
Automating the deployment of componentized
systems ?

Jesús Garćıa-Galán1, Pablo Trinidad1, and Rafael Capilla2

1 Universidad de Sevilla
2 Universidad Rey Juan Carlos

Abstract. Embedded and self-adaptive systems demand continuous adap-
tation and reconfiguration activities based on changing quality condi-
tions and context information. As a consequence, systems have to be
(re)deployed several times and software components need to be mapped
onto new or existing hardware pieces. Today, the way to determine an
optimal deployment in complex systems, often performed at runtime,
constitutes a well-known challenge. In this paper we highlight the major
problems of automatic deployment and present a research plan to reach
for an UML-based solution for the deployment of componentized sys-
tems. As a first step towards a solution, we use the UML superstructure
to suggest a way to redeploy UML component diagrams based on the
inputs and outputs required to enact an automatic deployment process.

1 Problem context

Software systems need to be deployed and redeployed several times as the en-
vironment and context conditions often change. This is particularly important
during runtime when a system already deployed changes its current configuration
and it has to be redeployed (i.e.: post-deployment reconfiguration). In the era
of post-deployment, modern desktop software, mobile applications, autonomic
systems, and service-based systems among others, demand continuous changes
in deployment activities. Furthermore, the decision to realize an optimal deploy-
ment is still challenging. Recent proposals [2, 10] attempted to automate this
process based on quality concerns, such as reliability and performance.

Today, complex systems demand automatic deployment capabilities in order
to keep the system updated. For instance, pervasive software is often deployed
and reconfigured over dozens of embedded devices, or cloud-based systems (e.g.:
Software-as-a-Service solutions) demand continuous reconfiguration activities to
satisfy new customer’s needs and quality concerns (e.g.: workload is moved be-
tween servers during system upgrading). Hence, the way to achieve an optimal
deployment becomes a major goal. However, there is still a lack of generic ap-
proaches that model, from the architecture point of view, the inputs and the
outputs used to deploy software automatically.

? This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project SETI (TIN2009-07366) and by the An-
dalusian Government under ISABEL (TIC-2533) and THEOS (TIC-5906) projects.

2 Automatic deployment of component-based systems

Deployment activities need to know which software components will map into
the physical model. From our view, we understand this process as a continuous
activity where the output of a deployment solution feeds again the process for a
new deployment (i.e.: re-deployment).

On the search of a process to automatically deploy a new system configura-
tion, we propose a research agenda that encompasses the following three tasks:
(i) Define the inputs and outputs required by a deployment process, (ii) Spec-
ify a way to map automatically software components onto hardware nodes, and
(iii) Use/build a tool to automate the deployment of componentized systems as
a proof of concept to check the feasibility of the solution.

In this paper we focus on the first task. In order to represent the inputs and
the outputs for automatic deployment, we will use the following three models
to describe the components and behavior of any software system: (i) a model to
describe the software, (ii) a model to describe the hardware, and (iii) a model
to describe the mappings between the software and hardware models.

From the software architecture point of view, we rely on component-based
architectures and systems to modularize and do the required mappings between
software and hardware. However, because every context is different, we need to
describe which software and hardware constraints and dependencies are needed
by a particular deployment solution.

For instance, in the physical architecture we define the non-functional proper-
ties of the hardware nodes and runtime environment on which the software runs.
These physical properties of the nodes (e.g.: RAM capacity, CPU speed, etc.) are
used as constraints for the software components that demand a particular sys-
tem configuration, as they will drive the final software-hardware configuration.
Therefore, our proposed model requires enough expressivity to support all the
information required by the mappings between software modules and hardware
nodes.

Sample scenario: In figure 1 we describe a deployment scenario to mo-
tivate our proposal. It consists of a cloud-based platform where two hardware
devices (i.e.: one public from Google and one private using three instances of the
AppScale platform) are used to deploy the software. The devices and runtime
environment exhibit different non-functional properties. The software to be de-
ployed belongs to transportation management system that uses an API, a client,
and a back-end management system. The target system defines the set of con-
straints over the deployment platform that might change and evolve accordingly
to new requirements.

In order to perform an automatic mapping for a given deployment configu-
ration, we model the inputs and the outputs of the process using UML [11] for
the following reasons:

1. UML is a standard and widely used notation to describe software systems and
supported by many modeling tools because it can describe the architecture
of a system from different points of view.

«device»
Google Server

«executionEnvironment»
AppEngine

«device»
Owner Server

«executionEnvironment»
AppScale Instance1

«executionEnvironment»
AppScale Instance2

«executionEnvironment»
AppScale Instance3 lang = 'java'

rps = 500
disk = 2 TB

lang = 'python'
rps = 150
disk = 500 GB

lang = 'go'
rps = 100
disk = 250

scope = 'public'

lang = 'java'
rps = 120
disk = 750

scope = 'private'

Property Legend:

 - rps: Requests Per Second

 - lang: programming language

 - disk: disk storage capacity

 - scope: private or public cloud

«component»
Front-end

«component»
Back-end

«component»
API TSM

«component»
Transport System

Management

rps > 100
scope = 'public'
lang = 'java'

rps > 10
scope = 'private'
lang = 'python'

rps > 200
lang = 'java'

disk > 100 GB
lang = 'java'

Component model Deployment model

Fig. 1. A Cloud computing deployment scenario for a transportation system

2. It provides a superstructure able to support the mappings between compo-
nent and deployment diagrams.

3 UML for automatic deployment inputs and outputs

Component and deployment diagrams describing the soft and hard parts of a
system can be used to model the inputs and outputs of an automatic deployment
process using UML. As a result, an enriched UML deployment diagram shows
the allocation of software modules in hardware nodes and according to a set of
hardware and software constraints defined in mapping rules.

Components use required and provided interfaces to communicate each other.
For instance, service-based systems and cloud platforms often vary the deploy-
ment of the running software because changing quality conditions, when the
system needs an update, or when existing hardware capabilities have to be ex-
tended. Clients that need to rebind to new services dynamically, the reallocation
of services in different servers, and new cloud hardware that require to move
software from one server to another, are examples of re-deployment scenarios.
The component diagram of Figure 1 shows how the API TSM component of-
fers two interfaces, the Front-end and the Back-end that must be allocated in
hardware nodes.

In addition, UML deployment diagrams describe a high-level organization
of the physical nodes (e.g.: devices, servers, etc.), and according to a particular
execution environment and distribution of software modules. The allocation of
software elements in the physical architecture rely on mapping rules that are
used to automate the allocation process. The right side of Figure 1 displays a
deployment diagram with devices belonging to two different execution environ-
ments.

Property

- name: String

- type: Type

- /default: String

Node

Device

ExecutionEnvironment

Component

Deployment

Artifact

- name: String

ManifestationConstraint

Class

- name: String

«Invariant»
{All the properties
contained in manifested
components by a deployed
artifact have to be
contained also in the node
where the artifact is
deployed}

+manifestation

*

1

+nestedNode *0..1

*

+constrainedElement

*

+deployment

*

+location

1

*

+client

1..*

*

+deployedArtifact
*

+ownedAttribute

*

+class

0..1

Deployment

Shared

Component

Assignment

Fig. 2. Deployment with assignment metamodel based on UML superstructure

3.1 The UML Superstructure

The OMG UML Superstructure 2.4 [11] describes the formal specification of
UML elements, but in most cases we use only a subset of it when designing
with UML elements. In this work we identify the minimum set of elements in
the UML supertructure that are needed to map software modules into hardware
nodes. These elements can be also extended to provide additional capabilities for
automatic deployment. As aconsequence, this superstructure provides a standard
way to enhance UML, as we avoid using other approaches (e.g.: such as model-
driven engineering) to perform the automatic mappings between UML models.

Figure 2 shows a simplified version of the UML superstructure containing
both component and deployment diagrams. The boxes in the Deployment area
belong to those elements required to define UML nodes in the physical view,
whereas the Component area contains the elements to design the logical view.
Both areas share the properties of the nodes which are used as constraints for
the components, such as the Shared area displays. Finally, the Assignment area
encompasses the elements to perform the mappings between the logical and the
physical views.

In order to highlight the properties of the nodes, we use the Property element
to exploit the inheritance relationship between the Node and the Class. Each
property has a name, a type and a default value (e.g.: in Figure 1 we have
examples of these properties with their allowed values, such as: rps, lang, disk
or scope).

Also, the components model uses the Constraint class to represent the re-
strictions of the nodes (i.e.: properties) and it can be associated to any UML
element. These constraints refer to properties that must be defined initially in

the components for deployment purposes. The component model of Figure 1
shows an example of constraints that have impact in the deployment diagram.

In the Assignment area, hardware elements are described by means of the
Artifact class which defines a 1-* correspondence with software components
by means of the Manifestation class. The deployment of software artifacts in a
node is described using a Deployment class. In addition, we define an invariant
over the Deployment in order to ensure that the components will be deployed
only in those nodes that contain the properties that restrict each physical node.

4 Related work

Kruchten [6] pioneered the correspondences between architecture views early in
1995.Other authors like Clements et al. [3] modernize Kruchten’s approach to
define deployment viewtypes in order to allocate software modules into runtime
(additional architecture views can be found in Rozanski and Woods [12]).

Regarding automatic deployment, Kramer and Magee [5] motivate this for
autonomic systems while Arshad et al. [1] focus on dynamic reconfiguration us-
ing AI planning. Other related works focus on the impact of quality factors for
deployment, such as Bushehrian [2] and White et al. [14] which uses performance
to compute the nearest optimal deployment using simulation and evolutionary
algorithms respectively. In addition, Meedeniya et al. [10] focus on reliability,
while Wada et al. [13] focus on SLAs to calculate optimal deployments. Recent
approches show examples of automatic deployment using an autonomous en-
gine for service-based systems in the banking domain and using SAT solvers to
optimize the best deployment configuration (Cuadrado et al. [4]), while other
approaches (Malek et al. [9]) focus on deployment and redeployment activi-
ties allocating software components to hardware nodes using a trade-off of QoS
properties in order to quantify the quality of the system deployment. All these
approaches use proprietary notations or focus on optimization techniques, but
none of them exploit the use of the UML superstructure for establishing the
correspondence between component and deployment views. Only the MARTE
approach (Liehr et al. [7]) exploits the use of UML profiles to allocate models au-
tomatically but focused only on UML activity diagrams for real-time execution
(RTE) environments.

5 Conclusions and Future work

In this paper we present an attempt of using UML to model the inputs and
outputs of an automatic deployment system. This is a first step towards a more
ambitious goal of building such system. Next steps lead our future work to
focus on: (i) rules to define the mapping process, and (ii) a prototype tool to
demonstrate our ideas as a proof of concept using the UML superstructure.
Furthermore, we believe that constraint programming can be used to compute
the best deployment and model this as an optimization problem.

We are conscious that new requirements might arise in future research that
conduct to changes in our proposal of UML-based inputs and outputs. To reduce

the impact of future requirements and in order to increase the confidence on the
results presented in this paper, we have built a first version of a prototype re-
search tool. From this validation, some challenging questions have appeared, such
as: defining priority levels for hardware constraints, using different optimization
criteria, or updating both hardware and software properties after deployment.
Our prototype has been built using an MDE approach and currently, it computes
basic deployment configurations using constraint programming [8]. We will focus
our future efforts in dealing with these questions and tackling next steps.

Bibliography

[1] N. Arshad, D. Heimbigner, and A. L. Wolf. Deployment and dynamic re-
configuration planning for distributed software systems. Software Quality
Journal, 2007.

[2] O. Bushehrian. Automatic object deployment for software performance
enhancement. IET Software, 2011.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison-Wesley Professional, 2002.

[4] F. Cuadrado, J. Duenas, and R. Garcia-Carmona. An autonomous engine
for services configuration and deployment. Software Engineering, IEEE
Transactions on, 2012.

[5] J. Kramer and J. Magee. Self-managed systems: an architectural challenge.
Computing, 2007.

[6] P. Kruchten. The 4+ 1 view model of architecture. Software, IEEE, 1995.
[7] A. W. Liehr, H. S. Rolfs, K. Buchenrieder, and U. Nageldinger. Generating

marte allocation models from activity threads. In FDL, pages 215–220,
2008.

[8] A. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
1977.

[9] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensible framework for
improving a distributed software system’s deployment architecture. Soft-
ware Engineering, IEEE Transactions on, 2012.

[10] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven
deployment optimization for embedded systems. Journal of Systems and
Software, 2011.

[11] Object Management Group. UML Superstructure specification. 2011.
[12] N. Rozanski and E. Woods. Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Profes-
sional, 2005.

[13] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. Evolutionary deployment
optimization for service-oriented clouds. Software: Practice and Experience,
2011.

[14] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt. ScatterD : Spa-
tial Deployment Optimization with Hybrid Heuristic / Evolutionary Algo-
rithms. ACM Transactions on Autonomous and Adaptive Systems, 2011.

