times the image is diffused to 10.

5.2 Classification Results
Classification results are summarized in Table 2. We have used 22 images with

superficial dermal burns, 18 with deep dermal burns and 22 with full-thickness burns.
The average success percentage was 82.26%.

Table 2. Classification results

Burn depth Success percentage
Superficial dermal 86.36%
Deep dermal 83.33%
Full-thickness 77.27%
Average 82.26 %

All superficial dermal burns misclassified were classified by the network as deep
dermal ones. All deep dermal burns were misclassified as superficial dermal ones. In
general, this is also common among physicians; actually some burns are diagnosed as
“intermediate depth”, when they are neither clearly superficial dermal nor deep
dermal. For these burns it is necessary to wait one week in order to get the definitive
assessment.

(@) (b

Fig. 2. Segmentation result for a superficial dermal burn. @) Original image where the
selection box selected by the user is shown in red. (b) Segmented image



(@) (b)

Fig. 3. Segmentation result for a deep dermal burn. (a) Original image where the selection box
selected by the user is shown in red. (b) Segmented image

b

Fig. 4. Segmentation result for a full thickness burn. (@) Original image, which have both
superficial dermal burn (the red part) and full-thickness burn (the whitish part). (b) Segmented
image. In this case the user has selected a small box in one toe in order that the algorithm
segments all the full thickness part of the burn. It segments correctly all the full thickness parts
of the image regarding what physicians said.

6 Discussion and Conclusions

In this paper a color image segmentation and classification method is proposed in
order to determine the depth of a burn. We use digital color photographs taken by the
physicians following a determined protocol.

The system starts with a segmentation step, whose aim is to isolate the burn wound
from the rest of the scene (healthy skin and background). In order to perform this step,
we start with a preprocessing step (diffusion filtering and change of color space).
Then a transformation from a three-plane image Cu™v) to one-plane image is
performed, where it is taken nto account color and texture information. From the



gray-scale image a threshold is determined automatically to separate the burn from
the background. The last processing step consists in a median filtering to homogenize
regions. The segmentation algorithm works well for most of the database images, and
it is useful not only for the images shown here that follow a specific protocol, but also
for any kind of images.

Once the burn is isolated, we extract from it six color and texture descriptors that
will be the inputs to the classifier. The selection of the features has been carried out
by the Sequential Forward and Backward Selection methods. We start from 16 texture
and color characteristics and after applying the Sequential methods we get the six
descriptors with the largest discrimination power.

The six descriptors are the inputs to a Fuzzy-ARTMAP neural network which
classified them as one of the possible depths a burn can present. We tested 62
photographs, yielding a classification average success percentage of 82.26%. Based
on these results, we can conclude that our method shows a very good performance for
segmenting and classifying the images into their burn depths.
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