
 

       

DOCTORAL THESIS 

ON THE DESIGN OF COMPRESSED 

SENSING CMOS IMAGERS 

 

AUTHOR: 

MARCO TREVISI 

ADVISORS: 

RICARDO CARMONA GALÁN 

ÁNGEL RODRÍGUEZ VÁZQUEZ 

SEVILLE 2021 

 





 

       

ON THE DESIGN OF COMPRESSED 

SENSING CMOS IMAGERS 

BY: 

MARCO TREVISI 

PROPUESTA DE TESIS DOCTORAL 

PARA LA OBTENCIÓN DEL GRADO DE 

DOCTOR EN CIENCIAS Y TECNOLOGÍAS FÍSICAS 

ADVISORS: 

RICARDO CARMONA GALÁN 

ÁNGEL RODRÍGUEZ VÁZQUEZ  

SEVILLE 2021 

 

 



THE DESIGN OF COMPRESSED SENSING CMOS IMAGERS 

DOCTORAL THESIS 

UNIVERSIDAD DE SEVILLA 

MARCO TREVISI 

MASTER IN AERONAUTICS 

ADVISOR: RICARDO CARMONA GALÁN 

TENURED SCIENTIST 

INSTITUTO DEMICROELECTRONICA DE SEVILLA 

CONSEJO SUPERIOR DE INVESTIGACIONES 

ADVISOR: ÁNGEL RODRÍGUEZ VÁZQUEZ 

FULL PROFESSOR 

ELECTRONICS AND ELECTROMAGNETISM DEPARTMENT 

UNIVERSIDAD DE SEVILLA 

EXTERNAL REVIEWER: WILLIAM GUICQUERO 

SENIOR RESEARCHER 

L3I SMART EMBEDDED IMAGING SYSTEMS LAB 

CEA-LETI GRENOBLE 

EXTERNAL REVIEWER: PÉTER FÖLDESY 

SENIOR RESEARCHER 

INSTITUTE FOR COMPUTER SCIENCE AND CONTROL (MTA-SZTAKI) 

HUNGARIAN ACADEMY OF SCIENCES (MTA) 

 

 



 

UNIVERSIDAD DE SEVILLA 

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS 

CENTRO NACIONAL DE MICROELECTRÓNICA 

INSTITUTO DE MICROELECTRÓNICA DE SEVILLA 

CALLE AMÉRICO VESPUCIO, 28. 

PARQUE CIENTÍFICO Y TECNOLÓGICO CARTUJA. 

41092 SEVILLA 

AUTHOR E-MAIL: MARCO.TREVISI@HOTMAIL.COM 

 

 

 

 

THIS WORK IS LICENSED UNDER THE CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-

NODERIVATIVES 4.0 INTERNATIONAL LICENSE. TO VIEW A COPY OF THIS LICENSE, VISIT 

HTTP://CREATIVECOMMONS.ORG/LICENSES/BY-NC-ND/4.0/. 

 

 

mailto:marco.trevisi@hotmail.com




 

 

 

 

 

 

 

 

A Lidia, por haber sido 

siempre nosotros 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Per Aspera sic itur 

ad Astra 

 

 

 

 

 





ABSTRACT 

i 

ABSTRACT 

Compressive Sampling (CS) is a sampling theory and an alternative to the sampling process 

based on the Nyquist–Shannon’s theorem [Cand06]. While conventional sampling applies the 

Whittaker–Shannon interpolation formula [Whit15] to recover a continuous-time signal from a 

discrete set of time samples, CS replaces it with recovery by means of convex optimization of its 

L1 norm [Bara07]. In doing so CS transforms the conventional limit imposed on the high 

frequency components of a continuous signal that undergoes sampling into a limit imposed on its 

sparseness i.e. on the number of relevant elements that it contains. 

This sampling paradigm has given rise to new sensors that generate what, in literature, have 

become known as compressed samples. These compressed samples, needed by CS reconstruction 

algorithms to recover a signal, are linear combinations of point values of the sampled signal 

weighted by random coefficients. These coefficients, joined together, form a measurement 

matrix. Just like standard converters have to abide to a certain sampling rate to avoid aliasing, a 

measurement matrix needs to respect the Restricted Isometry Property (RIP) to generate viable 

compressed samples. 

CMOS Image sensors that are designed applying this new theory (CS-CIS) need to 

incorporate a measurement matrix in their architecture. Some designers add it using optical 

elements in front of the pixel array while others insert dedicated circuitry on-chip. Those that 

choose this second approach include in their prototypes binary pseudo-random number 

generators (PRNG) whose outputs are used to randomly select the pixels of the array. CS optimal 

measurement matrix is the orthonormalised Gaussian matrix, a matrix in which each element is 

extracted at random from a normalised Gaussian distribution that then undergoes an 

orthogonalisation process. PRGN used in the design of CS-CIS generate binary measurement 

matrices that are not orthonormal and that are random only in appearance. This fact has a direct 

consequence on the quality of the compressed samples that these CS-CIS deliver: the RIP of 

these non-ideal matrices is limited by a low sparsity constant and thus greatly limits the number 

of relevant elements that a sampled image can have. 

In this work we have explored the RIP of random binary measurement matrices to quantify 
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this limitation. We also have analysed the behaviour of different types of PRNG using 

mathematical tools such as the power spectral density applied to pattern recognition to see how 

much these elements approach the performance of truly random binary matrices. We have shown 

that the dynamic behaviour of class III elementary cellular automata (ECA) implementing rule 

30 makes them the best PRNG choice for on-chip recursive measurement matrix generation and 

as such they produce the best compressed samples that a matrix of this characteristics can 

deliver. 

Besides studying the quality of the compressed samples from a theoretical perspective we 

have also analysed their quality from an electrical point of view. Each compressed sample that a 

CS-CIS generates is created by summing together pixel contributions in the analog domain. In its 

original form an image is not sparse, for this reason the dynamic range needed to properly 

describe a linear combination of its point values is quite high and the number of bits needed to 

digitise a compressed sample far surpasses that of a single pixel. We have defined this number 

and we have studied the limits of A/D conversion to see if proper digitisation of compressed 

samples using an analog-to-digital converter ADC was feasible. As a viable alternative we have 

proposed pixel pulse modulation schemes that transpose the lack of dynamic range into a 

problem of time consumption thus increasing the amount of bits at our disposal to describe a 

compressed sample. 

We have joined the results of these two studies in a CS-CIS of our own design. It has a 64×64 

pixel array; it implements a rule-30 ECA for on-chip measurement matrix generation and a pulse 

width modulation of its pixels to deliver 20-bit compressed samples. A prototype of this imager 

has been built using a CMOS 0.18μm 1P6M technology. We have presented the results of a set 

of experiments carried out on this prototype to test its performance and confirm that pulse width 

modulation of 8-bit pixels is indeed a feasible solution to create a CS-CIS capable of delivering a 

stream of 20-bit compressed samples at 30fps with a minimum compression ratio of 0.4 in order 

to take into account the different size between pixels and compressed samples. 

We have found a new way to manipulate the output of a CS-CIS to achieve motion detection 

using a non-recursive algorithm without resorting to image recovery or CS background 

subtraction. We have studied its performance by means of Root-Mean-Square Error (RMSE) 

using MATLAB. While not as precise as other solutions our results show that it can be used in 

real time because it does not need the large computational burden that CS reconstruction 

algorithms require. 

Analysing how to increase the performance of CS-CIS measurement matrices from a 

theoretical perspective, we have proposed a new CS-CIS architecture that uses PRNG and a 
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differential readout system for the pixel array that combined generate pseudo-random ternary 

measurement matrices. Using Peak Signal-to-Noise Ratio (PSNR) as an image quality metric, 

through MATLAB simulations, we have shown that it outperforms binary matrices almost 

reaching reconstruction results similar to an ideal Gaussian matrix. 

Lastly we have studied a way to transform the Harris corner detection algorithm into a 

sparsifying dictionary. The quasi-linearity of its equations and the fact that its output is given in 

the form of a sparse matrix with the same size of the pixel array having relevant coefficients only 

in correspondence of a corner makes it the ideal candidate for the creation of a ready-to-use 

sparsifying dictionary. Such a dictionary does not represent a sparsifying basis for the whole 

image; it is used to prune the compressed samples and preserve only information about the 

corners. This is ideal for compressed samples delivered by CS-CIS that suffer from the low 

sparsity constant of the matrix used to take them. We have tested its efficiency comparing corner 

extraction from compressed samples achieved using this dictionary on a reconstruction algorithm 

with corner detection on the image reconstructed using these same samples and the same 

algorithm. As parameters for comparison we have used the number of false positives, the number 

of false negatives and the distance of the corners from the ground truth. In all of them, corner 

extraction outperformed corner detection on the reconstructed image. 
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RESUMEN 

El muestreo compresivo (CS) es una teoría de muestreo y una alternativa al proceso de 

muestreo basado en el teorema de Nyquist-Shannon [Cand06]. Mientras que el muestreo 

convencional aplica la fórmula de interpolación de Whittaker-Shannon [Whit15] para recuperar 

una señal temporal continua a partir de un conjunto discreto de muestras temporales, CS la 

reemplaza con su reconstrucción mediante optimización convexa de su norma L1 [Bara07]. Al 

hacerlo, CS transforma el límite convencional impuesto sobre los componentes de alta frecuencia 

de una señal continua que se somete a muestreo en un límite impuesto sobre su dispersión, es 

decir, sobre el número de elementos relevantes que contiene. 

Este paradigma de muestreo ha dado lugar a nuevos sensores que generan lo que, en la 

literatura, se conocen como muestras comprimidas. Estas muestras comprimidas, necesarias para 

que los algoritmos de reconstrucción basados en CS puedan funcionar, son combinaciones 

lineales de valores puntuales de la señal muestreada ponderados por coeficientes aleatorios. 

Estos coeficientes, unidos entre sí, forman una matriz de medición. Al igual que los 

convertidores estándar tienen que cumplir con una determinada frecuencia de muestreo para 

evitar el aliasing, una matriz de medición debe respetar la propiedad de isometría restringida 

(RIP) para generar muestras comprimidas viables. 

Los sensores de imagen CMOS que se diseñan a partir de esta nueva teoría (CS-CIS) 

necesitan incorporar una matriz de medición en su arquitectura. Algunos diseñadores la añaden 

utilizando elementos ópticos delante de los píxeles, mientras que otros insertan circuitos 

dedicados on-chip. Los que eligen este segundo enfoque incluyen en sus prototipos generadores 

de números pseudoaleatorios binarios (PRNG) cuyas salidas se utilizan para seleccionar 

aleatoriamente los píxeles del sensor. Una matriz de medición óptima en CS es la matriz 

gaussiana ortonormalizada, una matriz en la que cada elemento se extrae al azar de una 

distribución gaussiana normalizada y que luego se somete a un proceso de ortogonalización. 

PRGN utilizados en el diseño de CS-CIS generan matrices de medición binarias que no son 

ortonormales y que son aleatorias solo en apariencia. Este hecho tiene una consecuencia directa 

en la calidad de las muestras comprimidas que estos CS-CIS recogen: la RIP de estas matrices no 



vi 

ideales está limitada por una constante de dispersión baja y, por lo tanto, limitan mucho el 

número de elementos relevantes que una imagen muestreada puede tener. 

En este trabajo hemos explorado la RIP de matrices de medición binarias aleatorias para 

cuantificar esta limitación. También hemos analizado el comportamiento de diferentes tipos de 

PRNG utilizando herramientas matemáticas como la densidad espectral de potencia aplicada al 

reconocimiento de patrones para ver cuánto se acercan dichos PRNG al rendimiento de matrices 

binarias verdaderamente aleatorias. Hemos demostrado que el comportamiento dinámico de los 

autómatas celulares elementales de clase III (ECA) que implementan la regla 30 los convierte en 

la mejor opción para la generación de matrices de medición recursivas y, como tal, producen las 

mejores muestras comprimidas que una matriz de estas características puede proporcionar. 

Además de estudiar la calidad de las muestras comprimidas desde una perspectiva teórica, 

también la hemos analizado desde un punto de vista eléctrico. Cada muestra comprimida que 

genera un CS-CIS se crea sumando contribuciones de píxeles en el dominio analógico. En su 

forma original una imagen no es dispersa y, por esta razón, el rango dinámico necesario para 

describir adecuadamente una combinación lineal de sus valores puntuales es bastante alto, por 

consecuencia el número de bits necesarios para digitalizar una muestra comprimida supera con 

creces el necesario para digitalizar un solo píxel. Hemos definido este número y hemos estudiado 

los límites de la conversión A/D para ver si una digitalización adecuada de muestras 

comprimidas era factible utilizando un convertidor de señal analógica a digital (ADC). Como 

alternativa viable al uso de un ADC, hemos propuesto esquemas de modulación asíncrona de los 

píxeles por ancho o por frecuencia de pulso para transponer la falta de rango dinámico disponible 

para la representación de una muestra comprimida en el dominio analógico en un problema de 

consumo de tiempo durante el barrido de los píxeles, aumentando así la cantidad de bits a nuestra 

disposición para describir dicha muestra comprimida. 

Hemos juntado los resultados de estos dos estudios para diseñar nuestro prototipo de CS-CIS. 

Tiene una matriz de 64×64 píxeles, implementa un ECA que evoluciona siguiendo la regla 30 

para la generación de una matriz de medición on-chip y una modulación asíncrona por ancho de 

pulso de sus píxeles para recoger muestras comprimidas de 20 bits. Hemos diseñado este 

prototipo utilizando una tecnología CMOS 0.18μm 1P6M. Presentamos los resultados de un 

conjunto de experimentos realizados para comprobar su rendimiento y confirmar que la 

modulación de ancho de pulso de pixeles de 8 bits es una solución eficaz: nuestro CS-CIS es 

capaz de entregar un flujo de muestras comprimidas de 20 bits a 30 fps con una razón de 

compresión mínima de 0.4 para tener en cuenta la diferencia de tamaño entre píxeles y muestras 

comprimidas. 
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También hemos estudiado una nueva forma de manipular las salidas de un CS-CIS para lograr 

la detección de movimiento con un método no recursivo y sin recurrir al uso de algoritmos de 

reconstrucción. Hemos estudiado el rendimiento de este procedimiento mediante la raíz del error 

cuadrático medio (RMSE) en simulaciones de MATLAB. Si bien nuestro método no es tan 

preciso como otros, los resultados muestran que se puede usar en tiempo real porque no necesita 

la gran carga computacional que requieren los algoritmos de reconstrucción clásicos. 

Analizando cómo aumentar el rendimiento de las matrices de medición empleadas en el 

diseño de CS-CIS desde una perspectiva teórica, hemos propuesto una nueva arquitectura que 

utiliza PRNG y un sistema de lectura diferencial de los píxeles que combinados generan matrices 

de medición ternarias pseudoaleatorias. Utilizando la proporción máxima de señal a ruido 

(PSNR) como una métrica de calidad de imagen, a través de simulaciones MATLAB, hemos 

demostrado que estas matrices ternarias superan el rendimiento de las matrices binarias casi 

alcanzando resultados de reconstrucción similares a una matriz gaussiana ideal. 

Por último, hemos estudiado una forma de transformar el detector de esquinas de Harris en un 

diccionario dispersivo. Hemos elegido este algoritmo por la cuasi-linealidad de sus ecuaciones y 

por el hecho de que su salida se da en forma de matriz dispersa, cuyo tamaño es igual al de la 

imagen elaborada y cuyos coeficientes son relevantes solo en correspondencia de posibles 

esquinas. El diccionario obtenido de este modo no representa una transformación de base para 

toda la imagen; más bien se puede usar para filtrar un conjunto de muestras comprimidas y 

preservar solo la información sobre esquinas que dichas muestras contienen. La aplicación de 

este diccionario es interesante especialmente en el caso de muestras comprimidas generadas por 

CS-CIS, ya que su precisión se ve reducida por la baja constante de dispersión de las matrices de 

medición que los CS-CIS incorporan. Hemos estudiado la eficacia de este método confrontando 

la extracción de esquinas obtenidas a partir de un algoritmo de reconstrucción que incorpore 

nuestro diccionario con la detección de esquinas obtenidas usando el detector de Harris original 

sobre la imagen tras su reconstrucción. Como parámetros de comparación, hemos utilizado el 

número de falsos positivos, el número de falsos negativos y la distancia que las esquinas 

detectadas tienen desde su posición en la imagen original. En todos los casos, la extracción de 

esquinas obtenidas usando el diccionario de dispersión superó la detección de esquinas obtenidas 

usando el algoritmo original. 
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RIASSUNTO 

Compressive Sampling (CS) è una teoria di campionamento e un'alternativa al processo 

basato sul teorema di Nyquist-Shannon [Cand06]. Mentre il campionamento convenzionale 

applica la formula di interpolazione di Whittaker-Shannon [Whit15] per recuperare un segnale 

continuo nel tempo da una discreta serie di campioni temporali, CS lo sostituisce con il recupero 

mediante l'ottimizzazione convessa della sua norma L1 [Bara07]. In tal modo CS trasforma il 

limite convenzionale imposto sui componenti d’alta frequenza del segnale continuo che si 

campiona in un limite imposto sulla sua sparsità, cioè sul numero di elementi rilevanti che 

contiene. 

Questo paradigma di campionamento ha dato origine a nuovi sensori che generano quelli che, 

in letteratura, sono sono noti come campioni compressi. Questi campioni compressi, necessari 

agli algoritmi di ricostruzione CS per recuperare un segnale, sono combinazioni lineari di valori 

puntuali del suddetto segnale ponderati da coefficienti aleatori. Questi coefficienti, uniti insieme, 

formano una matrice di misurazione. Proprio come i convertitori standard devono rispettare una 

certa frequenza di campionamento per evitare l'aliasing, una matrice di misurazione deve 

rispettare la proprietà di isometria ristretta (RIP) per generare campioni compressi funzionali. 

I sensori di immagine CMOS progettati a partire questa nuova teoria (CS-CIS) devono 

incorporare una matrice di misurazione nella loro architettura. Alcuni designer la aggiungono 

utilizzando elementi ottici davanti ai pixel, mentre altri la inseriscono usando circuiti dedicati on-

chip. Quelli che scelgono questo secondo approccio includono, nei loro prototipi, dei generatori 

di numeri binari pseudo-aleatori (PRNG) le cui uscite sono usate per selezionare a caso i pixel 

dell'array. Una matrice di misurazione ottimale per il CS è la matrice gaussiana ortonormalizzata, 

una matrice in cui ogni elemento viene estratto a caso da una distribuzione di probabilità 

gaussiana normalizzata che poi subisce un processo di ortogonalizzazione. I PRGN utilizzati 

nella progettazione di CS-CIS generano matrici binarie che non sono ortonormali e che sono 

aleatorie solo in apparenza. Questo fatto produce conseguenze dirette sulla qualità dei campioni 

compressi che questi CS-CIS catturano: la PIR di queste matrici non ideali è limitata da una 

costante di sparsità bassa che limita notevolmente il numero di elementi rilevanti che 
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un'immagine campionata può avere. 

In questo lavoro abbiamo studiato la RIP di matrici di misurazione binarie aleatorie per 

quantificare questa limitazione. Abbiamo anche analizzato il comportamento di diversi tipi di 

PRNG usando strumenti matematici come la densità spettrale di potenza applicata al 

riconoscimento di schemi ripetitivi per vedere quanto, questi elementi, si avvicinino alle 

prestazioni di suddette matrici. Abbiamo dimostrato che il comportamento dinamico degli 

automi cellulari elementari di classe III (ECA) che implementano la regola 30 li rende la 

migliore scelta di PRNG per la generazione ricorsiva di matrici di misurazione on-chip e come 

tali producono i migliori campioni compressi che una matrice di queste caratteristiche possa 

fornire. 

Oltre a studiare la qualità dei campioni compressi da una prospettiva teorica, abbiamo anche 

analizzato la loro qualità da un punto di vista elettrico. Ogni campione compresso generato da un 

CS-CIS viene creato sommando i contributi di vari pixel nel dominio analogico. Nella sua forma 

originale un'immagine non è sparsa e per questo motivo l’intervallo dinamico necessario per 

descrivere correttamente una combinazione lineare dei suoi valori puntuali è piuttosto elevato e, 

di conseguenza, il numero di bit necessari per digitalizzare un campione compresso supera di 

gran lunga quello necessario per digitalizzare un singolo pixel. Abbiamo definito questo numero 

formalmente e abbiamo studiato i limiti della conversione A/D per vedere se fosse possibile una 

corretta digitalizzazione di campioni compressi usando un Convertitore analogico-digitale 

(ADC). Come alternativa plausibile abbiamo proposto architetture di pixel basati su una 

modulazione di larghezza o di frequenza d'impulso per trasporre la mancanza di intervallo 

dinamico in un problema di consumo di tempo, aumentando così la quantità di bit a nostra 

disposizione per descrivere un campione compresso. 

Abbiamo unito i risultati di questi due studi in un CS-CIS di nostra progettazione. Ha un array 

di 64×64 pixel, incorpora una ECA con regola 30 per la generazione di matrici di misurazione 

on-chip e una modulazione di larghezza d'impulso dei suoi pixel per fornire campioni compressi 

di 20 bit. Il prototipo di questo sensore d'immagini è stato realizzato utilizzando una tecnologia 

CMOS 0.18μm 1P6M. Abbiamo presentato i risultati di una serie di esperimenti condotti per 

testarne le prestazioni e confermare che la modulazione di larghezza d'impulso di pixels di 8 bits 

è una soluzione davvero efficace per creare un CS-CIS in grado di fornire un flusso di campioni 

compressi di 20 bit a 30 fps con un rapporto di compressione minimo di 0.4 per tenere in conto 

la diversa dimensione dei pixel e dei campioni compressi. 

Abbiamo anche studiato un nuovo modo per manipolare l'output di un CS-CIS allo scopo di 

rilevare movimento utilizzando un algoritmo non ricorsivo senza applicare algoritmi di 
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ricostruzione convenzionali. Abbiamo studiato le sue prestazioni per mezzo del Root-Mean-

Square Error (RMSE) con simulazioni in MATLAB. Sebbene il nostro metodo non sia preciso 

come altre soluzioni, i risultati dimostrano che può essere utilizzato in tempo reale perché non ha 

bisogno del grande carico computazionale richiesto dagli algoritmi di ricostruzione 

convenzionali. 

Analizzando come aumentare le prestazioni delle matrici di misurazione dei CS-CIS da un 

punto di vista teorico, abbiamo proposto una nuova architettura di CS-CIS che utilizza PRNG e 

un sistema di lettura differenziale per l'array che, combinati, generano matrici di misurazione 

ternarie pseudo-aleatorie. Utilizzando il peak signal-to-noise ratio (PSNR) come metrica della 

qualità dell'immagine, sempre attraverso simulazioni MATLAB, abbiamo dimostrato che queste 

matrici superano le matrici binarie raggiungendo quasi risultati di ricostruzione similari a una 

matrice gaussiana ideale. 

Infine, abbiamo studiato un modo per trasformare il rivelatore d'angoli di Harris in un 

dizionario sparsificante. Abbiamo scelto questo algoritmo per la quasi-linearità delle sue 

equazioni e per il fatto che il suo output è dato sotto forma di una matrice sparsa di dimensione 

uguale a quella dell'immagine da ricostruire e i cui coefficienti sono rilevanti solo in 

corrispondenza di possibili angoli. Il dizionario ottenuto in questo modo non rappresenta una 

trasformazione di base per l'intera immagine; piuttosto, può essere usato per filtrare una serie di 

campioni compressi e conservare solo le informazioni sugli angoli contenuti in quei campioni. 

L'applicazione di questo dizionario è di particolare interesse nel caso di campioni compressi 

generati da CS-CIS poiché la loro precisione è ridotta dalla bassa costante di sparsità delle 

matrici di misurazione adottate nella progettazione dei CS-CIS stessi. Abbiamo studiato 

l'efficacia di questo metodo confrontando l'estrazione degli angoli ottenuti da un algoritmo di 

ricostruzione che incorpora il nostro dizionario con il rilevamento degli angoli ottenuti 

utilizzando il rilevatore Harris sull'immagine originale dopo la sua ricostruzione. Come 

parametri di confronto, abbiamo utilizzato il numero di falsi positivi, il numero di falsi negativi e 

la distanza che gli angoli rilevati hanno dalla loro posizione nell'immagine originale. In tutti i 

casi, l'estrazione degli angoli ottenuti usando il dizionario sparsificante ha superato il 

rilevamento degli angoli ottenuti usando l'algoritmo di Harris originale. 
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CHAPTER 1 

INTRODUCTION 

Compressive Sampling (CS) first appeared in 2006 within the field of signal processing 

[Cand06] as an alternative to the Nyquist–Shannon sampling theorem. The purpose of sampling 

is to capture the content of a continuous signal using a series of discrete measurements. The 

device in charge of producing this sequence of measurements, that in this process take the name 

of samples, is called sensor. This operation is feasible only given either prior knowledge or 

assumptions about the signal that we want to capture: the Nyquist–Shannon sampling theorem 

establishes a sufficient condition on the sample rate so that a discrete sequence of samples 

includes all the information from a continuous signal within a finite bandwidth. It states that, if 

the sample rate is twice the signal bandwidth, then the signal can be reconstructed perfectly by 

means of the Whittaker–Shannon interpolation formula [Whit15], Eq. (1). 

𝑠(𝑡) = ∑ 𝐬(𝑖∆𝑇)
sin(𝜋

𝑡−𝑖∆𝑇

∆𝑇
)

𝜋(𝑡−𝑖∆𝑇)
∆𝑇+∞

𝑖=−∞ = ∑ 𝐬(𝑖∆𝑇) sinc (
𝑡−𝑖∆𝑇

∆𝑇
)+∞

𝑖=−∞    (1) 

where 𝐬(𝑖∆𝑇) is the sequence of discrete measurements, 𝑠(𝑡) is the reconstructed signal and ∆𝑇 

is the sampling interval. For the reconstructed signal to be equal to the original, they must have a 

Fourier transform whose non-zero values are confined to the region |𝑓| ≤ 1 2∆𝑇⁄ . 

𝑓𝑠 = 1 ∆𝑇⁄  is known as the sample rate and 𝑓𝑠 2⁄  is the corresponding Nyquist frequency. If 

the high frequency components of the sampled signal exceeded the Nyquist frequency we would 

incur in a phenomenon called aliasing: copies of these high frequency components would be 

created within the region |𝑓| ≤ 1 2∆𝑇⁄ , they would overlap with the already existing 

components of that region, adding their power to them and altering the sampled signal structure 

irredeemably. In this case 𝑠(𝑡), upon reconstruction by means of Eq. (1), would be different from 

the original. To solve this problem in practice the input signal is filtered using a low-pass filter 

(LPF) whose impulse response is sinc[(𝑡 − 𝑖∆𝑇) ∆𝑇⁄ ] and whose input is the impulse train: 

𝑠(𝑡) = ∑ 𝐬(𝑖∆𝑇)𝛿(𝑡 − 𝑖∆𝑇)+∞
𝑖=−∞     (2) 
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In other words, the frequency band of the signal that we want to sample is limited with a LPF 

whose cut-off frequency is 𝑓𝑠 2⁄  and this filter takes the name of anti-aliasing filter (AAF). Its 

presence guarantees that the part of the original signal included in |𝑓| ≤ 1 2∆𝑇⁄  be sampled and 

reconstructed correctly. 

For many applications, modern electric sensors are designed as mixed-signal systems that 

incorporate a certain level of pre-processing of the information and what they deliver are 

sequences of samples already in discrete domains. This is especially true for CMOS image 

sensors (Fig. 1) where their ease of use, low production cost, design flexibility and suitability for 

the production of on-chip cameras have relegated other types of image sensors to niche markets. 

 

Fig. 1: Conventional digital image sensor diagram. 

Generally speaking, the basic building blocks of CMOS image sensors are the pixels, discrete 

elements that contain a photodiode used to collect a spatial sample of a scene when the photons 

leaving that scene impact on its sensitive area. Each sample consists of a value that represents the 
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light intensity captured in a point of the array onto which the whole scene is reflected (Fig. 1). 

These values can then be described either by analog voltages or by analog currents. 

Each photodiode is connected to three or more dedicated transistors (depending on the design 

and purpose) and the combination of each photodiode and its transistors is what forms a pixel. 

The number of transistor per pixel ranges from 3-4 transistors for standard digital cameras 

[Font13] up to few tens of transistors for smart imagers that introduce image pre-processing, 

correction of sampling errors or feature extraction at the focal plane [Foss97] [Fern16]. 

The analog-to-digital converter (ADC) reads the voltages from the pixels and converts them 

into digital outputs. Typical ADC architectures choices for image sensors are: dual-slope ADC, 

cyclic ADC, successive approximations ADC and Σ-Δ ADC [Leñe18]. Imagers implementing a 

serial readout employ a global ADC for the whole array, while column-parallel readout designs 

use one ADC for each imager column. 

Most image processors are used to perform basic digital image processing in the digital 

domain, such as demosaicking, denoising and/or white-balancing. In some advanced architecture 

it is also used to extract features on the focal plane to perform object/face recognition or tracking 

[Fern16]. The I/O controller interfaces the image sensor with external electronics and, besides 

streaming image data, receives instructions used to set the internal registers of the imager that 

determine the operational mode and parameters. Finally, the digital controller manages the timed 

execution of the operations of the imager following the frequency of operation imposed by the 

clock. 

In this representation of a conventional digital imager (Fig. 1) we can see that the sampling 

theorem imposes two fundamental limitations. Image sensors convert continuous optical scenes 

into discrete digital images containing information that varies across space and over time 

[Gonz92] [Seit00]. Temporal aliasing during image sampling is tied to the frame rate of the 

camera and in most cases it is not difficult to prevent. The temporal variations of a scene are 

synchronised with the imager’s clock and happen at regular intervals of its period: since the 

pixels photo-currents of photo-charges are extremely weak unless the illumination levels are 

very high, pixel values are commonly obtained through integration and discrete-time operation 

processes where electrical charges get accumulated into capacitors over the clock period. This 

process can be effectively used to filter the signal over time and avoid temporal aliasing. 

As for the variation of a scene across space note that we have described the pixel array as a 

series of discrete elements but, at the other side of the lenses, we find a natural environment 

comprised of spatially continuous elements. As such, we need to filter the incoming information 

in a space-wise fashion so that the discrete elements of the array do not incur spatial aliasing. 
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The extension of the Nyquist–Shannon sampling theorem to n-dimension takes the name of 

Petersen–Middleton theorem [Pete62]. The mathematics of two-dimensional spatial sampling is 

similar to that of time sampling and it delivers a similar result. The interpolation formula derived 

from this extension can be implemented in practice as an optical low-pass filter (OLPF) whose 

input is the impulse train: 

x(𝑢, 𝑣) = ∑ 𝐗(𝑖∆𝑈, 𝑗∆𝑉)𝛿(𝑢 − 𝑖∆𝑈, 𝑣 − 𝑗∆𝑉)+∞
𝑖,𝑗=−∞    (3) 

where 𝐗(𝑖∆𝑈, 𝑗∆𝑉) is the matrix of discrete measurements of the image taken over a square 

lattice (i.e. pixel values), 𝑥(𝑢, 𝑣) is the reconstructed image and ∆𝑈 and ∆𝑉 are the spacing 

between pixels along the two dimensions of the array. The choice of OLPF, also known as blur 

filters or optical anti-aliasing filters (OAAF) (Fig. 1), involves a trade-off among sharpness, 

aliasing, and fill factor (i.e. the ratio of a pixel light sensitive area to its total area). The OLPF 

guarantees that the reconstructed image x(𝑢, 𝑣) equals the original in a given range of spatial 

frequencies. In other words the sampling theorem establishes a direct dependence between the 

quality of a captured image and the pitch, number and placement of the pixels of the imager used 

to obtain it. 

Upon sampling a signal, a common practice is that of applying compression algorithms. This 

is done because natural signals tend to be spatially piece-wise smooth (some well below the cut-

off frequency imposed by the OAAF). The objective of these algorithms is to exploit this 

naturally occurring sparsity to reduce signal redundancy, minimising its bit size, in order to store 

or transmit it in an efficient form. Mathematically speaking, compression is achieved by 

transforming the domain in which a signal is represented. For digital images a wide range of 

sparse transforms can be used, some examples are the discrete Fourier transform, the discrete 

cosine transform (JPEG compression standard) [Ahme74] and the discrete wavelet transform 

(JPEG2000 compression standard) [Akan92]. When the signal to be compressed is represented in 

the discrete domain, such as the case of digital images, these transforms can take the form of 

linear combinations and be applied as matrix products: 

𝛂 = 𝑓(X) = 𝐓𝐱     (4) 

where the function 𝑓(∙) represents the chosen transform, T is its discrete matrix representation, 

𝐱 ∈ ℝ𝑁 is the matrix containing pixels values folded columnwise and 𝛂 ∈ ℝ𝑁 is a set of 

parameters that represent the image in the transform domain chosen. Note that 𝛂 is still a vector 

that represents the sampled image but, in this new domain, this vector has a much lower entropy 
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than its counterpart 𝐱 so compression can be achieved by pruning negligible elements of 𝛂. If we 

were to define 𝑀 as the number of significant elements of 𝛂 then 𝑀 ≪ 𝑁 so that mathematically 

speaking 𝛂 can be considered a sparse representation of the original image. 

CS sets itself as an alternative to the sampling and compression paradigm presented above by 

replacing signal recovery by means of interpolation Eq. (1) [Sten84] with signal recovery by 

means of convex optimisation [Trop10]: 

𝑚𝑖𝑛‖𝐱‖𝑙1
 subject to ‖𝐲 − 𝚽𝐱‖𝑙2

< 휀2    (5) 

where 𝐲 is a vector whose elements are defined as compressed samples, 𝐱 is the vector of 

unknowns, 𝚽 is called measurement matrix, 휀 is a scalar number that can be used to describe the 

measurement noise level of a zero mean additive white Gaussian noise and the operators ‖∙‖𝑙1
 

and ‖∙‖𝑙2
 are 𝑝-norms: 

‖𝐱‖𝑙𝑝
= (|𝑥1|𝑝 + |𝑥2|𝑝 + ⋯ + |𝑥𝑛|𝑝)

1
𝑝⁄     (6) 

It is possible to notice that for 𝑝 = 1 Eq. (6) represents the sum of the elements of 𝐱 and for 𝑝 =

2 it represents its Euclidean norm. Vector 𝐱 contains the elements of the image that we want to 

reconstruct folded in a monodimensional array. In standard sampling, each one of these elements 

shares a biunivocal relationship with the actual output of a pixel within a sensor. In CS, as we 

will show with some examples in section 1.1, the two concepts are not tied in the same way. 

Moreover, since this sampling paradigm is not based on interpolation but on optimization, it is 

not affected by aliasing and pixel positioning (which are by-products of Eq. (3)). But, to simplify 

our argument without loss of generality, for the moment, let us consider the pixels in a sensor 

and the elements of an image (also known as pixels or picture elements) as one and the same. 

Using images as an example, given a pixel array of unknown values 𝐱, compressed samples 𝐲 are 

obtained as linear combinations of the array elements [Bara07]: 

𝐲 = 𝚽𝐱      (7) 

From Eq. (7) we see that a measurement matrix 𝚽 contains the set of parameters used to 

generate the compressed samples. CS differs from conventional techniques in that the original 

signal is not sampled at a fixed rate over regular time intervals Eq. (2) or over a square lattice Eq. 

(3) and subsequently compressed in a new domain to reduce its dimensionality Eq. (4); it is 

already sampled in a domain different from the discrete temporal or spatial domains of these 

equations. The compressed samples in 𝐲 ∈ ℝ𝑀 are elements that represent the image in a new 
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domain similarly to how the 𝑀 significant elements of 𝛂 ∈ ℝ𝑁 in Eq. (4) represented a signal in 

a transform domain. But the transformation in Eq. (7), despite taking the name of “compressive” 

due to its obvious similarities with Eq. (4), it is not a compression per se. What this sampling 

paradigm does is to exchange recovery by interpolation Eq. (1) with recovery by optimization 

Eq. (5). 

The advantage of CS over standard sampling is that, depending on the orthonormality of 𝚽 

[Bara07], it can operate as a space-wise compression algorithm in that, given 𝐱 ∈ ℝ𝑁 and 𝐲 ∈

ℝ𝑀, the information content of the sampled image can be stored using a number of compressed 

samples, 𝑀, lower than the number of pixels of the array 𝑁: although underdetermined 

problems, such as the inverse of Eq. (7) for 𝑀 < 𝑁, are considered ill-posed because they lack a 

univocal solution, they can be solved if 𝚽 abides an extra constraint, the restricted isometry 

property (RIP): 

(1 − 𝛿𝑘)‖𝐱‖𝑙2
≤ ‖𝚽𝑘𝐱‖𝑙2

≤ (1 + 𝛿𝑘)‖𝐱‖𝑙2
   (8) 

being 𝛿𝑘 positive and arbitrarily small and ‖𝚽𝑘
∗𝚽𝑘 − 𝐈‖𝑙2

≤ 𝛿𝑘. RIP essentially requires that 

every set of rows of 𝚽 with cardinality less than 𝑘 approximately behaves like an orthonormal 

system when operating on sparse vectors [Cand06]. Borrowing a mathematical statement 

[Bara10] we could say 𝚽 projects a higher dimensional space onto a lower dimensional space 

preserving Euclidean distances among represented elements. In simpler words, if 𝚽 respects the 

RIP and the image 𝐱 that we want to sample is 𝑘-sparse, then Eq. (7) can be solved imposing a 

minimisation constraint on the elements of 𝐱 as presented in Eq. (5). Convexity of Eq. (5) makes 

signal recovery by means of optimization feasible because any local minimum must also be a 

global minimum hence the uniqueness of the solution. 

As such, the key requirement of CS is sparsity of the sampled signal and this property can 

either exist in the signal original domain or in another basis. This means that, were the sampled 

signal not sparse enough to be sampled properly with a given 𝚽, it is possible to multiply, a 

posteriori, the outcome of Eq. (7) by a transform matrix like those presented in Eq. (4) to lower 

the signal entropy, thus increasing its compressibility and be able to achieve correct 

reconstruction. In CS these transform matrices take the name of sparsifying dictionaries. 

Continuing with the example of digital images, as mentioned before, there is a wide range of 

transforms can be used to increase image sparsity (i.e. Fourier transform, discrete cosine 

transform or discrete wavelet transform). If we assume that an image is sparse in one of the 

aforementioned domains then Eq. (5) takes the form: 
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𝑎𝑟𝑔𝑚𝑖𝑛‖𝛂‖𝑙1
 subject to ‖𝐲 − 𝚽𝚿𝛂‖𝑙2

< 휀2   (9) 

being 𝚿 = 𝐓−1 (from Eq. (4)) the sparsifying dictionary, a matrix that, multiplied by a signal, 

returns 𝛂, the vector of coefficients of the transformation of that signal to the new sparse domain. 

In this case, if we introduce the matrix 𝚯 as the product 𝚽𝚿, then the RIP presented in Eq. (8) 

will become: 

(1 − 𝛿𝑘)‖𝛂‖𝑙2
≤ ‖𝚯𝑘𝛂‖𝑙2

≤ (1 + 𝛿𝑘)‖𝛂‖𝑙2
   (10) 

indicating that orthonormality must be a characteristic of the product between measurement 

matrix and sparsifying dictionary. Following Eq. (7), if we plan to design a CS CMOS image 

sensor (CS-CIS), an imager whose output is a sequence of compressed samples usable to solve 

Eq. (9), then we need to introduce 𝚽 in its design. 

This matrix must be translated into a series of weights that are scalarly multiplied by the 

output of the pixels in the array. They can be inserted in the sampling sequence using different 

means i.e. optical elements in front of the array or dedicated circuitry in the CS-CIS itself. 

Furthermore, these weights will need to comply with the requirements of orthonormality 

imposed by Eq. (10). 

The diagram in Fig. 2 shows the conceptual process of how CS works when applied to image 

sampling. It also underlines the difference with standard sampling presented in Fig. 1. In this 

example, each pixel value 𝑥𝑗 is multiplied by a coefficient of the measurement matrix φ𝑖,𝑗. These 

products are summed together using an analog adder to create the compressed sample and only 

then this sample is digitised. In this sense each row of the matrix can be seen as a waveform and 

the resulting sample is a convolution of the image elements by such waveform. It is necessary to 

swap the coefficients employed, which belong to a row of the measurement matrix, with those of 

other rows in the matrix to further generate other compressed samples. 

Note that, using compressed samples to capture the content of an image eliminates the need to 

implement an OAAF to avoid spatial aliasing which was a direct consequence of the sampling 

paradigm based on interpolation Eq.(1) and the Petersen–Middleton theorem and its practical 

implementation presented in Eq. (3). As such, design choices that determine pitch, number and 

placement of the pixels and their relationship to image quality derived from this theory do not 

hold anymore: remember that CS makes a connection between pixel of a sensor and pixel as 

elements of the image that is not biunivocal. 

A priori, if we wanted to sample a specific image, by knowing its structure and formulating 

opportune assumptions, we could design a dedicated matrix to optimise its sampling. Following 
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this line of thoughts, there can be an infinite number of possible measurement matrices that 

could potentially be used in the design of a CS-CIS, each working at its best on a particular type 

of images, but it is advisable to choose a design strategy that creates a CS-CIS able to function in 

all situations. 

 

Fig. 2: Compressive Sampling Image sensor diagram. 

However, the compressed samples obtained by a CS-CIS are taken from images sampled in 

the spatial domain, domain in which they are not sparse. They are encased in electrical quantities 

in the analog domain and these quantities must have adequate dynamic range to describe the 

content of these samples. The treatment of these quantities has nothing to do with how CS uses 

𝚽 to reorder the information content of the sampled image: at sensor level, beyond reducing the 

number of pixels by creating linear combinations, it has no other purpose. Even though 

sparsifying dictionaries can help a posteriori reconstruction, the quality of the information 

included in the samples taken by a CS-CIS depends entirely on adequate digitisation. 
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Digitisation that is carried out using standard components and techniques, which must abide Eq. 

(2) and all of the considerations derived from the Nyquist–Shannon theorem and which needs to 

use large digital words to maintain an appropriate resolution after combining the values of 

several pixels in a large compressed sample. 

Among RIP-compliant measurement matrices that can be applied to sample all sorts of signals 

we find normalised Gaussian matrices. These matrices have entries that are independent standard 

normal random variables and are some of the most efficient universal measurement matrices that 

can be employed in CS [Vers09]. Although these matrices would be ideal, in most cases they are 

not practical: as shown in Fig. 2 each compressed sample is a linear combination of the weighted 

readings of all pixels (which are 𝑁 in number) and that means that they are the sum of 𝑁 

products of 𝜑𝑖,𝑗𝑥𝑗 . The problem of compresses sample quantisation has already been studied in 

theory[Bouf08][Jacq11] but less attention has been given to the perspective of ADC 

dimensioning: The upper bound on the amount of bits required to digitise these linear 

combinations is: 

BCS = ⌈log2 𝑁⌉ + (BΦ + BI)     (11) 

where BCS is the number of bits needed to digitise a compressed sample, ⌈∙⌉ denotes the smallest 

integer greater than the argument and BI and BΦ the number of bits used to quantise the pixel 

dynamic range and the coefficients respectively. Standard imagers usually employ 8 to 10 bits 

ADC to digitise the value of a single pixel, if we were to assign the same amount of bits to each 

coefficient and we had a 64×64 pixel array we would need a converter with at least 28 bits of 

resolution to properly digitise a single compressed sample. It is virtually impossible to design 

ADC with such resolutions in standard technologies. 

For this reason the use of binary measurement matrices and block-based compressive 

sampling (BCS) [Gan07], that divides a pixel array into smaller sub-arrays that are sampled 

digitised independently from one another, is essential for the implementation of measurement 

matrices in CS-CIS. These binary matrices are obtained using sub-Gaussian distributions: instead 

of drawing each entry from a normal random distribution they are selected at random to be either 

1 or 0. Another important advantage of BCS is that using the same measurement matrix for each 

block can be exploited to accelerate reconstruction [Akb218] and parallelise measurements 

[Oike13]. 

Although this solution is the most common in the design of CS-CIS [Waki06], [Ferg06], 

[Maji10], [Oike13], [Leit18], [Lee18], there are two alternatives to this choice. The first is to 

design deterministic binary matrices; i.e. cyclic matrices [DeVo07], sparse bipartite graphs 
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[Xia15] or other forms of deterministic matrices that try to match the performance of Gaussian 

random matrices [Jafa12]. And the second is to introduce a measurement matrix using optic 

elements in which case they use lenses to redirect or diffuse the light either deterministically 

[Wang10] or at random [Ferg06]. 

The first step to design a CS-CIS would be to study which solutions have been employed in 

real prototypes and a good way to categorise these prototypes would be to focus our attention on 

which elements their designers have used to introduce the measurement matrices as well as if 

these matrices are deterministic or not. 

Using this division we can create two wide categories: 

 The coefficients of 𝚽 are introduced using optic elements: the measurement matrix is 

built using different types of lenses so that a standard imager can be used. 

 The coefficients of 𝚽 are inserted on-chip: the measurement matrix is incorporated as 

part of the imager design as such it alters the pixel structure and imager architecture. 

1.1 MEASUREMENT MATRICES GENERATED THROUGH OPTIC ELEMENTS 

The designs of CS-CIS that belong to this category are clearly inspired by the parallelisms 

that can be found between the sampling theories presented in Eq. (3) and Eq. (5). Early CS-CIS 

prototypes were designed using optic elements. In a way this is not surprising because, as we 

have shown in Fig. 2 and Eq. (5), the implementation of a measurement matrix in practice is 

none other than the substitution of the conventional OLPF needed to avoid spatial aliasing by a 

matrix of random coefficients. The Single Pixel Camera [Waki06] represents one of the first two 

prototypes of CS-CIS. It introduces the waveforms or coefficients that create the compressive 

samples through the use of an array of steerable micro-mirrors controlled through a pseudo 

random number generator (PRNG) Fig. 3. 

This prototype implements a measurement matrix efficiently through the use of optical 

elements. In this design a lens focuses the scene on an array of movable micro-mirrors. Each 

micro-mirror can be oriented to reflect a portion of the scene towards the single photodiode of 

the camera. The sum of the light of all the parts of the scene that converge on the photodiode 

form a compressed sample in the optical domain that  is then transformed into an electrical signal 

by the pixel. To reconstruct the sampled image, the micro-mirrors take on the role of a sub-

Gaussian distribution of binary coefficients. 

This example is the embodiment of both the advantages and disadvantages of CS-CIS design 

with respect to conventional sampling. On the one hand it is apparent that, since there is no 

spatial aliasing to consider, CS does not impose restrictions on the positioning of the active 
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elements of the sensor allowing more freedom in their design, so much so that it is possible to 

reduce their number up to a single unit. But, on the other hand it makes it clear that the 

information incorporated in a single analog signal is that of many pixels, where in this instance 

we intend by pixels the values of the vector of unknowns 𝐱, as such, the ADC that follows will 

need a higher resolution than that required to digitise a pixel of a standard imager, because 

remember, as we have seen in Eq. (11), CS only compresses space-wise and this does not affect 

the amount of bits needed to digitise the electric signals produced by the sensing elements. 

 

Fig. 3: Single Pixel Camera, Image taken from “An Architecture for Compressive Imaging” [Waki06] © 2006 

IEEE. 

Another important consideration to make is that the compressed samples are taken one after 

the other forming a temporal sequence even though they will be used to recover the same still 

image. After each sample, the array of micro-mirrors has to reconfigure itself into a new position 

in order to be able to grab the next sample which must be different from the previous. This 

consideration that seems almost trivial creates a strong limitation on the design of CS-CIS: the 

process of taking compressed samples lengthens the times in which the image must be kept 

unchanged. It is true that in standard imagers we need to sweep the entire array, a process that is 

usually carried out in row-wise fashion, and that during that time the image has to remain 

stationary but once that is done the image is captured. In CS one needs to sweep the entire array 

(or in this case reconfigure the micro-mirrors) once for each sample and this operation 

potentially makes the acquisition process much longer than in standard imagers. Either we 

become able to ideally collect all samples simultaneously or the CS-CIS should operate at a 

speed that is several orders of magnitude faster than a standard imager would with respect to the 

fastest movement contained in the scene to be captured. 

Another example of optical measurement matrix, which was reported almost at the same time 

as the Single Pixel Camera, is the Random Lens Camera [Ferg06] invented at the Massachusetts 

Institute of Technology (Fig. 4). This prototype, instead of pseudo-randomly generating each 

© 2006 IEEE 
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waveform sequentially, as the Single Pixel Camera does, it uses a shattered lens to refract and 

diffract the incoming light randomly and thus creating all the measurement waveforms at once. 

 

Fig. 4: Random Lens Camera, Image taken from “Random Lens Imaging” [Ferg06] © 2006 IEEE. 

This prototype is the one that more closely approaches the RIP requirement as presented in 

Eq. (8) because it does not use an approximation such as PRNG to cycle through deterministic 

rows of a binary measurement matrix. It uses a truly random shattered lens that, when viewed 

from different points on the focal plane, creates random waveforms where the active elements of 

the sensor are placed. 

Furthermore, since various pixels are used to collect the compressed sample simultaneously, it 

resolves the burden on the operating speed given by the requirement of time invariance of the 

sampled scene. But, whereas this solution resolves these problems, it introduces new one, 

calibration: in a randomly broken lens there is no telling how the light will be scattered. This 

implies that there is no way of knowing, a priori, the coefficients of the measurement matrix that 

this lens creates, coefficients that, in the end, will still be needed for reconstruction. Hence, 

before using this camera we must recover them. To do so we must present a number of known 

images equal to the number of compressed samples generated by the camera itself and use its 

outputs to invert Eq.(5) and calculate all of the unknown coefficients. 

This process, besides the obvious difficulty posed by precisely presenting the known images 

to the sensor can also be very tedious because, in order to calibrate a 128×128 pixel array, we 

would need to use 214 images. What aggravates the situation even more is that these coefficients 

will be numbers other than ones and zeros thus posing a heavy burden on the ADC (see Eq.(11)). 

This prototype is another fine example of how the measurement matrix can be successfully 

implemented using optic elements but it also helps us to stress the importance of using 

approximations such as the PRNG introduced by the Single Pixel Camera. While it is true that 

using less than optimal matrices negatively impacts the overall performance of the CS-CIS in 

terms of RIP, in reality it is the choice to make in order to ease ADC requirements and to allow 

us to generate identical matrices both during acquisition and at reconstruction without needs for 

calibration or constant transmission of the matrix coefficients. 

Besides these two pioneering examples of measurement matrix implementation through 

© 2006 IEEE 
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lenses and mirrors, there have been many more prototypes in these past years that have exploited 

optical elements to reach this goal. One of them, for instance, is the Super Resolution Imager 

[Wang10] that uses as matrix a fish eye distortion lens, which can be described as a circulant 

matrix, and exploits its orthonormality [Wota10] in order to generate RIP compliant compressed 

samples. Another uses the properties of scattering materials [Liut14] in a similar way to how 

[Ferg06] used a shattered lens. Following the example of [Waki06], [Chen05] implements a 

similar solution for imagers meant to sample in the mid-infrared spectra. Many others [Roum08], 

[Arce14] or [Moch15] make use of coded apertures to reproduce the ones and zeroes of binary 

matrices and some even mount an imager on top of a platform connected to two micro-motors 

that pseudo randomly move up and down and sideways to create random exposure [Shi09]. 

All of these CS-CIS have been successful in implementing diverse measurement matrices in 

order to achieve compressed sample extraction and they show how much freedom the lack of 

concern for aliasing effects can bring to an imager design. But they all suffer from incredible 

burden during A/D conversion and some of these matrices cannot be easily reproduced both at 

sensor level and during reconstruction. The curvature of a fish eye lens such as the one used in 

[Wang10] might be difficult to translate into coefficients and the delays of the elements used to 

code the aperture of the imager or to set it in motion might induce errors that are difficult to 

predict and to correct. For this reason, the majority of the efforts have focused on inserting the 

measurement matrix coefficients directly on-chip incorporating it as part of the imager design. 

1.2 ON-CHIP MEASUREMENT MATRICES 

As we have illustrated with some examples in the previous section, two major limitations 

arise while incorporating CS measurement matrices in a sensor design. These limitations also 

apply when, instead of using optic elements, these matrices are implemented using electric 

components at sensor level. First of all, the coefficients of such matrices must be known at both 

extremes of the communication channel. This is, not only the sensor must know which 

compressive strategy we use in order to generate the corresponding compressed samples, but the 

same strategy must be known also at the end of the channel, in order to reconstruct the original 

image. Therefore, either the matrix that we choose is generated at the sensor and transmitted to 

the image reconstruction system or it needs to be stored at both ends. The second question is 

dynamic range. As we have described in Eq. (11), if we collect compressed samples using binary 

measurement matrices, the number of bits required to describe these linear combination of 𝑁 

pixels would be log2 𝑁 in addition to the bits chosen to describe one single pixel. As we will 

discuss in Chapter 3, this is a major limitation for an implementation of this addition in the 
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analog plane, as dynamic range in analog circuits is limited by the available output range and 

noise level. 

To try to comply with the first requirement, in signal processing literature, there are many 

works that study deterministic binary measurement matrices; i.e. cyclic matrices [DeVo07], 

sparse bipartite graphs [Xia15] or other forms of deterministic matrices that try to match the 

performance of Gaussian random matrices [Jafa12] and that can be easily known by both the 

sensor and the reconstruction system. These matrices are usually coined hardware-friendly by 

their authors because of to their binary nature but they still partially disregards the fact that, on-

chip, they need hardware resources to be generated, transmitted and/or stored. To store a binary 

measurement matrix in its integrity a large memory would be required, which is not practical. If, 

on the contrary, we were to introduce a transmission between sensor and reconstruction system 

to continuously send the rows of the matrix, the amount of exchanged data would void CS 

benefits as a compression technique. 

As CS is an acquisition technique, the fact that we cannot apply these theories to actively 

design sensors is, in itself, the limitation of these works. For this reason, measurement matrices 

designed in analog microelectronics [Maji10], [Oike13] mainly focus on the use of PRNG to 

recursively create the rows of the matrix sample after sample. This solution employs the 

minimum possible amount of on-chip resources and does not need data feedback between sensor 

and reconstruction system. 

One of the early examples of CS-CIS prototypes with on-chip generated measurement matrix 

is the CMOS Imager/Compressor designed at the École Polytechnique Fédérale de Lausanne 

[Maji10]. As it was the case with the Single Pixel Camera [Waki06] and the Random Lens 

Camera [Ferg06] presented in the previous section, this example embodies both the advantages 

and disadvantages of CS-CIS design with respect to conventional sampling. The matrix is 

generated by introducing 1-bit registers in each pixel and connecting them in sequence to create 

three distinct Linear Feedback Shift Registers (LFSR) that form a programmable two-

dimensional scrambling technique that guarantees the randomness of the matrix binary 

coefficients Fig. 5 [Maji10]. 

This example shows the two disadvantages that, in general, CS implementation on-chip has 

with respect to optical implementations or to standard imaging. First of all we notice that, unless 

we encode the initial seed in the registers reset [Guic16], when the matrix is introduced on-chip, 

there is the need of an initialization phase in which an initial set of coefficients, known as seed, 

is sent to all of the registers. If a mistake were to occur during this phase the sampled image 

would be irretrievable. The second is that, introducing extra components within the pixel array 
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reduces the pixels fill factor, that is, the ratio of a pixel light sensitive area to its total area, thus 

worsening the quality of the sampled image. 

 

Fig. 5: Architecture of “A (256x256) Pixel 76.7mW CMOS Imager/Compressor Based on Real-Time In-Pixel 

Compressive Sensing”, Image taken from [Maji10] © 2010 IEEE. 

On the other hand, this architecture also shows the advantages that, in general, incorporating a 

measurement matrix on-chip has. A matrix generated this way makes it so that each coefficient is 

directly tied to its corresponding pixel; there is no need to translate the movements of mechanical 

components with unpredictable delays into coefficients and there is no need to fine tune how the 

light that passes through a deforming lens reaches each element of the array. This type of 

implementation also offers a certain degree of flexibility in that by switching the initial seed it is 

possible to easily generate a completely different measurement matrix. 

But, the most important consideration to make is that each pixel only has to capture the light 

that belongs to a specific part of the scene. When the measurement matrix is created using optic 

elements, what each pixel of the array collects, in terms of incoming information, is already the 

linear combination of various parts of the scene that is being sampled. In this new scenario, on 

the other hand, after the light has been converted into analog signals by the pixels, the 

compressed samples have yet to be formed. This fact can be used to alleviate the second problem 

© 2010 IEEE 
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that all CS-CIS face: the dynamic range needed to describe the signals. In this example for 

instance the authors split the contributions of the pixels, operating in current mode, into two 

separate current summation lines which are then used as differential inputs of a transimpedance 

amplifier (TIA). This differential TIA provides a differential output voltage. The corresponding 

compressed samples that this generates are made by sums of pixels multiplied by binary 

coefficients that, instead of being ones and zeros, become ones and minus ones and thus, thanks 

to the differential TIA that rests the contributions of a line to those of the other, could be 

described with fewer bits. 

The problem of this solution is that, since the measurement matrix is pseudo-random, the 

amount of coefficients that are ones or minus ones constantly fluctuates; moreover it is possible 

that the light incident on the pixels of one of the two sets could be much brighter than that of the 

other. These two uncertainties combined make it so that the ADC that follows the TIA should be 

designed taking into consideration the worst case scenario, i.e. the coefficients being either all 

positive or negative with a difference in illumination between the two possibilities as wide as 

possible. In this particular case this would leave us with a 25-bits ADC: following Eq. (11), 16 

bits would be needed for the 𝑁 amount of pixels in the array (which is 256×256), 8 bits are 

needed to describe the content of a single pixel and 1 bit is needed for the sign. 

A more pragmatic and widely extended approach is that of BCS [Gan07]. Architectures that 

use this design technique [Oike13], [Kali14], [Dadk15] have their arrays divided into macro-

blocks onto which the measurement matrix is applied separately and whose outputs are digitised 

independently block by block. An example is presented in Fig. 6 [Oike13]. 

In this example, a ΔΣ Single-Shot CS-CIS is designed to perform CS using a row block/pixel 

selector and column block selector multiplexers both controlled by PRNG and a series of 

column-parallel ΔΣ ADC with decimation filters and a column output scanner to generate more 

compressed samples simultaneously. This prototype clearly shows how the application of BCS 

can reduce the amount bits needed to properly convert the samples from the analog domain to 

the digital one. This statement is easily understood when we consider that a digitisation carried 

out block by block reduces 𝑁, the amount of pixels portrayed in Eq. (11). 

Another advantage that is present in this prototype with respect to the previous one is that, 

whereas early implementations of CS-CIS, such as the one presented in Fig. 5, were carried out 

by embedding a register inside each pixel, this solution replaces the registers by simple and more 

compact selectors. These selectors are then driven by LFSR that surround the array. This 

simplification is possible because, at pixel level, we can consider random row and column 

selection as the multiplication of two independent binary random variables. The multiplication of 
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random variables still delivers random outputs. 

 

Fig. 6: Architecture of “CMOS Image Sensor With Per-Column ΣΔ ADC and Programmable Compressed Sensing”, 

Image taken from [Oike13] © 2013 IEEE. 

In general, selectors can be implemented with few transistors, using for instance switches or 

gated inverters and as such, their use, besides reducing the amount of on-chip resources needed 

to generate a measurement matrix it also increases the fill factor of the pixels. This last benefit 

though, in most cases, might only be apparent because, even if the fill factor is increased, the 

division of the array in small blocks introduces asymmetries that still worsen the overall image 

quality. 

The use of ΔΣ converters has become fairly popular in CS-CIS design to improve 

reconstruction accuracy [Günt10] and it shows promising results [Lee18] but it is not the only 

method used to generate compressed samples. As [Leit18] reports there are various possible 

architectures that can be used to implement BCS. These architectures are usually defined by the 

choice of which electrical magnitude is employed to translate light intensity into analog signals. 

Pixels adopted in CS might have their outputs summated as currents [Jacq09], [Maji10], as 

charge [Kati13] or as voltages [Oike13], [Leit18], [Lee18]. 

Despite the various possibilities available to the designer, it is important to remember that the 

overall the size of the blocks is at the essence of the quality of the sampled image. We have 

shown [Trev20] that fast and accurate reconstruction algorithms opt for small blocks, typically 

© 2013 IEEE 
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8×8 but, on the other hands, blocks that are too small deteriorate the quality of the sensor 

introducing artefacts within the array and during reconstruction. We have established that, blocks 

which are 32×32 in size are, de facto, the best compromise between the two divergent 

necessities. Considering these results, even if BCS somehow helps to reduce the dynamic range 

of analog signals it does not reduce it enough so that 32×32 blocks can be easily handled 

conventionally. Furthermore, it is important to notice that LFSR as other forms of PRNG 

produce binary matrices that are neither normalised nor orthogonalised such as those that the RIP 

requires. 

1.3 THESIS ORGANIZATION 

Studying the prototypes presented in the previous section we can detect a clear pattern. Most 

of these works have been developed by research groups affiliated to universities or companies 

with a strong focus on circuit design. This is to be expected, and as a consequence of this 

tendency most of the published reports focus on the CS-CIS performances from an electrical 

viewpoint, meaning, these circuits have been characterised in terms of power consumption, 

speed of operation, number of transistors per pixel, fill factor, frame rate and such. This creates a 

lack of information with respect to the theoretical performance of matrices generated by PRNG 

in terms of RIP. 

This is largely due to the fact that this sort of matrices, in the field of signal processing, arises 

little to no interest due to their simple nature. We will dedicate the second chapter of this 

dissertation to formalise a method to study the performance of these generators from the 

perspective of RIP introducing some mathematical tools to characterise the performance of 

different kinds of PRNG not only from an electrical viewpoint but also from a mathematical one. 

Furthermore, thanks to the joint work carried out at the Institut Supérieur d'Électronique de 

Paris in cooperation with a research group mainly focused on CS reconstruction algorithms and 

reconstructed image quality [Trev20] we have defined a CS-CIS architecture that allows us to 

increase the precision of compressed samples digitisation by means of pulse modulation. This 

approach substitutes the more commonly employed analog to digital conversion in favour of 

pulse width modulation thus transforming the lack of dynamic range usually found while 

digitising large blocks into a problem of time consumption. This solution might decrease the 

overall frame rate of a circuit but in exchange it increases the precision of the compressed 

samples that it delivers as well as the size of the blocks of a CS-CIS build upon BCS theory thus 

also increasing the reconstructed image quality. 

The fourth chapter of this thesis will present the materialisation of the findings from chapters 
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two and three. In this part we will introduce a CS-CIS imager which is 64×64 in size and that 

uses an Elementary Cellular Automaton (ECA) for the generation of the measurement matrix and 

pixels pulse width modulation to create compressed samples in the digital domain as the sum of 

a sequence of pulses. This chapter will also include a detailed report on the laboratory setup used 

to study the performance of our imager i.e. chip encapsulation and choice of Field-

Programmable Gate Array (FPGA) and on the tests performed to evaluate its correct functioning 

and performance. 

By taking into account the limitations presented in chapters two and three, the last three 

chapters of this thesis are dedicated to the study of hardware-friendly applications of CS that 

could be readily applied to CS-CIS prototypes already present in the state of the art. 

Chapter five introduces a non-recursive algorithm that exploits a differential readout method 

that transforms binary measurement matrices into matrices of ones and minus ones, such as the 

one presented in [Maji10], to pre-process the information contained in a set of compressed 

samples non-recursively in order to understand, in a context of video surveillance, if the presence 

of a movable object within a frame warrants its reconstruction or the extraction of its features. 

Trying to go beyond the limitations of binary matrices we will propose in chapter six a 

possible way of using PRNG and differential readout methods to create ternary matrices with 

better performances than their binary counterparts. 

We will dedicate chapter seven to present a framework meant to transform traditional feature 

extraction algorithms based on linear transformations into ready to use sparsifying dictionaries to 

aid reconstruction algorithm by lowering the amount of relevant elements of the signal that they 

need to recover. We hope that, by using these feature-extracting sparsifying dictionaries, it will 

be possible to use reconstruction algorithms to extract features by transforming these very 

features into the non-zero elements that the algorithm has to recover. We will use as example the 

Harris corner detection algorithm. 

We will summarise our conclusion in the eighth and last chapter. 
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CHAPTER 2 

PRNG-GENERATED MEASUREMENT 

MATRICES 

PRNG are non-linear spatially discrete and temporally discrete dynamic systems made of 

binary logic elements that show high sensitivity to initial conditions and evolve in time 

according to a divergent and fractal behaviour [Boei16]. A new state in their time evolution is 

derived from their actual state using a feedback mechanism that promotes this instability. In the 

prototypes of CS-CIS studied in section 1.2, each temporal state is used to generate a row of the 

binary measurement matrix recursively. It is important to remember that, since each row of a 

measurement matrix is generated from the previous row, there is no need to store the whole 

binary matrix on-chip or to receive it from an outside source. 

PRNG commonly used to implement measurement matrices into CS-CIS is the Linear 

Feedback Shift Register (LFSR) [Sara12], [Mazz08]. LFSR consist of a series of cascaded flip-

flops (Fig. 7). Some of the outputs of these flip-flops, besides being connected to the input of the 

flip-flop that they precede, are also connected, by means of XOR logic gates, to the input of the 

very first one. When considered individually, the output Q of each flip-flop in the sequence 

evolves in time with a behaviour that resembles a Bernoulli probability distribution with 

probability P = 0.5. 

 

Fig. 7: Example of an 8-bit LFSR. 

Even if LFSR are good candidates to emulate sub-Gaussian random probability distributions 

thanks to their low impact on area consumption, ultimately the matrices that they produce row-
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by-row recursively still follow a deterministic pattern. For this reason it is necessary to analyse 

this pattern to understand how well the generated measurement matrix approximates the 

functionality of one that is extracted directly from a real binary probability distribution. 

Moreover, LFSR are not the only example of circuits that can serve as PRNG in CS-CIS. A valid 

alternative are Elementary Cellular Automata (ECA) [Jen90]. 

By definition a Cellular Automaton (CA) is a spatially and temporally discrete dynamical 

system made of identic individual cells that evolve in time according to a common rule 

[Wolf83]. A new state in the discrete time evolution of a cell is derived from this rule and it only 

depends on local spatial conditions. These local conditions are the actual state of the cell itself 

and the states of its neighbouring cells. To generate a pseudo-random binary pattern to be used as 

measurement matrix, we will focus on the simplest possible implementation of CA that takes the 

name ECA (Fig. 8). 

 

Fig. 8: Example of an 8-bit ECA. 

We will study possible hardware implementations for these PRNG as well as the matrices that 

they generate in order to establish a basis for comparison among them both in terms of quality of 

the generated matrix and of hardware resources needed for their implementation. 

2.1 MEASUREMENT MATRIX GENERATION THROUGH ECA 

Since the cells of an ECA are connected sequentially in a one dimensional fashion (Fig. 8), 

their evolution in time depends only upon three parameters: their own current state (S) and those 

of their two closest neighbours (L, R). For this reason, considering that each cell of an ECA is a 

three-input one-output binary element plus a flip-flop, there are 256 possible combinations for 

these three parameters [Wolf83]. These configurations are defined as rules and the number 

assigned to each rule corresponds to the decimal representation of the binary sequence of outputs 

that the system can produce given all possible input combinations, e.g. Fig. 9 represents all the 

combinations for a cell that evolves according to rule 30. 
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Fig. 9: Evolution pattern of a cell of an elementary cellular automaton implementing rule 30. 

It is immediate to see that the sequence ‘00011110’ is the binary representation of the decimal 

number 30. When Steven Wolfram first introduced the concept of ECA [Wolf83], he divided 

these rules into four classes depending on the type of geometrical pattern that their temporal 

evolutions produced: 

 Class I: homogeneous geometrical patterns; 

 Class II: periodic geometrical patterns; 

 Class III: random-like chaotic geometrical patterns; 

 Class IV: local complex geometrical structures that move in time and space. 

We will focus our attention on rules that belong to Class III and we will study their dynamic 

behaviour along with the behaviour of LFSR to establish which PNGR is better suited to 

approximate a sub-Gaussian probability distribution. But first, to set our goal clearly we need to 

define the quality of the compressed samples that an ideal PRNG can potentially produce and to 

do so it is necessary to analyse these binary matrices in terms of RIP. 

2.2 RIP OF PRNG GENERATED MEASUREMENT MATRICES 

Suppose that an area of size √𝑁 × √𝑁1 pixels is sampled by a measurement matrix generated 

row-by-row as is the case of the prototypes presented in section 1.2. Let us consider the simplest 

possible case in which an element of the PRNG is assigned to generate recursively the 

coefficients of one pixel of the imager so that each row of the measurement matrix 𝚽 

corresponds to a time step in the discrete evolution of the generator itself. Mathematically, this 

sampling process is formulated as 𝐲 = 𝚽𝐱 + 𝐧, where 𝐱 ∈ ℝ𝑁 is the √𝑁 × √𝑁 array of pixels 

folded in vector form and 𝐧 is an additive white Gaussian noise which standard deviation is 

estimated to be 휀 (Eq.(5)) at the reconstruction stage. The reconstruction of the original signal 𝐱 

from the compressed samples 𝐲 is an ill-posed problem. By making use of sparsity, a well-

known characteristic existing in natural signals, a k-sparse2 signal, like images and videos, can 

be reconstructed from a few samples obtained using an appropriate measurement matrix. 

A sufficient condition for the unique and exact recovery of the signal is the RIP of the 

                                                 
1 A requirement of CS is that the image be square. The 𝑁 pixels, where √𝑁 ∈ ℕ, for purposes of reconstruction are treated as vector 𝐱 
2 𝐱 is called k-sparse or a signal with sparsity level 𝑘, if it has no more than 𝑘 non-zero components with 𝑘 ≪ 𝑁. 
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measurement matrix 𝚽 [Cand06] that for the sake of clarity I will report once again to expand on 

the concept. A matrix 𝚽 ∈ ℝ𝑀×𝑁 satisfies the RIP of order k if there is constant 𝛿𝑘(0 < 𝛿𝑘 < 1) 

such that, for all vectors 𝐱 ∈ ℝ𝑁 with ‖𝐱‖0 ≤ 𝑘 (i.e. k-sparse signals1), it holds: 

(1 − 𝛿𝑘)‖𝐱‖2
2 ≤ ‖𝚽𝐱‖2

2 ≤ (1 + 𝛿𝑘)‖𝐱‖2
2    (12) 

The smallest non-negative value for 𝛿𝑘 is called restricted isometry constant (RIC) of order 𝑘. 

The construction of a measurement matrix which satisfies the RIP is a central problem in CS. If 

sparse signals with maximum possible sparsity level 𝑘 can be recovered exactly and stably, it is 

said the measurement matrix 𝚽 has sparsity order 𝑘. An upper bound for the sparsity level is 𝑘 ≤

𝐶𝑀 log(𝑁 𝑀⁄ )⁄  where 𝐶 is a constant [Indy08]. The signals with 𝑘 above this bound can only be 

approximately reconstructed. In practice, to recover a signal 𝐱 with a large 𝑘, is desirable to have 

a measurement matrix with a 𝛿𝑘 as small as possible. The limit imposed on the RIP of random 

binary measurement matrices has already been studied in [Lu13] Such binary matrices satisfy the 

RIP with: 

𝛿𝑘 =
(3𝑘−2)𝑚

(𝑘−2)𝑚+4𝑑
   if 3 ≤ 𝑑 ≤ 𝑀 2⁄  and 2 ≤ 𝑚 ≤ 𝑑   (13) 

where 𝑑 is the estimated number of non-zero elements in each column of 𝚽 and 𝑚 is the 

maximum inner product between two distinct columns. The distribution of 1’s among the 

elements of random binary matrices, generated by pseudo random generators, can be associated 

with a Bernoulli probability distribution in which each element has a probability P of being 1 and 

P̅ = 1 − P of being 0. Since these pseudo random measurement matrices try to emulate the 

normalized Gaussian distribution, which is a symmetric probability distribution, usually, circuit 

designers choose LFSR because their distribution is akin to P = P̅ = 0.5. 

Let us consider the ideal case of an ideal PRNG capable of recursively producing independent 

binary elements with a symmetric Bernoulli probability distribution having P = 0.5. If we 

consider a large enough pseudo random binary generator (a large enough number of pixels 𝑁), 

since each of its elements, by construction, is independent from the others and the probability 

distribution is symmetrical, we will obtain a measurement matrix 𝚽 with an equal amount of 0s 

and of 1s row-wise. If the acquisition process is long enough (a large enough number of acquired 

compressed samples 𝑀), we will have an equal amount of 0s and of 1s column-wise as well. 

Such measurement matrix, whose entries are randomly drawn from pseudo random generators, 

satisfies the RIP with Eq. (12). Following [Lu13], let us define the mutual coherence of 𝚽 as: 

                                                 
1 ‖𝐱‖0 norm denotes the number of non-zero components in 𝐱. 
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𝜇(𝚽) = 𝑚 𝑑⁄       (14) 

We can derive 𝑚 and 𝑑 as functions of the number of pixels in the image 𝑁, the sampling 

subrate of the sensor 𝑆 = 𝑀 𝑁⁄ , and the probability of each element of being different from 0, P. 

From the definition of subrate (𝑆), it is straight forward that 𝑀 = 𝑆 × 𝑁. Moreover, using the 

probability that each element of the matrix has of being different from 0, we can define the 

number of non-zero elements in a column of 𝚽 as: 

𝑑 = 𝑆 ∙ 𝑁 ∙ P      (15) 

Mutual coherence 𝜇(𝚽) of a matrix represents the maximum absolute value of the cross-

correlations among its normalized columns and is defined as: 

𝜇(𝚽) = max
𝑗≠𝑘

|𝛗𝑗
𝐻𝛗𝑘|     (16) 

where 𝛗𝑘 is the 𝑘-th normalized column of matrix 𝚽 and 𝛗𝑗
𝐻 is the conjugate transpose of the 𝑗-

th normalized column of the same matrix. For a matrix to be column-wise normalized it means 

that for each column: 𝛗𝑗
𝐻𝛗𝑗 = 1. Given the definition of mutual coherence and the randomness 

of 𝛗𝑗
𝐻 and 𝛗𝑘, to approximate m, we will make use of the most probable outcome of a dot 

product between normalized columns of 𝚽: 

𝑚 = E[𝛗𝑗
𝐻𝛗𝑘]𝑑     (17) 

Remember that 𝛗𝑗
𝐻𝛗𝑘 is the sum of 𝑀 element by element products. Each one of these 𝑀 

products will be different from zero if and only if the two elements that are being multiplied 

differ from 0 as well. By construction, we are multiplying independent random variables; the 

probability that their product be different from 0 is equal to the joint probability of the single 

elements. For this reason, the expected amount of non-zeros among the 𝑀 products is: 

𝐸[Tr(𝛗𝑗
𝐻 ∙ 𝛗𝑘)] = P2 ∙ 𝑆 ∙ 𝑁     (18) 

where Tr(∙) is the trace of the matrix obtained by the vector multiplication of 𝛗𝑗
𝐻 and 𝛗𝑘. 

Furthermore we can derive the value of each product in terms of P, 𝑁 and 𝑆 by using the 

definition of normalization and remembering that 𝚽 is binary. Normalizing a vector involves 

dividing each one of its non-zero elements by the Euclidean norm of the vector itself. Since each 

non-zero element in a binary vector has to take the value of 1, all elements of a normalized 

binary vector will be equal to the inverse of the vector Euclidean norm itself. For this reason, if 
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the 𝑖-th elements in column 𝛗𝑗 and column 𝛗𝑘 are non-zeros, then their normalized product will 

be: 

𝛗𝑗
𝐻

𝑖
𝛗𝑘𝑖

=
1

P∙𝑁∙𝑆
     (19) 

Combining Eq. (18) and Eq. (19), we can deduce the most probable cross-correlation between 

two columns of a binary matrix 𝚽. This correlation only depends on P and it is independent from 

the number of pixels and the sampling subrate: 

E[𝛗𝑗
𝐻𝛗𝑘] =

P2∙𝑆∙𝑁

P∙𝑁∙𝑆
= P    (20) 

Joining Eq. (13), Eq. (14) and Eq. (20) we obtain: 

𝛿𝑘 =
(3𝑘−2)

(𝑘−2)+4 P⁄
  if 3 (𝑆 ∙ 𝑁)⁄ ≤ P ≤ 1 2⁄  and 2 (𝑆 ∙ 𝑁)⁄ ≤ P2 ≤ P    (21) 

For P = 0.5 and 𝑁 ≥ 6, it is possible to see that all of the conditions hold and that random 

binary matrices that follow a symmetric probability distribution will have RIP (𝛿𝑘 ≤ 1) if and 

only if 𝑘 ≤ 4. 

In other words, a recovery algorithm can deliver error free reconstructions only if the sampled 

image can be described with four or less elements. Eq. (21) poses a harsh limitation on matrices 

typically used in CS-CIS implementations. For example, an image that could be described with 

only four non-zero variables could include a monochromatic regular polygon on a 

monochromatic background. We would need two coefficients to localise its centre (Cartesian 

coordinates or polar coordinates), another to establish the number of sides (a simple number or 

the angle that each pair of adjoined sides share) and the last one to determine its size (side length 

or apothem). Anything more than that would incur in reconstruction errors. 

Given this less than optimal result, the least that we can do is to define a set of mathematical 

tools that can be used to establish which PRNG approximate a binary random distribution as 

closely as possible. If we failed to do that we would experience an increase in the mutual 

coherence of 𝚽𝐺 Eq. (14) breaking the upper limit of the first condition imposed on Eq. (13) that 

would not allow 𝚽𝐺 to respect RIP in the first place. 

To avoid adding on top of Eq. (21) more errors due to non-idealities in our design choices, let 

us define 𝚽𝑮 ∈ {0,1}𝑀×𝑁 as a binary measurement matrix obtained using a PRNG and 𝚽𝑹 ∈

{0,1}𝑀×𝑁 as a binary measurement matrix obtained selecting each element at random from a 

binary probability distribution with P = P̅ = 0.5. 𝚽𝐺 will be a good approximation of 𝚽𝑅 if it 
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holds three characteristics: 

 the number of non-zero elements in a row of 𝚽𝐺 must approximate P ≈ 0.5; 

 the temporal evolution of the elements of the PRNG do not present repeating patterns; 

 the temporal evolution of the elements of the PRNG present no correlation with one 

another. 

The first and second requirements bind the number of non-zero elements in 𝚽𝐺 with the 

average of the probability distribution used to create 𝚽𝑅. The second and third requirements can 

be used to bind the mutual coherence of 𝚽𝐺 as: 

𝐸[𝜇(𝚽𝐺)] ≈ 𝐸[𝜇(𝚽𝑅)] = P     (22) 

We will analyse how binary measurement matrices generated using LFSR and Class III ECA 

fulfil these criteria in order to compare their performances so to make an educated choice on the 

type of PRNG that better fits into the design of a CS-CIS. Furthermore, since there are 26 

different rules of Class III ECA, we will use these same mathematical notions to discriminate 

among their performances in order to understand if all Class III rules can be used to generate CS 

measurement matrices or if some rules behave better than others. 

2.3 POWER SPECTRAL DENSITY 

To understand if the rows in 𝚽𝐺 present repeating patterns and to compare the dynamical 

behaviour of these PRNG we will use Power Spectral Density (PSD) analysis. This technique 

has been extensively applied to analyse discrete dynamical systems such as ECA [Nina08] or 

LFSR [Mazz08]. For a spatially discrete and temporally discrete dynamic system, the Discrete 

Fourier Transform (DFT) can be expressed as: 

𝜙ℎ(𝑓) =
1

𝑀
∑ φℎ(𝑡)𝑒

−𝑗2𝜋𝑡𝑓
𝑀⁄𝑁

𝑖=1  where 𝑡 = 1,2, ⋯ , 𝑀   (23) 

where, following a notation similar to [Nina08], 𝜙ℎ(𝑓) is the DFT value of the ℎ-th element of 

the PRNG at frequency 𝑓, 𝑀 once again is the number of discrete time steps of the PRNG as 

well as the number of rows in 𝚽𝐺 and 𝜑ℎ(𝑡) is the state of the ℎ-th element of the PRNG at time 

𝑡 as well as the 𝑡-th element of the ℎ-th column of 𝚽𝐺. 

PSD expresses the distribution of the energy of a waveform among its different frequency 

components. Any peak in a graphic of PSD(𝑓) over 𝑓 at a given frequency 𝑓𝑝 would represent a 

strong repeating pattern of period 1 𝑓𝑝⁄  among the rows of 𝚽𝐺 Given all 𝜙ℎ(𝑓) PSD can be 

computed as: 
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PSD(𝑓) =
1

𝑁
∑ |𝜙ℎ(𝑓)|2𝑁

𝑖=1      (24) 

where 𝑁 is the number of elements of the PRNG as well as the number of columns in 𝚽𝐺. The 

PSD profile of a suitable and efficient PRNG for CS should closely resemble white noise since 

its energy should equally spread throughout the entire spectrum. 

2.3.1 POWER SPECTRAL DENSITY OF ECA 

We devised a MATLAB experiment in which we evolved 64-cells ECA of the 26 possible 

Class III rules over a period of time, Fig. 10 shows the four PSD profiles that we obtained: 

 

Fig. 10: Power Spectral density of rules 18, 45, 60 and 105. 

These graphics have been produced for 𝑡 = 1000 time steps starting from an initial random 

binary seed with P = 0.5. We chose this amount of steps (and consequently the band width 

shown in Fig. 10) because a 64-cells ECA can be used to generate a measurement matrix to 

sample a 32×32 image (which would contain 1024 pixels). Since we are interested in PSD 

profiles that resemble white noise, from Fig. 10 it is possible to see that this only applies to rules 

that show an evolution similar to that of rule 45, namely, rules 30, 45, 75, 86, 89, 101, 135 and 

149. Rules similar to rule 18 and rule 105 contain far too many repeating patterns while rule 60 

shows the presence of repeating patterns at low frequency, which means that two adjacent rows 

of the generated matrix could potentially have high mutual coherence, hence voiding RIP. 

2.3.2 POWER SPECTRAL DENSITY OF LFSR 

We devised a MATLAB experiment in which we evolved LFSR of different lengths over an 

equal period of time. Since, unlike ECA, LFSR are not easily scalable we were curious to see 
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how the choice of number of bits would affect their PSD (Fig. 11). 

This was also of interest because there are some BCS implementations that, in order to reduce 

hardware resources, suggest not only to separate the pixel array into small blocks but also to use 

a small measurement matrix repeated identically in each block instead of partitioning a global 

measurement matrix shared by the whole array. 

 

Fig. 11: PSD of LFSR having 8 and 64 bits respectively. 

These graphics have been produced for 𝑡 = 1000 time steps starting from initial random 

binary seeds with P = 0.5. From this simulation we can extract two conclusions; the first is that, 

if the number of compressed samples is tied to the size of the entire image and we used a PRNG 

that is too small, we might be forced to evolve it too many steps and as such we would incur into 

repeating patterns as the left-hand graphic of Fig. 11 shows. The second conclusion is that the 

amplitude of the pattern of a LFSR presents a greater variation than that of ECA as well as some 

unwanted fluctuations. This difference in behaviour can be explained analysing the mechanism 

that the different PRNG use to evolve from one state to the next. 

2.3.3 THE INFLUENCE OF TEMPORAL EVOLUTION ON PSD AND BOUNDARY CONDITIONS 

As all finite discrete systems, all PRNG have a maximum amount of possible states that is 

tied to the total number of their constitutive elements: 

𝑇𝑚𝑎𝑥 = 𝑀𝑚𝑎𝑥 = 2𝑁𝑓 − 1     (25) 

It is true that a LFSR whose period exceeds 𝑇𝑚𝑎𝑥 repeats the exact same sequence over and 

over. It is also true that among all possible ECA outputs not all states are equally likely to occur 

[Wolf94]. It is important to notice though that, given the exponential dependence in Eq. (25), if 

the number of elements is large enough, the sheer amount of possible combination is sufficient to 

make these problems negligible but, to complete the study on the dynamic behaviour of PRNG, 

we must at least try to understand the mechanism that promotes their temporal evolution. 

Fig. 7 shows that the condition placed on the evolution of an 8-bit LFSR is imposed through 
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XOR gates tapping flip-flops 4, 5, 6 and 8. The flip-flops that must be tapped to allow an 𝑁𝑓-bits 

LFSR to cycle through all 2𝑁𝑓 − 1 combinations are tied to primitive polynomials with binary 

coefficients and degree equal to 𝑁𝑓 [Ndaw15]. For this reason, if the number of registers varies, 

then the taps have to be changed as well. 

From Fig. 7 it is evident that each step in the temporal evolution of a LFSR is simply formed 

by displacing the previous step forward by one unit and then adding a new bit at the beginning. 

As we said in the introduction, a necessary requirement placed upon a measurement matrix is 

that it respects the RIP, which means that it must be nearly orthonormal, at least when operating 

on sparse vectors [Cand06]. Orthogonal matrices have uncorrelated columns and rows. For this 

reason, even though RIP and mutual coherence are two different concepts, a matrix 𝚽𝐺, 

compliant with RIP, and its transpose 𝚽𝐺
𝑇 will both have low mutual coherence by definition 

[Ober17]. The fact that each step of a LFSR is closely tied with the previous one elevates the 

mutual coherence of 𝚽𝐺
𝑇. In fact, LFSR main purpose is to offer pseudo-random sequences of 

decimal numbers, the form that these numbers take in the binary domain is an entirely different 

problem. On the contrary, since the conditions imposed on the evolution of a cell in an ECA are 

spatially local (Fig. 8), the shifting of data is avoided, so that ECA comprised of many cells do 

not deteriorate the mutual coherence of 𝚽𝐺
𝑇. Moreover, this makes it possible to introduce three 

different kinds of boundary conditions on the cells at the extremes of the cellular automaton 

[Wolf83]: 

 Periodic: the cells at the extremes are considered neighbours of one another. 

 Reflective: the outputs of the cells at the extremes are doubled so that these cells can 

considered their own neighbour 

 Fixed: the boundary values are set a priori from the exterior. 

It has been shown [Wolf83] that periodic boundary conditions can be used to emulate a ECA 

of infinite length since locally, no boundary is apparent to any cell. This periodic boundary 

condition is most helpful when the system that we are trying to implement tries to mimic a sub-

Gaussian distribution to generate rows that have a very low probability of being almost empty or 

almost full. 

2.4 ECA FROM A GEOMETRICAL PERSPECTIVE 

Through PSD analysis we have established the superior performance of eight ECA rules over 

that of LFSR, when it comes to the generation of recursive measurement matrices. At least in 

terms of their dynamic behaviour, that is, in term of correlation among the outputs of their 
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adjacent elements and of possible repeating patterns. Remember that this were two of the 

requirements established to approximate 𝚽𝐺, a binary measurement matrix obtained using a 

PRNG, to 𝚽𝑅, a binary measurement matrix obtained selecting each element at random from a 

binary probability distribution. But, among Class III rules, we still have all these possible choices 

and we have yet to establish their equivalence and/or differences beyond the fact that apparently 

they share similar power spectra. 

When we look at the 256 possible ECA configurations from a geometrical perspective though, 

we find that, in reality, many of these rules can be considered equivalent under simple 

transformations. For Class III rules this means that the pattern that they generate will have the 

same degree of randomness. There are two types of transformations that deliver geometrically 

similar structures. The first one is the reflection of the pattern generated by a rule using a vertical 

axis. The rule resulting from this transformation is called a mirrored rule. An example of it is 

shown in Fig. 12. 

 

Fig. 12: Temporal evolution of elementary cellular automata following rule 30 and 86. 

These patterns have been generated using MATLAB. The top rows in this image represent the 

seed or first step in the temporal evolution of rules 30 and 86. By assigning the colour black to 

the elements of the pattern that were ones and white to those that were zeros and letting the seed 

evolve several steps we obtain Fig. 12. For simplicity, in both cases we have used an initial seed 

that had only one non-zero element in its middle. 

After looking at the results of this transformation, we notice that what we thought were eight 

separate rules with similar power spectra, are in reality four pairs of mirrored rules and each pair 

has an identical power spectrum. 
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The second transformation that delivers geometrically equivalent rules is obtained by 

exchanging the roles of ones and zeros in the definition of the rule itself. The resulting rule is 

called the complementary rule. We can see an example of it in Fig. 13. 

 

Fig. 13: Temporal evolution of elementary cellular automata following rule 30 and 135. 

Once again, both patterns of Fig. 13, just like those of Fig. 12, have been generated through 

MATLAB starting from seeds that only had one element different from the others in their 

middle. Whereas the presence of a vertical axis in amphichiral1 rules introduces problems related 

to mutual coherence, the inversion of the elements inside the pattern does not. Nonetheless, this 

second transformation helps us better understand the similarities among our eight choices. What 

we first thought were eight different choices that then became four are, in reality, only two. In 

fact, among the eight choices that PSD left us with, rule 30 finds its complementary rule in rule 

135, its mirrored rule in rule 86 and its complementary mirrored rule in rule 149. The same can 

be said for rules 45, 101, 75, and 89, respectively. Note that, even if this analysis does not help 

us discriminate among our possible choices it still reveals something important; we can reduce 

our study to rules 30 and 45 without loss of generality. 

2.5 DENSITY OF THE PRNG OUTPUT 

The last requirement established to approximate 𝚽𝑅 by 𝚽𝐺 was that the number of non-zero 

elements in a row of 𝚽𝐺 must approximate P ≈ 0.5. To study the number of non-zero elements 

in a row of 𝚽𝐺 let us define the density of a PRNG output (DO(𝑡)) as the average of all the states 

of its binary elements at a given discrete time step t (following a notation similar to [Nina08]): 

                                                 
1 An object is amphichiral if it is superposable with its mirror image. 
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DO(𝑡) =
1

𝑁
∑ 𝜑ℎ(𝑡)𝑁

ℎ=1  where 𝑡 = 1,2, ⋯ , 𝑀   (26) 

being 𝜑ℎ(𝑡) the state of the h-th element of the PRNG at time t as well as the t-th element of the 

h-th column of 𝚽𝐺, 𝑁 the number of elements of the PRNG as well as the number of columns in 

𝚽𝐺 and 𝑀 the number of discrete time steps of the PRNG as well as the number of rows in 𝚽𝐺. 

Let 𝑡 = 1 be the initial condition when the first row of 𝚽𝐺 coincide with the seed that has been 

loaded in the memory on-chip. Since the elements of 𝚽𝑅 are extracted from a symmetric 

probability distribution, an optimal seed should have half of its elements set to 0 and half set to 1 

and as such DO(1) = 0.5. 

To analyse the performance of LFSR and ECA in this respect it is necessary to evaluate how 

fast their states can reach DO(𝑡) = 0.5 in the eventuality of having a suboptimal initial seed in 

which the number of elements set to 0 differs from the number of those set to 1. To do so we 

devise a MATLAB experiment in which we evolve a 64-cells rule-30 ECA, a 64-cells rule-45 

ECA and a 64-flip-flops LFSR using 65 different initial seeds having an density that varies from 

DO(1) = 0 all the way to DO(1) = 1. In the result of the experiment we represent DO(𝑡) using 

greyscale elements in which DO(𝑡) = 0 is coloured white and DO(𝑡) = 1 is coloured black. 

 

Fig. 14: Temporal evolution of ECA following rules 30 and 45 and of a LFSR. 

In Fig. 14 the top line represents these initial seeds with increasing density, from the leftmost 

DO(1) = 0 to the rightmost DO(1) = 1. Each step underneath shows the temporal evolution of 

the PRNG output density evolving from each initial seed configuration. 

Fig. 14 shows that LFSR density changes in time at a much slower rate than class III ECA. 

This implies that in the presence of sub-optimal initial seed, the DO of LFSR would take several 

time steps longer than ECAs to achieve a stable situation centred around DO(𝑡) = 0.5. As 

reported in [Nish11], the behaviour of LFSR is more similar to class IV ECA, where randomness 
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in the evolution is linked to the randomness of the initial configuration, rather than class III ECA 

where the chaotic evolution is introduced by the rule itself. For this reason, in order to 

approximate 𝚽𝑅 using LFSR much care should be placed in the selection of an appropriate initial 

seed. ECA appear to be a safer choice to generate a 𝚽𝐺 rather than LFSR at least in terms of 

number of distribution of non-zero elements starting from seeds that are not ideal. 

Fig. 14 also shows an interesting behaviour for ECA when its seed is either DO(1) = 0 or 

DO(1) = 1 and for LFSR when its seed is DO(1) = 1 . These particular seeds represent the 

forbidden states of these PRNG. All PRNG have forbidden states. A forbidden state is a state in 

which the PRNG continuously delivers a fixed output (rule 30 and LFSR) or an oscillating one 

(rule 45). These states though do not pose any issues in real-world implementations because it is 

impossible for a PRNG to stumble upon them accidentally. Even though these states do not pose 

any problem during standard operation, to use PRNG in CS-CIS, it is important to be aware of 

their presence in order to avoid sending them accidentally. The only particular concern regarding 

forbidden states happens when power is first applied to a circuit. Since each register can 

randomly start up containing either a zero or a one, a PRNG could power up containing its 

forbidden state, but this can be quickly taken care of initializing the PRNG with an opportune 

seed value. 

Once again this analysis presents ECA as a better solution over LFSR when it comes to 

recursive measurement matrices generation. When we combine these results with those of PSD, 

it is evident that to design a CS-CIS that is both functional and as close to the ideal case as 

possible we should select ECA as the choice to make. 

Fig. 14 also presents some interesting differences in the behaviour of rules 30 and 45, 

differences that become especially evident the more the initial seed is removed from the central 

position (i.e. from a symmetric probability distribution of the seed). We can see that while rule 

30 steadily evolves from a low density towards equilibrium, rule 45 oscillates between steps of 

low density and steps of high density. This behaviour can be intuitively understood by looking at 

the evolution patterns that these two rules impose on the single cells Fig. 9 and Fig. 15: 

 

Fig. 15: Evolution pattern of a cell of an elementary cellular automaton implementing rule 45. 

The more the density of the initial seed is unbalanced towards a situation where many cells 
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start from the same initial state, the more the probability of having three equal inputs for every 

cell increases. In other words, an unbalanced initial seed favours one of the combinations at the 

extremities of Fig. 9 and Fig. 15 but, whereas in rule 30 these combinations both evolve into the 

same null output, in rule 45 they lead to an oscillating behaviour where an initial null state 

evolves to a full one in the next step and vice versa. Even if, as shown in Fig. 14, these 

oscillations are rapidly extinguished by the random behaviour of the rule, they are still 

undesirable because, when implemented in a CMOS circuit they will raise the overall power 

consumption of the CS-CIS. For this reason, at least when it comes to design a measurement 

matrix in CMOS, rule 30 seems to be a more solid choice over rule 45. Given the geometrical 

equivalences presented in section 2.4, rules 101, 75, and 89 share the same behaviour and 

therefore can be excluded as well. 

2.6 CIRCUITAL EQUIVALENCE OF RULES 30, 86, 135 AND 149 

One last criterion to choose which among our remaining rules is better suited for CMOS 

implementation is the number of transistors needed to describe the functionality of a single cell. 

The lower this number is, the more compact its design will be. Fig. 16, Fig. 17, Fig. 18 and Fig. 

19 represent the minimum amount of logic gates that are needed to describe these rules: 

 

Fig. 16: ECA cell implementation of Rule 30. 

 

Fig. 17: ECA cell implementation of Rule 86. 
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Fig. 18: ECA cell implementation of Rule 135. 

 

Fig. 19: ECA cell implementation of Rule 149. 

In each figure above we have defined as S the actual state of the cell that will be used in the 

pixel array to generate a compressed sample and as NS the next state, loaded at the flip-flop 

input and ready to be sent at the next clock cycle and that corresponds to a new row of the 

recursive measurement matrix. C is the input that copies the actual state of the cell whereas L 

and R are the actual states of its two closest neighbours, to the left and to the right respectively. 

The first thing that is possible to notice is the striking resemblance of these implementations; 

each rule can be described using two logic gates and the logic gate that connects each rule to the 

flip-flop in charge of controlling the time evolution of the ECA is always an XOR (Fig. 20). 

In hindsight these similarities were not unexpected; in fact, they are a simple reflexion of the 

geometrical analysis performed in section 2.4. If we were to pair each rule with its mirrored rule, 

i.e. rule 30 (Fig. 16) and rule 86 (Fig. 17), it is clear that one can be converted into another 

simply by inverting inputs L and R. Similarly, if we were to pair each rule with its 

complementary rule, i.e. rule 30 (Fig. 16) and rule 135 (Fig. 18), it is possible to see that, since 

an OR is simply a NAND whose input has been inverted, it make sense that the two images 

presented in Fig. 13 looked the same with inverted colours. 
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Fig. 20: Basic XOR diagram. 

Even the XOR that they all share (Fig. 20) and that has 50% of its possible outcomes equal to 

zero and 50% equal to one, can be seen as a consequence of the choice that we made when we 

selected rules whose eight possible combinations (Fig. 9) were equally divided among ones and 

zeros. More importantly, after a little manipulation, it is possible to see that, the extra inverter 

that is present in the OR of rules 30 and 86 can be incorporated into the XOR that follows and 

that, as a result, all of these circuits need the same amount of transistors in their designs. 

To design our circuit we will choose rule 30 but we have proved that each of the four 

alternatives here presented would be mathematically and electrically equivalent in all aspects for 

both CS requirements and electronic design. 
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CHAPTER 3 

COMPRESSED SAMPLES IN THE DIGITAL 

DOMAIN 

By now it should be obvious that CS pixel arrays, given their nature, are not meant to be read 

in a row by row fashion. They are instead designed to deliver linear combinations of the pixels 

values. As such, the amount of bits required to correctly convert these combinations from analog 

to digital signals is much higher than the 8 to 10 bits usually required in standard CMOS image 

sensors (CIS) Eq. (11). For convenience, it is opportune to remember that, for binary 

measurement matrices, the number of bits needed to convert a compressed sample, is 

proportional to the size of the overall pixel array and to the number of bits with which we intend 

to recover the value of each pixel output during reconstruction. 

In our case we plan to design a 64 × 64 pixels array and we would like to maintain an 8 bits 

resolution per pixel value, and as such we will need a 20 bits A/D converter. Note that, since the 

amount of pixels in the array is fixed, if we were to reduce the number of bits of the conversion, 

we would be compromising reconstruction by losing bits on each pixel value of the recovered 

image. 

3.1 LIMITATIONS ON THE DYNAMIC RANGE OF COMPRESSED SAMPLES IN A/D CONVERSION 

Imagers employ ADCs to map the analog pixel values onto digitally-encoded values. Such 

mapping process involves time-discretization and amplitude-discretization thereby leading to 

frequency limitations and errors.  Handling these limitations and errors might require dedicated 

ADC architectures to preclude unnecessary power and area consumption [Leñe18]. 

Typical ADC architectures choices for image sensors are: pipeline ADC, slope ADC, cyclic 

ADC, successive approximations ADC and Σ-Δ ADC. Independently of the chosen architecture, 

there are three non-ideal aspects on the characteristics of a real ADC that can be expressed as 

uncertainties that limit the precision with which the variation of a continuous signal can be 

correctly represented in a sampling process. This, in turn, limits the effective number of bits of 



40 

the resulting conversion [Malo11]. 

Uncertainties can be expressed in the form of noise, a good indicator of the effect that a 

certain level of noise has on a signal is given by the signal to noise ratio (SNR), which is defined 

as the ratio between the powers of the desired signal and of the noise that affects it. The first 

limitation common to all ADC is the sampling-time jitter. This error is introduced by the non-

ideality affecting the circuit’s clock periodicity and, to some degree, by propagation delays 

between the controls that initiate the sampling phase and the circuits that perform the actual 

sampling that can be known only to a certain extent. The jitter error ϵ𝑗(𝑛𝑇)1 introduced on the 

sampled signal x𝑜 by the sampling time uncertainty 𝛿(𝑡), for the 𝑛-th sample in a sampling 

process of period 𝑇 can be modelled linearly using a Taylor series truncated at the first order: 

x𝑜(𝑛𝑇) = x𝑖(𝑛𝑇) + ϵ𝑗(𝑛𝑇) = x𝑖(𝑛𝑇)+
𝑑𝐱𝑖(𝑡)

𝑑𝑡
|

𝑛𝑇
𝛿(𝑛𝑇)   (27) 

Following Eq. (27), the sampling time jitter can be seen as linear noise that depends on the 

rate of change in time of the ADC input signal x𝑖(𝑡). The sampling uncertainty is usually 

modelled as white noise, which is uniformly spread across the whole frequency spectrum. The 

SNR of an ADC is usually computed by feeding a series of sine waves as its inputs. If x𝑖(𝑡) took 

the form of a sine wave of signal full scale X𝐹𝑆 and frequency 𝑓𝑖, the power associated to the 

average sampling time jitter 𝛿̅ would take the form: 

𝑃𝑗 =
1

2
(X𝐹𝑆𝜋𝑓𝑖𝛿̅)

2
     (28) 

The second uncertainty is introduced by the quantisation process and it is due to the rounding 

error 𝛜𝑞 between the continuous input voltage to the ADC and its digitised output. This error can 

be modelled as linear noise that diminishes with the increase of B, number of bits of the 

converter. Considering an ADC with range X𝐹𝑆 and 𝐵 bits, the sampled signal 𝐱𝑜 can take one of 

2B possible discrete values: 

x𝑜𝑚
= x𝑖 + ϵ𝑞 = (2𝑚 +

1

2
)

X𝐹𝑆

2B 𝑚 ∈ [1, B]   (29) 

This is a direct consequence of the fact that the value of the input signal x𝑖 can only fall in one 

of the intervals of size 

Δ =
X𝐹𝑆

2B = 1LSB     (30) 

                                                 
1 the jitter error is defined with the subscript 'j' of jitter and not ‘i’ of input to remind the reader that it is an intrinsic characteristic of the 

converter even when it can be modelled with a truncated Taylor series that makes it proportional to the first order derivative of the input signal. 
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that the quantiser has at its disposal. Δ is known as the quantisation step. The probability 

distribution of the quantisation error of a sample can be modelled as uniform on the 

corresponding interval and zero in all others. The density of this uniform distribution is the 

inverse of the quantisation step itself. Once again we have to express this uncertainty in the form 

of noise and the power associated to the quantisation noise can be computed as: 

𝑃𝑞 = ∫
ϵ𝑞

2

Δ
𝑑𝜖𝑞

+Δ
2⁄

−Δ
2⁄

=
Δ2

12
     (31) 

The last uncertainty that affects all ADC is associated to the sampling switch; it depends on 

the thermodynamic fluctuations of the amount of charge that the sampling capacitance holds. 

This noise can be modelled as a thermal noise whose power can be expressed as: 

𝑃𝑇 =
𝑘Θ

𝐶
      (32) 

being 𝑘 the Boltzmann constant, Θ the temperature of the ADC expressed in kelvin and 𝐶 its 

capacitance. It is possible to see that this third uncertainty, instead of being derived by the type 

of operations that an ADC carries out, it only depends on the physical characteristics of the 

circuit itself. The only way to completely remove it would be by bringing the temperature of the 

circuit to absolute zero or by having infinite sampling capacitance. 

Once we have derived an expression for the noise power associated to the different sources of 

uncertainty that befall on a real ADC, we can use SNR, expressed in decibels, to estimate the 

equivalent number of bits (ENOB) that these uncertainties allow. Considering once again as 

input signal a sine wave of signal full scale X𝐹𝑆 and frequency 𝑓𝑖. We can derive the power of 

such input as: 

𝑃𝑖𝑛 =
1

𝑇
∫

X𝐹𝑆
2

4
sin2(2𝜋𝑓𝑖𝑡) 𝑑𝑡

𝑇

0
=

X𝐹𝑆
2

8
=

(2BΔ)
2

8
   (33) 

Joining Eq. (28), Eq. (31), Eq. (32) and Eq. (33) we can estimate ENOB as: 

ENOB =
SNR𝑑𝐵−1.76

6.02
=

10 log10(
𝑃𝑖𝑛

𝑃𝑗+𝑃𝑞+𝑃𝑇
)−1.78

6.02
   (34) 

To understand how these sources of errors affect the design of and ADC we can plot ENOB 

over the number of bits specified in the design of an ADC: 
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Fig. 21: Estimated number of bit over number of bits specified in the design. 

We can see from Fig. 21 that, when the number of bits in the design of an ADC is low, the 

quantisation error dominates the SNR and as such the ENOB increases linearly with its 

reduction. As the demand for precision surpasses a certain limit the thermal noise first and the 

jitter noise second become dominant creating an asymptote above which ENOB cannot go. 

Inverting Eq. (34) it is possible to obtain the value of SNR associated to the 20 bits that our ADC 

would need to digitize the compressed samples: 

SNRdB = (6.02ENOB + 1.78) ≈ 122dB    (35) 

To give a first order approximation of the design parameters that are needed to achieve 122dB 

of SNR we will handle each error source independently from the others as if it was the only one 

affecting the ADC. To design our sensor we have chosen to use UMC 180nm technology. We 

will have X𝐹𝑆 = 1.8V. As the quantisation error decreases with the increase in number of bits, we 

will focus only on sampling time jitter and thermal noise. We need to raise the asymptote in Fig. 

21 above 20 bits. 

As seen in Eq. (28), the error associated to the sampling time jitter depends on the frequency 

of the signal that needs to be converted. Given the fact that pixel values are encoded by 8 bits 

and compressed samples by 20 bits, the maximum subrate, 𝑆𝑚𝑎𝑥, at which we can compressively 

sample an image before the overall size of the collected compressed samples surpasses that of 

the uncompressed image is 0.4. As a design parameter we would like our sensor to be able to 

collect as many as 30 frames per second, 𝑁𝑓. The maximum amount of samples 𝑁𝐶𝑆 that our 

imager must be able to take each second is: 
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𝑁𝐶𝑆 = (64 × 64) × 𝑆𝑚𝑎𝑥 × 𝑁𝑓 ≈ 50 𝑘𝑆 𝑠⁄     (36) 

According to the Nyquist Theorem (remember that CS in CS-CIS applies to spatial sampling 

and that analog to digital conversion still follows the same old rules), it is necessary to sample 

twice as fast as the highest frequency that we want to measure. As such, the anti-aliasing filter 

will allow a maximum input frequency of 25 kHz. If we were to consider only sample time jitter 

as source of noise, combining Eq. (28) and Eq. (33): 

SNRdB = 10 log10
𝑃𝑖𝑛

𝑃𝑗
= 10 log10

1

4(𝜋𝑓𝑖�̅�)
2    (37) 

From which we derive 𝛿̅ = 2 × 10−18𝑆 = 2𝑎𝑠 for an SNR of 122dB. Combining Eq. (32) 

and Eq. (33) we can obtain an expression for the thermal noise: 

SNRdB = 10 log10
𝑃𝑖𝑛

𝑃𝑇
= 10 log10

𝑋𝐹𝑆
2 𝐶

8𝑘Θ
    (38) 

Considering an ADC working temperature of 300K, we would need 𝐶 = 16nF of sampling 

capacitance. In UMC 180nm, the biggest capacitor can be implemented using metal 5 and metal 

6; it has a capacitance of 10.03pF and occupies an area of 0.1 mm2. To achieve the required 

capacitances we would need to stack in parallel approximately 1600 metal 5 and metal 6 

capacitors, covering an area of 16 cm2, which is an impossible size for a microcircuit. For 20 bits 

ADC, both sampling time jitter and thermal noise lead to design parameters that are beyond 

UMC 180nm reach. 

3.2 TIME TO DIGITAL CONVERSION OF THE COMPRESSED SAMPLES 

An SNR of 122dB is a demanding requirement for any analog design, whatever the encoding 

and technology. As such, a representation in the voltage domain of the compressed samples 

might be difficult to digitise with enough accuracy. To overcome this obstacle we will try to 

modulate the analog outputs of the pixels in order to be able to achieve the desired amount of 

equivalent bits during conversion. Two of the most common CMOS solutions for pixel output 

modulation are pulse width modulation (PWM) [Klei01], [Kitc05] and pulse frequency 

modulation (PFM) [Culu03], [Wang06]. Pulse modulation (PM) improves the dynamic range 

and SNR on each pixel [Chen11]. Both solutions require an in-pixel comparator that triggers an 

event when the voltage of the photodiode drops below a reference voltage that is set as an 

outside parameter. 

In PWM the output of the operational amplifier will enable the content of a global counter 
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located outside the pixels array to be stored into in-pixel memories. When a large number of bits 

are required, the area used for routing the global counter output to each pixel memory is high. In 

PFM time counting is made in-pixel and uses a self-reset mechanism to recharge the junction 

capacitor of the photodiode each time the voltage of the photodiode drops below the reference 

voltage. 

3.2.1 ASYNCHRONOUS PULSE FREQUENCY MODULATION 

In CS, knowledge about which pixels take part in a sample is encoded inside the measurement 

matrix and as such, there is no need to store the amount of pulses generated by a single pixel in a 

dedicated in-pixel memory. These pulses can be sent out of the pixels array as soon as they are 

generated. The resulting pixel architecture can be exemplified as shown in Fig. 22. 

A photodiode can be modelled as a photo-controlled current source in parallel with an ideal 

diode and a capacitor. The capacitor represents the junction capacitance and the current source 

represents the current generated by the incident light. When the photodiode is reverse-biased, the 

current source behaviour is highly linear with respect to incident light intensity. An accurate 

photodiode model contains a parallel resistance to model the slope of the current-voltage curve at 

the origin and a series resistance to model the resistance of the contacts. Ideally, the parallel 

shunt resistance should be infinite and the series contact resistance should be zero. For this 

reason to model the behaviour of the voltage drop at the cathode of a reversely-biased 

photodiode, we will only consider the capacitor. For a constant photo-generated current 𝐼𝑝ℎ, the 

voltage drop takes the form: 

𝐼𝑝ℎ

𝐶
=

𝑑𝑉(𝑡)

𝑑𝑡
      (39) 

being 𝐶 the junction capacitance. From Eq. (39) it is possible to see that, if the luminosity is 

constant, than the drop will also be constant. We can integrate this expression and obtain: 

∫ 𝑑𝑡
𝑇

0
= ∫

𝐶

𝐼𝑝ℎ

Vrst

Vref
𝑑𝑉     (40) 

Eq. (40) links passing of time, 𝑇, to the junction capacitance, to the voltage drop between the 

reset voltage Vrst and the reference voltage of the operational amplifier Vref and to the current 

across the photodiode which in turn depends on the incident light intensity. The output of the 

operational amplifier is fed back into Mrst gate, the PMOS reset transistor. During integration 

time a pulse train is created so that the frequency, 𝑓, of the pulses varies in accordance with the 

instantaneous of the photo-generated current. The amplitude and width of said pulses is kept 
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constant. The modulating signal is the photo-generated current intensity flowing through the 

illuminated photodiode: 

𝑓 =
1

𝑇
=

𝐼𝑝ℎ

𝐶(Vrst−Vref)
     (41) 

To form a compressed sample, the train of pulses is sent to one of two column buses that 

gather the pulses coming from all the pixels belonging to the same column Fig. 22. The selection 

signals generated by the cells of the ECA along with the in-pixel logic (XOR) will determine 

which bus the pixels output will activate. We aggregate these outputs using up-down counters for 

each column of the pixel array. 

 

Fig. 22: PFM pixel architecture for CS-CIS. 

The use of a varying voltage reference allows us to adapt the frequency of the pulse train for a 

particular light intensity and avoid saturation of the counters used to collect the compressed 

samples. Up-down counters allow the generation of differential compressed samples directly in 

the digital domain where it is easier to improve the required dynamic range. This is equivalent of 

using a pseudo-random measurement matrix whose coefficient can be either ones or minus ones. 

The overall architecture of a CS-CIS that incorporates PFM and per column up-down counters is 
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exemplified in Fig. 23. 

By using PFM at pixel level and then counting the pulses at column level we are conveying 

the problem of the dynamic range of the aggregated signal to the digital domain where it can be 

increased just incorporating more resources. Additionally, by taking into account the saturation 

of the counters, bad samples can be discriminated, avoiding reconstruction artefacts [Trev17]. 

 

Fig. 23: CS-CIS conceptual floor plan with PFM pixels outputs and up-down counters. 

This solution helps to circumvent the uncertainties that are present in all ADC but its 

implementation in a given technology is still subject to limitations of another nature. Namely, 

there is a limit on how fast a transistor can be switched on and off. This implies that, the pulses 

generated by the PFM pixels must be spaced enough and must have long enough duration to 

allow the counter to count them properly. This limit depends on the technology used, as well as 

on the characteristics of the driving signal, on the power supply, and on the load. We measured 

experimentally, for UMC 180nm, how fast a PMOS transistors source can switch from GND to 

Vdd after its gate is set to GND and the time registered for the operation to be completed was 

around 𝑇𝑇 = 0.7ns. 
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From Eq. (36) we already established that we would like to obtain 50 kS/s. Since we would 

like to use an up-down counter per column, each counter will possibly receive pulses from a 

maximum of 𝑁𝑐 = 64 pixels. Since pixel selection is pseudo-random 𝑁𝑐 could be lower but we 

need to consider the worst case scenario to establish the design feasibility. We would like to 

describe the output of a pixel with 8 bits and, as such, each pixel will need to pulsate at most 

𝑁𝑝 = 256 times per sample. Combining this information we are able to compute the minimum 

amount of allocated time to the single pulse for this worst case scenario, which corresponds to 

when the counter has to operate as fast as possible: 

𝑇𝑃𝐹𝑀𝑚𝑖𝑛
=

1

𝑁𝑝𝑁𝑐𝑁𝐶𝑆
= 1.22ns    (42) 

Given the fact that 𝑇𝑃𝐹𝑀𝑚𝑖𝑛
 is less than twice 𝑇𝑇, even if this solution theoretically allows us 

to reach 20 bits resolution on the digitalization of the compressed samples, UMC 180nm is not 

suited to implement it. 

3.2.2 ASYNCHRONOUS PULSE WIDTH MODULATION 

In standard acquisition techniques, whenever PM of pixels outputs is applied, PFM is usually 

preferred over PWM as the latter is affected by three major drawbacks [Chen08]: 

 A high speed clock is needed to drive the global counter. 

 The delay from the global counter to each pixel may introduce error on the final value 

stored in the in-pixel memory. 

 The resolution of PWM is limited by the area required for routing data from the global 

counter to each pixel. 

As we mentioned previously, since the information about which pixels take part in the 

generation of a compressed sample is encoded in the measurement matrix, there is no need for 

in-pixels memories. For PWM this means that it is not necessary to send the information 

contained in the global counter to each pixel of the array. It is possible to send the event 

triggered by the operational amplifiers of the pixels outside the array to a memory common to a 

whole pixels column. This consideration is actually beneficial to PWM because on one hand it 

negates PWM drawbacks and on the other hand it diminishes the frequency at which the circuit 

needs to operate with respect to PFM. The conceptual floor plan of a circuit that implement 

PWM without in-pixels memories is exemplified in Fig. 24. 

The columnwise up-down counters needed for PFM are replaced with columnwise sample & 

accumulate (S&A) memories that sample a global counter designed to count backwards from 
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256 to 0. At the beginning of the integration time, by means of an external signal applied to the 

pixels reset transistor Mrst, the junction capacitances of the photodiodes are charged (Fig. 25). As 

soon as the voltage at the cathode of the photodiode drops below the reference voltage Vref an 

event is triggered and sent to the corresponding S&A. The event is terminated by yet another 

external signal referred as Q in Fig. 25. 

 

Fig. 24: CS-CIS conceptual floor plan with PWM pixels outputs and Sample & Accumulate. 

The external termination signal Q adds a degree of freedom to the pixel control; through Q it 

is possible to control the duration of the event emitted by the pixels. These events take the form 

of pulses with controllable duration that are produced asynchronously. The lower the light 

intensity is, the longer it will take for the pixel to emit its pulse. The later a pulse is sent to de 

S&A, the smaller will be the value sampled from the counter. 

In PWM each pixel sends only one pulse. The burden of encoding the pixel output using the 

appropriate amount of bits is left to the global counter. Using PWM instead of PFM reduces the 

amount of pulses sent by each pixel in the array by a factor of 28. As such, the maximum 

frequency at which the S&A needs to operate with respect to the up-down counters is reduced by 

the same factor. 
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Fig. 25: PWM pixel architecture for CS-CIS. 

Eq. (42) can be rewritten as: 

𝑇𝑃𝑊𝑀𝑚𝑖𝑛
=

1

𝑁𝑐𝑁𝐶𝑆
= 312.5𝑛𝑠    (43) 

This result makes this solution implementable in UMC 180nm but it needs an extra 

precaution: as for PFM, in PWM the voltage drop at the cathode of the photodiode can be 

modelled with the discharge of a capacitor. We can rewrite Eq. (40) as: 

𝐼𝑝ℎ𝑇 = 𝐶(Vrst − Vref)    (44) 

Eq. (44) states that, for a fixed pair of reset voltage and reference voltage, the product 

between the photo-generated current and the timing of the generated event is constant. In other 

words, the equation that unites light intensity to time is hyperbolic. As such, PWM cannot work 

with a counter that counts at a fixed frequency. The frequency of the counter must change 

linearly in time, with an expression like: 

𝑓(𝑡) = 𝑓0 − 𝑘𝑡     (45) 
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being 𝑘 a positive constant. Combining Eq. (41) and Eq. (45) and considering the counter counts 

backword we achieve: 

𝐼𝑝ℎ

𝐶(Vrst−Vref)
− 𝑓0 = 𝑘𝑇     (46) 

Using a counter with a linearly changing frequency gives a direct proportionality between the 

photo-generated current and the timing of an event. 
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CHAPTER 4 

PROTOTYPE ARCHITECTURE AND TESTING 

The central element of the CI-CIS architecture (Fig. 26) that we have designed is an array of 

64×64 pixels (P). The peripheral circuits implement two functionalities: pseudo-random column 

and row pixel selection and time-to-digital conversion and addition of pixel values. In the 

floorplan presented in Fig. 26 the left and top sides of the array are surrounded by a rule-30 ECA 

that forms a ring of 128 cells (CA) with periodic boundary conditions (see section 2.3.3). 

 

Fig. 26: Circuit Floorplan. 

Each cell is used as pseudo-random row/column selector for the array. The pixels are pulse 

width modulated (see section 3.2.2) and the events that they generate are transmitted through 
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column busses to 20-bit sample & accumulate elements (S&A) placed at the bottom side. 

These pulses encode the pixel value in the period of time that has passed between the pixels 

reset and the pulse arrival to the S&A. A straightforward method to translate all these times into 

digital codes is to use the incoming pulses to activate the sampling of a global time counter. This 

counter is activated by a signal that is sent shortly after the pixel reset. The small delay between 

pixel reset and counter activation does not pose a problem because the nonlinearity of the 

characteristic curve of light intensity over photodiode discharge time (Eq. (44)) which (as 

explained in section 3.2.2) is hyperbolic, makes it impossible for pixels to send pulses 

immediately upon reset unless the intensity of the incident light approached infinity. Each time a 

pixel activation pulse arrives at the S&A., the 8 bits of the counter are sampled and added to the 

sum already stored. After 256 clock periods, the pixel values of each column have been 

accumulated in 14-bit words, as this is the amount of bits resulting from adding up to 64 8-bit 

pixel values. After that, the 64 column sums are added together into a compressed sample of 20 

bits. 

Compressed samples need to be encoded in large digital words; therefore there is an amount 

of compressed samples beyond which it is better to just deliver the uncompressed image. In our 

case, as pixel values are encoded by 8 bits and compressed samples by 20 bits, the subrate (𝑆), i. 

e. the number of samples delivered divided by the total number of pixels in the image, needs to 

be below 0.4. This means that for a 𝑀 × 𝑁-pixel image, we will always be considering less than 

0.4𝑀𝑁 compressed samples. In addition, as compressed samples are generated sequentially, it is 

necessary to operate the imager at a frequency (𝑓𝑐𝑠) that is at maximum 0.4 𝑀𝑁 times the desired 

image delivery speed or frame rate (𝑓𝑠): 

𝑓𝑐𝑠 = 𝑆 ∙ 𝑀𝑁𝑓𝑠     (47) 

For frame rate 𝑓𝑠 = 30fps, a sampling subrate 𝑆 = 0.4 and an image of 64×64 pixels, 

compressed samples can be generated at maximum frequency 𝑓𝑐𝑠 ≈ 50kHz, that is 20μs per 

compressed sample. But, images, such as natural images or MRIs, are commonly piecewise 

smooth [Sha012], Therefore, neighbouring pixels might have a significant probability of having 

similar outputs: the lower the spatial frequency of the sampled image is, which in theory is good 

for RIP, the more pixels will have simultaneous pulses, which in practice is an added difficulty 

for a circuit that is designed to sum them asynchronously. In order to avoid overlapping pulses 

we must deliver them one by one and, for that reason, at the top of each column there is an event 

control unit (Ec.) designed to control the duration of each pulse and to prevent the pixels that 

share the same output bus from firing if another is already occupying it. 
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Due to the fact that the CS-CIS outputs are linear combinations of pixels values, it is 

impossible to obtain the characteristic of each pixel separately or to test the correct generation of 

each coefficient of the measurement matrix: we can only perform estimates of these elements 

from the circuit output which, a priori, is made of pseudo-random sums of their products. For 

this reason we added extra components and control signals that allow us to disable or bypass 

some parts of the CS-CIS in order to control its output linearly and perform specific sums from 

which we can then infer if all its components are working as intended. 

4.1 DETAILED CHIP ARCHITECTURE 

A prototype chip has been designed in a CMOS 0.18μm technology following the described 

methodology. The die size including pads is 3.17×2.23mm2 (Fig. 27). It has 84 pads, of which 

one third is dedicated to power supply and ground connections. Here are some of the 

characteristics of the chip: 

Technology CMOS 0.18μm 1P6M 

Die size (w. pads) 3174μm×2227μm 

Pixel size 22μm×22μm 

Fill factor 9.2% 

Image Size 64×64 

Photodiode type n-well/p-substrate 

Power supply 3.3V-1.8V 

Nominal Frame rate 30fps 

Clock Freq. 12.8-230.4MHz 

Table 1: Summary of chip features. 

 

Fig. 27: Layout of the prototype sensor chip. 
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Furthermore, given the pixel’s complex architecture, we are interested in studying its 

performance closely and, for that, we also introduced an extra pixel in a test area placed at the 

bottom left of the chip (Fig. 27), this pixel, which is an exact replica of those in the array but 

configured so that it is always “selected” (i.e. it is independent from the ECA), has independent 

analog and digital control signals and its output is directly accessible from an analog pad of the 

padring (so that we can also study the dynamic behaviour of its outgoing pulses and fine tune the 

analog control signals that eventually will be used to control the array). Note that in this area, 

besides the extra pixel, we also have included a copy of an event control unit (with the same 

structure of those that control the column busses in the array) to control the pixel pulse duration. 

4.1.1 ELEMENTARY CELLULAR AUTOMATON 

We were able to establish rules 30, 86, 135 and 149 as the ECA rules that better approximate 

random binary measurement matrices in terms of dynamic behaviour (see section 2.3) and output 

density (see section 2.5) and that would present a better performance in terms of oscillations and 

power consumption when used in a CMOS circuit (see sections 2.5 and 2.6). In the design of an 

ECA cell, beside the rule, we need to incorporate all the functionalities needed to test the CS-CIS 

as well as the registers needed to store the initial seed given as input to the ECA. In the end we 

opted to design a cell that could be used for rule 30 or 86 (see sections 2.4 and 2.6): 

 

Fig. 28: Rule-30 ECA cell logic representation. 

In Fig. 28 In1 and In2 inputs correspond to the outputs of the cell closest neighbours: if we 

connect to In1 the output of the right-hand neighbour and to In2 that of the left-hand neighbour 

than the rule implemented would be rule 30, otherwise, if the inputs were inverted, it would be 

rule 86. Being rule 30 (Table 2) the best known and most widespread [Wolf17], it became our 

choice. 

The seed used to create the measurement matrix will be stored into the ECA using the bottom 

left static flip-flop of each cell. This flip-flop is connected to those of other cells through signals 

SEEDIN and SEEDOUT. The seed is inserted into these flip-flops sequentially in what is known as 
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an initialization phase (see section 1.2), before the CS-CIS starts acquiring compressed samples. 

Clock signal SEEDCLK will function only during this phase to input the seed and then it will be 

halted during normal operations so that the seed stored in these static flip-flops will not change 

over time, as long as the circuit remains properly powered, unless the ECA is loaded with a new 

seed. 

In1 In2 S NS 

0 0 0 0 

1 0 0 1 

0 1 0 1 

1 1 0 1 

0 0 1 1 

1 0 1 0 

0 1 1 0 

1 1 1 0 

Table 2: Rule 30 truth table. 

The next state in the evolution of rule 30 is implemented sequencing logic gates OR and XOR 

(see section 2.6). The current state is sent as input to multiplexor MUX1, the other input of the 

multiplexor being the value of the seed flip-flop. When RST, the control signal of this two-input 

one-output multiplexor, is set to logic ‘0’ the ECA will evolve normally. The frequency at which 

the cell will update its output is given by the frequency of clock signal CELLCLK. By setting RST 

to logic ‘1’ for a full clock cycle, it is possible to reset the temporal evolution of the ECA using 

the value stored in the seed flip-flop instead of the next state generated by rule 30. RST is 

common to all the cells. Clock signal CELLCLK will be used throughout the imager normal 

operations and it will set the frequency at which the measurement matrix is updated. 

The only component left to describe in our cell is the two-input one-output multiplexor 

MUX2. This multiplexor is essential for testing the pixel array. Since the evolution of a rule-30 

ECA is pseudo-random, it would be difficult to use it to activate only the specific set of pixels 

that we want to test. When DIS, the control signal of MUX2, is set to logic ‘1’ the ECA are 

disabled and the seed flip-flops can be used as shift registers to directly influence pixel selection 

in order to activate a single column or row of the array. 

4.1.2 PIXEL 

Our approach to provide the number of bits prescribed by Eq. (11) is to time-encode the pixel 

values and employ time-to-digital conversion. The summation of pixels will then be realized in 

the digital domain, avoiding the requirement of a high SNR in the analog domain. 

The architecture of a pixel in the array can be divided into five functions or functional 

elements (Fig. 29). 
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 Time-encoding (Photodiode and Comparator) is the sensing element in charge of 

transforming light intensity into electrical pulses; 

 Trigger lock lets the generated event through and holds it in place until the whole circuit 

is reset; 

 Pixel selection is connected to the outputs of the cellular automata, it is use to determine 

if the pulse will be part of a compressed sample or, if the pixel has not been selected, if 

the pulse will not reach the output bus; 

 Event termination is an element that communicates with the event control unit in order to 

determine the duration of the outgoing pulse; 

 Output control probes the bus and, if it is empty, releases the event. 

 

Fig. 29: Schematic of the elementary pixel. 

Its Layout is presented in Fig. 30. In this section we will describe each of them in detail. 

 

Fig. 30: Layout of the elementary pixel. 
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A time diagram of the signals shown in Fig. 29 is presented in Fig. 31, in this diagram we 

consider opposing Si and Sj, hence an actively contributing pixel. 

 

Fig. 31: Timing diagram of the pixel signals. 

4.1.2.1 TIME-ENCODING OF LIGHT INTENSITY 

The elementary pixel contains an integrating photodiode that discharges node Vcat at a rate 

determined by the photocurrent. This is depicted inside the ‘Time-encoding of light intensity’ 

box in Fig. 29. When Vcat crosses a reference voltage Vref, (Fig. 31) a voltage comparator flips its 

output, V1. It time-encodes the magnitude of the light intensity, what is described as pulse-

modulation imaging [Chen11]. The pixel value is then contained in the period of time separating 

the reset of node Vcat and the moment in which V1 turns from low to high. The lower (higher) the 

light intensity on the diode is, the longer (shorter) it takes to the comparator to switch. In this 

chip, both Vpix and Vref can be adjusted on-line in order to adapt to different illumination 

conditions in real-time. 

4.1.2.2 PROPAGATION OF THE ACTIVATION EDGE THROUGH THE TRIGGER LOCK 

Signal V1 is active in high, eliciting a rising edge in V2 if this signal has not been activated 

before. If it has, the feedback of its own negative locks V2 to logic ‘1’ until the pixel is reset 

again. This block also prevents an instability that we will discuss further on. 
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4.1.2.3 PIXEL SELECTION 

As previously mentioned, the contribution of each pixel to a particular compressed sample is 

determined by a combination of row and column selection signals, Si and Sj, that are generated 

with the help of the ECA positioned around the sensor array (Fig. 26). These two signals are 

combined by an XOR gate implemented in wired-logic by 4 NMOS transistors (Fig. 29). The 

voltage V3 is stuck at Vdd if selection signals Si and Sj are equal. If not, V3 is the inverse logic 

value of V2. Using an XOR gate guarantees that the pixels contribute to the compressed sample 

in half of the possible combinations of Si and Sj. 

It is important to notice that this pixel selection unit is allocated right after the trigger lock 

because this helps reducing power consumption. If a pixel is not contributing to the compressed 

sample there is no reason to let the pixel activation front propagate, inducing changes in the 

subsequent nodes that are going to be discarded later. 

4.1.2.4 EVENT TERMINATION CIRCUIT 

Q is a global signal provided by a control unit present at the top of each column of the pixel 

array (Fig. 31). Let us consider that signal Q’ is high. If Q’ is in logic ‘1’, then V4 is the inverse 

of V3, i. e. if the pixel is activated and is selected to contribute to the compressed sample, V3 

goes from logic ‘0’ to ‘1’ and V4 goes from ‘1’ to ‘0’. If signal Cin is low, this falling edge in V4 

induces a rising edge in V5 which is the signal controlling driving transistor M2. The column bus, 

whose voltage Vo is pulled up to Vdd by default, experiences a pull down driven by M2. Vo will 

remain low if it was not for the event termination circuit. 

The rising edge in V5 is feedback to the event termination circuit, where it is inverted as long 

as Q is high. This causes Q’ to fall to logic ‘0’, switching back V4 to logic ‘1’ and then V5 to 

logic ‘0’, terminating the pulse that started before after a short delay. 

The motivation to use the global pulse termination signal Q to establish the duration of the 

events instead of a local delay unit is to provide global control without introducing area and/or 

power consuming elements in the pixel. In particular, this unit probes the column bus and detects 

if it is being pulled down. Once the falling edge is detected, and after a user-controllable delay, 

Q rises enabling the termination of the pulse only in the pixel that has already turned M2 on. This 

is verified by the NAND gate in the ‘Event termination circuit’ box (Fig. 29). 

4.1.2.5 PIXEL OUTPUT CONTROL 

As depicted in Fig. 29, all pixels in the same column of the array share the same column bus 
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to transmit its output pulse. As will be explained later, the time-encoding of the pixel value will 

be converted to digital by means of a time-to-digital converter, which in this case will be built 

with a clock and a counter. Of course, there is no a priori knowledge on the proximity of the 

values of the pixels and, therefore, how close in time will be the pulses emitted by the pixels. 

What is clear is that each one of them needs to be taken into account if we do not want to 

introduce additional errors in the image reconstruction from its compressed samples. In order not 

to skip any of the pulses, a token protocol is established so pixels that are being triggered close in 

time are only allowed to emit their pulse one after the other. This blocking mechanism needs to 

be parallel to all pixels so that the first pixel that delivers its event puts all other pixels on hold 

until its event is over. The release mechanism on the contrary has to be sequential so that, if there 

is more than one pixel in queue waiting to deliver its pulse, it will be impossible to have more 

than one of them active at the same time. In order to do so, each pixel receives a signal Cin from 

the pixel immediately above (Fig. 29), and sends a signal Cout to the pixel immediately below it. 

If there is no preceding pixel waiting to deliver a pulse through the column bus, Cin will be low. 

This enables the propagation of a falling edge in V4 when it occurs into a rising edge in V5. If Cin 

is high, however, this propagation is retained. 

One pixel’s Cin corresponds to its upper neighbour Cout. In order to be ‘0’, three different 

conditions must hold, namely: its Cin is low, what means that there is no pixel above it that wants 

to deliver a pulse; V4 is high, what means that either the pixel has not been activated or it has 

already delivered a pulse; and Vo is high, what means that the column bus is available. If any of 

these three conditions is not true than Cout will be stuck at the logic ‘1’, thus preventing any of 

the pixels below it emitting a pulse through the column bus. A 3-input NAND gate is employed 

to combine the level at Cin, the pixel readiness to pull down the column bus and the feedback on 

the actual state of this column bus. This aggregated information is then sent as Cout to the pixels 

below. Using this logic each pixel will know that if Vo is set at Vdd and no pixel above is waiting 

to pull it down it is allowed to release its own event. Since Vo is fed back to this control block, 

when a pull down occurs, each pixel will simultaneously block the pixel immediately below 

through Cout. The blocking mechanism is parallel. On the contrary, when an event is over, its Cout 

turns to ‘0’, so the pixels will be released sequentially in a top down fashion.  

4.1.2.6 AUTO-ZEROING COMPARATOR 

To design the comparator in Fig. 29, instead of using an operational amplifier (Op-Amp) we 

have used a digital inverter and, to reduce the influence of its offset, we have implemented an 

auto-zeroing scheme using a MiM capacitor on the top metal layers that does not show in Fig. 30 
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and three transmission gates (Fig. 32): 

 

Fig. 32: Schematic of the autozeroing comparator. 

The transmission gates are operated by three digital control signals (read, rst1 and rst2 of Fig. 

33) that have not been mentioned in section 4.1.2.1:  

 

Fig. 33: Timing diagram of the autozeroing comparator. 

Enabling the transmission gate controlled by rst2, the MiM capacitor, placed before the 

inverter, is loaded with Vref. While the capacitor is reaching the desired threshold, the 

transmission gate operated with rst1 is enabled as well to remove the inverter offset. 

When M1 (Fig. 29) is off, rst1 and rst2 are disabled and read is enabled. Thanks to the quick 

response of the digital inverter and the relatively short time needed for Vcat to cross Vref, the 

resulting circuit operates as a comparator. It is important to time these control signals correctly, 

being RST the pixel rest signal of Fig. 29: 

4.1.2.7 CONSIDERATIONS ON SIGNAL STABILITY OF THE ADOPTED SOLUTIONS 

The components above described were initially designed and simulated separately but, even 

though they all worked as intended, when placed together to run a joint simulation the resulting 

behaviour was inconsistent. The three main causes of this behaviour were: 

 The autozeroing comparator slow changing input. 

 The closed loop created by the output control unit and the event termination. 

 A cross-pixel oscillatory behaviour in the closed loop created by two output control units 

sequentially connected by the control cascade Cin-Cout and sharing the same bus. 
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A consequence of the fact that Vcat changes slowly with respect to the response of the 

technology is that V1 remains undetermined for as long as the voltage at the cathode stays close 

to the reference voltage (Fig. 31). As such, if the pixel selection circuit were to follow the 

comparator directly, its PMOS and NMOS transistors would spend a relatively long time 

switching on and off simultaneously due to the undetermined input. This is how we first 

attempted to design the pixel but, in these conditions, when the circuit was simulated along with 

parasitic components generated by the post layout extraction, we observed an oscillatory 

behaviour in V3, which kept bouncing back and forth from Vdd to GND and did not stop until Vcat 

reached a voltage well below Vref or, in other words, until V1 became once again determined 

approaching Vdd. These oscillations were so fast that the event termination circuit could not 

respond in time and the event termination circuit did not have time to raise Q. These oscillations 

were transferred all the way to the output bus and to the whole column bus thus invalidating the 

whole design. To stop them it was necessary to include the trigger lock presented in Fig. 29. Its 

feedback loop is introduced in order to present a stable V2 as input to the pixel selection circuit 

independently of the state of V1: as soon as V1 leaves logic ‘0’ V2 switches and remains stable 

thanks to its own feedback mechanism. 

The second source of instability was due to the fact that, when the event termination NAND 

received Q and the output control unit had M2 turned on, the resulting configuration started 

oscillating between Vdd and GND. To make the event termination work properly it was necessary 

to break this loop by adding along the feedback line a second trigger lock. This solution allowed 

the event termination to work as expected with the added benefit that, since all pixels share Q, 

once an event was terminated and the AND gate switched its output, it would remain stable until 

the end of acquisition avoiding possible repetitions of events from the same pixel. 

The cross-pixel oscillations were introduced in a similar fashion when V5 was delivered by a 

NOR instead of the gated inverter seen in Fig. 29. When an event occurred, the output of the 

NOR gate acted over M2. The change in state that this produced on the Output Bus was then 

indirectly looped into one of the NOR gate inputs through signal Cin arriving from the pixels 

above. It was not possible to remove this instability devising a solution similar to the one used in 

two previous cases because, on the one hand, if we were to lock the NOR gate output, we would 

have been sending an endless event and, on the other hand, since the sequence of Cin-Cout is 

common to all the pixels, blocking it everywhere else but at the NOR gate level would have 

prevented this sequence of control signals from working properly. The problem was resolved by 

removing the pull down transistor of the NOR input that received Cin. In doing so, even if the 

information transmitted by the chain of Cin-Cout locks all pixels, the one that is already sending 
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its output will continue to do so until Q is sent. The resulting circuit takes the form of the gated 

inverter seen in Fig. 29. 

4.1.3 EVENT CONTROL UNIT 

Q (Fig. 29) is a global signal provided to all the pixels of a column by the event control unit 

present at the top of the column itself. It is flipped from logic ‘0’ to logic ‘1’ when this unit 

detects a pull down action on Output Bus .i.e. when a pixel of the column has M2 turned on. How 

much time passes between the detection of a change in Output Bus and the flipping of Q depends 

upon the value of an external analog control signal, Vstr (Fig. 34): 

 

Fig. 34: Schematic of the event control unit. 

By design, the state of Q must directly depend upon the state of Output Bus but, if the 

response of this unit were to occur as soon as a pull down action is detected, we would face two 

problems, the first is that we would not have control on the duration of an event, which would be 

immediately quenched by this system, and the second is that we would incur in the same 

oscillatory behaviour described in section 4.1.2.7, which affects the output controls of two 

consecutive pixels. To solve both these problems, an external analog control signal Vstr is used to 

regulate the starvation level in a couple of inverters that in turn are used to regulate a delay on a 

sequence of logic gates that connects Output Bus to Q. 

Controlling the duration of the events sent by the pixels is not the only function that this unit 

has. Since the first pixel of each column lacks an upper neighbour from which to receive control 

signal Cin (Fig. 29), this unit must provide it. 

As Fig. 34 shows that the state of Output Bus and the external signal Vstr are the only inputs 

of event control unit so Fig. 35 shows the timing diagram of the signals within this system: 
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Fig. 35: Timing diagram of the Event Control Unit Signals. 

When an event generated by a pixel changes the state of Output Bus to logic ‘0’, using a 

starved inverter to slow down its propagation, this logic ‘0’ is transmitted to an AND gate. This 

gate and has its output directly fed back to the other one of its inputs and is used to hold signal Q 

at logic ‘1’ until the Bus returns to Vdd. When it happens, i.e. an event has ended, transistor M3 

resets the AND gate returning Q to logic ‘0’. 

The output of the AND is further divided into two more lines, one of them being delayed 

using another starved inverter with the same Vstr. A three-Input OR gate is used to combine these 

lines with the inverse of Output Bus providing the control signal Cout to the first pixel of the 

column. This second starved inverter is present so that, even if an event ends, the pixels will stay 

locked for a time proportional to that of the event itself. This precaution is set in place to avoid 

two consecutive events to occur too close to one another so that the readout system cannot 

discern them.  

4.1.4 8-BIT COUNTER 

As shown in the section 3.2.2, using PWM, each pixel sends only one pulse per compressed 

sample. The burden of encoding the pixels outputs using an appropriate amount of bits is left to 

the S&A and the counter. In PWM, the relationship between photo-generated current I𝑝ℎ and 

integration time 𝑡 is hyperbolic: 

I𝑝ℎ𝑡 = 𝐶𝑝ℎ(Vpix − Vref)     (48) 

being 𝐶𝑝ℎ the photodiode capacitance, Vpix the pixel reset voltage and Vref the reference voltage 

at the autozeroing comparator positive input (Fig. 30). As such, PWM needs a counter that 

counts at a decreasing frequency from 255 backward to 0. For UMC180nm, through simulations, 

we estimated the photodiode capacitance to be 𝐶𝑝ℎ = 60fF. Given Vpix − Vref = 0.1V, and a 



64 

range of currents between 300pA and 30pA it is possible to compute the time needed to collect 

an event, which varies between 2μs and 20μs, in line with the requirement of Eq. (47). 

The clock of the counter will need to switch 256 times starting with an offset of 2μs and 

finishing its operation 18μs later. From these values we can compute the range of frequencies at 

which the counter clock needs to operate: 

{
𝑓int = 230.4MHz

𝑓end = 12.8𝑀Hz   
      (49) 

being 𝑓int the initial frequency needed to count 256 times if the pulses where to arrive all just 

after the offset (i.e. highly illuminate image) and 𝑓end the final frequency needed to count 256 

times if the pulses where to arrive at the end of the integration period (i.e. scarcely illuminated 

image). This varying frequency is a direct result of the asynchronous pulse width modulation 

architecture presented in section 3.2.2 in which the counter needed to be fitted with a linearly 

changing input frequency in order to obtain a direct proportionality between the photo-generated 

current and the timing of an event. This value of 𝑓int leaves the duration of a single pulse to 5ns 

which is still feasible in CMOS 0.18μm 1P6M technology. 

 

Fig. 36: Schematic of the 8-bit Counter. 

Fig. 36 represents the floorplan of the 8-bit counter. The first thing that we notice is the eight-

input OR gate. This element is commonly used in counters as flag to alert of possible overflows 

i.e. when the word in a countdown has reached ‘00000000’ and the next clock cycle would reset 

it to ‘11111111’. It receives as inputs all of the bits of the counter and its output becomes logic 

‘0’ only when the countdown has reached the end. In our circuit we use this piece of information 

as a safeguard to prevent the counter from resetting even when clock signal CLK is left running. 
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At the end of each compressed sample acquisition, to reset the counter, signal CounterReset is set 

at logic ‘1’ for a short duration (Fig. 37): 

 

Fig. 37: Timing diagram of the 8-bit Counter floorplan. 

To generate a single control signal with the varying frequency needed to properly operate the 

counter might not be simple. A first order approximation and a viable alternative to a varying 

signal would be to generate a sequence of signals of constant frequencies, from 𝑓int to 𝑓end, and 

feed them to the counter’s input through a MUX by switching them at regular intervals from the 

fastest to the slowest. In doing so we would simplify the design of the controller but we might 

incur in small approximation errors or tension drops during switches that might lead us to 

misjudge the number of cycles of the counter. This is another reason behind the implementation 

of this reset function: it is a safety measure to avoid miscalculations in the number of cycles that 

might occur if we used suboptimal control signals. If we used a more complex and reliable 

control signal it would be sufficient to set CountReset to logic ‘1’ permanently to disable this 

additional safeguard. 

We do not have direct means to access the pixels outputs. Their correct behaviour can only be 

inferred from the CS-CIS output. The matrix generated by the ECA can only be accessed 

indirectly through the same channels. This is also true for the 8-bit counter when we factor the 

asynchronicity of the pixels responses needed to propagate its counts and the fact that these 

counts are only registered within the S&A elements. It is essential that we devise a way to 
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separate the contributions of all this components so that we can use the same outputs to infer 

their behaviour. On the one hand we will need to find a way to disable the counter to facilitate 

possible tests of pixel array and ECA and on the other hand we need to find a way to propagate 

the counts of the counter without depending upon the pixels events. 

The logic gates placed at the exit of each bit in Fig. 36 serve as solution to the first problem 

indicated above as they can be used to disable the counter. By setting digital signal CounterDisable 

to logic ‘1’ it is possible to replace the counter output with the fixed word ‘00000001’. In doing 

so, each pixel pulse will be recorded as a unit value within the S&A elements. 

We could then disable an ECA (Fig. 28) and use the seed registers to activate only pixels in 

known positions. For instance, once a single row or column of the array is active, if all the pixels 

are working properly, the output of the CI-CIS in base-ten will be 64. By activating the rows and 

columns one after the other sequentially it is possible to draw a map of which pixels are working 

properly and which are not. In the same way, once we tested that the pixels are working, we 

could let the ECA evolve naturally and the sum of the non-zero elements of a row of the 

measurement matrix should correspond to the output of CS-CIS. 

We will describe how to remove the dependency of the propagation of the counter outputs 

from the pixel responses in the next section. Fig. 37 shows the timing diagram of the 8-bit 

counter during normal operations. 

4.1.5 SAMPLE & ACCUMULATE 

As we expressed in Chapter 3 we want to realise the summation of pixels contributions in the 

digital domain to avoid the requirement of a wide dynamic range in the analog domain. To do so 

we have pulse-width modulated the pixels’ outputs in order to time-encode their values into 

pulses as expressed in section 4.1.2 and now we need associate the timing of these events with 

the countdown generated by the counter presented in section 4.1.4 in order to perform their time-

to-digital conversion. This association is carried out by the S&A circuit. The architecture of 1 bit 

of the S&A can be divided into three functions or functional elements (Fig. 38): 

 Full Adder, the element at core of the S&A functionality, it is used to create the sum of 

the pixel contributions; 

 Input handling is a logic component that, depending on the mode of operation, connects 

the S&A input to the column bus for acquisition or to other S&As to add the 

contributions of all columns in order to generate a compressed sample; 

 Sum Storage is a 1-bit memory that is used to store the result of the full adder after each 

step in a close loop so that the system can actually accumulate the various contributions. 
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Fig. 38: Schematic of 1 bit of the sample & accumulate. 

In Fig. 38 we also added a fourth component, the Event handling, that is not part of a single 

bit but that is common to all bits, nonetheless, since it is essential to understand how the events 

are transmitted to the S&A, we have reported it here. 

4.1.5.1 FULL ADDER 

To get an idea of the structure of the overall S&A, all bits in a S&A element/column are 

disposed vertically from the least-significant bit on top and the most significant bit below. Each 

bit has to its right and to its left the bits that occupy the same positions in the S&A elements of 

the adjacent columns. 

On the right side of Fig. 38 we have a full adder that receives as inputs CARIN, the bit carried 

in from the lesser-significant stage above, and the outputs bA and bB of the Sum Storage and 

Input circuits. This full adder generates the output carry, CAROUT, which goes to the more-

significant stage below and the sum of bA, bB and CARIN, here named CASCADEOUT. 

CASCADEOUT is divided into two lines, the first is fed back to Sum Storage and the second is 

transmitted to the bit in the column to its right. The column to its right will receive this value as 

CASCADEIN. During integration, RST, and Release are set to logic ‘0’ and CASCADE is set at 

logic ‘1’, as such, given the configuration of the MUX, CASCADEOUT is effectively only used as 

input for the flip-flop in Sum Storage. 

4.1.5.2 INPUT 

The flip-flop receives as input COUNTERIN which is one of the bits of the 8-bit counter. The 

clock signal of the flip-flop is E and it is handled by the Event Handling Unit, which remember it 

is located outside of the bit and is common to all bits in a S&A column. 

Since CASCADE is set at logic ‘1’, at each double-flip of E, the corresponding counter 

output, (see Fig. 36), is moved to bB and summed to the bit present in Sum Storage. When the 
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acquisition period is over, the global signal CASCADE is set to logic ‘0’, the flip-flop is then 

ignored (and the counter disconnected) and bB takes the value of the bit at the same stage in the 

column to its left as described in the section above. This generates an avalanche effect that start 

adding the contribution of the left-side neighbours to that of the right-side neighbours. After 

some delay due to propagation, the rightmost S&A will show, at its output, the sum of all the 

S&A elements connected sequentially before it. 

4.1.5.3 SUM STORAGE 

This circuit is responsible for storing the actual value of the current sum, CASCADEOUT, in 

its flip-flop, so that, when E double-flips another time, this value can be added to the new value 

of COUNTRIN and, by doing so we keep on adding new counter values on top of the already 

existing sum. 

After the compressed sample has been recorded off-chip, RST is set to logic ‘1’ and an extra 

flip of E effectively empties the all the sums stored in all the flip-flops of all the bits and in doing 

so resets the S&A elements readying them for the collection of the next compressed sample. 

4.1.5.4 EVENT HANDLING 

This component serves a double purpose; firstly it directly takes the output bus of a column in 

the pixel array and transforms it into signal E effectively creating the connection that we were 

missing in order to associate pixel events to counter values and generate compressed samples. 

But, this unit can also be used to create artificial pulses by means of the global signal Release 

(Fig. 38). In doing so the counter and S&A can be tested generating artificially controlled events 

from the outside without depending upon the pixel array and ECA effectively resolving the 

second problem presented in section 0. This control signal is also part of the readout and reset 

phases of the S&A and it does so by flipping E twice, the first time to prepare the column sum 

before CASCADE is set to logic ‘1’ and the second time, in conjunction with RST to reset the 

S&A and restart the acquisition phase with empty registers, as shown in Fig. 39. 

4.1.5.5 SIMPLIFICATIONS 

It has to be noted that, the first and last bits of the 20 bits S&A have been simplified since 

there is no need to implement CARIN and CAROUT respectively. Furthermore, from bits 9 to bit 

20, COUNTERIN and its corresponding flip-flop are replaced by a connection to ground because 

the counter only has 8 bits. the multiplexors have been replaced with an AND gate that receives 

CASCADE as one of the input and CASCADEIN as the other. This solution greatly decreases the 
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area occupation of these elements making the final design more compact. 

 

Fig. 39: Timing diagram of 1 bit of the sample & accumulate during acquisition (right) and compressed sample 

generation (left). 

Fig. 39 shows the timing diagram of the signals within 1 bit of a S&A element during a 

typical operation. The rising edge of RST (Fig. 30) determines the end of the acquisition period 

and the beginning of the phase in which the S&A of the various columns are connected among 

each other to deliver the compressed sample. Its falling edge establishes the start of a new 

integration period. 

4.1.6 TEST COMPONENTS: EXTRA PIXEL AND EVENT CONTROL UNIT 

Of all of the control signals that must be coordinated and tuned to operate the CS-CIS, three 

of them are analog and their values are difficult to set properly because they may vary depending 

on light conditions and the gain of the amplifiers used to control them depends on the technology 

so a fine adjustment is necessary but we do not have direct access to the pixels outputs, i.e. we 

cannot measure their direct impact on the chip overall performance. These signals are Vpix Vref 

and Vstr respectively. To resolve this problem we have decided to introduce an extra pixel and 

event control unit in a corner of the pixel. On the PCB used for testing, three potentiometers can 

be used to set these variables that are connected to three floating pins. It is possible to connect 



70 

these pins to Vpix Vref and Vstr of the test pixel whose output is directly accessible from an 

analog pad of the padring. This makes it possible to tune these signal values to obtain the type of 

pulse desired. Once that is achieved, these signals can be transmitted to the array instead of to the 

test pixel. For the time being this adjustment will be manual, however, it would possible to to 

exploit this extra pixel design an automated adjustment system that would favour the sensor 

adaptability to different light conditions. 
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4.2 PROTOTYPE PACKAGE AND PINAGE 

A prototype chip named ‘CSImager1’ has been designed in a CMOS 0.18μm technology. The 

die size including pads is 3.17×2.23mm2. The chip has been packaged in a CD-PGA84 ceramic 

capsule (Fig. 40).  

 

Fig. 40: CD-PGA84 ceramic capsule [Kyoc19] © 2019 Kyocera. 

Its connection map is presented in Fig. 41:  

 

Fig. 41: CD-PGA84 connection map [Kyoc19] © 2019 Kyocera. 

© 2019 Kyocera 

© 2019 Kyocera 
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4.2.1 BONDING DIAGRAM 

 

Fig. 42: Bonding Diagram of CS-CIS ‘CSImager1’. 

 

4.2.2 PINAGE OVERVIEW 

Seven different types of pads have been employed in the design of this chip, including power 

and ground pads, analog and digital inputs and outputs. Table 3 contains a short description of 
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the pads. Given the layout of the connections of Fig. 42, the pin map bottom and top views are 

presented in Table 4 and Table 5 respectively: 

 

Cell name Type Description N. 
Volt. 

level 

Pulled 
Buff ESD 

up down 

VCC3IOD_DigIO VDD Power supply 8 3.3    x 

VCCKD_DigCore VDD Power supply 9 1.8    x 

GND3IOD_DigIO GND Ground connection 8 0    x 

GNDKD_DigCor

e 
GND Ground connection 9 0    x 

XMD_DigI DI_IN Digital Input 19 {0,3.3}   x x 

YA2GSD_DigO DI_OUT Digital Output 21 {0,3.3}   x x 

ANA_ESD 
AN_IN 

Analog I/O 8 [0-1.8]    x 
AN_OUT 

Table 3: Pad types used in the design. 

 

 1 2 3 4 5 6 7 8 9 10 11  

L VCCO GND VCCO GND READ GND VCCO CEDI VSTR VREF SECL L 

K S1 GND SEEX VCCK RST2 RESE VCCK CERS SEED VCCK GND K 

J S2 S0   RST1 VPIX GND   GND VCCO J 

H S4 S3        CECL CODI H 

G VPIX GND S5      VPIX CORE REDY G 

F VCCK S7 S6      VCCK COCL GND F 

E S8 S9 GND      VRPT VPPT VSPT E 

D VCCO VCCK        VCCK RSPT D 

C GND S11 NC  S15 S19 VPIX   VCCO GND C 

B S10 S12 S14 GND S16 VCCK VCCO PUPT REPT CASC GND B 

A S13 VCCK GND VCCO S17 S18 GND GND R2PT R1PT RESA A 

 1 2 3 4 5 6 7 8 9 10 11  

Table 4: Pin map of the chip (bottom view). 
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 11 10 9 8 7 6 5 4 3 2 1  

L SECL VREF VSTR CEDI VCCO GND READ GND VCCO GND VCCO L 

K GND VCCK SEED CERS VCCK RESE RST2 VCCK SEEX GND S1 K 

J VCCO GND   GND VPIX RST1   S0 S2 J 

H CODI CECL        S3 S4 H 

G REDY CORE VPIX      S5 GND VPIX G 

F GND COCL VCCK      S6 S7 VCCK F 

E VSPT VPPT VRPT      GND S9 S8 E 

D RSPT VCCK        VCCK VCCO D 

C GND VCCO   VPIX S19 S15  NC S11 GND C 

B GND CASC REPT PUPT VCCO VCCK S16 GND S14 S12 S10 B 

A RESA R1PT R2PT GND GND S18 S17 VCCO GND VCCK S13 A 

 11 10 9 8 7 6 5 4 3 2 1  

Table 5: Pin map of the chip (top view). 

 

4.2.3 SIGNALS OVERVIEW 

Table 6 and Table 7 describe the pin assignment complemented with a short description of the 

purpose of the corresponding signals. This table has 5 columns: 

 W/B. NO.: Is the number of the finger that the wire bond is attached to (Fig. 42). 

 PIN NO.: Displays the coordinates of its corresponding pin (Fig. 41). 

 Short Name: Name of the pins as included in Table 4 and Table 5. 

 PAD Name: Indicates the name of the pad as included in the Layout design in Cadence. 

 Description: Brief definition of the signal purpose according the circuit description given 

in the section above. 
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W/B 

NO. 

PIN 

NO. 

Short 

Name 
PAD Name Description 

1 B_2 S12 S12 13th bit of the last S&A (CASCADEOUT of Fig. 38) 

2 C_2 S11 S11 12th bit of the last S&A (CASCADEOUT of Fig. 38) 

3 B_1 S10 S10 11th bit of the last S&A (CASCADEOUT of Fig. 38) 

4 C_1 GND GNDK Ground 

5 D_2 VCCK VCCK 1.8V constant voltage supply for the chip core 

6 D_1 VCCO VCC30 3.3V constant voltage supply for the chip padring 

7 E_3 GND GNDO Ground 

8 E_2 S9 S9 10th bit of the last S&A (CASCADEOUT of Fig. 38) 

9 E_1 S8 S8 9th bit of the last S&A (CASCADEOUT of Fig. 38) 

10 F_2 S7 S7 8th bit of the last S&A (CASCADEOUT of Fig. 38) 

11 F_3 S6 S6 7th bit of the last S&A (CASCADEOUT of Fig. 38) 

12 G_3 S5 S5 6th bit of the last S&A (CASCADEOUT of Fig. 38) 

13 G_1 VPIX VPIX Reset voltage of the pixel array photodiodes (Fig. 30) 

14 G_2 GND GNDK Ground 

15 F_1 VCCK VCCK 1.8V constant voltage supply for the chip core 

16 H_1 S4 S4 5th bit of the last S&A (CASCADEOUT of Fig. 38) 

17 H_2 S3 S3 4th bit of the last S&A (CASCADEOUT of Fig. 38) 

18 J_1 S2 S2 3rd bit of the last S&A (CASCADEOUT of Fig. 38) 

19 K_1 S1 S1 2nd bit of the last S&A (CASCADEOUT of Fig. 38) 

20 J_2 S0 S0 1st bit of the last S&A (CASCADEOUT of Fig. 38) 

21 L_1 VCCO VCC30 3.3V constant voltage supply for the chip padring 

22 K_2 GND GNDO Ground 

23 K_3 SEEX SEED_EXIT Binary seed output of the ECA 

24 L_2 GND GNDO Ground 

25 L_3 VCCO VCC30 3.3V constant voltage supply for the chip padring 

26 K_4 VCCK VCCK 1.8V constant voltage supply for the chip core 

27 L_4 GND GNDK Ground 

28 J_5 RST1 RST1 1st reset signal for the array comparators (Fig. 32) 

29 K_5 RST2 RST2 2nd reset signal for the array comparators (Fig. 32) 

30 L_5 READ READ Read signal for the array comparators (Fig. 32) 

31 K_6 RESE RESET reset signal for the pixel array(Fig. 30) 

32 J_6 VPIX VPIX Reset voltage of the pixel array photodiodes (Fig. 30) 

33 J_7 GND GNDO Ground 

34 L_7 VCCO VCC30 3.3V constant voltage supply for the chip padring 

35 K_7 VCCK VCCK 1.8V constant voltage supply for the chip core 

36 L_6 GND GNDK Ground 

37 L_8 CEDI CELL_DISABLE Disable signal for the ECA (Fig. 28) 

38 K_8 CERS CELL_RST Reset signal for the ECA (Fig. 28) 

39 L_9 VSTR IREF Control voltage for the starved inverters (Fig. 34) 

40 L_10 VREF VREF Voltage reference for the pixel array (Fig. 30) 

41 K_9 SEED SEED Binary seed input for the ECA (Fig. 28) 

42 L_11 SECL SEED_CLK Clock to drive the seed into position (Fig. 28) 

43 K_10 VCCK VCCK 1.8V constant voltage supply for the chip core 

44 J_10 GND GNDK Ground 

45 K_11 GND GNDO Ground 

46 J_11 VCCO VCC30 3.3V constant voltage supply for the chip padring 

47 H_10 CECL CELL_CLK Clock signal for the ECA (Fig. 28) 

48 H_11 CODI COUNT_DISABLE Signal to disable the counter (Fig. 36) 

49 F_10 COCL COUNT_CLK Clock signal for the time to digital conversion 

50 G_10 CORE COUNT_RESET Signal to restart the counter (Fig. 36) 

Table 6: Pin assignment (first half). 
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W/B 

NO. 

PIN 

NO. 

Short 

Name 
PAD Name Description 

51 G_11 REDY READY Signal to prepare the S&A output (Fig. 38) 

52 G_9 VPIX VPIX Reset voltage of the pixel array photodiodes (Fig. 30) 

53 F_9 VCCK VCCK 1.8V constant voltage supply for the chip core 

54 F_11 GND GNDK Ground 

55 E_11 VSPT IREF_Pixel_Test Control voltage for the starved inverter of the test pixel 

56 E_10 VPPT VPIX_Pixel_Test Reset voltage of the test pixel photodiode 

57 E_9 VRPT VREF_Pixel_Test Voltage reference for the test pixel comparator 

58 D_11 RSPT RESET_Pixel_Test reset signal for the test pixel 

59 D_10 VCCK VCCK 1.8V constant voltage supply for the chip core 

60 C_11 GND GNDK Ground 

61 B_11 GND GNDO Ground 

62 C_10 VCCO VCC30 3.3V constant voltage supply for the chip padring 

63 A_11 RESA RESET_SAMP Signal to reset the S&A (Fig. 38) 

64 B_10 CASC CASCADE Signal to connect the S&A sequentially (Fig. 38) 

65 B_9 REPT READ_Pixel_Test Read signal for the test pixel comparator 

66 A_10 R1PT RST1_Pixel_Test 1st reset signal for the test pixel comparator 

67 A_9 R2PT RST2_Pixel_Test 2nd reset signal for the test pixel comparator 

68 B_8 PUPT PULL_Pixel_Test Analog output of the test pixel 

69 A_8 GND GNDK Ground 

70 B_6 VCCK VCCK 1.8V constant voltage supply for the chip core 

71 B_7 VCCO VCC30 3.3V constant voltage supply for the chip padring 

72 A_7 GND GNDO Ground 

73 C_7 VPIX VPIX Reset voltage of the pixel array photodiodes (Fig. 30) 

74 C_6 S19 S19 20th bit of the last S&A (CASCADEOUT of Fig. 38) 

75 A_6 S18 S18 19th bit of the last S&A (CASCADEOUT of Fig. 38) 

76 A_5 S17 S17 18th bit of the last S&A (CASCADEOUT of Fig. 38) 

77 B_5 S16 S16 17th bit of the last S&A (CASCADEOUT of Fig. 38) 

78 C_5 S15 S15 16th bit of the last S&A (CASCADEOUT of Fig. 38) 

79 A_4 VCCO VCC30 3.3V constant voltage supply for the chip padring 

80 B_4 GND GNDO Ground 

81 A_3 GND GNDK Ground 

82 A_2 VCCK VCCK 1.8V constant voltage supply for the chip core 

83 B_3 S14 S14 15th bit of the last S&A (CASCADEOUT of Fig. 38) 

84 A_1 S13 S13 14th bit of the last S&A (CASCADEOUT of Fig. 38) 

Ex. C_3 NC  Not connected 

Table 7: Pin assignment (second half). 

 

Table 8 and Table 9 describe the most stringent timing requirements of the control signals 

based on post layout simulations, it can guide in the choice of a setup most adequate for testing. 

 W/B. NO.: Is the number of the finger that the wire bond is attached to (Fig. 42). 

 PIN NO.: Displays the coordinates of its corresponding pin (Fig. 41). 

 Short Name: Name of the pins as included in Table 6 and Table 7. 

 PAD Name: Indicates the name of the pad as included in the Layout design in Cadence. 

 GND and Vdd: Indicate the time a signal spends at logic ‘0’ or ‘1’ respectively. 

 Rise Fall Time: Indicates the time a signal needs to pass from GND to Vdd and vice versa. 
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W/B 

NO. 

PIN 

NO. 

Short 

Name 
PAD Name GND 

Rise 

Time 
Vdd 

Fall 

Time 

1 B_2 S12 S12   40ns(3.3V)  

2 C_2 S11 S11   40ns(3.3V)  

3 B_1 S10 S10   40ns(3.3V)  

4 C_1 GND GNDK Always    

5 D_2 VCCK VCCK   Always (1.8V)  

6 D_1 VCCO VCC30   Always (3.3V)  

7 E_3 GND GNDO Always    

8 E_2 S9 S9   40ns(3.3V)  

9 E_1 S8 S8   40ns(3.3V)  

10 F_2 S7 S7   40ns(3.3V)  

11 F_3 S6 S6   40ns(3.3V)  

12 G_3 S5 S5   40ns(3.3V)  

13 G_1 VPIX VPIX   Always(~[1.1-1.6]V)  

14 G_2 GND GNDK Always    

15 F_1 VCCK VCCK   Always (1.8V)  

16 H_1 S4 S4   40ns(3.3V)  

17 H_2 S3 S3   40ns(3.3V)  

18 J_1 S2 S2   40ns(3.3V)  

19 K_1 S1 S1   40ns(3.3V)  

20 J_2 S0 S0   40ns(3.3V)  

21 L_1 VCCO VCC30   Always (3.3V)  

22 K_2 GND GNDO Always    

23 K_3 SEEX SEED_EXIT   20μs(3.3V)  

24 L_2 GND GNDO Always    

25 L_3 VCCO VCC30   Always (3.3V)  

26 K_4 VCCK VCCK   Always (1.8V)  

27 L_4 GND GNDK Always    

28 J_5 RST1 RST1 20μs 1ns 40ns(1.8V) 1ns 

29 K_5 RST2 RST2 20μs 1ns 20ns(1.8V) 1ns 

30 L_5 READ READ 50ns 1ns 20μs(1.8V) 1ns 

31 K_6 RESE RESET 60ns 1ns 20μs(1.8V) 1ns 

32 J_6 VPIX VPIX   Always (~[1.1-1.6]V)  

33 J_7 GND GNDO Always    

34 L_7 VCCO VCC30   Always (3.3V)  

35 K_7 VCCK VCCK   Always (1.8V)  

36 L_6 GND GNDK Always    

37 L_8 CEDI CELL_DISABLE 20μs 1ns 20μs(3.3V) 1ns 

38 K_8 CERS CELL_RST 20μs 1ns 50ns(3.3V) 1ns 

39 L_9 VSTR IREF   Always (~[0.4-0.6]V)  

40 L_10 VREF VREF   Always (~[1-1.5]V)  

41 K_9 SEED SEED 50ns 1ns 50ns(3.3V) 1ns 

42 L_11 SECL SEED_CLK 50ns 1ns 50ns(3.3V) 1ns 

43 K_10 VCCK VCCK   Always (1.8V)  

44 J_10 GND GNDK Always    

45 K_11 GND GNDO Always    

46 J_11 VCCO VCC30   Always (3.3V)  

47 H_10 CECL CELL_CLK 20μs 1ns 50ns(3.3V) 1ns 

48 H_11 CODI COUNT_DISABLE 20μs 1ns 20μs(3.3V) 1ns 

49 F_10 COCL COUNT_CLK 10ns 1ns 10ns 1ns 

50 G_10 CORE COUNT_RESET 20μs 1ns 50ns(3.3V) 1ns 

Table 8: Timing requirements of the signals associated to each pad (first half). 
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W/B 

NO. 

PIN 

NO. 

Short 

Name 
PAD Name GND 

Rise 

Time 
Vdd 

Fall 

Time 

51 G_11 REDY READY 20μs 1ns 10ns(3.3V) 1ns 

52 G_9 VPIX VPIX   Always (~[1.1-1.6]V)  

53 F_9 VCCK VCCK   Always (1.8V)  

54 F_11 GND GNDK Always    

55 E_11 VSPT IREF_Pixel_Test   Always (~[0.4-0.6]V)  

56 E_10 VPPT VPIX_Pixel_Test   Always (~[1.1-1.6]V)  

57 E_9 VRPT VREF_Pixel_Test   Always (~[1-1.5]V)  

58 D_11 RSPT RESET_Pixel_Test 60ns 1ns 20μs(3.3V) 1ns 

59 D_10 VCCK VCCK   Always (1.8V)  

60 C_11 GND GNDK Always    

61 B_11 GND GNDO Always    

62 C_10 VCCO VCC30   Always (3.3V)  

63 A_11 RESA RESET_SAMP 20μs 1ns 10ns(3.3V) 1ns 

64 B_10 CASC CASCADE 20μs 1ns 100ns(3.3V) 1ns 

65 B_9 REPT READ_Pixel_Test 50ns 1ns 20μs(3.3V) 1ns 

66 A_10 R1PT RST1_Pixel_Test 20μs 1ns 40ns(3.3V) 1ns 

67 A_9 R2PT RST2_Pixel_Test 20μs 1ns 20ns(3.3V) 1ns 

68 B_8 PUPT PULL_Pixel_Test   5ns(1.8V)  

69 A_8 GND GNDK Always    

70 B_6 VCCK VCCK   Always (1.8V)  

71 B_7 VCCO VCC30   Always (3.3V)  

72 A_7 GND GNDO Always    

73 C_7 VPIX VPIX   Always (~[1.1-1.6]V)  

74 C_6 S19 S19   40ns(3.3V)  

75 A_6 S18 S18   40ns(3.3V)  

76 A_5 S17 S17   40ns(3.3V)  

77 B_5 S16 S16   40ns(3.3V)  

78 C_5 S15 S15   40ns(3.3V)  

79 A_4 VCCO VCC30   Always (3.3V)  

80 B_4 GND GNDO Always    

81 A_3 GND GNDK Always    

82 A_2 VCCK VCCK   Always (1.8V)  

83 B_3 S14 S14   40ns(3.3V)  

84 A_1 S13 S13   40ns(3.3V)  

Ex. C_3 NC      

Table 9: Timing requirements of the signals associated to each pad (second half). 

 

  



CHAPTER 4 

79 

4.3 PRINTED CIRCUIT BOARD AND FIELD-PROGRAMMABLE GATE ARRAY 

Based on the description of the prototype given in section 4.1 and the signal requirements 

presented in section 4.2, the Printed Circuit Board (PCB) that we designed for testing 

‘CSImager1’ is as follows (Fig. 43): 

 

Fig. 43: Conceptual floorplan for the PCB design. 
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To design this PCB we planned to create two connections to each input and output of the chip 

that will be lodged in the Zero Insertion Force (ZIF) socket (Fig. 43). One of these connections 

will be sent to two parallel sockets onto which we will mount the extension headers of a Field-

Programmable Gate Array (FPGA) (Fig. 43) while the others will be routed directly to accessible 

test points on the PCB. The first set of connections will be used to perform automated tests while 

the other can be attached to an exterior wave generator and/or an oscilloscope to perform tests 

that might exceed the FPGA capabilities. 

The same design philosophy has been applied to the power source: it will be possible to 

power ‘CSImager1’ by using an external power source or by directly tapping the FPGA board. 

These redundancies are beneficial because, if any line proves to be damaged (short-circuited or 

open), we can use a mixed configuration to carry out the tests (as it was our case). 

Only analog control signals were left out from this double implementation. Due to their nature 

and purpose (see section 4.1.2.7) we decided it was best to have full manual control over them 

by means of a set of potentiometers. Remember that, they just need to be fine-tuned for the 

appropriate environmental light conditions at the beginning of an experiment and then simply 

left alone for the duration of its duration. 

The resulting PCB is shown in Fig. 44: 

 

Fig. 44: The PCB used for our tests. 

To the bottom right of Fig. 44 we can see the board (DE0-nano) attached to the PCB and at 

the centre of the left side the chip lodged in its ZIF socket. The switches between them are used 

to select if the inputs/outputs of the chip will reach the FPGA or the dedicated test points around 
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the ZIF socket. In the upper right part of this image there is the circuitry dedicated to the power 

supply, with independent jumpers to cut off the 3.3V needed to power the padring and the 1.8V 

needed to power the chip core. Here we can also find a third jumper that can be used to switch 

between jacks to which connect an external power source and the power offered by the board 

itself. 

In the image above we can see a mixed configuration in which ECA, S&A, pixel array and 

power source are handled by the FPGA and the outputs of the chip are sent to the PCB test points 

(top left of Fig. 44). 

The FPGA that we chose to conduct our tests is an Altera Cyclone IV (Fig. 45) which sports 

two 40-pin expansion headers on the long sides that we will use to access ‘CSImager1’, 8 LEDs 

and 2 push buttons that we can use to program tests divided in different phases and a clock 

frequency of 50MHz which might be a bit slow if we consider Eq. (49) but that for initial testing 

is more than enough. Among the 2 expansion headers we find 4 fixed 3.3V pins that can be used 

to power ‘CSImager1’.  

 

Fig. 45: Altera DE0-Nano FPGA © 2009 Altera. 

 

  

© 2009 Altera 
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4.4 TEST RESULTS ON CSIMAGER1 

As mentioned in the circuit description, the correct operational state of many components can 

only be inferred from the CS-CIS 20 bit digital output. As we have described in section 4.1 care 

was taken to add the opportune control signals that disable parts of the prototype and allow us to 

study them separately. These precautions give us a certain amount of freedom when the time 

comes to perform tests on different parts of ‘CSImager1’ but the suggested order to conduct 

these experiments is the following: 

 Test Pixel and Event Control unit 

 Seed registers 

 Sample & accumulate 

 Counter 

 Pixel array and measurement matrix 

The proposed order is mainly due to the fact that the pixels are the only components with 

mixed signals in them, they are the core of our project, whose dynamic behavior can validate the 

feasibility of the theory so far exposed in a CMOS 0.18μm technology. Furthermore, the test 

pixel has both inputs and outputs totally independent from the reset of the prototype making it a 

good place to start testing since the rest of the circuit performance is yet an unknown. 

The seed registers have a dedicated output pin to confirm that the seed is being introduced 

correctly. Signal SEEX (K_3) taps directly into the last of the 128 flip-flops loaded with the 

seed. This is another system that can be tested with relative ease and it is important to know if 

the seed is input correctly before starting any possible test on the array. 

The S&A will be the third part to be tested because, since every experiment involving the 

remaining parts of the prototype deliver their outputs through the S&A, it would be logical to 

know if this component works properly before venturing into more complicated tests. 

The counter has then been chosen as the fourth test because of its simplicity both in design 

and function and lastly, disabling the counter and knowing that the seed registers work correctly, 

the pixel array and measurement matrix will be tested almost at the same time since their 

workings are intertwined. 

4.4.1 TEST PIXEL AND EVENT CONTROL UNIT 

We will perform this test under the most demanding scenario presented by Eq. (47), following 

the suppositions made on Eq. (48) that led as to the range of frequencies expressed by Eq. (49) 

we will consider 𝐶𝑝ℎ = 60fF and a range of currents between 300pA and 30pA. For the reasons 
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above presented we have selected Vpix − Vref = 0.1V to time the pixel responses within a range 

of 2μs to 20μs. Through post layout simulations we have selected Vstr = 0.22V to set the 

duration of the pixel events to 𝑡𝑒~100ns so to make it proportional to the other signals 

controlled by the Verilog state machine loaded into the DE0-Nano’s Altera Cyclone IV for this 

test. 

This first test will also serve us as calibration of sorts to confirm if these analog signals are set 

properly: if the difference Vpix − Vref is not wide enough the pixel response would be too fast 

and vice versa if it is too large then response would be slow. In the same way, if Vstr was too low 

or too high the event would not be registered by the output or its duration would simply be too 

long. 

The test pixel output is accessible from an analog pad (pad 68 with coordinates B_8 of Table 

4 and Table 5) and is transmitted to a test point directly onto the PBC. The list of signals that we 

need to control in order to operate the test pixel is the following: 

 Pad 58 (D_11, RSPT): The reset signal of the test pixel; 

 Pad 65 (B_9, REPT): The control signal that operates the transmission gate that starts 

the event generation (Fig. 32); 

 Pad 66 (A_10, R1PT): The control signal needed to operate the transmission gate that 

charges the capacitor of the autozeroing comparator with Vref (Fig. 32); 

 Pad 67 (A_9, R2PT): The control signal needed to operate the transmission gate that 

cancels the offset of the inverter of the autozeroing comparator while its capacitor is 

charging with Vref (Fig. 32). 

This test is set up with a mixed configuration of the PCB: the control signals and the power 

supply are handled by the FPGA while the outputs are collected with an oscilloscope. Fig. 46 

represents the state machine that has been loaded into the FPGA to perform this test and that 

reflects the timing diagram presented in Fig. 33. The actual Verilog code used for this 

experiment can be found in Appendix A. 
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Fig. 46: State Machine for Test Pixel Control. 

Upon initialisation all the digital control signals of the test pixel are set to logic ‘0’ with the 

exception of RSPT which is set to logic ‘1’ to disconnect the cathode of the photodiode from Vcat 

(Fig. 29). The state machine is set to idle while waiting for an external input. 

The external input comes in the form of a simultaneous tap on the two push buttons of the 

DE0-Nano (Fig. 45); this action is represented in Fig. 46 by the variable “Push”. During state 

‘PD charge’, flipping RSPT to logic ‘0’ enables the pixel reset (Fig. 29), the cathode of the 

photodiode Vcat charges at the desired voltage Vpix. While this is happening the connection 

between the cathode and the comparator is cut off by the transmission gate controlled with REPT 

(read signal in Fig. 32). 

As the photodiode is charging, by enabling the transmission gate controlled by signal R2PT 

(state ‘C charge’) the capacitor in the autozeroing comparator is loaded with the chosen 

reference voltage (Vref). Within this time frame, while the capacitor is reaching the desired 

reference, the transmission gate used to remove the inverter offset (R1PT of Fig. 32) is also 

enabled (state ‘offset cancel’). It is important that the activation of R1PT be contained in that of 

R2PT as shown in Fig. 33. 

After this setup phase, both transmission gates are disabled and the capacitor is connected to 

the voltage of the cathode (state ‘Read’). This is achieved enabling the transmission gate 
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controlled by signal READ while switching off the reset transistor M1 (Fig. 29) so that the 

photodiode can start discharging with a speed proportional to the amount of light that it receives. 

After a fixed amount of time the state machine returns to idle. During this time frame if an events 

occurs than it is recorded by the oscilloscope. The allotted time is equal to the time that it would 

take for the counter (section 4.1.4) to reach ‘00000000’, if no event has occurred during that time 

than the pixel is considered black. 

Different tests have been carried out using different light conditions: 

 

Fig. 47: Pixel test experiment setup. 

We used a power controlled light source and a luxometer to provide ‘CSImager1’ with 

different light intensities ranging from 120lux to 1560lux (Fig. 47). The light was diffused using 

an integrating sphere. The monochromator between the light source and the sphere is not part of 

this experiment so it is set to a neutral position. ‘CSImager1’ mounted on the PCB was attached 
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to one of the outputs of the integrating sphere being the other attached to the luxometer. Here in 

Fig. 47 the PCB is slightly detached to offer a better view of the experimental setup. 

Two probes of an oscilloscope are used to collect signals REPT (B_9) from a pin of the 

FPGA board and PUPT (B_8) from a test point on the PCB. The moment when REPT flips from 

logic ‘0’ to logic ‘1’ in state Read (Fig. 46) coincides with the moment in which the photodiode 

start discharging and when a pulse is shown on PUPT coincides with the moment when the event 

would be collected by the S&A. Setting the oscilloscope to stop when it detects the falling edge 

PUPT will give us a still picture of the time needed from when the photodiode starts discharging 

to when the pixel delivers the corresponding event (Fig. 48): 

 

Fig. 48: Oscilloscope still image taken using a light intensity of 410lux. 

Looking at Fig. 48 we can see that the width of the pulse shown in PUPT is proportional to 

that of REPT, this means that our estimate of Vstr was correct, but, more importantly, we can see 

that the time that has passed between when the photodiode starts discharging (rising edge of 

REPT) and when the pulse appears on screen (Falling edge of PUPT) is about 12μs, which is 

about half the range that we had predicted. This means that, the time encoding of light intensity 

is carried out successfully by the pixel in the time that we had predicted theoretically. Please note 

that both events were stretched using a waiting function within the controller and reducing Vstr so 

that they could have a duration proportional to the time that passes between them in order to 

better visualise the results on the screen of the oscilloscope. During normal operations these 

pulses would be few nanoseconds wide and thus trying to capture them in the same screenshot 

would be impossible. 

By repeating this experiment with different light intensities and creating a graph of light 

intensity over response time we can express the characteristic curve that represents how our pixel 
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performs time encoding: 

 

Fig. 49: Test Pixel Time response to varying light conditions. 

4.4.2 SEED REGISTERS 

In order to guarantee that reconstruction of the sampled image from the compressed samples 

delivered by our prototype is possible, it is necessary to confirm that the seed used to generate 

the measurement matrix is stored correctly: if this were not the case, the generated measurement 

matrix would not follow our predictions and the output delivered by ‘CSImager1’ would simply 

be undecipherable. 

In ‘CSImager1’ the seed is loaded within a 128-bit shift register having each of its flip-flop 

directly embedded in a cell of the ECA (Fig. 28). Remember that this registers can also be used 

to replace the ECA as an alternate form of choosing which pixels to activate and which not (This 

is achieved by setting CEDI (Pad 37 coordinates L_8) to logic ‘1’). 

The list of signals that we need to tap in order to test the shift register is the following: 

 Pad 41 (K_9, SEED): The input of the register; 

 Pad 42 (L_11, SECL): The clock signal of the shift register that, at each double flip, is 

used to introduce sequentially the actual value of SEED into the register by shifting 

forward one step the content already stored (Fig. 28); 

 Pad 23 (K_3, SEEX): this pad taps into the state of the last flip-flop of the register. After 

128 clock cycles of SECL we aspect to see at this output the same sequence introduced in 

SEED simply delayed 128 steps. 

Just like with the previous test, we chose a mixed set up for the PCB: the input signals and the 

power supply are handled by the FPGA while the output is probed with an oscilloscope. The 
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controller loaded into the FPGA for this experiment is a simple 2-bit counter with the inverse of 

the least significant bit (bl of Fig. 50) connected to SEEDclk (Fig. 28) and the most significant bit 

(bm of Fig. 50) connected to SEEDin (Fig. 28). Each time the least significant bit is set to logic 

‘0’ SEEDin is switched from high to low or vice versa and each time it is set to logic ‘1’ the 

current value of SEEDin is pushed forward along the sequence of registers that hold the seed of 

the ECA. 

 

Fig. 50: Control signals for the ECA experiment. 

The output of the last register is connected to a test point of the PCB (SEEX of Table 6) and, 

since what this controller creates is a simple train of pulses, SEEX should show the same trend 

as SEEDin just delayed by 128 steps (the number of registers) and with a 𝜋 2⁄  phase lag 

(remember that SEEDin switches when the least significant bit of the controller reaches ‘0’ but it 

is pushed forward only after it returns to ‘1’). So, if we were to probe SEEX with an oscilloscope 

left continuously running, we should detect the same train found on the SEEDin pin of the FPGA 

board as shown in Fig. 50. The FPGA clock frequency that we used to conduct this experiment 

was the maximum allowed by its specifications: 50MHz. 

The setup of this experiment (Fig. 51) is much simpler than the previous one because there is 

no need to introduce a controlled light source and the rest of instruments that it required by the 

light beams to uniformly reach the active areas of the prototype (i.e. integrating sphere and 

luxometer). 

After confirming that the output SEEX was indeed reflecting a train of pulses we proceeded 

with another experiment. This time, instead of using a steady train of pulses, we connected 

SEEDin and SEEDclk to the two buttons of the FPGA board so that we could use one of them to 

upload a logic ‘1’ within the shift register and the other to upload a logic ‘0’. 
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Fig. 51: Shift register test setup. 

The LEDs provided by the FPGA board were used to keep track of the last inserted value 

(led1_A15 and led2_A13) and to check if at least 128 values had been uploaded (led8_L13). 

After 128 values were uploaded SEEX on the PCB started switching from logic ‘1’ to logic ‘0’ 

and vice versa according to the first values uploaded. Through this test we have indeed 

confirmed that a random sequence can be effectively used as seed without any risk of losing 

information and as such, assuming the correct implementation of the ECA, the prototype would 

deliver the compressed samples just as expected. 

4.4.3 SAMPLE & ACCUMULATE 

Having designed a sensor that performs in-pixel time encoding of light intensity, we are going 

to have to generate compressed samples by adding the contributions of the individual pixels in 

the digital domain through a time-to-digital converter. During normal operations a S&A (section 

4.1.5) is used to timestamp the pixel outgoing pulses (section 4.1.2) with appropriate values 

generated by a counter (section 0). The circuitry of the S&A is also used to store the sum of 

these contributions until the end of the acquisition phase when it releases it to the CS-CIS output. 
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But, to perform tests that only involve studying the working of the S&A we will have to 

disconnect both the pixel array and the counter from its inputs. 

This can be achieved in two steps, the first one consists in setting CODI (Pad 48 coordinates 

_11) to logic ‘1’ in order to bypass the counter forcing its output to the fixed 8-bit logic word 

‘00000001’. The second involves setting analog signals Vref, around 1.8V and Vpix around 0V 

while also fixing digital signals READ and RST1 to logic ‘0’ and RST2 to logic 1. This 

configuration makes it so that, inside each pixel, the photodiode cathode is permanently 

discharged and disconnected from the rest of the circuit and the autozeroing comparator is 

reduced to a simple inverter (Fig. 32) with a constant logic ‘1’ as its input, thus rendering event 

generation impossible. 

The list of signals that we have at our disposal to test the S&A is the following: 

 Pad 51 (G_11, REDY): Named ‘release’ in Fig. 38 that can be used to insert artificial 

pulses in the Event handling circuitry of the S&A as described in section 4.1.5.4; 

 Pad 63 (A_11, RESA): The signal used, in conjunction with REDY, to empty the 

registers where the S&A store the sum of all the events timestamps; 

 Pad 64 (B_10, CASC): The signal used to connect all the S&A columns sequentially to 

add the column contributions together creating a compressed sample. 

Since to test the S&A there is no need for a controlled light environment, the setup for this 

experiment is similar to that of the seed shift register (Fig. 51). As always we have chosen a 

mixed configuration for the PCB leaving in the hands of the FPGA to control of the three signals 

mentioned above and the powering of the prototype. We will use the probes of an oscilloscope or 

of a multimeter to tap the 20 bits of ‘CSImager1’ output to detect changes in the S&A. 

The controller loaded into the FPGA this time around is rather simple, REDY and CASC are 

each connected to one of the two buttons of the FPGA board whereas RESA, the signal that 

resets the S&A array, is enabled by pressing the two buttons simultaneously. As explained in 

section 4.1.5.4 REDY can be used to emulate events coming from the pixel array, as such, 

pressing and depressing the button tied to this signal will simulate the arrival of said events. 

Since the last S&A column is directly connected to the 20 test points on the PCB that receive 

‘CSImage1’ output and the counter is fixed at ‘00000001’, each time this button is tapped, these 

test points should show a 20-bit binary sequence that is incremented by one unit per tap. As for 

the button connected to CASC, the signal that switches the S&A configuration from acquisition 

to avalanche in order to generate a compressed sample (section 4.1.5.2), tapping it will sum the 

contribution of the 64 S&A columns together. Note that, under the configuration for this 

experiment, each column of the S&A would increase by one unit each time REDY has been 
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tapped so that all the column will be loaded with the same number of events. For this reason, 

pressing CASC is in fact equal to multiplying the value of the last column times 64 (27). This 

will be reflected on the test points of the PCB as a movement of the 20-bit binary output 

sequence that will slide forward 7 steps. 

Despite careful planning, in the beginning this experiment was not successful. After studying 

possible causes we have discovered that this was due to an oversight of the designer. Looking at 

how we designed the event handling unit in the S&A, we see that we have used an OR logic gate 

to combine the real events delivered by the array with signal release (Fig. 38) used to generate 

the fake events for this test. Since this part of the S&A was common to all bits and it sits at the 

junction of two large segments of the prototype, it was scarcely tested. 

The oversight can be found in the fact that we considered the output bus as normally resting at 

logic ‘0’ while jumping at logic ‘1’ only during an event. This is the exact opposite of what 

happens in reality, since the output bus is kept at logic ‘1’ by a pull-up PMOS transistor and a 

pixel that generate an event, pulls it near logic ‘0’ by closing a stronger NMOS (M2 in Fig. 29). 

Given this fact, an extra inverter should have been added to the bus before connecting it to the 

OR gate. 

We found a roundabout solution to adequately perform the experiment at hand. First, we used 

the seed registers to input a seed which was zero for the most part except for the last element 

which was a one. We then set CEDI to logic ‘1’ to bypass the ECA and select the pixels directly 

through the seed just set. In this way all the pixels of the bottom row would be active and ready 

to send an event. We then opened the starved inverters of the Event Control units (Fig. 34) by 

setting Vstr at 0. In doing so, when a pixel generates an event this event will last indefinitely. 

With this new setup we have initialized the FPGA and, before pressing its buttons, we have 

manually activates the potentiometer that controls Vref to lower it value below 0.9V. This 

effectively switches the output of the inverter within the autozeroing comparator (Fig. 32) 

generating an endless event at the pixels of the bottom rows of the array that sets all output 

busses to logic ‘0’ for the duration of the experiment. 

This solution made it possible to test the correct functioning of the S&A using the test above 

detailed and the 20-bit output sequence functioned as described when we tapped REDY and 

CASC. 

4.4.4 FURTHER TESTING 

The presence of this design flaw marked the end of our planned tests. Since REDY not only 

generates simulated events, but it is also an active part of normal readout and reset operations 
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(see section 4.1.5.4), to further proceed with our tests we would need to be able to use it 

accordingly. But, as explained in the previous section REDY is rendered useless because of the 

OR gate that connects it with a signal that during readout and reset is a constant logic ‘1’. 

One way to resolve this situation in order to continue testing this prototype and, if those test 

were successful, to use it to sample real images would involve two changes. Firstly we would 

need to renounce at the possibility of resetting the ECA so that we could use its seed registers to 

disable the pixel array in the same way that we did for the experiment described in the above 

section. And second a redesigning of the PCB would be necessary in order to automate the 

switching of Vref and Vstr using digitally controlled potentiometers. These potentiometers would 

be capable of changing these signals values at a speed comparable to that of the rest of the 

signals that control the prototype without disrupting its functionalities. 

By taking these precautions we could operate ‘CSImager1’ following these steps: 

1) Insert the seed inside the ECA and move its clock once so that the seed is stored in the rule 30 

register (Fig. 28); 

2) Replace the seed with a 128-bit word that is zero for the most part except for the last element 

which is a one; 

3) Proceed through the acquisition phase normally; 

4) Bypass the ECA by setting CEDI at logic ‘1’; 

5) Set Vref to Vdd and Vstr to GND using the aforementioned potentiometers to disable the pixel 

array; 

6) Proceed through the formation of a compressed sample allowing the S&A to cascade; 

7) Reset Vref and Vstr to the desired values and disable CEDI; 

8) Return to step 3. 

 

Table 10: New operational sequence for ‘CSImager1’. 

But, due to time constraints and considering the cost of designing a new PCB we decided to 

stop the tests. This was a good ending point because the studies of the test pixel and of the S&A 

were enough to confirm that PWM can be applied feasibly on CS-CIS. 
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CHAPTER 5 

NON-RECURSIVE MOTION DETECTION FROM 

A STREAM OF COMPRESSED SAMPLES 

Many algorithms that extract information from compressed samples have been successfully 

implemented. Some of these works tackle the problem of feature extraction trying to adapt 

existing algorithms to the compressed domain [Dave07]. Others focus on recursive algorithms 

that use trainable sparsifying dictionaries for object recognition [Nage09]. Among these works, 

background subtraction from compressed samples using reconstruction algorithms has been 

studied [Jian12]. In the past we presented a lightweight algorithm [Trev16] that aims at pre-

process non-recursively the information contained in a set of compressed samples, in a context of 

video surveillance, to search for the presence of a movable object within a still frame. In this 

chapter, we adapt this non-recursive algorithm to detect movable object from the compressed 

samples generated by a CS-CIS that implements a binary measurement matrix of positives and 

negatives contributions (‘1s’ and ‘-1s’) using a resettable PRNG and a differential readout 

method for the pixel array. The reason why we need these type of CS-CIS is because the 

simplicity of this algorithm is compensated by some requirements placed on the structure of the 

measurement matrix and the compressed samples that can be used. Specifically, this algorithm 

needs to operate on compressed samples obtained using a differential binary matrix that resets at 

every frame and the compressed samples delivered need to be split in two separate contributions 

for positive and negative matrix coefficients. 

Differential readout methods that transform binary measurement matrices into matrices of 

ones and minus ones, such as the one presented in [Maji10] or the one analysed in section 3.2.1, 

although not eligible as stable solutions to reduce the bit size of compressed samples (see section 

1.2), have an advantage over the use of standard binary matrices: since all the pixels are 

multiplied by coefficients that are either positives or negatives (but never zero), every 

compressed sample that they generate includes information on all the pixels of the CS-CIS. If we 

consider 𝚽+, the conventional binary measurement matrix generated using a PRNG, we can 
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represent the transformation that a differential readout operates on it as: 

𝚽 = 𝚽+ − 𝚽−     (50) 

being 𝚽 the new measurement matrix to be used for reconstruction where 𝚽− is: 

𝚽− = 𝐉 − 𝚽+      (51) 

being 𝐉 ∈ ℝ𝑀×𝑁 a matrix of ones, where 𝑀 is the number of compressed samples and 𝑁 that of 

the pixels. Substituting Eq. (50) inside Eq. (7) we can reformulate the sampling process as: 

[
𝐲+

𝐲−] = [𝚽+

𝚽−] 𝐱     (52) 

where the set of compressed samples extracted from the imager will be: 

𝐲 = 𝐲+ − 𝐲−      (53) 

Let us consider that, within a CS-CIS, the contribution of positive and negative pixels can be 

separated and A/D converted in two different sums, using for instance the PFM architecture of 

Fig. 23 but with two separate counters. In this case it would be possible to exploit the linearity of 

Eq. (52) by implementing a reset feature on the PRNG (such as the one presented in Fig. 28), to 

detect movement over a fixed background using [Trev16]. 

5.1 NON-RECURSIVE MOTION DETECTION 

The difference of two sets of compressed samples, 𝐲𝑘 and 𝐲𝑘−1 from two consecutive frames 

𝐱𝑘 and 𝐱𝑘−1, taken by a CS-CIS that resets its measurement matrix 𝚽 after every frame, equals 

the set of compressed samples �̅� obtained by sampling �̅�, if �̅� is the difference of these two 

frames: 

�̅� = 𝐲𝑘 − 𝐲𝑘−1 = 𝚽(𝐱𝑘 − 𝐱𝑘−1) = 𝚽�̅�   (54) 

If the background of a scene was fixed, such is the case in some surveillance cameras setups, 

a pixel by pixel difference of two consecutive frames would return values different from zero 

only for those pixels that have changed over time. For this reason �̅� would only contain 

information regarding objects that have moved over the time that has passed between those 

frames. Given the linearity of Eq. (54), this same conclusion is valid when we apply it to the 

difference between sets of compressed samples as long as these sets have been taken using the 

exact same measurement matrix (hence the need for a reset of the PRNG after every frame). 
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The results from Eq. (52) and Eq. (54) can be exploited to pre-process these compressed 

samples. Combining these two equations we obtain: 

[
�̅�+

�̅�−] = [
𝐲𝑘

+ − 𝐲𝑘−1
+

𝐲𝑘
− − 𝐲𝑘−1

− ] = [𝚽+

𝚽−] (𝐱𝑘 − 𝐱𝑘−1) = [𝚽+

𝚽−] �̅�  (55) 

Now let us consider the structure of the data generated by a CS-CIS that implements a 

resettable measurement matrix and a differential readout when it samples two consecutive 

frames and we then subtract one from the other. Remember that, each compressed sample �̅�𝑖, is a 

combination of all pixel by pixel differences generated by the same row of 𝚽: 

[
�̅�𝑖

+

�̅�𝑖
−] = [

𝛗𝑖
+

𝛗𝑖
−] (𝐱𝑘 − 𝐱𝑘−1)     (56) 

If the pixels that contribute to �̅�𝑖
+ or �̅�𝑖

− did not contain any changes, i.e. no object appears to 

them or disappears from them, then their value will be zero because the subset of 𝐱𝑘 that they 

contain equals the corresponding subset in 𝐱𝑘−1. Likewise, if they differ from zero then 

something has changed in those subsets. The higher the absolute value of �̅�𝑖
+ or �̅�𝑖

− the higher is 

the change present in the pixels selected by 𝛗𝑖
+ or 𝛗𝑖

− between the two consecutive frames. 

Based on these elements it is possible to create 𝑀 contribution vectors 𝐜𝑖
+ ∈ ℝ𝑁 by 

multiplying each row of the measurement matrix, 𝚽+, by the corresponding contribution in �̅�+: 

𝐜𝑖
+ = 𝛗𝑖

+�̅�𝑖
+      (57) 

Notice that each 𝐜𝑖
+ is a vector that has the same size as the original frame 𝑁. All of its non-

zero elements, which correspond to the positions of pixels selected by row 𝛗𝑖
+, will contain �̅�𝑖

+. 

If an object moving within the frame appears in a spot captured by a pixel chosen by 𝛗𝑖
+, that 

object disappears from a pixel included in 𝛗𝑖
−. Which means that �̅�𝑖

− will also depart from zero. 

What is more is that 𝛗𝑖
+ together with 𝛗𝑖

− contain the contributions of all the pixels of the frame, 

but no contribution belonging to 𝛗𝑖
+ will be in 𝛗𝑖

−, nor vice versa. As we have done for 𝚽+ It is 

possible to define other contribution vectors 𝐜𝑖
− ∈ ℝ𝑁 from 𝚽− and �̅�−: 

𝐜𝑖
− = 𝛗𝑖

−�̅�𝑖
−      (58) 

Adding together these two set of vectors it is possible to obtain 𝐜𝑖 ∈ ℝ𝑁. These vectors 𝐜𝑖 will 

contain elements that are either �̅�𝑖
+ or �̅�𝑖

−. The pixels selected by 𝛗𝑖
+ and 𝛗𝑖

− have been chosen 

randomly. The number of pixels selected by them, even if very well balanced (section 2.5), is 

also random. This means that each pair 𝛗𝑖
+ and 𝛗𝑖

− will generate a different contribution vectors 
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𝐜𝑖. It is worth nothing that if an object moves to subset of the image contained in 𝛗𝑖
+ from 

outside the frame, even if �̅�𝑖
+ differs from zero, �̅�𝑖

− will still be zero. For that reason only full 𝐜𝑖 

will contain information on the motion of an object. A global contribution vector 𝐜 ∈ ℝ𝑁 can be 

generated by superposing the contribution of all 𝐜𝑖 where both �̅�𝑖
+ and �̅�𝑖

− are different from 

zero: 

𝐜 = ∑
1

𝐻
(𝛗𝑖

+�̅�𝑖
+ + 𝛗𝑖

−�̅�𝑖
−)𝑖 (∀𝑖 ∈ �̅�𝑖

+ ≠ 0 ∨ �̅�𝑖
− ≠ 0)   (59) 

being 𝐻 the number of full vectors 𝐜𝑖. The elements of 𝐜 are linear combinations of the positive 

and negative contributions for each compressed sample. Each pixel will be accounted for the 

same exact number of time as any other. This means that each element of 𝐜 is directly 

comparable to the others. Notice that this is true only because of 𝛗𝑖
+ and 𝛗𝑖

− together address all 

the pixels of the frame. 

The higher the absolute value associated to a given element of 𝐜 the greater the contribution of 

its corresponding pixel will be. In a sense, the maxima and minima in 𝐜 reflect those pixels 

where change happened. For that reason it is possible to associate those maxima and minima 

with the positions that the moving objects have occupied in the two consecutive frames. 

Eq. (59) not only returns information on the presence of an object moving on a fixed 

background in two consecutive frames, it also gives information on the direction of that motion, 

i. e. where the object was and is likely to be. And last it is important to notice that none of the 

steps taken for the generation of 𝐜 is recursive and, being this method not an optimisation of any 

sort, its accuracy is simply proportional to the amount of compressed samples employed. 

5.2 PERFORMANCE OF THE NON-RECURSIVE MOTION DETECTOR 

The performance of this method was studied creating various synthetic videos of 50 frames of 

64×64 pixels each. Each video has a black background and one or more moving objects 

represented by 3×3-pixel white squares. Beside the number of objects another variable that we 

considered was the amount of compressed samples extracted. As a 64×64-pixel frame has a total 

amount of pixel of 4096, we took sets of samples reaching a compression ratio that ranged from 

1/2, with 2048 compressed samples up to 1/32 with 128 compressed samples, halving the total 

amount of samples taken at every step. 

We compared each maxima and minima of the global contribution vector 𝐜 obtained with our 

method with the difference of the original frames from which the compressed samples were 

derived. We also used the NESTA algorithm [Beck11] on the same sets to compare the 
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performance of our method to one of the most effective convex optimization reconstruction 

algorithms currently presented in literature. 

Fig. 52 represents one example of our analysis. In this particular setup we used three moving 

objects and a set of 1024 compressed samples i. e. 1/4 compression. The top left image of Fig. 52 

represents the difference of the original frames from which 1024 compressed samples and 1024 

dual compressed samples have been simultaneously extracted. The top right image of Fig. 52 

represents the reconstruction of the difference of said frames by applying a NESTA convex 

optimization algorithm over the set of compressed samples differences �̅�. This difference has 

been further thresholded to remove low contributions and possible noise. This has been done to 

easily compare it to the maxima and minima of the weight vector. It is possible to see that it 

resembles closely the difference of the two original frames shown in the top left image of Fig. 

52. Lastly the bottom image of Fig. 52 represents the location of the maxima (white) and minima 

(black) of the contribution vector produced by our proposed algorithm. These contributions have 

been scaled to fit a greyscale representation to easily compare them graphically with the original 

difference as well. 

 

Fig. 52: (Top Left) Difference of two original 64 × 64-pixel frames; (Top Right) Filtered difference of two NESTA 

reconstructed 64 × 64-pixel frames; (Bottom) Maxima and Minima of the contributions extracted from two sets of 

compressed samples following our method. 

To establish the reliability of this method we considered the pixel by pixel root mean square 

error (RMSE) of the scaled contribution vector defined in Eq. (59) using the original frame 
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differences as ground truth Fig. 53. The values that the RMSE of our method took were then 

compared to the RMSE through NESTA reconstruction using the same ground truth and the 

same set up. We recorded these values while varying the amount of objects moving in the scene 

and the amount of compressed samples taken. 

Comparing the performance of these two methods movement it is possible to see that 

traditional reconstruction derives better results over our proposed methodology in all cases of 

study. This was to be expected because relying on convex optimization leads better results than 

relying on a method whose strength is based only on the sheer amount of samples taken. 

 

Fig. 53: (Left) RMSE of our method (% of full signal range); (Right) RMSE of NESTA reconstruction (% of full 

signal range). 

Even if that is the case it is worth noting that NESTA reconstruction fails in returning 

acceptable results in extreme cases i. e. high number of objects and low number compressed 

samples. While trying to target specific information within the compressed samples thus not 

following a conventional reconstruction technique may deliver worse reconstruction errors it is 

also true that it can benefit from faster processing times opening the possibility to new 

applications of CS. 

We have run the whole procedure on an Intel core i7-3740QM running at 2.7GHz having 

24GB of RAM with an SSD. Comparing the time it took to perform the two simulations Fig. 54 

it is possible to see that the longest time our method took to estimate the position of a moving 

object was 2 to 3 orders of magnitude lower than the time it took for NESTA to deliver its 

results. 
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Fig. 54: (Left) Time needed for maxima and minima extraction (seconds), (Right) Time needed for NESTA 

reconstruction (seconds). 

Please, take note that in Fig. 54 the time scale of the two graphics is completely different, 

whereas our algorithm takes mere seconds to detect the presence of a moving object, performing 

a reconstruction through NESTA algorithm takes almost five minutes (three orders of magnitude 

more than our algorithm). 

Considering that the videos we were reconstructing had a total of 50 frames, in most cases it 

would have been possible to analyse said videos while streaming the results in real-time (at least 

24 fps). 
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CHAPTER 6 

TERNARY MEASUREMENT MATRICES BY 

MEANS OF CLASS III ECA 

Through the use of PSD (section 2.3) and Density analysis (section 2.5) we have been able to 

establish a theoretical background to ascertain that rule-30 ECA and its mirrored and 

complementary rules are good approximations of a binary random measurement whose elements 

are extracted from a Bernoulli distribution having probability P = 0.5. We have also studied the 

possibility of avoiding the requirement of a wide dynamic range in the analog domain that 

usually befall compressed samples by using PWM (section 3.2.2) and we have demonstrated its 

feasibility in a CMOS 0.18μm 1P6M technology by testing a pixel designed following these 

principles (section 4.4.1). 

Despite all these efforts and results, the RIP demonstration on random binary matrices 

presented in section 2.2 still poses a huge limitation cast upon the performance of CS-CIS 

imagers that use PRNG. To improve this result we introduce a new method for the generation of 

a hardware-friendly measurement matrix that takes into account both technology limits and 

quality of the resulting matrix. We propose a differential pixel readout system to recursively 

create ternary measurement matrices in a row by row fashion. For a fixed number of coefficients, 

such is the case of CS-CIS pixel arrays, the resulting matrices present smaller coherence than 

their binary counterparts thus improving the RIP sparsity order 𝑘, Eq. (21), and diminishing 

reconstruction errors. Similar results have been obtained using binary matrices with binary 

correlations between columns applied to CS in [ShuT16]. 

Ternary measurement matrices can be generated by delivering two sets of driving signals to 

each pixel: one used to define the coefficient value, either ‘0’ or ‘1’, and the other used to define 

the sign of the contribution, either positive or negative. As mentioned in the introduction, since 

we can consider random row and column selection as the multiplication of two random binary 

variables and because the multiplication of random variables still delivers random outputs, if one 

set of row/column selectors (or driving signals) can be used to produce a binary matrix having 
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one bit per coefficient, we could use two sets  to produce a ternary matrix that needs two bits per 

coefficient. 

If each pixel receives two driving signals, it would be possible to use one of them to 

determine if the pixel took part in a compressed sample and, in case it did, use the other to select 

the sign of its contribution. Since recent CS-CIS examples [Oike13], [Dadk15], [Leit18] have 

shown that, for an 𝑁 × 𝑁 pixel arrays, as few as 𝑁𝐵 = 2𝑁 bits of information are needed to 

generate binary measurement matrices by means of PRNG on-chip, the amount of resources 

(number of transistors) needed to incorporate the bits of information needed to generate a ternary 

matrix, 𝑁𝑇 = 4𝑁, would still be implementable in a CS-CIS design. Each coefficient of the 

resulting matrix would have a probability distribution of: 

{

P+1 = 0.25
P0 = 0.5   
P−1 = 0.25

      (60) 

where P−1 represents the probability that a pixel has of contributing negatively in a compress 

sample, P+1 represents the probability that a pixel has of contributing positively and P0 represents 

the probability that a pixel has of not contributing at all. Furthermore, as per what exposed in 

section 1.2 while introducing the concept of block based CS, a ternary measurement matrix 

would have a positive, even if not reliable, effect on the limit imposed by Eq. (11) on the amount 

of bits required to represent a compressed sample. 

In hardware, the sign associated to a pixel contribution can be implemented by means of a 

differential readout system that routes the output of the pixels through one of two output lines 

[Maji10]. These lines, outside of the pixel array can then be digitized separately or used as input 

of differential circuits, such as analog subtractors or transimpedance amplifiers. Using a 

differential readout system to divide the pixel contribution to different output lines to be treated 

separately would in fact reduce the amount of bits needed for ADC thus relaxing the converter 

design parameters. 

Splitting the pixel contributions in two separate sets could also be used to reduce the 

operational frequency of a CS-CIS that employed PFM to encode light intensity in a train of 

pulses and then performed time-to-digital conversion using simple counters (section 3.2.1). This 

could render PFM a viable alternative to the PWM implementation adopted for our prototype. 

Remember that we chose PWM over PFM simply because the excessive amount of pulses 

generated by a PFM pixel array was impossible to manage with the maximum frequency 

achievable by a CMOS 0.18μm 1P6M technology Eq. (42). If the frequency of the pulses were to 
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diminish, both modulations could be used to achieve de desired amount of bit to describe a 

compressed sample following Eq. (11). 

6.1 PERFORMANCE OF THE GENERATED TERNARY MEASUREMENT MATRICES 

We will evaluate the performance of these matrices, compared to binary measurement 

matrices obtained through ECA and LFSR via a suite of simulations carried out on 8-bit 

grayscale standard images of size 512×512 shown in Fig. 55, from left to right Lena, Boat, 

Livingroom, and Mandrill. 

 

Fig. 55: Test images. 

The Peak Signal-to-Noise Ratio (PSNR) is chosen as objective quality measure for our 

experimental framework. PSNR is an approximation to human perception of reconstruction 

quality from lossy compression. When used for this purpose the original data is considered the 

signal and the error introduced by compression is the noise: 

PSNR = 10 log10
max (𝐱)2

1

𝑀𝑁
‖𝐱−�̂�‖2

     (61) 

being max (𝐱) the highest possible pixel value. The simulations were carried out in MATLAB. 

For each image, due to the random nature of the generated measurement matrices, 30 trials are 

performed and the average PSNR is computed. 

The recovery of the sampled image is carried out using a Block-based Compressive Sampling 

Smoothed-Projected Landweber (BCS-SPL) [Mun09] reconstruction algorithm with Singular 

Value Decomposition (BCS-SVD) [Akb118] able to provide a fast and accurate image 

reconstruction from compressed samples obtained using PRNG generated measurement 

matrices, [Akb218], [Trev20]. 

We performed BCS sampling, using blocks of size 32×32, i.e. 𝑁 = 1024. When very large 

images are involved dividing the pixel array into smaller sub-arrays that can be digitized 

independently becomes necessary for two reasons. It helps the implementation of practical 

measurement matrices in CS-CIS and it reduces software resources needed during 
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reconstruction. Usually fast and accurate reconstruction algorithms opt for small blocks, 

typically 8×8. On the other hand, blocks that are too small could potentially deteriorate the 

quality of the sensor introducing asymmetries within the pixel array or complicate its design. We 

chose a block size of 32×32 as a compromise between the two divergent necessities, and after 

having demonstrate that PWM can effectively be used to reach the desired dynamic range of the 

collected compressed samples (section 3.2.2). 

 

Fig. 56: PSNR of the reconstructed images as a function of subrate (S). 

The performance of the proposed ternary matrix based on ECA, 𝚽ECA
T , is compared to the 

performance of the pseudo random measurement matrices based on both LFSR, 𝚽LFSR
B , and 

ECA, 𝚽ECA
B . In addition, as a reference, we have included the Gaussian random matrices, 

𝚽Gaussian, whose entries are randomly selected from a normalised Gaussian distribution. 

Fig. 56 shows the quality of reconstructed images in terms of PSNR as a function of subrate, 

S, varying from 0.1 to 0.5. An interesting observation is that ternary matrices 𝚽ECA
T  outperform 

binary matrices almost reaching the performance of Gaussian random matrices 𝚽Gaussian. 

Depending on the subrate, on average, the ternary matrices improve the PSNR of the 
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reconstructed images from 0.08 dB to 0.35 dB when compared with the binary measurement 

matrices based on ECA, 𝚽ECA
B , and from 0.27 dB to 1.90 dB when compared with the binary 

measurement matrices based on LFSR, 𝚽LFSR
B . Finally, it should be noted that the ternary 

matrices, 𝚽ECA
T , compete with the performance of the Gaussian random matrix,  𝚽Gaussian, 

which is an optima theoretical measurement matrix. 

To show that the proposed ternary measurement matrices are compatible with most of the 

robust reconstruction algorithms studied in the field of signal processing and that BCS-SVD has 

not been handpicked, we selected four different algorithms (Fig. 57): the NESTerov 

reconstruction Algorithm NESTA [Beck11], Gradient Projection for Sparse Reconstruction 

(GPSR) [Figu07], Sparsity Adaptive Matching Pursuit (SAMP) [Do08] and BCS-SVD algorithm 

[Akb118], we have then performed a BCS sampling of the test images in Fig. 55 using the same 

𝚽ECA
T  and used these algorithms to recover the images and graphic their performance in terms of 

PSNR over sampling subrate as we did for the different matrices of Fig. 56. 

 

Fig. 57: PSNR of the reconstructed images using different recovery algorithms as a function of subrate (S). 

During this simulation, the test images are again divided blocks of size 32 × 32 pixels. Fig. 



106 

57 shows the quality of reconstructed images in terms of PSNR at different subrates S. It can be 

observed that all this algorithms can recover the images, correctly with PSNR of the 

reconstructed images ranging from 23 dB to 30 dB. 
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CHAPTER 7 

SPARSIFYING DICTIONARY BASED ON HARRIS 

CORNER DETECTION 

Another take on Eq. (1) is that it creates the need to implement low pass filters during 

sampling because it is an interpolation. If we had a series of discrete points in a plane [𝑠(𝑡), 𝑡], 

theoretically, could be interpolated by infinite functions of the type: 

𝑠(𝑡) = ∑ A𝑖 sin(𝑖𝑡)𝑖  with 𝑖 = 1,2, ⋯ , 𝑁    (62) 

if 𝑁 were to approach infinity. But, if we were to limit 𝑁 to the minimum sufficient and 

necessary needed for 𝑠(𝑡) to cross them, then our solution would be unique. Limiting 𝑁 is 

transposed to practice by limiting the upper end of the frequency components of the signal to be 

sampled before starting to take the samples 𝐬(𝑖∆𝑇) at intervals ∆𝑇. But, Eq. (5) is a minimization 

in L1 (i.e. optimization) or in some cases simplified to L0 (i.e. greedy pursuit), these are not 

based on interpolation, they look for minima that are unique as long as the measurement matrix 

respects RIP Eq. (8) and the signal is 𝑘-sparse in some basis. 

Saying that a measurement matrix allows a maximum number 𝑘 Eq. (21) of relevant elements 

in a sampled signal, is like saying, in the case of standard sampling, that a converter has a 

sampling frequency 𝑓𝑠, being 𝑓𝑠 2⁄  its Nyquist frequency. 

Both the aliasing errors encountered when a sampled signal maximum frequency component 

is allowed to exceed 𝑓𝑠 2⁄  and the errors in the compressed samples found when the sampled 

signal relevant elements exceed 𝑘 translate to intrinsic errors of the generated samples. The 

advantage that CS has over standard sampling is that, while in standard sampling we need to 

implement low-pass filters before the sampling process can begin, in CS we can use sparsifying 

dictionaries 𝚿 a posteriori to change the basis of the signal before recovery in order to comply 

with sparsity requirements during reconstruction. 

A dictionary forms a basis when every signal is uniquely represented as the linear 
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combination of the dictionary elements. As we mentioned in the introduction, CS, applied to 

image sampling, heavily relies on the discrete wavelet and cosine transforms, being these two 

domains the most suitable for image compression [Anto92]. But there are limits on how much an 

image can be compressed, if 𝚽 has a constant 𝑘 that is too low, as is the case with PRNG 

generated binary matrices Eq. (21), then there is no basis in which reconstruction of complex 

images could be carried out error free. What’s more, these basis have to be incoherent with the 

measurement matrix in order to comply with RIP of their product 𝚽𝚿, penalty the increase in 

the minimum number of compressed samples needed to achieve reconstruction [Romb09]. 

Since, the result on Eq. (21) makes it impossible to use recovery algorithms on samples 

derived from PRNG generated binary matrices without incurring in reconstruction errors we 

propose to use them to extract features. This operation is not to be confused with the act of 

extracting features from compressed samples in the compressed domain. What we are trying to 

do is to design a sparsifying dictionary capable of transforming the content of a set of 

compressed samples into information about a certain feature of the image that they represent. 

Such a sparsifying dictionary would not be a basis aiming to represent the whole image in a new 

domain; it would rather be used to prune the compressed samples and preserve only relevant 

information. By applying this dictionary to the samples before reconstruction, the output of a 

generic recovery algorithm would be the feature that we wanted to extract. 

7.1 CREATING A FEATURE EXTRACTING SPARSIFYING DICTIONARY 

The idea of creating a sparsifying dictionary capable of pruning the compressed samples and 

preserve only certain information sparks from the fact that, if the features to be recovered can be 

expressed as the value of a single coefficient of a matrix overlapping the discrete image and the 

number of these features approaches 𝑘, then any reconstruction algorithm should be able to 

recover them with minimal errors. 

To demonstrate this statement we used the Harris corner detection algorithm. We chose this 

algorithm for its simplicity. A corner can be defined as the intersection of two edges. To 

determine the presence of a corner the algorithm tests each pixel considering how similar a patch 

centred on the pixel is to nearby largely overlapping patches. It generates a sparse matrix 𝐂 with 

the same amount of elements as the pixels present in the image. This matrix has relevant values 

only in correspondence of the pixels where corners can be found. The matrix of parameters 𝐂 can 

be obtained by computing:  

𝐶 = 𝐷𝑒𝑡(�̃�) − ℎ[𝑇𝑟(�̃�)]
2
     (63) 
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Defining �̃� as: 

�̃� = [
𝐗𝑖

2(𝑢, 𝑣) 𝐗𝑖𝐗𝑗(𝑢, 𝑣)

𝐗𝑖𝐗𝑗(𝑢, 𝑣) 𝐗𝑗
2(𝑢, 𝑣)

]    (64) 

being ℎ an empiric parameter with values in the range of [0.04    0.15]. The determinant and the 

trace of matrix �̃� solely depends on the partial derivatives of the image 𝐗𝑖 and 𝐗𝑗. First order 

discrete partial derivatives can be expressed as the convolution of the image 𝐗 with the masks: 

𝐃𝑖 = [
−1 0 1
−1 0 1
−1 0 1

] and 𝐃𝑗 = [
−1 −1 −1
0 0 0
1 1 1

]   (65) 

Convolution of 𝐗 by 𝐃𝑖 and 𝐃𝑗 can be replaced by the left multiplication of a folded version 

of 𝐗 by 𝐓𝐃𝑖 and 𝐓𝐃𝑗, the corresponding Toeplitz matrices [Chan07] of matrices 𝐃𝑖 and 𝐃𝑗. 

Joining Eq. (63), Eq. (64) and Eq. (65), after a lengthy matrix manipulation process it would be 

possible to reach a form similar to: 

𝐂 = 𝐇𝑐𝐱      (66) 

being 𝐇𝑐 the sparsifying dictionary that we were looking for. Given the complexity of the 

calculation that exceeded the purpose and field of this dissertation we have resolved to create a 

MATLAB experiment starting from the derivatives of the original image. This simplification 

helped to ease the calculations without loss of generality of the experiment results. 

7.2 PERFORMANCE OF THE FEATURE EXTRACTING SPARSIFYING DICTIONARY 

To analyse the benefits of using Eq. (66) to recover a set of corners instead of a whole image 

we devise an experiment using a 64x64 grayscale picture of Lena (Fig. 58), the first step in our 

experiment consisted in finding the corners of this image using the Harris corner detection 

algorithm. We then extracted compressed samples of the image using a PRNG generated binary 

measurement matrix and used the NESTA reconstruction algorithm [Beck11] to recover it. Once 

again we used the Harris corner detection algorithm on the recovered image. We then proceeded 

to use what we presented in section 7.1 and used the NESTA to recover only the corners. Lastly 

we compare the corner retrieved from the reconstructed image to those retrieve using our newly 

introduces method: 
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Fig. 58: (Top Left) Original Image; (Top right) Original image with Harris; (Bottom left) Nesta reconstructed image 

with Harris; (Bottom right) Harris Nesta corners. 

We opted to use NESTA because this algorithm can be used to solve Total-Variation (TV) 

minimization problems [Beck11]. TV is often used to recover images from noisy and/or 

undersampled data. It is possible to apply this constraint to Eq. (7) and write the reconstruction 

problem in Eq. (9) as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛‖𝐂‖𝑇𝑉 subject to ‖𝐲 − 𝚽𝐂‖𝑙2
< 휀2    (67) 

being ‖𝐂‖𝑇𝑉 equal to: 

‖𝐂‖𝑇𝑉 = ∑ ‖∇𝐂[𝑖, 𝑗]‖𝑖,𝑗      (68) 

To compare the performance of our sparsifying dictionary over the application of a Harris 

algorithm on a NESTA reconstructed image we have considered three different parameters. 

Distance between original corners and reconstructed corners, False Positives and False 

Negatives. We have repeated the process presented in Fig. 58 varying each time the number of 

compressed samples from a minimum of 1 to a maximum of 4096, which corresponds to the 

number of pixels of the original image. 

Even though the graphics of false positives and false negatives in Fig. 59 are somehow 

cluttered, performing NESTA to recover only the corners led to an average of 11% less false 

negatives and 8 % less false positive. 
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Fig. 59: (Top Left) False Negatives; (Top right) False Positives; (Bottom) Average Distance between the corners of 

the original image and those of the reconstructed image. 

One important result presented in Fig. 59 is that the corners extracted, applying our dictionary 

on the samples, are closer to its original location especially when the compressed samples were 

low in number. This is a particularly good result because remember, given Eq. (7), the closer the 

number of samples gets to that of the pixels, the less is the compression on the image and to the 

limit when it equals the number of pixels and the problem presented in Eq. (9) is no longer 

underdetermined. 
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CHAPTER 8 

CONCLUSIONS 

This thesis is a work that tries to connect the theory of CS mostly studied in the field of signal 

processing and computer science with the implementations and practical uses of CS mainly 

developed in the field of microelectronic and sensor design. 

This connection is created through a series of mathematical tools such as a prove of RIP 

(section 2.2) to study the performance of measurement matrices generated using PRNG; the PSD 

analysis (section 2.3) that ties the dynamic behaviour of PRNG to the mutual coherence of 

measurement matrices; or, the Density analysis (section 2.5) that links the output of PRNG to the 

Bernoulli probability distribution of true random binary measurement matrices (reminding that it 

is impossible to design an algorithm that implements true random number generation since that 

would be a contradiction in terms). 

While we were adapting these tools, which are usually employed to study chaotic behaviours 

of complex systems [Boei16], data handling [Sara12] or other signal processing problems 

[Mazz08], to the analysis of measurement matrices, we mainly focused on the comparison 

between the two types of PRNG that are most widespread in sensor design, which are LFSR and 

ECA. But, the inclusive nature and rigor of these analyses could very well turn them into 

guidelines to study other types of one dimensional pseudo random generators that might possibly 

impose themselves as superior choices for the design of CS-CSI. 

We also tried to attack one of the most overlooked problems in CS at least in the field of 

microelectronics: the enormous dynamic range needed to describe the compressed samples 

which makes standard ADC almost impossible. To that end we have studied two possible 

solutions to increase the number of bits of the output delivered by a CS-CIS. These solutions are 

both based on pixel output modulation, namely PFM (section 3.2.1) and PWM (section 3.2.2). 

Furthermore, we have developed a CS-CIS prototype, the ‘CSImager1’ that, despite a design 

flaw that truncated our experiments halfway, made it possible to test and confirm the feasibility 

of the theory above presented. 
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We were able to design, develop and analyse a pulse width modulated pixel in CMOS 0.18μm 

1P6M technology that, according to its response curve to varying light conditions (Fig. 49), is 

capable of delivering 1024 compressed samples at 30fps. This pixel can be used in a CS-CIS 

with an array of size 64×64 that, by means of PWM and the use of sample & accumulate 

elements is capable of generating 20-bit compressed samples. This achievement places within 

range the possibility of creating block based CS-CIS with larger block sizes that should increase 

the quality of the sampled images. 

We have derived a new method of background subtraction from compressed samples without 

resorting to recursive reconstruction. This has resulted in a lightweight fast detection algorithm 

capable of analysing a stream of compressed samples searching for the presence of moving 

objects. Even if, when compared to other methods, it delivered poorer results, its speed makes it 

possible to process compressively sampled video streams in real time. 

Thanks to our work developed in cooperation with the École d'Ingénieurs du Numérique 

(ISEP), we have studied the possibility of expanding the use of PRNG to design pseudo random 

ternary measurement matrices with minimal costs in terms of on-chip and pixel fill factor. These 

matrices have shown great promise when compared with the theoretical optimum, a normalised 

Gaussian measurement matrix and, more importantly, they clearly outperform their binary 

counterparts (Fig. 56) 

Lastly, we have presented a new application of CS related to feature extraction. We 

successfully used CS reconstruction algorithms as a basis to recover Harris corners from a 

compressed samples simplified thorough a sparsifying dictionary Eq. (66) capable of pruning 

them and preserve only relevant information about the corners. This dictionary exploits the 

concepts of RIP and sparseness to provide an error free recovery of said corners that only 

depends on the measurement matrix used to obtain the samples. 
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APPENDIX A 

In this appendix we report the Verilog code used to carry out the experiments described in 

Section 4.4. 

 Test pixel and event control unit of Section 4.4.1: 

 

always@(posedge clk) 

begin 

case (current_state) 

 0: //initialize all signals and wait a button press to continue 

 begin 

  R1PT_E6 <= 1'b0; 

  R2PT_D8 <= 1'b0; 

  REPT_F8 <= 1'b0; 

  RSPT_E9 <= 1'b1; 

  if (push1_J15 == 0 && push2_E1 == 0) 

   begin 

    wait_for_me <= wait_for_me + 1'b1; 

    if (wait_for_me == 5000) 

     begin 

      current_state <= 1; 

     end 

   end 

 end 

 1: // delay to avoid double pressing buttons 

 begin 

  if (push1_J15 == 1 && push2_E1 == 1) 

   begin 

    wait_for_me <= 0; 

    current_state <= 2; 

   end 

 end 

 2: // load the photodiode with the desired voltages 

 begin 

  RSPT_E9 <= 1'b0; // transistor M1 (Fig. 30) activated to load the photodiode 

  REPT_F8 <= 1'b0; // event generation is disabled 

  current_state <= 3; 

 end 

 3: // load the capacitor with Vref 

 begin 

  R2PT_D8 <= 1'b1; 

  current_state <= 4; 

 end 

 4: // cancel offset 

 begin 

  R1PT_E6 <= 1'b1; 

  current_state <= 5; 
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 end 

 5: // pull down the first reset signal 

 begin 

  R1PT_E6 <= 1'b0; 

  current_state <= 6; 

 end 

 6: // pull down the second reset signal 

 begin 

  R2PT_D8 <= 1'b0; 

  current_state <= 7; 

 end 

 7:  

 begin // the event begins and the machine locks waiting for a button press 

  REPT_F8 <= 1'b1; // reading enabled 

  RSPT_E9 <= 1'b1; // M1 switched off 

  if (push1_J15 == 0 && push2_E1 == 0) 

   begin 

    wait_for_me <= wait_for_me + 1'b1; 

    if (wait_for_me == 5000) 

     begin 

      current_state <= 1; 

     end 

   end 

 end 

endcase 

end 

 

State 0 initialises the digital control signals of the pixel. 

During state 2, flipping RSPT to logic ‘0’ enables the pixel reset (Fig. 29), the cathode of the 

photodiode Vcat charges at the desired voltage Vpix. While this happens the connection between 

the cathode and the comparator is cut off by the transmission gate controlled with REPT (read 

signal in Fig. 32). 

In state 3, by enabling the transmission gate controlled by signal R2PT the capacitor in the 

autozeroing comparator is loaded with the reference voltage (Vref). While the capacitor is 

reaching the desired reference. 

States 4 and 5 are used to activate the transmission gate used to remove the inverter offset. It 

is important that the activation of R1PT be contained in that of R2PT as shown in Fig. 33. 

State 1 and 7 are idle state where the machine waits for the user input (push buttons of the 

FPGA board) before repeating the commands present in the other states. 
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 Seed register of the ECA of Section 4.4.2: 

 

always@(posedge clk_R8) 

begin 

CA_counter <= CA_counter + 1'b1; 

case (CA_counter) 

 1: 

 begin 

  SEED_A12 <= 1'b1; 

 end 

 3: 

 begin 

  SECL_D12 <= 1'b1; 

 end 

 5: 

 begin 

  SECL_D12 <= 1'b0; 

 end 

 7: 

 begin 

  SEED_A12 <= 1'b0; 

 end 

 9:  

 begin 

  SECL_D12 <= 1'b1; 

 end 

 11: 

 begin 

  SECL_D12 <= 1'b0; 

  CA_counter <= 0; 

 end 

endcase 

end 

 

States 3, 5, 9 and 11 are used to flip SECL while states 1 and 7 are used to flip SEED. The 

machine runs through these states by updating a 2 bits counter after every FPGA clock cycle, 

CA_counter that is then reset every time it reaches stage 11. This machine creates a train of 

pulses that is inserted into the registers. Since the output should be the same as the input just 

delayed, if we were probe SEEX with an oscilloscope left continuously running we should detect 

this same train. 

During the second part of this experiment we connected SEEDin and SEEDclk to the two 

buttons of the FPGA board, the Verilog code representing to this new control system is: 

 

always@(posedge clk_R8) 

begin 

case (current_state) 

 1: // states 1 and 2 are used to upload the seed 

 begin 

  if (push1_J15 == 0 && push2_E1 == 1) // button J15 sends a logic '1' to the shift register 

  begin 

   SEED_A12 <= 1'b1; 
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   current_state <= 2; 

   led1_A15 <= 1'b0; 

   led2_A13 <= 1'b1; 

  end 

  if (push1_J15 == 1 && push2_E1 == 0) // button E1 sends a logic '0' to the shift register 

  begin 

   SEED_A12 <= 1'b0; 

   current_state <= 2; 

   led1_A15 <= 1'b1; 

   led2_A13 <= 1'b0; 

  end  

 end 

 2: // delay to avoid double pressing buttons 

 begin 

  if (push1_J15 == 1 && push2_E1 == 1) 

  begin 

   led8_L3 <= 1'b1; 

   wait_for_me <= wait_for_me + 1'b1; 

   if (wait_for_me == 50000000) 

   begin 

    current_state <= 3; 

   end 

  end 

 end 

 3: // states 3 and 4 push the seed clock forward one step 

 begin 

  SECL_D12 <= 1'b1; 

  current_state <= 4; 

  wait_for_me <= 0; 

 end 

 4: 

 begin 

  SECL_D12 <= 1'b0; 

  current_state <= 1; 

  led8_L3 <= 1'b1; 

 end 

endcase 

end 

 

State 1 and 2 connect the two push buttons of the FPGA board to SEEDin so that if the first 

button is pushed SEEDin will be set at logic ‘1’ and if the second button is pushed it will be set it 

at logic ‘0’. 

Releasing either button moves the state machine to states 3 and 4 where SEEDclk is updated 

one cycle. 
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 Sample and Accumulate of Section 4.4.3: 

 

always@(posedge clk) 

begin 

case (current_state) 

 0://initialize control signals to disable counter and array, prepare the test 

 begin 

  RST1_C8 <= 1'b0; 

  RST2_E7 <= 1'b1; 

  READ_E8 <= 1'b1; // this signal is inverted (I forgot an inverter in the design) 

  CODI_D5 <= 1'b1; 

  REDY_D3 <= 1'b0; 

  CASC_C3 <= 1'b1; // sequentially connects the columns while disconnecting the s&a from 

counter 

  RESA_A3 <= 1'b1;// the reset signal of the s&a is active 

  led5_D1 <= 1'b1; 

  led6_F3 <= 1'b1; 

  led7_B1 <= 1'b0; 

  led8_L3 <= 1'b0; 

  if (push1_J15 == 0 && push2_E1 == 0) 

  begin 

   current_state <= 1; 

  end 

 end 

 1: // delay to avoid double pressing buttons 

 begin 

  if (push1_J15 == 1 && push2_E1 == 1) 

  begin 

   wait_for_me <= wait_for_me + 1'b1; 

   if (wait_for_me == 100000) 

   begin 

    current_state <= 2; 

   end 

  end 

 end 

 2: // this state empties the s&a registers to start the test with a clean slate 

 begin 

  REDY_D3 <= ~REDY_D3; 

  if (REDY_D3 == 1'b0) 

  begin 

   Ready_counter <= Ready_counter + 1'b1; 

  end 

  if  (Ready_counter == 300) // when this is done the experiment starts 

  begin 

   CASC_C3 <= 1'b0; // reconnect the s&a to the counter (which is at '00000001') 

   RESA_A3 <= 1'b0; // disable the reset of the s&a  so that it can accumulate 

   led5_D1 <= 1'b0; 

   led6_F3 <= 1'b0; 

   current_state <= 3; 

  end 

 end 

 3:  

 begin 

  wait_for_me <= 0; 

  Ready_counter <= 0; 

  REDY_D3 <= 1'b1; 

  if (push1_J15 == 0 && push2_E1 == 1) // at each stroke of button 1 REDY sends a fake event 

  begin 

   led7_B1 <= 1'b0; 



130 

   led8_L3 <= 1'b1; 

   current_state <= 4; 

  end 

  if (push1_J15 == 1 && push2_E1 == 0) // at each stroke of button 2 CASC sums all columns 

  begin 

   CASC_C3 <= 1'b1; 

   current_state <= 5; 

  end 

 end 

 4: 

 begin 

  REDY_D3 <= 1'b0; 

  if (push1_J15 == 1 && push2_E1 == 1) 

  begin 

   wait_for_me <= wait_for_me + 1'b1; 

   if (wait_for_me == 100000) 

   begin 

    led7_B1 <= 1'b1; 

    led8_L3 <= 1'b0; 

    current_state <= 3; 

   end 

  end 

 end 

 5: // delay to avoid double pressing buttons 

 begin 

  if (push1_J15 == 1 && push2_E1 == 1)  

  begin 

   wait_for_me <= wait_for_me + 1'b1; 

   if (wait_for_me == 100000) 

   begin 

    current_state <= 6; 

   end 

  end 

 end 

 6: // pressing button 1 and 2 together restarts the experiment, otherwise ‘CSImager1’ output stays 

fixed 

 begin 

  if (push1_J15 == 0 && push2_E1 == 0) 

  begin 

   current_state <= 0; 

  end 

 end 

endcase 

end 

 

State 0 initializes the signals used in the experiment. Pressing both buttons on the FPGA 

board, after a short delay (state 1), the machine empties the registers of the S&A (state 2). 

State 3 and 4 are used to double flip REDY when button 1 is pressed in order to generate a 

fake event. Since the 20 bits of the last column of the S&A are connected directly to the outputs 

of the prototype, this operation is reflected into a unitary increment of the chip output. 

While in state 3 it is also possible to press button 2. In doing so, instead of sending an event, 

the 64 columns of the S&A are connected sequentially and this shifts the output of the chip 

upward 7 positions because it sums 64 = 27 columns, all of which are loaded with the same 
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count (remember that the counter is fixed at ‘00000001’ so that it has added a ‘1’ for each time 

we pressed button 1). 

State 6 is meant to restart the whole experiment upon pressing simultaneously both buttons of 

the FPGA board. 

 


