
CONFIGURATION ANALYSIS FOR LARGE
SCALE FEATURE MODELS

TOWARDS SPECULATIVE-BASED SOLUTIONS

CRISTIAN LORENZO VIDAL SILVA

Universidad de Sevilla

Tesis dirigida por:

Dr. José Á. Galindo and Dr. David Benavides

Contents

List of Figures 4

List of Tables 5

Acknowledgement 6

Resumen 7

Abstract 9

I Preface 11

1 Introduction 12
1.1 Research context . 12

1.1.1 Main issues to solve . 14
1.2 Contributions . 16

1.2.1 Summary of contributions 16
1.2.2 Publications in chronological order 17
1.2.3 Tools . 20
1.2.4 Research internships and collaborations 21

1.3 Structure of this dissertation . 21

II Background and Motivation 23

2 Variability models 24
2.1 Introduction . 24
2.2 Feature models . 25

2.2.1 Basic feature models . 26
2.2.2 Cardinality-based feature models 28
2.2.3 Extended feature models 29

2.3 Other variability modeling approaches 30
2.3.1 Orthogonal Variability Model (OVM) 30

1

CONTENTS 2

2.3.2 Debian variability model 30
2.3.3 CVL . 31
2.3.4 Clafer . 31

2.4 Summary . 32

3 Automated analysis of variability models 33
3.1 Introduction . 33
3.2 Minimal Conflict Sets (MCS) detection 34

3.2.1 QUICKXPLAIN algorithm 35
3.3 Minimal diagnosis detection . 36

3.3.0.1 FASTDIAG algorithm 38
3.4 Product completion . 41
3.5 Summary . 42

III Our contributions 43

4 A review of current AAFM solutions for minimal conflict, diagnosis,
and product completion 44
4.1 Introduction . 44
4.2 Systematic Literature Review (SLR) 45
4.3 Review process . 46

4.3.1 Definition of research questions 46
4.3.2 Source material . 47
4.3.3 Inclusion criteria . 48
4.3.4 Results . 48
4.3.5 RQ1: What are the automated solutions for detecting con-

flicts in feature models from 2010 to 2019? 49
4.3.6 RQ2: What are the automated solutions for diagnosis in fea-

ture models from 2010 to 2019? 54
4.3.7 RQ3: What are the automated solutions for the completion

of products in feature models from 2010 to 2019? 56
4.4 Discussion . 56
4.5 Summary . 56

5 Parallel QUICKXPLAIN: efficient conflict detection in AAFM 58

6 Parallel FastDiag: efficient minimal diagnosis in AAFM 59
6.1 Introduction . 59
6.2 Related work . 61
6.3 Calculating minimal diagnosis . 62
6.4 PARALLELFASTDIAG solution proposal 64
6.5 Analysis . 70

6.5.1 Complexity analysis . 70

CONTENTS 3

6.5.2 Runtime analysis . 71
6.6 Summary . 73

7 Minimal completion of products as a diagnosis task in AAFM 74

IV Final remarks 75

8 Conclusiones and future work 76
8.1 Conclusions . 76

8.1.1 Discussion and open challenges 76
8.2 Future work . 78

8.2.1 Speculative programming 79
8.2.2 Using parallel diagnosis in other variability issues 79

V Appendix 80

A Exploiting the enumeration of all feature model configurations 81

B Functional testing of conflict detection and diagnosis tools in feature
model configuration 82

Bibliography 83

List of Figures

1.1 Example of the packages configuration in the Ubuntu Xenial OS. 13
1.2 Feature model and configuration example. 14
1.3 Years of research work and collaboration. 21

2.1 Feature model of a Debian derivative example with a valid configuration
(gray features). 25

2.2 Feature model of a Debian derivative example with a non-valid configu-
ration (gray features). 28

2.3 Feature model example of a cardinality-based FM of the base FM of
Figures 2.1 and 2.2. 29

2.4 Extended feature model example of part of the base FM of Figures 2.1
and 2.2. 29

2.5 OVM of the Debian distribution example. 31

3.1 Automated Analysis of Feature Models (AAFM) process. 34
3.2 Example of a partial product and features for completion in a Debian

derivative example. 41

4.1 Steps of a traditional SLR process . 46
4.2 Summary of reviewed papers for the conflict detection in FMs from 2010

to 2019. 53
4.3 Resume of published papers for diagnosis in FMs from 2010 to 2019. . 55
4.4 Summary of published papers for the conflict detection, diagnosis and

product completion from 2010 to 2019. 56

6.1 Feature model example of Debian derivatives along with a non-valid
product configuration (gray features). 64

6.2 FD execution trace example. 65
6.3 FDGEN execution trace example. 69
6.4 Performance of FASTDIAG vs PARALLELFASTDIAG with 2 to 5 threads 73

4

List of Tables

1.1 List of researchers and institutions the student co-authored a work. . . . 21

2.1 Feature model relations . 27

3.1 QUICKXPLAIN execution tracking on configuration example of Figure 2.2 37
3.2 Tracking of the FASTDIAG execution of configuration example of Fig-

ure 2.2 (part 1) . 39
3.3 Tracking of the FASTDIAG execution of configuration example of Fig-

ure 2.2 (part 2) . 40

4.1 Quick review research questions. 49
4.2 List of articles ordered by the authors’ last name from A to F in the SLR

vs. our thesis work. 50
4.3 List of articles ordered by the authors’ last name from G to M in the SLR

vs. our thesis work. 51
4.4 List of articles ordered by the authors’ last name from N to Z in the SLR

vs. our thesis work. 52
4.5 Filtered articles classified by year and way for reaching their main goal. 53

6.1 LOOKUP table indicating the consistency of individual constraint sets
for lmax = 3. 67

6.2 FOLLOW sets of the FDGEN function. 69
6.3 Avg. runtime (in msec) of FD (lmax=1) and parallelized FD (lmax>1)

for determining preferred diagnosis. 72

8.1 Links between research goals, chapters and publications. 78

5

Acknowledgement

My parents always instilled in me that studying was the way to help my country. For
many years, I worked to be who I am today by following that great advice. Thanks to
my studies, I have grown in my thinking and goals about always assisting people; I
have learned about how to form teams; and how we can also help build a better world
through research works.

So far, life and my studies have allowed me to know other countries. I still re-
member when I was in the USA and wrote to David Benavides about my interest in
being his Ph.D. student. That was just the beginning back in 2013. At the end of
2014, this path began. And many thanks to the University of Seville, for its profes-
sors, space, people, and support during these long years. I am very grateful to David
and José since they taught me to study, learn, and think about new research oppor-
tunities and goals, and be patient to work for their achievement. Today, because of
all the teamwork with David and José, I can say that I achieved the primary goal of
delivering my Thesis with great pride.

During these years, I have had the opportunity to work as a professor and re-
searcher at different universities, which have supported me in achieving my Ph.D.
studies. I thank the Universidad de Playa Ancha, Valparaíso - Chile, which was the
first to help me with time and money to be in Seville. My thanks also to the Univer-
sidad Autónoma de Chile, Talca - Chile, which also gave me the resources to be in
Seville. And all thanks to the Universidad Católica del Norte, Antofagasta - Chile,
my current work, which has given me all the necessary support to complete this great
goal.

Many thanks to all people who assisted and supported me during these long years
in the academy and daily life. I am grateful to my wife and son for giving me the time
and space to accomplish this goal. They went along with me to Seville in 2019 and
realized that Chile still lacks a lot, perhaps too much, to be a developed country. With
research and education, we can help build that Chile, a better world for everyone.

6

Resumen

Los sistemas de alta variabilidad son sistemas de software en los que la gestión de la
variabilidad es una actividad central. Algunos ejemplos actuales de sistemas de alta
variabilidad son el sistema web de gesión de contenidos Drupal, el núcleo de Linux,
y las distribuciones Debian de Linux.

La configuración en sistemas de alta variabilidad es la selección de opciones
de configuración según sus restricciones de configuración y los requerimientos de
usuario. Los modelos de características son un estándar “de facto” para modelar las
funcionalidades comunes y variables de sistemas de alta variabilidad. No obstante,
el elevado número de componentes y configuraciones que un modelo de característi-
cas puede contener hacen que el análisis manual de estos modelos sea una tarea muy
costosa y propensa a errores. Así nace el análisis automatizado de modelos de car-
acterísticas con mecanismos y herramientas asistidas por computadora para extraer
información de estos modelos. Las soluciones tradicionales de análisis automatizado
de modelos de características siguen un enfoque de computación secuencial para
utilizar una unidad central de procesamiento y memoria. Estas soluciones son ade-
cuadas para trabajar con sistemas de baja escala. Sin embargo, dichas soluciones de-
mandan altos costos de computación para trabajar con sistemas de gran escala y alta
variabilidad. Aunque existan recusos informáticos para mejorar el rendimiento de
soluciones de computación, todas las soluciones con un enfoque de computación se-
cuencial necesitan ser adaptadas para el uso eficiente de estos recursos y optimizar su
rendimiento computacional. Ejemplos de estos recursos son la tecnología de múlti-
ples núcleos para computación paralela y la tecnología de red para computación dis-
tribuida.

Esta tesis explora la adaptación y escalabilidad de soluciones para el an+alisis
automatizado de modelos de características de gran escala. En primer lugar, nosotros
presentamos el uso de programación especulativa para la paralelización de solu-
ciones. Además, nosotros apreciamos un problema de configuración desde otra per-
spectiva, para su solución mediante la adaptación y aplicación de una solución no
tradicional. Más tarde, nosotros validamos la escalabilidad y mejoras de rendimiento
computacional de estas soluciones para el análisis automatizado de modelos de car-
acterísticas de gran escala.

Concretamente, las principales contribuciones de esta tesis son:

• Programación especulativa para la detección de un conflicto mínimo y

7

preferente. Los algoritmos de detección de conflictos mínimos determinan
el conjunto mínimo de restricciones en conflicto que son responsables de com-
portamiento defectuoso en el modelo en análisis. Nosotros proponemos una
solución para, mediante programación especulativa, ejecutar en paralelo y re-
ducir el tiempo de ejecución de operaciones de alto costo computacional que
determinan el flujo de acción en la detección de conflicto mínimo y preferente
en modelos de características de gran escala.

• Programación especulativa para un diagnóstico mínimo y preferente. Los
algoritmos de diagnóstico mínimo determinan un conjunto mínimo de restric-
ciones que, por una adecuada adaptación de su estado, permiten conseguir un
modelo consistente o libre de conflictos. Este trabajo presenta una solución
para el diagnóstico mínimo y preferente en modelos de características de gran
escala mediante la ejecución especulativa y paralela de operaciones de alto
costo computacional que determinan el flujo de acción, y entonces disminuir
el tiempo de ejecución de la solución.

• Completar de forma mínima y preferente una configuración de modelo
por diagnóstico. Las soluciones para completar una configuración parcial
determinan un conjunto no necesariamente mínimo ni preferente de opciones
para obtener una completa configuración. Esta tesis soluciona el completar
de forma mínima y preferente una configuración de modelo mediante técnicas
previamente usadas en contexto de diagnóstico de modelos de características.

Esta tesis evalua que todas sus soluciones preservan los valores de salida esper-
ados, y también presentan mejoras de rendimiento en el análisis automatizado de
modelos de características con modelos de gran escala en las operaciones descritas.

Abstract

Variability-intensive systems are software systems in which variability management
is a core activity. Some current examples of variability-intensive systems are the
web content management system Drupal, the Linux kernel, and the Linux Debian
distributions.

The configuration of variability-intensive systems is selecting options regard-
ing their configuration restrictions and user requirements. Feature models are a “de
facto” standard for modeling the common and variable functionalities of variability-
intensive systems. However, the large number of components and configurations
that a feature model can encode make the manual analysis of those models an er-
ror prone and costly task. The automated analysis of feature models then appeared
with mechanisms and computer-aided tools to extract useful information from fea-
ture models. Traditional solutions of automated analysis of feature models follow a
sequential computing approach to use a central processing unit and memory. These
solutions are adequate to work with low-scale systems. However, these solutions
require high computing costs to work with large-scale and variability-intensive sys-
tems. Although computing resources exist to improve the performance of computing
solutions, all the solutions with a sequential computing approach need to be adapted
to efficiently use these resources and optimize their computing performance. Exam-
ples of these resources are multi-core technology for parallel computing and network
technology for distributed computing.

This thesis explores the adaptation and scalability of solutions for the automated
analysis of large-scale feature models. First, we present the use of speculative pro-
gramming for the parallelization of solutions. Furthermore, we appreciate a configu-
ration problem from another perspective to solve it by adapting and applying a non-
traditional solution. Later, we validate the scalability and computing performance
improvements of these solutions for the automated analysis of large-scale feature
models.

Specifically, the main contributions of this thesis are:

• Speculative programming for a minimal and preferred conflict detection.
Minimal conflict detection algorithms determine the minimal conflict set or
minimal set of constraints in conflict responsible for faulty behavior in the
model under analysis. We propose a solution to execute in parallel and reduce

9

the execution time of path operations through speculative programming in the
minimal and preferred conflict detection of large-scale models.

• Speculative programming for a minimal and preferred diagnosis. Mini-
mal diagnosis algorithms determine a minimal set of constraints that, for ade-
quately adapting their state, permit getting a conflict-free or consistent model.
This work presents a solution for the minimum and preferred diagnosis of
large-scale models by the speculative and parallel execution of high-computing
cost operations that determine the action flow and then reduce the solution ex-
ecution time.

• Minimal completion of preferred configuration by diagnosis. Minimal
completion of configuration solutions determine a set of options that, for their
adequate setting, convert the current configuration of the model into a com-
plete product with preferred options. This thesis appreciates the completion of
a configuration as a diagnosis task and uses as a solution an adapted minimal
and preferred diagnosis algorithm.

This thesis evaluates that all its solutions preserve the expected output value and
present performance improvements for the described operations in the automated
analysis of large-scale feature models.

Part I

Preface

11

Chapter 1

Introduction

Abstract

This dissertation reports our work in the configuration analysis for large
scale feature models towards speculative-based solutions. This chapter gives
an overview of the contributions, the research method, and publications related
to this document.

1.1 Research context

Product configuration is the activity of designing a product according to a set of
requirements and configuration rules. With further details, product configuration
systems need the knowledge base regarding the set of components and combination
rules and the customers’ requirements for selecting product components (configura-
tion) that match their preferences [1]. A valid product configuration only depends
on the selected features in a consistent knowledge base scenario; that is, each valid
product results from the composition of component type instances that respect the
set of defined combination rules [2]. Figure 1.1 shows a motivating scenario of prod-
uct configuration for updating the set of installed packages in the Ubuntu Xenial
operating system [3]. In this example, all the packages for installing and their depen-
dencies represent the consistent knowledge base, and already installed and selected
for installing packages correspond to the desired product requirements. Hence, after
selecting a package for installation, such as a dropbox plugin, that package requires
installing additional packages to respect dependency rules.

Product configuration systems require systematically managing all the features
and their composition rules to analyze each desired product configuration’s features
selection. In software engineering, Variability Models (VMs) permit describing the
different relationships and configuration options for the variability management of
software systems. Different VMs exist, such as Feature Models (FMs) and Orthogo-
nal Variability Models (OVMs). FMs permit representing functional commonalities
and variabilities of software systems [4], whereas OVMs permit describing the vari-
ant parts of the base model of systems [5]. Kang et al. [6] introduced FMs as part of

12

CHAPTER 1. INTRODUCTION 13

Figure 1.1: Example of the packages configuration in the Ubuntu Xenial OS.

the FODA (Feature-Oriented Domain Analysis) method, and they become the most
used VM in the SPL community afterward.

Product Line An FM defines a set of features and their relationships for defining
valid feature combinations or products, that is, sets of features that respect the FM’s
defined relationships. Such as Apel et al. [7] remark, FM permits representing all
the products of an SPL. An FM organizes in a tree-like structure that starts at the
root feature that identifies the SPL and from which tree branches of features emerge.
We can then define a product in terms of the set of features that compose it, and each
feature describes an increment of functionality in the products containing that feature
[8]. An FM supports binary and set relationships between parent and child features
and cross-tree relationships to symbolize dependencies between features. Figure 1.2
shows an FM for describing an operating system SPL and a valid configuration of it
(the grey-colored features). Chapter 2 details and exemplifies common FM notations.
Different tools exist for the FMs representation and support such as SPLOT [9], Fea-
tureIDE [10], FaMa framework [11] and FAMILIAR [12]. We presents solutions for
extending the FaMa framework.

Product configuration permits assisting the mass customization production [2].
Variability-Intensive Systems (VIS) follow mass customization in software engineer-
ing by addressing variability in the software development process phases. Because
VIS users expect that software products can adapt to their needs, the management of
the users’ requirements variability in VIS represents a crucial activity for those sys-
tems [13]. Research works concerning managing the variability of VIS already exist
in the literature, such as in the Linux operating system [14, 15], with the Debian-
based distributions of Linux [16], with the Android mobile system [17], and with the
content management framework Drupal [18] to just mention a few. Those works use
variability models for representing and analyzing VIS.

CHAPTER 1. INTRODUCTION 14

texteditor

glchessvi

gui

Mandatory

Optional

Alternative

Or

Requires

Excludes

SelectedNon-selected

openoffice.org-1.1

openoffice.org-1

openoffice.org-1.2

kde gnuchess

game

Debian

bash

gedit gnome

Figure 1.2: Feature model and configuration example.

Software Product Line (SPL) is a case of VIS that systematically manages com-
monalities and variabilities for the configuration of software products [7]. SPL de-
fines domain engineering to analyze and develop reusable common and variable func-
tionalities (features) in the products’ domain, and application engineering to produce
customized products regarding the users’ features selection. Defining valid config-
uration in SPL is a complex task for the growing complexity of the configuration
knowledge base [17]. When the users’ feature selection conflicts with consistent
configuration knowledge bases, it is necessary to identify those issues and solve
them. The manual analysis of variability models, such as FMs, are error-prone and
time-consuming tasks mainly for the increasing size of those models. For example,
variability and configuration models for Debian-based distributions describe around
28000 variability points [16], and manually analyzing those models without mistakes
is impractical. Mechanisms for the Automated Analysis of Feature Models (AAFM)
[4] are a solution to face those issues.

1.1.1 Main issues to solve

FMs permit organizing the configuration space to facilitate the construction of soft-
ware variants by describing configuration options using interdependent features or
functionalities. A set of features in an FM is called a configuration, and each software
variant in an FM identifies a valid configuration or product [19]. Hence, AAFM op-
erations for assisting the obtention of conflict-free FMs and configurations are high-
value tasks. Nonetheless, existing AUTOMATED ANALYSIS OF FEATURE MODEL

operations usually follow a sequential computing approach and cannot scale to work
on large-scale and high-variability models. Various algorithms and solutions applica-
ble for the AAFM exist in the literature, such as QUICKXPLAIN [20] and FASTDIAG

[21] to detect a minimal conflict set and a minimal-preferred diagnosis in a set of con-
straints in conflict, respectively, and solutions for the completion of partial products.

CHAPTER 1. INTRODUCTION 15

Even though QUICKXPLAIN and FASTDIAG are computationally efficient in theory,
those algorithms are examples of solutions that take a long time to work on large-
scale FM configurations. Both solutions cannot use additional computing resources
for their sequential computing nature, such as multiple core or network technologies
for parallel and distributed computing, respectively. Concerning the completion of
products, defining and accomplishing all users’ requirements for configuring large-
scale systems is a tedious and complex task, and non-efficient solutions exist for
assisting in the completion of partial configurations. The next lines give more details
of the three problems that our dissertation faces.

• Minimal conflict set. For a consistent FM that we can define as a set of con-
straints, a non-consistent configuration violates those constraints. The features
model of Figure 1.2 exemplifies a consistent configuration; that is, this config-
uration does not violate the FM constraints. For that FM and configuration, if
feature gnuchess were also selected, the resulting configuration would be non-
consistent because a conflict exists between features gnuchess and glchess.
Chapter 2 give more details concerning FM and its constraints. In this exam-
ple, {gnuchess, glchess} is a Minimal Conflict Set (MCS) because we cannot
find a subset of it that results being a conflict set. Such as [21] remark, we
can solve an MCS by merely deleting one of its constraints. After finding and
solving all the MCS instances, the configuration results valid (conflicts-free).

The QUICKXPLAIN algorithm permits efficiently finding preferred MCS re-
garding the order of the constraints definition. The functioning of QUICKX-
PLAIN uses the consistency check over constraint sets, a costly action, as a
primary step to achieve its main purpose, that is, to identify a preferred MCS.
The application of QUICKXPLAIN for the conflict analysis of large-scale FMs
such as the Android mobile operating system [17], the Linux kernel [14], and
distributions of Linux like Debian [16] are examples of computationally ex-
pensive tasks mainly for the sequential nature of QUICKXPLAIN and the high
demand for computing resources such as the execution time and memory space
to work with large-scale models. Section 3.2 gives more details about QUICK-
XPLAIN and its applicability for the FM product configuration analysis.

• Minimal diagnosis. Given the set of constraints of a consistent FM and a non-
consistent configuration that violates the FM constraints, a diagnosis is the
set of constraints that permit getting a consistent configuration after removing
those constraints. For the consistent configuration of Figure 1.2 after selecting
the feature gnuchess, we know that {gnuchess, glchess} is a Minimal Conflict
Set (MCS). Then, either deleting gnuchess or glchess, we can obtain a valid
configuration (conflict- free); that is, gnuchess and glchess are examples of
diagnosis.

The FASTDIAG algorithm permits efficiently finding a preferred-minimal di-
agnosis regarding the order of the constraints definition. The functioning of
FASTDIAG uses the consistency check over constraint sets, a costly action, as

CHAPTER 1. INTRODUCTION 16

a primary step to achieve its main purpose, that is, to identify a preferred and
minimal diagnosis. The application of this algorithm for the diagnosis analy-
sis of large-scale FMs such as the Android mobile operating system [17], the
Linux kernel [14], and distributions of Linux like Debian [16] result in com-
putationally expensive tasks mainly for the sequential nature of FASTDIAG

and the high demand for computing resources such as the execution time and
memory space to work with large-scale models. Section 3.3 gives more de-
tails about FASTDIAG and its applicability for the FM product configuration
analysis.

• Minimal completion of products. Achieving valid configurations in large-scale
FMs is a time-demanding and complex task. Currently, reasoning tools that
are usually part of AAFM process permit solving that issue. Section 3.4 gives
more details about the minimal completion of products for the FM product
configuration analysis.

Our thesis addresses the high computation cost of existing solutions to work on
large-scale models. First, this thesis presents solutions to parallelize and reduce the
execution time of path operations through speculative programming on large-scale
and high variability models. Second, this thesis appreciates a problem from a differ-
ent perspective by the adaptation of a non-traditional solution to reduce the execution
time on large-scale models concerning traditional solutions. To validate our solu-
tions, we applied them in the AAFM of large-scale FM and configuration instances.

1.2 Contributions

In this section, we summarize the main contributions of our research work. First, we
describe our main contributions. Second, we report articles that have been published
in relevant journals, conferences and workshops. Third, we describe the current avail-
ability of the developed tools.

1.2.1 Summary of contributions

This dissertation aims to provide efficient solutions in the FaMa framework to work
on large-scale FM product configurations for MCS detection, minimal diagnosis, and
product completion tasks. The next lines describe these contributions:

• PARALLELQUICKXPLAIN. A parallel algorithm for the minimal conflict set
detection of FM configurations by using speculative programming.

Conflict detection is applicable in many scenarios ranging from interactive
decision-making to faulty hardware components or models. In these scenar-
ios, the efficient identification of conflicts is crucial. Junker’s QUICKXPLAIN

[20] is a divide-and-conquer based algorithm for the determination of preferred
MCS. Motivated by the increasing size and complexity of knowledge bases, we

CHAPTER 1. INTRODUCTION 17

propose a speculative version of QUICKXPLAIN that improves runtime per-
formance significantly, especially in complex knowledge bases. We propose
PARALLELQUICKXPLAIN, a speculative programming version of QUICKX-
PLAIN, to pre-calculate in parallel consistency checkings needed by the base
algorithm QUICKXPLAIN. We tested our solution with large-scale FM product
configurations to validate our solution’s performance improvement concerning
its base solution QUICKXPLAIN.

• PARALLELFASTDIAG. A parallel algorithm for the diagnosis of FM configu-
rations in conflict by using speculative programming.

FASTDIAG [22] is an efficient divide-and-conquer diagnosis solution applica-
ble in AAFM, but it does not scale for diagnosis on large-scale FMs and config-
urations. We propose PARALLELFASTDIAG, a speculative programming ver-
sion of FASTDIAG, to pre-calculate in parallel consistency checkings needed
by the base algorithm FASTDIAG.

• MINIMAL PREFERRED COMPLETION BY DIAGNOSIS. A minimal preferred
completion of products by using a diagnosis task.

The minimal preferred completion of configurations might represent an expen-
sive computing task. Existing solutions, such as modern constraint satisfaction
solvers, usually perform a complete search approach, making them unsuitable
on large-scale configurations. We propose defining the completion of configu-
ration like a diagnosis task to solving it by applying the FASTDIAG algorithm
[21, 22]. FASTDIAG is an efficient solution for minimal diagnosis (updates)
in the analyzed configuration. We evaluate our proposed method to complete
partial configurations of random FMs and random partial products of an FM of
an adapted version of the Ubuntu Xenial operating system. Our experimental
analysis shows remarkable improvements in our solution regarding classical
reasoner-based approaches for the same tasks.

PARALLELQUICKXPLAIN, PARALLELFASTDIAG, and MINIMAL PREFERRED

COMPLETION BY DIAGNOSIS are practical tasks to any satisfiability, diagnosis, and
completion of product problems in reasoner tools with automated support.

1.2.2 Publications in chronological order

Cristian Vidal contacted David Benavides in 2013 when he was finishing a Master of
Science in Computer Science at Michigan State University, MI, USA. The research
focus of Cristian Vidal at that time was modularization and Aspect-Oriented Software
Engineering (AOSE). Davide Benavides gave advice regarding the Feature-Oriented
Software Engineering (FOSE), his research area, and Cristian Vidal started being a
Ph.D. student at the University of Seville at the end of 2014. Cristian Vidal, David
Benavides and José A. Galindo defined a primary research focus that was to evaluate
pros and cons of a mixing of programming AOSE and FOSE tools for developing

CHAPTER 1. INTRODUCTION 18

modular programming solutions. After the first meeting in Seville during 2015, our
primary research focus changed to applying Big Data technology such as Hadoop
and Giraph for the AAFM. During 2017, after understanding that parallel comput-
ing is a base element of Big Data technology and reviewing existing solutions for
the AAFM, we focus on developing solutions with parallel computation for conflict
detection and diagnosis, and a diagnosis solution for the product completion. Those
solutions represent the main contributions of this dissertation. Next, we present a
complete list of the publications derived from our research work in chronological
order.

[2015]. During our first year of work, we focus on proposing and developing
a symbiosis of Feature-Oriented Programming (FOP) and the Aspect-Oriented Pro-
gramming (AOP) methodology Join-Point Interface [23] because our motivation was
applying modularization advantages of AOP with FOP. After out first meetings in
Seville, we focused on Big Data solutions for the AAFM process.

• JISBD’15. Cristian Vidal, David Benavides, José A. Galindo, and Paul Leger:
Exploring the Synergies between Join Point Interfaces and Feature-Oriented
Programming. XX Jornadas de Ingeniería del Software y Bases de Datos
(JISBD 2015). Santander, Cantabria, Spain.

• SCCC’15. Cristian Vidal, José A. Galindo, Rodolfo Villarroel, David Bena-
vides, Paul Leger, and Sebastián Valenzuela: JPI feature models - Exploring a
JPI and FOP symbiosis for software modeling. 34th International Conference
of the Chilean Computer Science Society (SCCC 2015), pages 1–6. Santiago,
Chile.

• BICT’15. Cristian Vidal, David Benavides, Paul Leger, José A. Galindo, and
Hiroaki Fukuda: Mixing of Join Point Interfaces and Feature-Oriented Pro-
gramming for Modular Software Product Line. 9th EAI International Confer-
ence on Bio-inspired Information and Communications Technologies (BICT
2015), pages 433–437. New York City, United States.

[2016]. During this year, a journal published one of our papers presented in 2015.
We focused on developing new solutions or adapting existing ones to analyze large-
scale FMs applying Big Data computing approaches. We specialized on Hadoop and
Giraph technologies and presented one of these works at the Software Product Line
Conference (SPLC). Cristian Vidal also taught about Hadoop and Giraph in Chile.

• SPLC’16. José A. Galindo, Mathieu Acher, Juan Manuel Tirado, Cristian
Vidal, Benoit Baudry, and David Benavides: Exploiting the enumeration of
all feature model configurations: a new perspective with distributed comput-
ing. 20th International Systems and Software Product Line Conference (SPLC
2016), pages 74–78. Beijing, China.

CHAPTER 1. INTRODUCTION 19

• EAI’16. Cristian Vidal, David Benavides, Paul Leger, José A. Galindo, and
Hiroaki Fukuda: Mixing of Join Point Interfaces and Feature-Oriented Pro-
gramming for Modular Software Product Line. Endorsed Transaction on Scal-
able Information Systems, Volume 3, Number 10 (EAI 2016).

• CIT’16. Sebastián Valenzuela, Cristian Vidal, Jenny Morales, and Leopoldo
López: Ejemplos de Aplicabilidad de Giraph y Hadoop para el Procesamiento
de Grandes Grafos. Revista Información Tecnológica, Vol. 27 (5), September-
October 2016. Universidad de La Serena, Chile. SCOPUS.

[2017].In this year, we obtained a publication that ended by guiding this Ph.D.
dissertation. Concretely, we presented in a doctoral symposium our research goal and
proposals of parallel AAFM solutions and highlighted their potential advantages. We
also planned the development of those solutions.

• SPLC’17. Cristian Vidal: Exploring efficient analysis alternatives on feature
models. 21th International Systems and Software Product Line Conference
(SPLC 2017), volume B, pages 150–155. Seville, Spain.

[2018]. During this year, we continue working with the application of parallel
computing for the efficient conflict detection and diagnosis of large-scale FMs. Cris-
tian Vidal presented papers regarding his previous knowledge about Big Data and
Feature Model solutions.

• CIT’18. Cristian Vidal, Miguel Bustamante, José Rubio, Luis Carter: Prop-
uesta de Modelo de Características con Interfaz de Punto de Unión para el
Modelamiento de Líneas de Productos de Software. Journal Información Tec-
nológica, Vol. 29 (6), November-December 2018. University of La Serena,
Chile. SCOPUS.

[2019]. At the beginning of this year, Cristian Vidal presented a paper about
applying FASTDIAG for the diagnosis for the product configuration in the AAFM
process. Cristian Vidal also presented an article about the feasibility of teaching Big
Data in the Chilean academy. In June of 2019, Cristian Vidal obtained a Banco San-
tander scholarship to be in Seville, Spain, from 23th of October of 2019 to 25 of
March of 2020. Working as a team, and after Alexander Felfernig visited us at the
University of Seville, Spain, in November of 2019, we matured ideas of parallelizing
AAFM solutions. We started then talking about speculative programming for devel-
oping efficient AAFM solutions. The first version of PARALLELFASTDIAG was born
at that time.

• IJACSA’19. Cristian Vidal: Reviewing Diagnosis Solutions for Valid Prod-
uct Configurations in the Automated Analysis of Feature Models. International
Journal of Advanced Computer Science and Applications (IJACSA), Volume
10 Issue 1, January 2019. SCOPUS.

CHAPTER 1. INTRODUCTION 20

[2020]. For the high domain level in the FASTDIAG algorithm, we developed a
solution for the completion of FM product configurations. We wrote a paper about
that solution and sent it to an international conference. Because FASTDIAG uses a
divide-and-conquer approach like QUICKXPLAIN, we developed, tested, and vali-
dated PARALLELQUICKXPLAIN using a speculative programming approach. We
wrote a research paper about PARALLELQUICKXPLAIN and sent it to the same in-
ternational conference. This paper resulted in being one of the best contributions to
the conference and selected for publication in the next year by a JCR journal. We
also wrote an article about a test suite approach for minimal conflict and diagnosis
of FM configurations. We sent that paper and presented it to another international
conference. During this year, almost all the conferences were online.

• ISMIS’20. Cristian Vidal-Silva, Jesús Giraldez, José A. Galindo, and David
Benavides: Automated completion of partial configurations as a diagnosis task
- Using FASTDIAG to improve performance. 25th International Symposium on
Methodologies for Intelligent Systems (ISMIS 2020) - Industry Session. Graz,
Austria.

• ISMIS’20. Cristian Vidal-Silva, Alexander Felfernig, José A. Galindo, Müs-
lüm Atas, and David Benavides: A Parallelized Variant of Junker’s QUICKX-
PLAIN Algorithm. 25th International Symposium on Methodologies for Intel-
ligent Systems (ISMIS 2020). Graz, Austria.

• CONFWS’20. Cristian Vidal-Silva, José A. Galindo, and David Benavides:
Functional Testing of Conflict Detection and Diagnosis Tools in Feature Model
Configuration: A Test Suite. 22th International Workshop on Configuration
2020 (CONFWS 2020). Vicenza, Italy.

• JIIS’21. Cristian Vidal-Silva, Alexander Felfernig, José A. Galindo, Müs-
lüm Atas, and David Benavides: Explanations for Over-Constrained Problems
with Parallelized QUICKXPLAIN. Journal of Intelligent Information Systems
(JIIS). Springer-Verlag. WOS JCR Q3. Under review.

1.2.3 Tools

We developed three different tools during this Ph.D. First, we developed PARAL-
LELQUICKXPLAIN*, an speculative computation solution for the preferred mini-
mal conflict detection in a set of constraints in conflict. We specialized PARAL-
LELQUICKXPLAIN for the conflict detection of FM product configuration.Second,
we developed PARALLELFASTDIAG†, a tool for the preferred minimal diagnosis by
applying speculative computation in a set of constraints in conflict. We specialized
PARALLELFASTDIAG for the conflict detection of FM product configuration. Third,
we developed BOLON‡, a solution for the completion of product configuration of

*https://github.com/cvidalmsu/A-Python-QX-implementation
†https://github.com/cvidalmsu/A-Python-FD-implementation
‡https://github.com/cvidalmsu/BOLON-FaMaProdConf-TestSuite

https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://github.com/cvidalmsu/BOLON-FaMaProdConf-TestSuite

CHAPTER 1. INTRODUCTION 21

feature models by applying a diagnosis solution.

1.2.4 Research internships and collaborations

This research work includes the collaboration of colleges from different countries.
Table 1.1 shows the affiliation, name of each co-author, and co-authored articles.
Figure 1.3 illustrate the research time and collaboration of colleagues during these
Ph.D. studies.

David Benavides

Ph.D.

José Galindo

2014 - 2015

David Benavides

Ph.D.

José Galindo

2017 - 2018

David Benavides

Ph.D.

2019 - 2020

Alexander Felfernig

Jesús Giraldez

Paul Leger

Müslüm Atas

David Benavides

Ph.D.

José Galindo

2016

Juan Manuel Tirado

Benoit Baudry

Mathiew Acher

José Galindo

Figure 1.3: Years of research work and collaboration.

Name Affiliation Paper
1. Mathieu Acher University of Rennes 1 and Inria, France [24]
2. Müslü Atas Graz University of Technology, Austria [25]
3. Benoit Baudry Inria, France [24]
4. David Benavides Universidad de Sevilla, Spain [26] [27] [28] [29] [?] [30] [25] [31] [32]
5. Alexander Felfernig Graz University of Technology, Austria [25]
6. José Á. Galindo Universidad de Sevilla, Spain [26] [27] [28] [29] [?] [30] [25] [31] [32]
7. Jesús Giráldez Cru Universidad de Granada, Spain [31]
8. Paul Leger Universidad Católica del Norte, Chile [26] [27] [29]
9. Juan Manuel Tirado Cambridge Computer Lab, United Kingdom [24]

Table 1.1: List of researchers and institutions the student co-authored a work.

1.3 Structure of this dissertation

This document is organized as follows:

CHAPTER 1. INTRODUCTION 22

Part I: Preface. In the first part of this dissertation, we present the main contribu-
tions of this research as well as the background and motivating scenarios that
pushed forward this work.

Part II. Background and Motivation. In the second part of the dissertation, we ex-
plore and update the basic background information required to understand the
objectives of this thesis work. Chapter 2 describes variability and configura-
tion models, Chapter 3 addresses the automated analysis of feature and product
configuration models, and Chapter 4 summarises the main properties of exist-
ing research work concerning the AAFM operations of this thesis.

Part III. Contributions. This part constitutes the core contributions of our thesis
that consists of three chapters organized as follows. Chapter 5 focuses in PAR-
ALLELQUICKXPLAIN, Chapter 6 presents PARALLELFASTDIAG, and Chap-
ter 7 details our solution for the completion of products by diagnosis task. In
each chapter, we motivate our research work, describe the resulting solution,
and validate its functioning regarding its base one.

Part IV. Final Remarks. In this part, Chapter 8 shows the conclusions of this thesis
and propose future work to address new and challenging research problems
which arise from the contributions made in this dissertation.

Part V. Appendix. In Appendix A, we present PAVIA, a Big Data solution for the
AAFM that we presented in SPLC 2016. In Appendix B, we describe a func-
tional testing of a AAFM operations for conflict detection and diagnosis.

Part II

Background and Motivation

23

Chapter 2

Variability models

Abstract

A Variability Model (VM) permits describing common and variable com-
ponents of a system family and relationships and constraints among those com-
ponents for product configuration. Feature Models (FM) is an example of VM
in Software Product Lines (SPLs). This chapter defines and exemplifies VMs
using FMs as a standard notation for VM.

2.1 Introduction

A Variability Model (VM) represents an organized set of component types, relation-
ships, and constraints for setting configurations (solutions) in a system family. A
configuration is a particular case of design activity for defining products from the
composition of instances of a well-defined and fixed set of component types con-
cerning a group of relationships, constraints and requirements that restrict to gather
some features [?]. This process typically relies on the product domain and problem-
solving knowledge; that is, product configuration is a knowledge-based process. A
configuration is an instance of a VM like an object is an instance of a class [33]. A
feature model is an example of variability model. Figure 2.1 exemplifies a FM for
the installation of the Debian operating system with the following constraints:

• A feature Debian must be composed by an instance of the feature texteditor,
bash or gui. Moreover, an instance of the feature Debian can be composed by
an instance of the feature game.

• An instance of the feature texteditor must be composed by at least one instance
of the features vi, gedit, openoffice.org.

• An instance of the feature openoffice.org-1 can be composed by one instance of
the the fdeatures openoffice.org-1.1, openoffice.org-1.2, both or none of them.

• An instance of the feature openoffice.org-1 requires an instance of the feature
gnome.

24

CHAPTER 2. VARIABILITY MODELS 25

• An instance of the feature gui must be composed of an instance of the features
kde, gnome or both.

• An instance of the feature game must be composed by only one instance of the
features glchess or gnuchess.

texteditor

glchessvi

gui

Mandatory

Optional

Alternative

Or

Requires

Excludes

SelectedNon-selected

openoffice.org-1.1

openoffice.org-1

openoffice.org-1.2

kde gnuchess

game

Debian

bash

gedit gnome

Figure 2.1: Feature model of a Debian derivative example with a valid configuration
(gray features).

We can define a configuration for a VM by selecting instances of component
types that respect all the restrictions and model rules. In our example, the FM con-
straints. Gray features of Figure 2.1 shows a valid configuration of the FM.

Feature models are information models that permit representing the variant flex-
ibility and maintainability for systems’ variability and configuration [34]. Next sec-
tion describes and exemplifies different types of FMs and their use for the VM rep-
resentation.

2.2 Feature models

Feature Model (FM) is a tree-like structure commonly used to represent common
and variable functionalities (features) and their relationships for the configuration
of products in a Software Product Line (SPL) [6]. A feature is an abstraction of a
prominent or distinctive user-visible aspect, requirement, quality, or functional char-
acteristic of a family of software systems [4, 35, 36], that is, each feature constitutes
a user-visible configuration option of the problem domain [37]. Kang et al. [6] in-
troduced FMs in the FODA (Feature-Oriented Domain Analysis) method, and they
are the “de facto” standard for describing common and variable features in system
families [38, 39] regardless their size because FMs facilitate the software reuse [40].

An FM organizes features and their relationships in a tree-like structure that starts
with the root feature. Each successively deeper level in the FM corresponds to a more

CHAPTER 2. VARIABILITY MODELS 26

fine-grained configuration option for product-line variants. Features are nodes of that
tree, and their relationships are the edges (relationships and constraints) between fea-
tures [41]. The relationships among features are of two types: structural relationships
between a parent and its child features, and cross-tree or cross-hierarchy constraints
[2, 4].

FMs represent an effective communication medium between customers and de-
velopers of SPLs [42]. Such as the work of Benavides et al. describe [4], different
FM dialects exist nowadays such as basic FMs models [8?], cardinality based FMs
[43, 44] and extended FMs using feature attributes [45, 46] that next subsections
describe.

2.2.1 Basic feature models

A basic FM support two types of relationships between features: structural rela-
tionships between parents and their child features, and cross-tree constraints [4] [2].
Thus, each non-root feature has a parent feature and is either part of a group or not
[47]. Next lines describe each type of FM relationships.

• Structural relationships between parents and their child features:

– Mandatory: A mandatory relationship states that a parent feature requires
its child. The top-left figure of Table 2.1 shows the graphic representation
of a mandatory relationship between a parent feature and a child feature.

– Optional: An optional relationship states that a child feature may be or
not present (it is does not required by its parent feature). The top-right
figure of Table 2.1 illustrates an optional relationship between a parent
feature and a child feature.

– Set: A defined number of features of a set of children features (sub-
features) are selectable for products when their parent is selected. This
number of features is given by a cardinality relation [x, y], for x <= y and
y <= number of child features in the set. Two cases are XOR (alternative)
and Or (inclusive) sets.

* Inclusive Or: At least one child features must be present. The car-
dinality relation is [1, n] in this case (n corresponds to the number
of child features). The middle-left figure of Table 2.1 illustrates an
inclusive relationship between a parent feature and a set of children
features.

* Alternative XOR: Only one child feature must be present. The as-
sociated cardinality relation is [1, 1] in this case. The middle-right
figure of Table 2.1 illustrates an alternative relationship between a
parent feature and a set of children features.

• Cross-Tree Constraints.

CHAPTER 2. VARIABILITY MODELS 27

– Requires: For two features A and B, if A requires B then the presence
of A implies the presence of B in a product. The bottom-left figure of
Table 2.1 illustrates a requires cross-tree constraint relationship between
a source feature A and a target feature B.

– Excludes: For two features A and B, if A excludes B then A and B cannot
be present in the same product. The bottom-right figure of Table 2.1
illustrates an excludes cross-tree constraint relationship between features
A and B.

Unary relations

Mandatory Optional

Set relations
Inclusive (Or) Alternative (XOR)

Cross-tree constraints
Requires Excludes

Table 2.1: Feature model relations

Such as Benavides et al. [4] indicate, more complex cross-tree relationships exist
in the literature to define constraints in the form of generic propositional formulas
such as “A and not B implies C”.

Figure 2.1 illustrates a valid configuration for the FM of the Debian operating
system: nodes represent the features of the model (i.e., selectable packages to install)
and edges are the constraints between features (e.g., packages that require the instal-
lation of other packages). In this example, we can observe that packages texteditor,
bash and gui are mandatory (i.e., they must be always included in any Debian config-
uration) whereas the package games is optional. We can also observed that textditor
requires at least one of the packages vi, gedit or openoffice. Likewise, feature gui re-
quires at least one of gnome or kde. In the case of the package games, we observe that
it requires either gnuchess or glchess, but only one, non both. Similarly, the pack-
age openoffice.org-1 requires either version openoffice.org-1.1 or openoffice.org-1.2.
Finally, we observe that openoffice.org-1 strictly requires the installation of gnome.

CHAPTER 2. VARIABILITY MODELS 28

Figure 2.2: Feature model of a Debian derivative example with a non-valid
configuration (gray features).

Hence, the selection of features {Debian, texteditor, vi, gedit, openoffice, openoffice-
1, bash, gui, gnome, kde, game, glchess} exemplifies a valid product. Figure 2.2
illustrates a non-valid configuration for the FM of the Debian operating system: the
selection of features {Debian, texteditor, vi, gedit, openoffice, openoffice-1, bash,
gui, kde, game, gnuchess, glchess} exemplifies a non-valid configuration that does
not respect the requires cross-tree constraint between the option openoffice.org-1 and
gnome (only the first option is selected), and gnuchess and glchess are selected for the
option game when only one feature must be selected (game represents an alternative
set of features).

2.2.2 Cardinality-based feature models

Cardinality-based feature models introduce cardinality annotations in solitaire fea-
tures and on subtrees (group of features) of traditional (FODA) FMs to specify how
many instances (clones) can be included in a product configuration [43] [48]:

• Feature cardinality: A sequence of intervals in the form [ni , ni′] with the lower
bound ni and the upper bounds ni′ . Such as Benavides et al. [4] mention, car-
dinalities for mandatory and optional features are [1, 1] and [0, 1], respectively.

• Group cardinality: For a group of k features, an interval [n, n’] with n as the
lower bound and n’ as the upper bound, and n’ <= k. For basic FMs, an interval
[1, k] for k sub-features in optional sets, and [1, 1] for alternative sets.

Cardinality-based feature models can include inconsistencies concerning the in-
tervals definition and their components [49] such as false unbounded intervals and
gap intervals. Figure 2.3 presents the equivalent cardinality-based FM of the feature

CHAPTER 2. VARIABILITY MODELS 29

glchess

Debian

bash gui

gnome

Mandatory

Optional

Alternative

Or

Requires

Excludes

[1,1] [1,1] [1,1] [0,1]

[1,3]
[1,2]

[1,1]

[0,1] [0,1]

openoffice-1

openoffice

openoffice-2

kde gnuchess

game

geditvi

texteditor

Figure 2.3: Feature model example of a cardinality-based FM of the base FM of
Figures 2.1 and 2.2.

model of Figures 2.1 and 2.2. The main motivation of cardinality-based FMs is their
practical application by the inclusion of UML-like feature multiplicities [4].

2.2.3 Extended feature models

Extended feature models include additional details about features in the form of at-
tributes to add measurable information about their features [4, 46]. Feature attributes
provide extra information required to support features in terms of measurable char-
acteristics and complex cross-tree relations [45].

gui

gnome kde

Name: Version
Domain: Real
Value: 3.1

Name: Screen-resolution
Domain: Integer
Value: 800

Name: Orientation
Domain: [Vertical,
Value: Vertical

x integer
x 600

l Horizontal]

Name: Version
Domain: Real
Value: 5.2

Domain: Integer
Value: 1920

Name: Orientation
Domain: [Vertical,Horizontak]
Value: Vertical

x 1080

Name: Screen-resolution

Figure 2.4: Extended feature model example of part of the base FM of Figures 2.1
and 2.2.

For instance, Figure 2.4 depicts a partial extended feature model using the nota-
tion proposed in [50]. As illustrated in the figure, an attribute mainly consists of:

• Attribute name. Name or id of the attribute, such as Version, Screen-Resolution,
and Orientation.

CHAPTER 2. VARIABILITY MODELS 30

• Attribute domain. It defines the range of possible values for the attribute. For
example, Real, (Integer, Integer), and [Horizontal, Vertical].

• Attribute value. The value of the attribute. This could be an specific or default
value within the domain, or an expression depending on the value of other
attributes of the same or other features.

Extended feature models also considered relations between attributes. Hence,
features could require or excludes other features depending on the value of any of
their attributes. For instance, in the base FM of Figures 2.1 and 2.2, openoffice.org-
1 could require an specific version of gnome, such as gnome.version >= 8.1.1. Fea-
tureIDE [51] considers the use of attributes in FMs from version 3.5. Current version
of pure::variants [52] also support FMs with attributes.

2.3 Other variability modeling approaches

2.3.1 Orthogonal Variability Model (OVM)

Orthogonal Variability Model (OVM) is a modeling language for defining a cross-
sectional view of the variability of features in an SPL across all software develop-
ment artifacts [53]. OVM permits define the software variability separately without
updating the requirements, design, and other software base models. Base models
carry out the variability defined by the variability elements in the OVM model. The
main classes in OVM are variation points and variants:

• A variation point documents the aspects that can vary in the software develop-
ment artifacts. Customers or development staff can choose those aspects.

• A variant is related to a variation point and documents how this variation point
can vary.

An OVM traditionally is used for documenting SPL variability [53], and it does
not consider commonalities in the software artifacts explicitly [54]. Nevertheless,
an OVM expresses common variability in all the software artifacts. Regarding auto-
mated support, OVM instances like FMs support a translation into logical approaches
for the automated analysis [55]. Figure 2.5 shows an OVM for the FM of Figures 2.1
and 2.2.

2.3.2 Debian variability model

The work of Galindo et al. [16] describe that a Debian–based installation is linked
with a set of package repositories, and each package repository is associated with a
configuration file written in the Debian package dependency language. The Debian
pacakge dependency language is a textual language that support information regard-
ing the software packages along with their relationships and dependencies. For each

CHAPTER 2. VARIABILITY MODELS 31

Figure 2.5: OVM of the Debian distribution example.

package in the file, a set of properties exists. Relationships between packages are
Depends, Suggests, Conflicts and Replaces. We recommend to review the work of
[16] for more details.

2.3.3 CVL

Common Variability Language (CVL) is a domain-independent language for spec-
ifying and resolving variability [56]. CVL distinguishes between the domain and
variability models: domain model using a meta-object based model without vari-
ability concerns, and variability model using the CVL metamodel. CVL provides
an executable engine to generate fully configured products considering the variabil-
ity constraints. That engine seems promising for integrating CVL with development
tools.

2.3.4 Clafer

Clafer (class, feature, reference) is a class modeling language with first-class support
for feature modeling [57]. Clafer mixes constructs from the UML and features mod-
eling worlds. Clafer seems promising for the existing automated reasoning support
for the language.

CHAPTER 2. VARIABILITY MODELS 32

2.4 Summary

This chapter defined and exemplified a variability and configuration model as a fea-
ture model and its corresponding instantiation. Next, we presented and illustrated
FM notations for variability and configuration modeling. We also summarize other
variability and configuration modeling techniques, some of them including validation
tool support.

Chapter 3

Automated analysis of variability
models

Abstract

The manual analysis of large-scale FMs and their configurations are com-
plex and error-prone tasks. A solution approach is to translate them into a logic
representation, apply analysis operations using off-the-shelf reasoning solver
or programming tools, and obtain analysis results. This chapter describes op-
erations for assisting in that Automated Analysis of Feature Model (AAFM)
process. Specifically, this chapter describes the QUICKXPLAIN algorithm for
the detection of preferred minimal conflict, the FASTDIAG algorithm for the
detection of preferred minimal diagnosis, and off-the-shelf solvers to complete
partial product configuration.

3.1 Introduction

The development process of a Variability Intensive System (VIS) considers identify-
ing and representing the system’s components and relationships among those com-
ponents as two core activities. The application and analysis of FMs is a common
approach to perform those analysis tasks. Benavides et al. [4] mention that the
manual analysis of FMs is a time-demanding and error-prone activity and the Au-
tomated Analysis of Feature Models (AAFM) process permits solving those issues.
The AAFM process starts by translating the FM and additional information, such as
global restrictions, into a logical set of constraints. Afterward, queries can proceed
with the translated model using off-the-shelf solver and other tools such as program-
ming solutions, and thus obtaining analysis results [?]. Figure 3.1 illustrates the
AAFM process.

Such as Galindo et al. [?] summarize, six different variability facets exist where
the AAFM is currently applied: i) product configuration and derivation; ii) testing
and evolution; iii) reverse engineering; iv) multi-model variability-analysis; v) vari-
ability modelling, and; vi) variability-intensive systems. The first AAFM application

33

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 34

Figure 3.1: Automated Analysis of Feature Models (AAFM) process.

results in the most traditional usage of automated analysis mechanisms. This thesis
aims to contribute to it.

Developing FM and product configurations without errors or conflicts requires
identifying each conflict and the necessary steps to solve or diagnose them one
by one. Hence, conflict detection and diagnosis are operations needed for getting
conflicts-free models. The completion of a product configuration of FM by hand
also represents an error-prone and time-consuming task. Solutions for those tasks to
work efficiently on large-scale models represent high-value tasks nowadays. AAFM
solutions for the conflict detection, diagnosis, and completion of products already ex-
ist. Next sections describe an existing algorithm for detecting Minimal Conflict Sets
(MCS), an existing algorithm for detecting Minimal Diagnosis (MD), and traditional
approaches to complete product configurations.

3.2 Minimal Conflict Sets (MCS) detection

An MCS of a system represents a minimal set of constraints in conflict. For def-
inition 1 [?], it is necessary to identify the set of constraints B that represents a
consistent background knowledge, and the set of constraints C that is the suspected
subject of a conflict search.

Definition 1 A set AC = B ∪ C = {c1, c2, ..., cn} represents the set of all constraints
in the knowledge base; that is, AC is the union of the consistent knowledge base B
and the suspicious set of constraints subject of conflict search C. Then, a conflict
CS = {ca, cb, ..., cz} is a non-empty and non-consistent subset of C. CS is minimal if

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 35

¬∃ CS ′ such that CS ′ ⊂ CS CS is preferred if the order of its constraints follow a
defined ranking of preferences.

For the FM of Figure 2.2, concerning definition 1, the consistent base knowledge
B is a formal definition of the FM, that is, a logic representation of the set of features
and their relationships. We can detect conflict in the configuration of products for that
model. For the product configuration C = {Debian, texteditor, bash, gui, game, vi,
gedit, openoffice.org-1, gnome, kde, glchess, openoffice.org-1}, the resulting minimal
conflict set is {} because C represents a consistent configuration. For the product con-
figuration C = {Debian, texteditor, bash, gui, game, vi, gedit, openoffice.org-1, kde,
gnuchess, glchess, openoffice.org-1}, the resulting preferred minimal conflict set is
{openoffice.org-1, ¬gnome}}. The next lines describe the QUICKXPLAIN algorithm
for efficiently detecting preferred MCS.

3.2.1 QUICKXPLAIN algorithm

QUICKXPLAIN [20] is an efficient approach to determine a minimal conflict set.
QUICKXPLAIN receives C as the set of suspicious constraints with conflict and B as
the set of consistent constraints of the background knowledge. Then, a conflict does
not exist if B ∪ C is consistent or C is empty. On the other hand, QUICKXPLAIN

proceeds by returning the results of the function QX. QX receives the parameters
C (initially the complete set of constraints with conflict), B (initially the knowledge
base), and Bδ (initially empty) that represents the last items added to B. FunctionQX
follows a divide-and-conquer approach for conflict detection. Hence, Bδ corresponds
to the set of constraints added for reviewing the consistency of the knowledge base,
and C is the set of constraints to continue analyzing if the current B is consistent.
Algorithms 3.1 and 3.2 show the pseudo-code of the functions of QUICKXPLAIN.

Algorithm 3.1 QUICKXPLAIN(C,B) : CS

1: if CONSISTENT(B∪ C) then
2: return(’no conflict’)
3: else if C = ∅ then
4: return(∅)
5: else
6: return(QX(C,B,∅))
7: end if

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 36

Algorithm 3.2 QX(C = {c1..cm},B,Bδ) : CS
1: if Bδ , ∅ and INCONSISTENT(B) then
2: return(∅)
3: end if
4: if C = {cα} then
5: return({cα})
6: end if
7: k = bm2 c
8: Ca← c1...ck;Cb← ck+1...cm;
9: ∆2← QX(Ca,B∪Cb,Cb);

10: ∆1← QX(Cb,B∪∆2,∆2);
11: return(∆1 ∪∆2)

QUICKXPLAIN permits determining one MCS per computation. Felfernig et al.
[2] indicate that we need to update adequately or delete one of the constraints of
an MCS for solving it, and, if the model is non-consistent yet, to apply QUICKX-
PLAIN and repeat the process. When the resulting model is consistent, the updated
constraints represent a diagnosis or solution for the model. Table 3.1 shows the track-
ing steps of a QUICKXPLAIN application for the FM configuration example of Fig-
ure 2.2. Column B represents the set of consistent constraints of the base knowledge
for the Feature Model (FM) definition and column C is the set of selected features.
The final result represents a minimal conflict that we can solve by updating one of its
constraints adequately. In this case, a solution is to update the state of ¬gnome.

3.3 Minimal diagnosis detection

Identifying and solving conflicts one by one is necessary to obtain a conflict-free
model: we need to identify a conflict first, adapt (update or eliminate) constraints of
that conflict for its solution, and repeat this process until no more conflict exists, that
is, until reaching a consistent model. The set of all the adapted constraints for getting
a conflict-free model represents a diagnosis. Definition 2 formally defines the term
diagnosis [?].

Definition 2 A set AC = {c1, c2, ..., cn} represents the set of all constraints in the
problem for diagnosis; that is, AC is the union of the consistent base knowledge
B and the set of constraints subject of conflict search C: AC = B ∪ C. Then, a
diagnosis is a set of constraints ∆ ⊆ C such that (B ∪ C − ∆) results in a consistent
or conflict-free set. ∆ is minimal if ¬∃ ∆′ such that ∆′ ⊂ ∆. A minimal diagnosis is
of minimal cardinality if there does not exist a minimal diagnosis ∆′ such as |∆′ | <
|∆|.

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 37

Step C B Bδ Ca Cb Return

1

{Debian, B ∅ {Debian, {openoffice, {openoffice-1,
texteditor, texteditor, kde, gnuchess, ¬ gnome}
bash, gui, bash, gui, glchess,

game, vi, gedit, game, vi, gedit} openoffice-1,
openoffice, ¬ openoffice-2,

kde, gnuchess, ¬ gnome}
glchess,

openoffice-1,
¬ openoffice-2,
¬ gnome}

2

{Debian, B ∪ {openoffice, ∅
texteditor {kde, gnuchess, kde, gnuchess,
bash, gui, glchess, glchess,

game, vi, gedit} openoffice-1, openoffice-1,
¬ openoffice-2, ¬ openoffice-2,
¬ gnome}, ¬ gnome}

3

{openoffice, B ∅ {openoffice {glchess, {openoffice-1,
kde, gnuchess kde, gnuchess} openoffice-1, ¬ gnome}

glchess, ¬ openoffice-2,
openoffice-1, ¬ gnome}
¬ openoffice-2,
¬ gnome}

4

{openoffice, B ∪ {glchess, ∅
kde, gnuchess} {glchess, openoffice-1,

openoffice-1, ¬ openoffice-2,
¬ openoffice-2, ¬ gnome}
¬ gnome}

5

{glchess, B ∅ {glchess, {¬openoffice-2, {openoffice-1,
openoffice-1, openoffice-1} ¬gnome} ¬gnome}
¬openoffice-2,
¬gnome}

6

{glchess, B ∪ {¬openoffice-2, {glchess} {openoffice-1} {openoffice-1}
openoffice-1} {¬openoffice-2, ¬gnome}

¬gnome}

7

{glchess} B ∪ {openoffice-1} ∅
{¬openoffice-2,
¬gnome,

openoffice-1}

8

{openoffice-1} B ∪ ∅ {openoffice-1}
{¬openoffice-2,
¬gnome}

9
{¬openoffice-2, B ∪ {openoffice-1} {¬openoffice-2} {gnome} {openoffice-1}
¬ gnome} {¬gnome}

10

{¬openoffice-2} B ∪ {¬gnome} ∅
{openoffice-1}

gnome}

11
{¬gnome} B ∪ ∅ {¬gnome}

{openoffice-1}

Table 3.1: QUICKXPLAIN execution tracking on configuration example of
Figure 2.2

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 38

A minimal diagnosis for the FM configuration of Figure 2.2 has to consider so-
lutions for each conflict. Hence, this example contains two diagnosis options. For
getting a conflict-free model, the user has to solve each diagnosis. Cases with multi-
ple diagnosis instances can exist, and determining all the diagnosis can be computa-
tionally an expensive task. Model constraints can be in relevance order for obtaining
preferred diagnosis, then obtaining all the diagnosis to look for the preferred one is
a time-demanding and lost time activity since solving one diagnosis is enough for a
conflict-free model. The next lines describe the FASTDIAG algorithm to determine a
minimal preferred diagnosis.

3.3.0.1 FASTDIAG algorithm

FASTDIAG algorithm permits determining a preferred or leading diagnosis concern-
ing a previously defined relevance order of constraints in the knowledge base. FAST-
DIAG follows the algorithmic structure and reasoning of QUICKXPLAIN for a dif-
ferent purpose, that is, the diagnosis detection without the calculation of MCS in-
stances. Hence, FASTDIAG is based on conflict-independent search strategies [22].
Algorithms 3.3 and 3.4 give the pseudo-code of FASTDIAG functions.

Algorithm 3.3 FASTDIAG(C,AC) : diagnosis ∆

1: if C = ∅ or INCONSISTENT(AC −C) then
2: return(∅)
3: else
4: return(FD(∅,C,AC))
5: end if

Algorithm 3.4 FD(D,C = {c1..cq},AC) : diagnosis ∆

1: if D , ∅ and CONSISTENT(AC) then
2: return(∅)
3: end if
4: if |C| = 1 then
5: return(C)
6: end if
7: k = b q2c
8: Ca← c1...ck; Cb← ck+1...cq;
9: ∆1← FD(Cb,Ca,AC −Cb);

10: ∆2← FD(∆1,Cb,AC −∆1);
11: return(∆1 ∪∆2)

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 39

Step D C AC Ca Cb Return

1

∅ {Debian, B ∪ {Debian, {Debian, {openoffice, {glchess,
texteditor, texteditor, texteditor, kde, gnuchess, ¬ gnome}
bash, gui, bash, gui, bash, gui, glchess,

game, vi, gedit, game, vi, gedit, game, vi, gedit} openoffice-1,
openoffice, openoffice, ¬ openoffice-2,

kde, gnuchess, kde, gnuchess, ¬ gnome}
glchess, glchess,

openoffice-1, openoffice-1,
¬ openoffice-2, ¬ openoffice-2,
¬ gnome} ¬ gnome}

2

{openoffice, {Debian, B ∪ {Debian, ∅
kde, gnuchess, texteditor, texteditor,

glchess, bash, gui, bash, gui,
openoffice-1, game, vi, gedit} game, vi, gedit}
¬ openoffice-2,
¬ gnome}

3

∅ {openoffice, B ∪ {Debian, {openoffice, {glchess, {glchess,
kde, gnuchess, texteditor, kde, gnuchess} openoffice-1, ¬ gnome}

glchess, bash, gui, ¬ openoffice-2,
openoffice-1, game, vi, gedit, ¬ gnome}
¬ openoffice-2, openoffice,
¬ gnome} kde, gnuchess,

glchess,
openoffice-1,
¬ openoffice-2,
¬ gnome}

4

{glchess, {openoffice, B ∪ {Debian, {glchess,
openoffice-1, kde, gnuchess} texteditor, ¬ gnome}
¬ openoffice-2, bash, gui,
¬ gnome} game, vi, gedit,

openoffice,
kde, gnuchess}

5

∅ {glchess, B ∪ {Debian, {glchess, {¬ openoffice-2, {glchess,
openoffice-1, texteditor, openoffice-1} ¬ gnome} ¬ gnome}
¬ openoffice-2, bash, gui,
¬ gnome} game, vi, gedit,

openoffice,
kde, gnuchess,

glchess,
openoffice-1,
¬ openoffice-2,
¬ gnome}

6

{¬ openoffice-2, {glchess, B ∪ {Debian, {glchess} {openoffice-1} {glchess,
¬ gnome} openoffice-1} texteditor, ¬ gnome}

bash, gui,
game, vi, gedit,

openoffice,
kde, gnuchess,

glchess,
openoffice-1}

7

{openoffice-1} {glchess} B ∪ {Debian, {glchess}
texteditor,
bash, gui,

game, vi, gedit,
openoffice,

kde, gnuchess,
glchess}

8

{glchess} {openoffice-1} B ∪ {Debian, ∅
texteditor,
bash, gui,

game, vi, gedit,
openoffice,

kde, gnuchess,
openoffice-1}

Table 3.2: Tracking of the FASTDIAG execution of configuration example of
Figure 2.2 (part 1)

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 40

Step D C AC Ca Cb Return

8

{glchess} {openoffice-1} B ∪ {Debian, ∅
texteditor,
bash, gui,

game, vi, gedit,
openoffice,

kde, gnuchess,
openoffice-1}

9

{glchess} {¬ openoffice-2, B ∪ {Debian, {¬ openoffice-2} {¬ gnome} {¬ gnome}
¬ gnome} texteditor,

bash, gui,
game, vi, gedit,

openoffice,
kde, gnuchess,
openoffice-1,
¬ openoffice-2,
¬ gnome}

10

{¬ gnome} {¬ openoffice-2} B ∪ {Debian, ∅
texteditor,
bash, gui,

game, vi, gedit,
openoffice,

kde, gnuchess,
openoffice-1,
¬ openoffice-2}

11

∅ {¬ gnome} B ∪ {Debian, {¬ gnome}
texteditor,
bash, gui,

game, vi, gedit,
openoffice,

kde, gnuchess,
openoffice-1,
¬ openoffice-2,
¬gnome}

Table 3.3: Tracking of the FASTDIAG execution of configuration example of
Figure 2.2 (part 2)

Assuming that conflicts to diagnosis exist, If the conflict set C is non-empty, and
AC without C is consistent, algorithm FASTDIAG calls and waits for the recursive
results algorithm FD. FD first reviews the consistency ofAC as a source of diagnosis.
Because always AC contains C and does not contain D, initially S is the constraints
set with conflicts and D is empty, when D is not empty, and AC is consistent D is
the source of conflict. When that base case is not accomplished, either because D
is empty (such as at the beginning) or AC is consistent (this is only possible after
removing elements from AC −D represents the last removed elements from AC),
then AC is still in conflict, and C is a source of conflict. Then, FD reviews the
size of C since if it were minimal (size 1), then C is the diagnosis. If C is not of
minimal size, FD proceeds to partition C in the sets C1 and C2, of which the last
one corresponds to the most preferred partition. Afterwards, FD calls FD over C2,
C1 and AC −C2 to review if C2 is the diagnosis source, and if not so, to continue
reviewing C1 with that goal. Tables 3.2 and 3.3 show the tracking

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 41

3.4 Product completion

The completion of partial configurations consist of finding the non-selected com-
ponents necessary to update that permit evolving the partial setting into a complete
product configuration. In FM configurations, each feature is decided to be either
present or absent in the resulting products, whereas in partial configurations, some
features are undecided. The completion of partial configurations is a non-trivial and
computationally expensive task mainly for the FM constraints [58], a process that is
usually computationally more expensive in large-scale FMs. Product configurations
can result in misconfigurations (i.e., non-valid configurations) which can impact on
the system availability [59]. Unavailability of the Facebook platform [60], service-
level problems of Google [61], and invalid operation of Hadoop clusters [62] are
known misconfiguration examples.

An usual and efficient solution for the completion of partial products is the appli-
cation of reasoning tools such as CSP and SAT solvers for obtaining a set of neces-
sary features for the completion of the partial configuration. Those solutions can be
minimal, but they not always represent the preferred configuration [63].

Figure 3.2 illustrates a conflict-free partial product and features for a minimal
completion of the FM of Figure 2.2. The partial configuration presents the selec-
tion of four features, {Debian, texteditor, bash, gui} (features in background color
grey). Given the rest of the model’s features (features in background color white, and
features in background color green), features in background color green represent a
preferred minimal completion; that is, the set of features necessary for obtaining a
preferred and minimal completion of the partial configuration. That completion per
default takes the typographic order of each non-selected feature as the order of pref-
erence.

texteditor

glchessvi

gui

Mandatory

Optional

Alternative

Or

Requires

Excludes

SelectedNon-selected For completion

openoffice.org-1.1

openoffice.org-1

openoffice.org-1.2

kde gnuchess

game

Debian

bash

gedit gnome

Figure 3.2: Example of a partial product and features for completion in a Debian
derivative example.

CHAPTER 3. AUTOMATED ANALYSIS OF VARIABILITY MODELS 42

3.5 Summary

This chapter described AAFM solutions for assisting the production process of conflict-
free models. QUICKXPLAIN, FASTDIAG, and the used of solvers for the completion
of partial product are efficient algorithm and tool solutions for identifying MCS, min-
imal diagnosis and the completion of partial products. The computing efficiency of
the first two solution are the base for the contributions of this thesis.

Part III

Our contributions

43

Chapter 4

A review of current AAFM
solutions for minimal conflict,
diagnosis, and product completion

Abstract

Kang et al. defined Feature Models (FMs) 30 years ago that are useful tools
for modeling Variability Intensive Systems (VIS). The Automated Analysis of
Feature Model (AAFM) is a thriving, motivating, and active research area. In
2010, Benavides et al. published a survey about the first 20 years of AAFM.
This chapter reviews the AAFM solutions for conflict detection, diagnosis, and
product completion in FMs from 2010 to 2019. We highlight that the comput-
ing performance and approaches of existing solutions to work on large-scale
and high-variability FM and configurations are real research opportunities for
developing new and more efficient solutions for that purpose.

4.1 Introduction

Variability is the ability of a system for being extended, changed, customized, or
configured for using it in specific contexts [64]. Variability Intensive Systems (VIS)
can tailor or adapt to particular needs in different domains [65]. For example, VIS
can easily update or expand their features, be aware of mobile applications’ location
and resource, and fault tolerance and ease to recover of critical embedded systems
[66]. Variability has become a key in software systems for the steadily increasing de-
mand for highly customizable products [67]. In Software Product Line Engineering
(SPLE), variability models such as FMs are primary artifacts for the SPLs success
[5, 68]. Variability modeling specifies all significant and legal combinations of fea-
tures in a software product line [69].

The manual analysis of variability models is a complicated, tedious, and error-
prone task, and the Automated Analysis of Variability Models (AAVM) appears to
face that issue. For example, Ross et al. [68] present the tool FAMA-OVM for the

44

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 45

automated analysis of Orthogonal Variability Models (OVM). Likewise, the works
of [70] and [71] describe the structure, components, and results improvements in ap-
plying a process for the AAVM of OVM. In the FM context, the Automated Analysis
of Feature Models (AAFM) is a current and active research area. Such as Benavides
et al. [72] indicated, the AAFM and product configurations have a lot of potential
synergies because, in the product reconfiguration in dynamic SPLs, both concepts
overlap. An FM configuration describes a valid product if the selection of features
satisfies all the FM constraints [40].

Inconsistencies in models imply the presence of errors [73] [74]. The main chal-
lenge of fixing inconsistencies in variability models is to fix them for all configura-
tions [69]. The consistency of an FM means that it remains well-formed (syntac-
tic consistency) and defines at least one valid product (semantic consistency) [75].
Checking and resolving FM inconsistencies are essential tasks during the product
line evolution [76]. Automated tools for inconsistency checking of FM and configu-
ration are critical activities for successful SPLs [77]. A traditional AAFM approach
is to convert the FM into logic formulas supportable by reasoning solvers such as
CSP and SAT solvers, to define and execute analysis tasks regarding the model infor-
mation and reasoning analysis on those solvers [78]. This chapter focuses on AAFM
operations for the product configuration.

Benavides et al. [4] in 2010 presented a Systematic Literature Review (SLR)
about FM and AAFM operations. Different AAFM proposals exist with the use of
various formal approaches such as CSP, SAT, and BDD solvers [5]. The next lines
synthesize state of the art regarding AAFM operations for minimal conflict detection,
minimal diagnosis, and the minimal completion of partial product configuration from
2010 to August of 2019. This chapter has the following organization: first, we present
the primary method and objectives of this review. Then, we summarize the main
discovered results.

4.2 Systematic Literature Review (SLR)

A Systematic Literature Review (SLR) is a secondary research study based on pre-
vious (primary) studies to answer defined Research Questions (RQs) [79]. An SLR
identifies, evaluates, integrates, and synthesizes evidence and results of relevant pri-
mary studies to answer a defined set of RQs, and to analyze possible new results
[80, 81]. An SLR traditionally consists of the following phases (Figure 4.1) [82].

i) Research Questions: After defining a topic of research, the first step of an SLR
is to determine the Research Questions (RQs), the main questions to answer in the

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 46

Figure 4.1: Steps of a traditional SLR process

SLR process.
ii) Search Process: The search process presents the sources of search and key-

words to select primary studies.
iii) Inclusion/Exclusion Criteria: The next step is to establish inclusion/exclusion

criteria in the search process and quality criteria for the primary articles.
iv) Data Extraction & Quality Assessment: During data extraction, the informa-

tion is extracted, collected, and organized for its evaluation and final results.

4.3 Review process

This SLR aims to know details about existing AAFM solutions for conflict detec-
tion, diagnosis detection, and product completion in FMs from 2010 to December of
2019. We want to know the main focus, implementation approaches, execution re-
quirements, and computing performance of existing AAFM solutions for those pur-
poses. Then, we will classify existing options, their scenarios of use, along with their
benefits and issues.

4.3.1 Definition of research questions

The RQs are built based on the PICO (Population, Intervention, Comparison, Out-
come) strategy [83] to derive search strings applicable to digital libraries. In that
context, Population corresponds to FMs; Intervention represents a solution for the
conflict detection, diagnosis, or product configuration; the Comparison is blank; the
Outcomes correspond to the found research from 2010 to December of 2019. The
next lines define RQs and search strings based on the PICO approach.

• RQ1: What are the automated solutions for conflict detection in FMs from
2010 to December of 2019? Following the process described by [81], we de-
fined the next sub-questions.

i. What conflicts do these solutions focus on?

ii. Are those solutions new or extensions of existing operations?

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 47

iii. What are the computing approaches and functioning requirements of those
solutions? Do they differ in their base solutions?

iv. Are those solutions able to work on large-scale FM instances?

v. What is the computing performance and degree of improvement or deteri-
oration of those solutions regarding their base solutions?

• RQ2: What are the automated solutions for diagnosis in FM instances from
2010 to December of 2019? Following the process described by [81], this
question inspires the next sub-questions.

i. What conflict do these solutions focus on?

ii. Are those solutions new or extensions of existing operations?

iii. What are the computing approaches and functioning requirements of those
solutions? Do they differ in their base solutions?

iv. Are those solutions able to work on large-scale FM instances?

v. What is the computing performance and degree of improvement/deterio-
ration of those solutions regarding their base ones?

• RQ3: What are the automated solutions for the completion of product configu-
ration in FM instances from 2010 to December of 2019? Following the process
described by [81], this question inspires the next sub-questions.

i. Are those solutions new or extensions of existing operations?

ii. What are the computing approaches and functioning requirements of those
solutions? Do they differ in their base solutions?

iii. Are those solutions able to work on large-scale FM instances?

iv. What is the computing performance and degree of improvement/deterio-
ration of those solutions regarding their base ones?

4.3.2 Source material

We follow an automated selection method to look for papers in Google scholar [84],
Scopus [85], and WebOfKnowledge [86]. We used the next key-phrase to look for
research publications in those databases.

• ({[f | F]eature[s |]} {[m | M]odel[s |]} AND
[
{[a | A]utomated} OR

{[a | A]utomatic}
]
AND

(
{[a | A]nomal[y | ies]} OR [c | C]onf lict[s |]}

OR ({[d | D]iagnosis}) OR ({[c | C]ompletion}
)
AND {P ubY ear >= 2010}

AND {P ubY ear <= 2019} AND {Language in(Spanish | English)}

Examples of valid search string for our SLR are:

• Feature Models Automated Anomaly

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 48

• Feature Models automated conflicts

• Feature models Automated Diagnosis

• Feature Models automatic diagnosis

• Feature models Automated Completion

• Feature Models automatic completion

We accomplish a systematic review using a valid search string in the title, ab-
stract, or keywords set for each analyzed paper. PubYear refers to the publication
date of the article. Specifically, we looked for papers from 2010 to December of
2019, the search date, both years inclusive. Scopus and WebOfKnowlede libraries
support search string accordingly to our definition. Regarding the language, we look
for papers written in English only. Google scholar permits looking for defined terms
either in the title or somewhere in the document. In Google Scholar, we looked for
results year-per-year from 2010. We used the primary 20 results per-year for the
high-quantity of results. We obtained 200 results from Google Scholar, 43 results in
Scopus, and 23 results in WebOfKnowledge. Hence, we received 266 results in our
automated search. As a first filter step, we discarded duplicated work for obtaining
223 results. Second, after rejecting works non-available and non-related with the re-
search topic, we obtained 120 works. According to the Google Scholar database data,
there was only one non-available work from the SPLC 2010 proceedings. Still, no-
body presented that article in the SPLC 2010 conference, and it did not appear in its
proceeding. We contacted the paper’s authors, who reported that the paper appeared
in another conference using a different title. We decided to discard that work. Third,
we applied a filter to reject works non-related to the research questions. Finally, we
obtain 51 primary studies in the scope of this review. The next section describes the
last inclusion criteria.

4.3.3 Inclusion criteria

On the primary results without duplication and non-available data, we applied a gen-
eral inclusion filter to consider only articles of the AAFM area. We analyzed the title,
keywords, and abstract of each found paper to positively support at least one of the
following Inclusion Criteria (IC).

4.3.4 Results

Applying inclusion criteria, we obtain 51 research works. Tables 4.2, 4.3, and 4.4
the resulting papers ordered alphabetically by the author’s name and ascendingly
by the publication year. Values of column FM Kind are 1 for FODA FMs, 2 for
Cardinality-based FMs, 3 for Extended FMs, and 4 for all these options. We use the
yellow background color to mark the accomplished options. The column Large FM
is yellow for those researches that work with FM of 5000 features or more.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 49

Inclusion Criteria
IC-1: Does this paper presents an AAFM solution for the conflict de-

tection?
IC-2: Does this paper present an AAFM solution for diagnosis?
IC-3: Does this paper present an AAFM solution for the product com-

pletion?

Table 4.1: Quick review research questions.

Table 4.5 presents the number of articles concerning their applied process and
main goal. We group the papers in those with use tools only and those which use
tools and solvers. This table presents results for the conflict and diagnosis detection
only since we do not obtain results for the completion of product configuration in
FMs. In the next lines, we answer the RQs along with each sub-question.

4.3.5 RQ1: What are the automated solutions for detecting conflicts in
feature models from 2010 to 2019?

Table 4.5 shows that a no-normal tendency exists from 2010 to December of 2019
concerning the research work for the conflict detection in FMs. In the next lines, we
answer each sub-question of RQ1.

• Sub-question 1: We classify the obtained papers regarding their main focus
in the next classes: i) Non-Consistent Feature Model (NC FM); ii) Non-
Consistent Configuration (NC Conf); iii) Non-Consistent Feature Model and
Configuration (NC FM / Conf); iv) Mutation or Evolution of Feature Model
(Mut / Evol); and v) Specific Fault (Spec Fault) such as void FM, empty
FM, dead feature, False optional, partial dependencies, orphan features). The
higher number of work focus on the conflict detection on specific FM incon-
sistencies. Figure 4.2 depicts a summary of the obtained papers for the conflict
detection in FMs.

• Sub-question 2: almost all the articles present new solution proposals for con-
flict detection in FM.

• Sub-question 3: Table 4.5 resumes the following results for articles which fo-
cused on conflict detection only:

– seven articles in 2010: four articles using tools, and three articles using
tools and solvers.

– five articles in 2011: three articles using tools, and two articles using both
tools and solvers.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 50

Source Main Goal Solution

Year Author

Jo
ur

na
l

C
on

fe
re

nc
e

W
or

ks
ho

p

C
on

fli
ct

D
ia

gn
os

is

C
om

pl
et

io
n

Focused Anomaly To
ol

So
lv

er

FMs
Kind

Large
FMs

1 2013 Acher et al.
[12]

X X Conflict in product /
model

X X 1

2 2014 Achour et al.
[87]

X X Conflict in product /
model

X 1

3 2014 Afzal et al.
[88]

X X Wrong cardinality,
exclusion of

mandatory features,
requires of excluded

features

X 3

4 2016 Ananieva et
al. [89]

X X Partial FM
dependencies

X X 1

5 2017 Arcaini et al.
[90]

X X Dead feature,
redundant

constraint, false
optional

X X 1

6 2015 Arcaini et al.
[91]

X X Faults for mutation X X 1

7 2016 Arcaini et al.
[92]

X X Conformance faults X X 1

8 2016 Asadi et al.
[93]

X X Potential
inconsistency,

strong inconsistencs

X X 1

9 2014 Asadi et al.
[94]

X X Potential
inconsistency,

strong
inconsistency,
configuration
inconsistency

X X 1

10 2014 Barreirros &
Moreria [95]

X X Product
configuration

inconsistencies

X X 1

11 2018 Bhushan et
al. [96]

X X Conflicts in the FM
definition

X X 1

12 2017 Bhushan et
al. [97]

X X Conflicts in the FM
definition

X X 1

13 2010 Bin Abid
[98]

X X Consistency
checking in the

product derivation

X 1

14 2011 Choi [77] X X Dead features, void
FM, validity of

product
configuration

X X 1

15 2015 Da Silva
Costa et al.

[99]

X X False optional, dead
features

X X 3

16 2014 Elfaki et al.
[64]

X X False optional,
wrong cardinality

X 2

17 2012 Felfernig et
al. [22]

X X Diagnosis X X 1

18 2013 Felfernig et
al. [21]

X X Diagnosis X X 1

19 2015 Felfernig et
al. [100]

X X Anytime diagnosis X X 1

20 2018 Felfernig et
al. [101]

X X Anytime diagnosis X X 1

2020 Vidal-Silva
PhD. Thesis

X X X X X Minimal conflicts
set, Diagnosis, and
minimal preferred

completion of
product

configuration by
diagnosis

X X 1 X

Table 4.2: List of articles ordered by the authors’ last name from A to F in the SLR
vs. our thesis work.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 51

Source Main Goal Solution

Year Author

Jo
ur

na
l

C
on

fe
re

nc
e

W
or

ks
ho

p

C
on

fli
ct

D
ia

gn
os

is

C
om

pl
et

io
n

Focused Anomaly To
ol

So
lv

er

FMs
Kind

Large
FMs

21 2010 Galindo et
al. [16]

X X Discovering
inconsistencies

between packages

X X 1

22 2011 Gheyi et al.
[102]

X X Soundness of FM
refactoring

X 1

23 2012 Guo et al.
[75]

X X Consistent
evolution

X 1 X

24 2013 Henard et al.
[78]

X X Fixing and
re-engineering a

FM

X X 1

25 2019 Hinterreiter
et al. [76]

X X Potential
inconsistencies

X 1

26 2016 Javed et al.
[103]

X X Void feature model,
inconsistent product

configuration

X 1

27 2015 Khtira et al.
[41]

X X Duplication in
evolving FM

X 1

28 2015 Khtira et al.
[104]

X X Duplication in
evolving FM

X 1

29 2016 Kowal et al.
[67]

X X Dead feature,
redundancies, false

optional

X X 1

30 2015 Lesta et al.
[105]

X X Void FM, dead
feature,

false-optional, dead
attribute,

false-optional
attribute values

X X 3

31 2010 Lisboa et al.
[106]

X X Orphan features,
void FMs

X 1

32 2011 Lisboa et al.
[107]

X X Redundancies,
configuration

anomalies,
inconsistencies

X 1

33 2011 López-
Herrejon &
Egyed [108]

X X To effectively
identify features to
fix for guaranteeing
consistent product
line configurations

X X 1

34 2012 López-
Herrejon &
Egyed [69]

X X Product
configuration

X X 1

35 2012 Marinho et
al. [109]

X X False optional, dead
feature, wrong

cardinality

X 3

36 2017 Mauro et al.
[110]

X X X Void FM, dead
features

X X 1

37 2011 Mazo et al.
[35]

X X Conformance FM &
product checking

X 3 X

2020 Vidal-Silva
PhD. Thesis

X X X X X Minimal conflicts
set, diagnosis, and
minimal preferred

completion of
configuration by

diagnosis

X X 1 X

Table 4.3: List of articles ordered by the authors’ last name from G to M in the SLR
vs. our thesis work.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 52

Source Main Goal Solution

Year Author

Jo
ur

na
l

C
on

fe
re

nc
e

W
or

ks
ho

p

C
on

fli
ct

D
ia

gn
os

is

C
om

pl
et

io
n

Focused Anomaly To
ol

So
lv

er

FMs
Kind

Large
FMs

38 2010 Nakajima
[111]

X X FM propositional
interpretation and

algorithm for
locating bugs

X X 1

39 2010 Nakajima
[112]

X X Unsatisfiable
portion

(components) of the
unsatisfiable FM

X X 1

40 2018 Nieke et al.
[40]

X X X Anomalies in the
FM evolution

X X 1 X

41 2011 Noorian et
al. [113]

X X X Detecting and fixing
inconsistencies

X X 1

41 2011 Noorian et
al. [113]

X X X Detecting and fixing
inconsistencies

X X 1

42 2014 Quinton et
al. [44]

X X Range
inconsistencies

X X 1 X

43 2012 Ripon et al.
[114]

X X Analysis and
verification of FMs

X 1

44 2014 Ripon et al.
[115]

X X FM consistency
check

X X 1

45 2016 Schnabel et
al. [49]

X X Bound & gap of
cardinality-based
FM configuration

X 2

46 2019 Vidal [116] X X FM configuration X X 1
47 2010 Wang et al.

[117]
X X To tolerate

inconsistencies in
feature models

X X 1

48 2014 Wang et al.
[118]

X X X Detecting and fixing
inconsistencies

X X 1

49 2016 Weckesser et
al. [37]

X X Analysis of bound
and interval gaps

X X 2 X

50 2010 White et al.
[119]

X X Product
configuration

X X 1 X

51 2010 Zhang et al.
[120]

X X Conflicts &
anomalies

X X 1

2020 Vidal-Silva
PhD. Thesis

X X X X X Minimal conflicts
set, diagnosis, and
minimal preferred

completion of
configuration by

diagnosis

X X 1 X

Table 4.4: List of articles ordered by the authors’ last name from N to Z in the SLR
vs. our thesis work.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 53

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Inclusion
Criteria (IC)

IC-1

Tools 4 3 2 0 3 2 2 0 0 1

Tools & Solvers 3 2 0 2 4 3 4 2 1 1

Papers 7 5 2 2 7 5 6 2 1 2

IC-2

Tools 0 0 1 0 0 0 0 0 0 0

Tools & Solvers 0 1 2 1 0 1 1 0 1 0

Papers 0 1 3 1 0 1 1 0 1 0

IC-1 & IC-2

Tools 0 0 0 0 0 0 0 0 0 0

Tools & Solvers 2 0 0 0 0 0 0 1 1 0

Papers 2 0 0 0 0 0 0 1 1 0

Papers
Tools 4 3 3 0 3 2 2 0 0 1

Tools & Solvers 5 3 2 3 4 4 5 3 3 1

Table 4.5: Filtered articles classified by year and way for reaching their main goal.

Figure 4.2: Summary of reviewed papers for the conflict detection in FMs from
2010 to 2019.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 54

– two articles in 2012: both articles using tools.

– two articles in 2013: both articles using tools and solvers.

– seven articles in 2014: three articles using tools, and four articles using
tools and solvers.

– five articles in 2015: two articles using tools, and three articles using
tools and solvers.

– six articles in 2016: two articles using tools, and four articles using tools
and solvers.

– two articles in 2017 using tools and solvers.

– one article in 2018 using tools and solvers.

– two articles in 2019: 1 article using tools, and 1 article using tools and
solvers.

• Sub-question 4: only 6 articles present results on the conflict detection of large-
scale FMs.

• Sub-question 5: all the reviewed solutions present new or similar performance
results concerning their base solutions; that is, those works that are based in
previous works are applied to new data sets, and their results preserve their
base ones.

4.3.6 RQ2: What are the automated solutions for diagnosis in feature
models from 2010 to 2019?

Table 4.5 shows that a no-normal tendency exists from 2010 to December of 2019
concerning the research work for diagnosis detection in FMs. In the next lines, we
answer each sub-question of RQ2.

• Sub-question 1: Such as for sub-question 1 of RQ1, we classify the obtained
papers regarding their main focus in the next classes: i) Non-Consistent Fea-
ture Model (NC FM); ii) Non-Consistent Configuration (NC Conf); iii) Non-
Consistent Feature Model and Configuration (NC FM / Conf); iv) Mutation or
Evolution of Feature Model (Mut / Evol); and v) Specific Fault (Spec Fault)
such as void FM, empty FM, dead feature, False optional, partial dependen-
cies, and orphan features. We appreciate that the number of papers to diagno-
sis detection in FM is highly lesser than the number of papers for the conflict
detection in FM. Figure 4.3 summarises a classification of the obtained papers
for diagnosis detection in FMs.

• Sub-question 2: Almost all the articles present new solution proposals. The
work of Felfernig et al. [22] proposes FastDiag and [21] present its applica-
tion for the FM analysis. The work of [100] presents FlexDiag, base works
for [101]. Likewise, Vidal [116] highlight efficient results of FASTDIAG and

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 55

Figure 4.3: Resume of published papers for diagnosis in FMs from 2010 to 2019.

FLEXDIAG solutions. The work of [108] focuses on identifying features nec-
essary to fix for getting valid product configurations. Other selected articles
present automatic solutions, and then they require a diagnosis process.

• Sub-question 3: Table 4.5 resumes the following results for articles which fo-
cused on diagnosis detection only:

– one article in 2011 using tools and solvers.

– three articles in 2012: one article using tools, and two articles using tools
and solvers.

– one article in 2013 using tools and solvers.

– one article in 2015 using tools and solvers.

– one article in 2016 using tools and solvers.

– one article in 2018 using tools and solvers.

• Sub-question 4: no article presents results on large-scale FMs, that is, FMs
with 5000 or more features.

• Sub-question 5: all the reviewed solutions present new or similar performance
results concerning their base solutions; that is, those works based in previous
works are applied to new data sets, and their results preserve their base ones.

Figure 4.4 depicts a summary of the regarding the papers for this study that focus
in conflict and diagnosis detection.

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 56

Figure 4.4: Summary of published papers for the conflict detection, diagnosis and
product completion from 2010 to 2019.

4.3.7 RQ3: What are the automated solutions for the completion of
products in feature models from 2010 to 2019?

Concerning the completion of partial products, we did not find research works in the
search process. The work of Ananieva et al. [89] focus on the partial feature model,
but they did not consider the completion of those models.

4.4 Discussion

The surveyed research points out that AUTOMATED ANALYSIS OF FEATURE MODEL

is a research that is getting mature. Almost half of the obtained papers appeared in
journals. Concretely, journals published 24 of the 51 reviewed articles, that is, a
47,1%; and 27 articles of 51 were presented in conferences and workshops, that is,
52,9%.

4.5 Summary

In this review, we pinpointed the main trends and current state in the AAFM area
regarding conflict, diagnosis detection, and product completion. This review will
guide us for defining contributions. We also discovered new forums to publish our
research and to look for related work.

We discovered that there is still work to get done in the AAFM process for the
conflict and diagnosis detection and product completion operations. We did not find

CHAPTER 4. A REVIEW OF CURRENT AAFM SOLUTIONS FOR MINIMAL
CONFLICT, DIAGNOSIS, AND PRODUCT COMPLETION 57

work concerning speculative programming in AAFM operations, and neither for the
product completion exists.

Chapter 5

Parallel QUICKXPLAIN: efficient
conflict detection in AAFM

Abstract

Conflict detection is used in many scenarios ranging from interactive deci-
sion making to the diagnosis of potentially faulty components or models (such
as feature models or configuration knowledge bases). Conflict detection is
about identifying a set of (minimal) restrictions that are causing a conflict. The
efficient identification of conflicts is an important task. Junker’s QUICKX-
PLAIN is a divide-and-conquer based algorithm for the determination of pre-
ferred minimal conflicts. Especially in large-scale models, conflict detection is
often a challenge in terms of limited runtime performance. In this chapter, we
present a novel approach based on speculative programming for minimal con-
flict detection. We present a parallelization of QUICKXPLAIN that improves
runtime performance, specifically in large–scale models. We evaluate our ap-
proach empirically using synthesized feature models and configurations of dif-
ferent size obtaining a significant gain in performance. Our results open the
door for new approaches leveraging speculative programming in the automated
analysis of conflicting models.†

†Part of this chapter is published in the proceedings of 25th International Symposium on Method-
ologies for Intelligent Systems ISMIS 2020 [25]. An extended version of it is under review in the
Journal of Intelligent Information Systems to appear in 2021. We have the agreement of all the authors
to include the corresponding text as part of this manuscript.

58

Chapter 6

Parallel FastDiag: efficient
minimal diagnosis in AAFM

Abstract

Diagnosis detection is used in many scenarios ranging from interactive de-
cision making to the diagnosis of faulty components or models (such as prod-
uct or feature model). Diagnosis detection is about identifying a set of (mini-
mal) restrictions that are responsible for the unintended behavior. The efficient
identification of diagnosis is an important task. Felfernig’s FASTDIAG is a
divide-and-conquer based algorithm for the determination of preferred minimal
diagnosis. Especially in large-scale models, diagnosis detection is often a chal-
lenge in terms of limited runtime performance. This chapter presents a novel
approach based on speculative programming for the preferred minimal diagno-
sis detection. We present a parallelization of FASTDIAG that improves runtime
performance, specifically in large–scale models. We evaluate our approach em-
pirically using synthesized feature models and configurations of different size
obtaining a significant performance improvement. Our results open the door for
new approaches leveraging speculative programming in the automated analysis
of conflicting models.

6.1 Introduction

Diagnosis detection is used in many applications of constraint-based representations
(and beyond). Examples thereof are feature modeling [121] and knowledge-based
configuration [122], where users define requirements (feature selections) and diag-
nosis detection is in charge of figuring out the minimal sets of requirements necessary
to change in order to restore consistency (if the underlying reasoning engine is not
able to identify a solution). Further example applications of diagnosis detection range
from recommender systems [123, 124], model-based diagnosis of hardware designs
[125], the analysis of spreadsheets [126], to the analysis of feature models [4]. Espe-
cially in interactive settings, there is often a need of identifying preferred diagnosis
in a short time [100, 101, 127], for example, with users of a car configurator or a

59

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 60

camera recommender who have strict preferences regarding the upper price limit, the
response times should be below one second for those users.

Diagnosis detection helps to figure out set of constraints in the knowledge base
that are responsible for inconsistent behavior. FASTDIAG is such a diagnosis detec-
tion algorithm that works for constraint-based representations, description logics, and
SAT solvers [22]. The algorithm is based on a divide-and-conquer approach where
consistency analysis operations works on partitions of a constraint set S = {s1..sn},
Sa = {s1..sk} and Sb = {sk+1..sn}, assuming for example, k = bn2 c. If Sb is inconsistent,
the consideration set S can be reduced by half since Sa must not be analyzed anymore
because at least one source of diagnosis exists in Sb. Based on a lexicographical con-
straint ordering, FASTDIAG determines one preferred minimal diagnosis at a time.

A diagnosis solution permits determining a conflict resolution, that is, to find a set
of constraints that permit resolving all existing conflicts in a model (or a knowledge
base). In this context, the minimality (irreducability) of diagnosis sets is important
since that property allows to resolve all conflicts by simply updating the state (or
deleting) of each elements in the diagnosis set. The elements to update to restore
global consistency are denoted as hitting set (a diagnosis) and can also be determined
on the basis of a hitting set directed acyclic graph [128].

Although FASTDIAG is an efficient solution in many scenarios, there are cases
where computing preferred diagnosis is a challenging task, for example, when it
comes to the analysis of large-scale feature models [129, 130, 131, 132, 133, 134].
In this chapter, we present a parallelized version of FASTDIAG based on the idea that
some expensive steps of the algorithm can be previously calculated following prin-
ciples of speculative programming [135]. Although the speculative programming
principles are not new, with the appearance of modern CPUs with parallel computa-
tion capabilities, some speculative approaches are practically possible nowadays.

The major contributions of this chapter are the following. First, we show how
to parallelize diagnosis detection on the basis of a flexible look-ahead strategy that
scales depending on the number of available computing cores. Second, we show
how to integrate the proposed approach with the standard FASTDIAG algorithm for
using it in interactive constraint-based applications. Third, we show the applicability
and improvements of our approach regarding the performance evaluations to work
on large-scale feature model and configurations.

We evaluate our speculative programming version of FASTDIAG in the context
of inconsistent feature model configurations of randomly generated large-scale fea-
ture model and configurations using a generation tool [136]. With our approach,
we improve the performance of diagnosis detection tasks scaling with the available
CPU cores, making it possible to efficiently solve more complex diagnosis detection
problems. The obtained results show a significant gain in performance and general
scalability of parallelized FASTDIAG with the number of available CPU cores.

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 61

6.2 Related work

Solution Search. Such as previous chapter described, an increasing need exists to
further improve the performance of solution search in the increasing size and com-
plexity of knowledge bases [129, 131, 132]. Parallelizations of algorithms in these
scenarios have been implemented in different contexts. Approaches to parallelization
have, for example, been proposed on the reasoning level [129] where the determina-
tion of a solution is based on the identification of subproblems that can be solved to
some degree independently by the available cores. Due to today’s multi-core CPU
architectures, such parallelizations become increasingly popular in order to be able
to better exploit the offered computing resources and more efficiently obtain results.

Conflict Detection. The efficient determination of minimal conflicts is a core re-
quirement in many application settings [137]. Especially in the context of constraint-
based reasoning scenarios, the identification of minimal conflict sets is frequently
based on [20]. In contrast to sequential approaches [138], QUICKXPLAIN follows
a divide-and-conquer based strategy that helps to significantly reduce the number of
needed consistency checks. Although the algorithm is often used to support users in
interactive settings, the guarantee of efficient runtimes is still often quite challenging.
Conflict detection such as QUICKXPLAIN and PARALLELQUICKXPLAIN give pre-
condition for conflict resolution (performed on the basis of model-based diagnosis
[128, 139]). Based on the principles of speculative programming [135], we propose
an algorithm that enables a parallelized conflict-independent diagnosis and thus helps
to significantly improve the runtime performance of conflict resolution processes.

Conflict Resolution. Conflict resolution can be used to identify sets of (minimal)
diagnoses [128, 133, 139, 140]. For instance, [137, 141] propose an approach to
parallelize the computation of hitting sets (diagnoses). In their approach, Reiter’s
approach to model-based diagnosis is parallelized by a level-wise expansion of a
breadth-first search tree with the goal of computing minimal (cardinality) diagnoses.
On each level, different (minimal) conflict sets are determined in parallel, however,
the determination of individual conflict sets is still a sequential process (based on
QUICKXPLAIN [20]). In an extended version, [141] replace the level-wise expansion
with a full parallelization of hitting set determination with additional mechanisms to
ensure the minimality of proposed diagnoses. In contrast to the work presented in
those papers, the work of [137] focus on the parallelization of the conflict resolu-
tion (diagnosis) step but do not offer solutions to increase the efficiency of conflict
detection.

Model Analysis Operations. The Automated Analysis of Feature Models (AAFM)
[142] is a computer-aided process that (1) translates feature model constraints into
a logical representation (e.g., SAT or CSP), (2) applies some defined operations by
the use of off-the-shelf solvers or specific programming solutions, and (3) provides
feedback on specific model properties as a process result. Feature model diagnosis is
an AAFM task for resolving conflicts in feature models in order to be able to come
up with an error-free feature model or configuration [21]. For instance, if a user
wants to select and deselect a set of features but some selections and deselections

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 62

are incompatible, diagnosis (conflict resolution) would suggest which features have
to be selected/deselected from the original configuration to fix the problem and con-
vert the original inconsistent configuration into a valid one [119]. Further example
applications of model-based diagnosis in the context of feature model analysis are
the identification of minimal sets of constraints responsible for the existence of dead
features in a feature model or the identification of minimal sets of constraints that
responsible for a void feature model.

6.3 Calculating minimal diagnosis

In the remainder of this chapter, we introduce our approach to parallelized diagnosis
detection on the basis of constraint-based knowledge representations [143]. First, we
provide some basic definitions and examples to understand the approach.

Definition 3 A Configuration Tasks can be defined as a Constraint Satisfaction Prob-
lem (CSP) is a triple (V,D,C) with a set of variables V = {v1..vn}, a set of domain
definitions D = {dom(v1)..dom(vn)}, and a set of constraints C = {c1..cm}.

Definition 4 Assuming the inconsistency of C, a conflict set can be defined as a
subset CS ⊆ C : CS is inconsistent. CS is minimal if ¬∃CS ′ : CS ′ ⊂ CS.

Definition 5 A Configuration for a given configuration task (V, D, C) is an instanti-
ation I = {v1 = ins1,v2 = ins2, ...,vn = insn} where insk ∈ dom(vk).

A configuration is consistent if the assignments in I are consistent with the ci ∈ C,
that is, no conflicts exist in I . Furthermore, a configuration is complete if all variables
in V are instantiated. Finally, a configuration is valid if it is consistent and complete.

Figure 6.1 shows an example of a feature model of a Debian operating system
configuration. Dark grey features are features that are selected while light grey fea-
tures are features that are not desired in the configuration. A conflict exists in this
configuration because it contains gnuchess and glchess that are alternative options of
game. Consequently, we want to identify minimal sets of constraints (ci ∈ C) which
have to be deleted (or adapted) in order to be able to identify a solution (restore the
consistency).

It is well known that a feature model can be mapped to a CSP [121]. To make it
simpler and more general, in the rest of the paper we will refer directly to the derived
CSP from the feature model of Figure 6.1.

Simple examples of a CSP is the following (see Examples 1.

Example 1 An example of a CSP for car configuration (inspired by the model of
Figure 6.1) is the following:
V = {Debian, texteditor, bash, gui, game},
D = {dom(Debian) = [T rue,False], dom(texteditor) = [T rue,False], dom(bash) =
[T rue,False], dom(gui) = [T rue,False], dom(game) = T rue,False], dom(vi) =
[T rue,False], dom(gedit) = [T rue,False], dom(writer1) = [T rue,False], dom(gnome) =

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 63

[T rue,Falsen], dom(kde) = [T rue,False], dom(gnuchess) = [T rue,False], dom(glchess) =
[T rue,False], dom(writer1.1) = [T rue,False], dom(writer1.2) = [T rue,False]},
and
C = {c1 : Debian = T rue, c2 : Debian ↔ texteditor, c3 : Debian ↔ bash,
c4 :Debian↔ gui, c5 : game→Debian, c6 : texteditor→ (vi∨gedit∨writer1)
∧ vi → texteditor ∧ gedit → texteditor ∧ writer1→ texteditor, c7 : gui →
(gnome∨ kde) ∧ gnome→ gui ∧ kde→ gui, c8 : game→ (gnuchess∨ glchess)
∧ gnuchess→ game ∧ glchess→ game ∧ ¬(glchess∧glchess), c9 : writer1.1→
writer1, c10 : writer1.2→ writer1, c11 : writer → gnome, c12 : game = T rue,
c13 : gnuchess = T rue, c14 : glchess = T rue, c15 : texteditor = T rue, c16 :
vi = T rue, c17 : gedit = T rue, c18 : writer1 = False, c19 : writer1.1 = False,
c20 : writer1.2 = False}.

It is convenient to distinguish between a consistent background knowledge B of
constraints that cannot be relaxed (in our case, B = {c1..c11}) and a consideration set
S of relaxable constraints (in our case, requirements C = {c12..c20}). We focus on
detecting diagnosis in the feature selections because we assume that the constraints
of the feature model are consistent.

Definition 6 A Diagnosis Problem for a given set of customer configuration require-
ments S is defined as a tuple (CKB,S) where CKB represents the constraints part of
the configuration knowledge base (the feature model base constraints in our exam-
ple) and S is the set of given customer requirements (selected features)

Next, we define Diagnosis for a given Diagnosis Problem is the following (see
Definition 7).

Definition 7 A diagnosis for a diagnosis problem (CKB,S) is a set ∆ ⊆ C such that
CKB ∪ (C −∆) is consistent. ∆ is minimal if there does not exist a diagnosis ∆′ ⊂ ∆

such that CKB ∪ (C −∆′) is consistent.

Thus, a diagnosis for our example is the following.

Example 2 Taking into account the constraints order as the relevance order for the
user selection in example 1, the preferred minimal diagnosis is ∆ = {c13}, since the
only conflict that exist is the set {c12, c13}, and c12 is the more relevance for the user.

Chapter 3 presents the functions FASTDIAG (Algorithm 3.3) and FD (Algo-
rithm 3.4) of algorithm FASTDIAG, and exemplifies their functioning on a different
configuration for the same FM of Figure 6.1. Figure 6.2 depicts the execution trace
of function FD of FASTDIAG for this working example.

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 64

texteditor

glchessvi

gui

Mandatory

Optional

Alternative

Or

Requires

Excludes

SelectedNon-selected

openoffice.org-1.1

openoffice.org-1

openoffice.org-1.2

kde gnuchess

game

Debian

bash

gedit gnome

Figure 6.1: Feature model example of Debian derivatives along with a non-valid
product configuration (gray features).

6.4 PARALLELFASTDIAG solution proposal

In this section, we describe PARALLELFASTDIAG, a speculative algorithm inspired
by the divide-and-conquer approach of FASTDIAG [22].

Such as Felfernig et al. [2] argue, the consistency checking CC is an expensive
computing step. Our approach to parallelize the consistency checks in FD substitutes
the direct solver call CONSISTENT(AC) in FD with the activation of a lookahead
function (FDGEN) in which consistency checks are not only triggered to directly
provide feedback to FD requests, but also to be able to provide fast answers for con-
sistency checks potentially relevant in upcoming states of a FD instance. We follow
the principles of speculative programming [135]: we start calculating consistency
checks that could be useful in the future. The advantage is that we can anticipate
resource-intensive reasoning tasks. The drawback is that we use some computation
resources that will be wasted if the pre-calculation is finally not used. Therefore, the
challenge in this kind of technique is finding algorithms able to anticipate as many
reusable calculations as possible while reducing the calculation tasks that are not
reusable.

We can appreciate the following CC appear in the execution flow tracking of
FASTDIAG (S, AC):

• A first CC exists over (AC - S) always takes place in the function FASTDIAG.
For a valid case to diagnosis, function FASTDIAG calls function FD to return
future results.

Function FD executes a CC over its current AC always when D is not empty.
Then, FD does not executes a CC in its first call. Next, Diag partitions S (S =

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 65

[1] D = ∅, S = {s1 ..s14},
AC = Γ ∪ {s1 ..s14},

S1 = {s1 ..s7},S2 = {s8 ..s14}.
return({s4}).

[2] D = {s8 ..s14}, S = {s1 ..s7},
AC = Γ ∪ {s1 ..s7},

S1 = {s1 ..s3},S2 = {s4 ..s7}.
return({s4}).

[3] D = {s4 ..s7}, S = {s1..s3},
AC = Γ ∪ {s1 ..s3},

return({}).

[4] D = ∅, S = {s4 ..s7},
AC = Γ ∪ {s1 ..s7},

S1 = {s4 , s5},S2 = {s6 , s7}.
return({s4}).

[5] D = {s6 , s7}, S = {s4 , s5},
AC = Γ ∪ {s1 ..s5},
S1 = {s4},S2 = {s5}.

return({s4}).

[6] D = {s5}, S = {s4},
AC = Γ ∪ {s1 ..s4},
return({s4}).

[7] D = {s4}, S = {s5},
AC = Γ ∪ {s1 ..s3 , s5},

return({}).

[8] D = {s4},S = {s6 , s7},
AC = Γ ∪ s1 ..s3 , s5 ..s7},

return({}).

[9] D = {s4}, S = {s8 ..s14},
AC = Γ ∪ {s1..s3 , s5 ..s14},

return({}).

For S = {s1..s14} and AC = Γ ∪ {s1..s14} assuming a minimal preferred diagnosis set
∆ = {s4}. Underlined ACs denote FD consistency checks. For example, in the
incarnation [2] of the FD function, the consistency check activated is Γ ∪ {s1..s7}.

Figure 6.2: FD execution trace example.

S1 U S2) to execute two recursive calls: ∆1 = FD(D=S2, S=S1, AC=AC - S2)
and ∆2 = FD(D=∆2, S=S2, AC=AC - ∆1).

• A second CC is over (AC - S2) in the second call of the function FD; that is, FD
executes a CC over AC less the less preferred partition of S. That CC occurs
on a non-unary S. Next, we detail the execution flow after the second CC in
the function FD:

– Because D is not empty, a false CC means that the current D (S2) does
not contain a complete diagnosis. If the current S (S1) is not minimal,
then FD partitions the current S (S1 = S11 ∪ S12) for new recursive ex-
ecution of that function. The first recursive execution of FD reviews if
the most preferred partition of the current S (S12) contains the preferred

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 66

diagnosis for the new AC (AC - S2 - S12), that is, a new CC will take
place on the new AC(AC - S2 - S12).

– On the other hand,D is not empty, and the second CC returns a true value,
that is, S2 contains a complete explanation and FD returns an empty set.
Then, the next recursive call of FD (FD(D = ∅, S = S2, AC)) will not ex-
ecute a CC. For a non-unary S (S2), FD partitions its current S (S2 = S21
∪ S22), and executes itself again twice. We consider the first recursive
call (∆1 = FD(D = S22, S = S21, AC = AC - S22)) that runs a third CC
on (AC - S22).

This analysis shows us that from a new CC, we can speculate three possible
CC. This reasoning constitutes the basement of our speculative-programming
solution. We can define a max level of speculation for recursively obtaining
additional CC concerning the execution flow of FD until reaching a maximum
level of speculation.

In a one-thread scenario, a speculative FASTDIAG solution will be more expen-
sive than the original FASTDIAG. If a new CC value were necessary, we would
calculate it. At the same time, if we have not reached the max level of speculations,
possibly speculate on the next three described CC for the current speculation level.
We store each CC in a lookup table. Hence, each time a new CC occurs, we first
review if that CC exists in the table for getting the stored value or calculating it.

This reasoning permits us to define PARALLELFASTDIAG as a speculative so-
lution for diagnosis that reduces the number of needed consistency checks and im-
proves the diagnosis computing performance.

In the parallelized variant of PARALLELFASTDIAG that we propose, consistency
checking is activated by FD with CONSISTENT(D,S,AC) (see Algorithm 6.1). This
also activates FDGEN (see Algorithm 6.2) that starts to generate and trigger (in a
parallelized fashion) further consistency checks that might be of relevance in upcom-
ing FD phases. For describing FDGEN, we employ a two-level ordered set notation
which requires, for example, to embed the FD D into {D}, S into {S}, and AC into
{AC}. In FDGEN, D, S, and AC are interpreted as ordered sets.

Algorithm 6.1 CONSISTENT(D,S,AC):Boolean
1: if ¬EXISTSCONSISTENCYCHECK(AC) then
2: FDGEN({D}, {S}, {AC ∪D}, {D},0)
3: end if
4: return(LOOKUP(AC))

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 67

FDGEN-generated consistency checking tasks are stored in a LOOKUP table
(see, e.g., Table 6.1). Thus, in PARALLELFASTDIAG, FD has to activate the con-
sistency check with CONSISTENT(D,S,AC). In contrast to the original FASTDIAG

approach, the consistency check function requires D and S as additional parameters
to conduct inferences about necessary future consistency checks. While in the stan-
dard FD version, D and AC are related sets, that is, D is a set of elements omitted
from AC (AC ∩D = ∅), we assume that AC contains D in FDGEN.

node-id constraint set consistent
1 {Γ ∪ {s1..s7}} f alse
1.1 {Γ ∪ {s1..s3}} true
1.1.1 {Γ ∪ {s1}} -
1.1.2 {Γ ∪ {s4..s7}} -
1.2 {Γ ∪ {s8..s14}} f alse
1.2.1 {Γ ∪ {s8..s10}} -

Table 6.1: LOOKUP table indicating the consistency of individual constraint sets for
lmax = 3.

For Table 6.1, the consistency checking tasks have been generated by ADDCC in
the FDGEN function (see Figure 6.3). Consistency checking are executed in parallel.
The ‘-’ entry for the constraints of node-id 1.1.1, node-id 1.1.2 and node-id 1.2.1
indicates that the corresponding consistency check is still ongoing or has not been
started up to now. Algorithm 6.1 uses LOOKUP to test the consistency of a constraint
set.

The FDGEN function (see Algorithm 6.2) predicts future potentially relevant
consistency checks needed by FD and activates individual consistency checking tasks
in an asynchronous fashion using the ADDCC (add consistency check) function. The
ADDCC function triggers an asynchronous service that is in charge of adding consis-
tency checks (parameter of ADDCC) to a LOOKUP table and issuing the correspond-
ing solver calls. The global parameter lmax is used to define the maximum search
depth of one activation of FDGEN.

In FDGEN, |f (X)| denotes the number of constraints ci in X (it is introduced
due to the subset structure of parameters of FDGEN). Furthermore, SPLIT(S,Sa,Sb)
splits S at position b |S |2 c if |S | > 1 or it splits S1 (the first element of S) at position
b |S1|2 c if |S | = 1 and |S1| > 1 into Sa and Sb. Otherwise, no split is needed (S1 is a
singleton).

The first inner condition of FDGEN (|f (δ)| > 0) generates a consistency check
if this is needed. A consistency check is needed, if D gets extended from S or a
singleton S has been identified which was removed from AC. The function ADDCC
is used to add consistency check tasks which can then be executed asynchronously
in a parallelized fashion. Thus, a consistency check in the LOOKUP table can be

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 68

easily identified by an ordered constraint set that has also been used as parameter
of ADDCC, for example, ADDCC({Γ ∪ {s1..s14}} − {{s4..s7}, {s8, s14}}) results in the
LOOKUP table enty Γ ∪ {s1..s3} which is internally represented with 123.

Algorithm 6.2 FDGEN(D,S,AC, l)
D = {d1..dr} ... consideration set (subsets Dα)
S = {s1..sn} ... set (subsets Sβ) to consider
AC = Γ∪S ... base knowledge and knowledge to consider (subsets ACγ)
δ = {δ1..δp} ... to be checked (subsets δπ)
l ... current lookahead depth

1: if l < lmax then
2: if |f (δ)| > 0 then
3: ADDCC(AC −D)
4: end if
5: {AC −D assumed inconsistent}
6: if |f (S)| = 1∧ |f (D)| > 0 then
7: FDGEN(∅,D,AC − {S1}, {S1}, l +1)
8: else if |f (S)| > 1 then
9: SPLIT(S,Sa,Sb)

10: FDGEN(Sb ∪D,Sa,AC,Sb, l +1)
11: end if
12: {AC −D assumed consistent}
13: if |f (D)| > 0∧ |f (δ)| > 0 then
14: FDGEN(D − {D1}, {D1},AC,∅, l +1)
15: end if
16: end if

If (AC −D) is assumed to be inconsistent, additional elements from S have to
be included such that an inconsistent state can be generated (which is needed for
identifying a minimal conflict). This extension of D can be achieved by dividing
S (if |f (S)| > 1, i.e., more than one constraint is contained in S) into two separate
sets Sa and Sb and to add Sb to D. If |f (S)| = 1, this singleton can be removed
from AC, responsible for no collecting constraints that have been identified as part
of the minimal diagnosis. That is the case due to the invariant property (AC −D)
is inconsistent. If S contains only one constraint, i.e., S1 is a singleton, it is part of
the diagnosis set. If (AC −D) is assumed to be consistent, it can be reduced, and at
least one conflict element will be identified in the previously added D. If δ does not
contain an element, no further recursive calls are needed since (D −D1) has already
been checked previously.

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 69

FDGEN [1]
D = {{s8 ..s14}}, S = {{s1 ..s7}},

AC = {Γ ∪ {s1 ..s14}}, δ = {{s8 ..s14}}
ADDCC({Γ ∪ {s1 ..s7}})

Sa = {{s1 ..s3}}, Sb = {{s4 ..s7}}

FDGEN [1.1]
D = {{s4 ..s14}}, S = {{s1 ..s3}},

AC = {Γ ∪ {s1 ..s14}}, δ = {{s4 ..s7}}
ADDCC({Γ ∪ {s1 ..s3}})
Sa = {{s1}}, Sb = {{s2 , s3}}

FDGEN [1.1.1]
D = {{s2 ..s14}}, S = {{s1}},
AC = {Γ ∪ {s1..s14}}, δ = {{}}

FDGEN [1.1.2]
D = {{s8 ..s14}}, S = {{s4 ..s7}},
AC = {Γ ∪ {s1 ..s14}}, δ = ∅

FDGEN [1.2]
D = {{}}, S = {{s8..s14}},
AC = {Γ ∪ {s1 ..s14}}, δ = ∅,

Sa = {{s8 ..s10}},Sb = {{s11 ..s14}}

FDGEN [1.2.1]
D = {{s11..s14}}, S = {{s8 ..s10}},

AC = {Γ ∪ {s1 ..s14}}, δ = {{s11 ..s14}},

For D = ∅, S = {{s1..s14}}, AC = {Γ ∪ {s1..s14}}, δ = ∅, and lmax = 3. The
consistency checks {Γ ∪ {s1..s7}} and {Γ ∪ {s1..s3}} (flattened list generated by
ADDCC) can be used by the FASTDIAG instance of Figure 6.2. The FDGEN nodes
{[1],[1.1],[1.1.2]} represent the first part of the FASTDIAG search path in Figure
6.2.

Figure 6.3: FDGEN execution trace example.

FOLLOW SETS
COND. D S AC δ
|f (S)| = 1 ∅ cD AC − {S1} {S1}
|f (S)| > 1 Sb ∪D Sa AC Sb
|f (D)| > 0 D − {D1} {D1} AC ∅

Depending on the assumption about the consistency of AC −D, the follow-up
activations of FDGEN have to be parameterized differently.

Table 6.2: FOLLOW sets of the FDGEN function.

The FDGEN function (Algorithm 6.2) is based on the idea of issuing recursive
calls and adapting the parameters of the calls depending on the two possible situations
1) non-consistent(AC −D) and 2) consistent(AC −D). In Table 6.2, the different
parameter settings are shown in terms of FOLLOW sets representing the settings of
D, S, and AC in the next activation of FDGEN.

The most remarkable achievements of our solution proposal are i) PARALLELFAST-
DIAG preserves the base functions and results of FASTDIAG, ii) PARALLELFAST-
DIAG correctly can be applied in other diagnosis scenarios.

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 70

6.5 Analysis

6.5.1 Complexity analysis

FD complexity. Assuming a splitting d = bn2 c of S = {s1..sn}, the worst-case time
complexity of FD in terms of the number of consistency checks needed for calculat-
ing one minimal diagnosis is 2d × log2(nd)+2d where d is the minimal diagnosis set
size and n represents the underlying number of constraints [22]. The runtime perfor-
mance of the underlying algorithms must be optimized because consistency checks
are the most time-consuming part of diagnosis detection.

FDGEN complexity. The number (nc) of different consistency checks that could
be identified with FDGEN for an inconsistent configuration S of n constraints is
represented by Formula 6.1.

nc(S) =
(
n
1

)
+
(
n
2

)
+ ...+

(
n
n

)
(6.1)

The upper bound of the space complexity in terms of recursive FDGEN calls for
lmax = n is in the worst case 2n−1 − 1. Due to the combinatorial explosion, only
those solutions make sense that scale lmax depending on the available computing
cores (see the reported evaluation results).

If traditional FASTDIAG is applied, only sequential consistency checks can be
performed. The approach presented in this chapter is more flexible since #processors
consistency checks can be performed in parallel. Assuming a maximum FDGEN

search depth of lmax = 4, the maximum number of generated consistency checks
is 2lmax−1

2 due to the binary structure of the search tree, i.e., 4 in our example. Out
of these 4 checks, a maximum of 3 will be relevant to FD; the remaining ones are
irrelevant for identifying the conflict in the current FD session. Thus, the upper
bound of relevant consistency checks generated by FDGEN is lmax, i.e., one per
FDGEN search level (see the outer left search path in Figure 6.3), the minimum
number of relevant consistency checks is d lmax2 e, i.e., 2 in our example. Assum-
ing #processors = 16, our approach can theoretically achieve a performance boost
of factor 3 since 3 relevant consistency checks can be performed in parallel. It is
important to mention, that within these upper and lower bounds, a performance im-
provement due to the integration of FDGEN can be guaranteed independently of the
knowledge base.

Termination of FDGEN. If lmax = n, recursive calls of FDGEN stop at level
n−1. In each recursive step, based on the inconsistency invariant between S∪D∪AC,
either 1) S is reduced to Sa and D gets extended with Sb (if AC −D is inconsistent)
or to D if S is a singleton, or 2) D is further reduced (if AC −D is consistent). In
the second case, the constraints in S are not relevant anymore, since a diagnosis can
already be found in D (which is inconsistent with AC).

FD-conformance of FDGEN. FDGEN correctly predicts FD consistency checks.
It follows exactly the criteria of FD. If |f (S)| = 1, i.e., S includes only one constraint
sα , AC −D is inconsistent and - as a consequence of the inconsistency invariant -

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 71

sα is a diagnosis element and therefore has to be removed from AC. If |f (S)| > 1,
AC − (Sb ∪D) has to be checked, since AC −D is inconsistent and by adding Sb
we follow the goal of restoring the consistency of AC − D. Finally, if the issued
consistency checks AC −D is consistent, a diagnosis has already been identified. If
AC −D is consistent, no check has to be issued since AC − ({D1} ∪D) has already
been checked in the previous FDGEN call considered inconsistent. Thus, FDGEN

takes into account all FD states that can occur in the next step, and exactly one of
the generated consistency checks (if needed) will be relevant for FD. Finally, the
generated consistency checks are irredundant since each check is only generated if
D contains new constraints from S or a new constraint (singleton S) is removed from
AC.

6.5.2 Runtime analysis

Implementation details. We conducted the experimentation based on the implementa-
tion in Python3 of FASTDIAG and PARALLELFASTDIAG. We used the multiprocess-
ing Python package for running parallel tasks. We used Sat4J [144] for representing
our test knowledge bases and conducting the corresponding consistency checks since
it is one of the most used solvers integrated in many software (product line) engineer-
ing tools such as FeatureIDE [10], FaMa framework [145], FAMILIAR [12] among
others [8, 146?]. Nonetheless, we could use any other technology able for writing
and reasoning on AAFM solutions.

Even though we showed the theoretical superiority of PARALLELFASTDIAG

compared to sequential FASTDIAG (Section 6.5.1), some implementation details can
affect that performance. First, there will be a delay when running parallel algorithms
because extra time can be necessary to the orchestration of threads. Second, our so-
lution proposal considers the use of set operations such as Union or Difference that
can take extra time depending on the size of AC, D, and S.

Execution environment. We conducted all experiments using an AMD EPYC
7000 machine equipped with a CPU with 16 cores and 2.50GHz. It had 64 GB of
RAM.

Knowledge base Characteristics. For evaluation purposes, we generated config-
uration knowledge bases (feature models) from the publicly available BETTY tool
suite [136] that allows systematic testing for consistency checking and diagnosis ap-
proaches for knowledge bases and configurations. The knowledge base instances
(represented as background knowledge AC in FASTDIAG) for our evaluation were
around 1.000 binary variables (derived from the 1.000 features used). Those base
knowledge also varied in terms of the number of included constraints depending on
the different feature relationships and derived clauses (around 1,600 SAT clauses in
the generated CNF files). Based on these knowledge bases, we randomly generated
product configurations (si ∈ S) that covered 10% of the variables included in the
knowledge base. We also shuffled S to get different constraints orders because that
can affect the number of consistency checks needed, as explained in Section 6.5.1.
We generated and analyzed conflict sets of different cardinality (see Table 6.3). We

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 72

repeated each evaluation setting 3× to avoid measuring biases due to side effects in
thread execution.

Evaluation purpose. We wanted to analyze if PARALLELFASTDIAG performs
better than FASTDIAG. We conjecture that PARALLELFASTDIAG outperforms the
FASTDIAG in general. Improvement increases with the number of available cores
(represented in our algorithm by lmax) and the difficulty of the problem (represented
by the knowledge base AC, and the corresponding conflicting requirements S). The
difficulty of the problem can be affected by different aspects. One of them is the
diagnosis cardinality in AC: the number of elements necessary for a state update to
get a consistent status (a number determined for the size and number of conflict sets
in AC).

Conflict Cardinality
lmax 1 2 4 8 16
1 61,14 62,47 62,48 66,44 66,12
2 56,14 35,78 56,89 57,10 70,73
3 49,78 44,16 45,07 48,54 50,14
4 48,78 46,73 46,69 47,89 54,34
5 43,68 44,13 43,68 48,25 50,55

lmax=1 is equivalent to sequential FASTDIAG. Each cell follows a heat map
colouring: the darker the slower. In bold the cells with faster time for a given
conflict cardinality.

Table 6.3: Avg. runtime (in msec) of FD (lmax=1) and parallelized FD (lmax>1)
for determining preferred diagnosis.

Results. Table 6.3 shows a summary of the performance and analysis results of
FASTDIAG and FDGEN. On an average, the runtime needed by standard FASTDIAG

(lmax = 1) to identify a preferred minimal diagnosis for conflict of cardinality 16 is
23,54% slower compared to a parallelized solution for the same purpose based on
FDGEN (lmax = 5). In Table 6.3, each entry represents the average runtime in msec
for all knowledge bases with a conflict set of cardinality n, where the same set of
knowledge bases has been evaluated for lmax sizes 1–5 (lmax = 1 corresponds to
the usage of standard FD without FDGEN integration).

We can observe that with an increasing lmax, the performance improvement of
FD increases with a few exceptions: the solution for four threads is the best for mod-
els with eight conflicts, and the solution for three threads is the best for models with
sixteen conflicts. A deterioration can exist with lmax = 4 and lmax = 5 because the
number of pre-generated consistency checks starts to exceed the number of physi-
cally available processors. The obtained results support our theoretical analysis of
FDGEN, taking into account the overheads for managing the consistency checks in
parallel. Figure 6.4 illustrates the performance results of Table 6.3. The performance

CHAPTER 6. PARALLEL FASTDIAG: EFFICIENT MINIMAL DIAGNOSIS IN
AAFM 73

improvement of PARALLELFASTDIAG presents a scalability tendency even though
it is not as notorious as for PARALLELQUICKXPLAIN. After reviewing the results,
some conflicts are solvable by updating only one or a few constraints. Then, finding
a conflict set with various conflicts can require more computation.

Figure 6.4: Performance of FASTDIAG vs PARALLELFASTDIAG with 2 to 5 threads

6.6 Summary

This chapter introduced a parallelized variant of the FASTDIAG algorithm used to
diagnose inconsistent constraints set, such as in conflict product configuration of
FM instances. Example applications are the model-based diagnosis of software and
hardware designs and the diagnosis of inconsistent user requirements in configura-
tion and recommender applications. Our parallelized variant of FASTDIAG helps
exploit multi-core architectures and provide efficient preferred diagnosis detection,
especially when dealing with complex knowledge bases. With this approach, we
help boost various knowledge-based applications’ performance and make them more
accessible, especially in interactive settings.

Chapter 7

Minimal completion of products as
a diagnosis task in AAFM

Abstract

The completion of partial configurations might represent an expensive com-
putational task. Existing solutions, such as those which use modern constraint
satisfaction solvers, perform a complete search, making them unsuitable on
large-scale configurations. In this work, we propose an approach to define the
completion of a partial configuration like a diagnosis task to solve it by applying
the FASTDIAG algorithm, an efficient solution for minimal diagnosis (updates)
in the analyzed partial configuration. We evaluate our proposed method in the
completion of partial configurations of random medium and large-size features
models, and in the completion of partial configurations of a feature model of
an adapted version of the Ubuntu Xenial OS. Our experimental analysis shows
remarkable improvements in our solution regarding the use of classical CSP-
based approaches for the same tasks. †

†Part of this chapter is published in the proceedings of Industrial Session of the 25th International
Symposium on Methodologies for Intelligent Systems ISMIS 2020 [25]. We have the agreement of all
the authors to include the corresponding text as part of this manuscript.

74

Part IV

Final remarks

75

Chapter 8

Conclusiones and future work

8.1 Conclusions

In this dissertation we have shown that:

Improving the computing efficiency of existing conflict detection, diagnosis, and
product completion solutions in the automated analysis of large-scale variability
models’ configuration are possible tasks.

We developed more efficient solutions than the existing ones to detect minimal
conflicts between user’s preferences and base knowledge, diagnose or signal a min-
imal set of updates for getting consistent user’s preferences, and complete partial
products in large-scale configuration scenarios. We review existing AUTOMATED

ANALYSIS OF FEATURE MODEL product configuration solutions and algorithmic
techniques to improve the first ones’ computing efficiency by using additional com-
puting resources. We compared our solutions’ computing efficiency and existing
ones for getting results in the same tasks. Then, our solutions resulted in being more
efficient, and that represents our main contribution.

8.1.1 Discussion and open challenges

In the Chapter 1, we detected and enumerated the research goals we were willing to
address in this thesis document. Table 8.1 shows the chapters where we target each
research goal with the contributions we have already published. Also, in the next
paragraph, we will go through each contribution to explain how we addressed them.

This dissertation’s main contributions were the PARALLELQUICKXPLAIN and
PARALLELFASTDIAG solutions for the minimal conflict and diagnosis detection, re-
spectively, by applying speculative computation, and a solution for the product com-
pletion by diagnosis. Specifically, in this dissertation, we have shown that:

PARALLELQUICKXPLAIN is a speculative programming solution that per-
mits computation improvements of the QUICKXPLAIN algorithm for conflict

76

CHAPTER 8. CONCLUSIONES AND FUTURE WORK 77

detection. Although we applied our solution on FM configurations, PARAL-
LELQUICKXPLAIN can analyze other configuration scenarios in reasoning solv-
ing approaches such as SAT and CSP..

We recognized that conflict detection is a base step for solving configuration is-
sues. We found that QUICKXPLAIN represents an efficient solution for detecting
minimal preferred conflict. Even though QUICKXPLAIN uses an efficient divide-
and-conquer algorithmic approach, that algorithm takes a long time to analyze large-
scale FM and configurations. QUICKXPLAIN cannot use computing resources, such
as multiple cores for parallel computing, for its sequential nature. Hence, we ana-
lyzed how to parallelize QUICKXPLAIN to develop a more efficient solution for de-
tecting conflicts in large-scale configuration scenarios as our first research goal. Our
analysis found a costly operation step that uses data from the previous executions in
the QUICKXPLAIN functioning. We pre-calculate that operation by applying specu-
lative computation to look for improvements. Thus, PARALLELQUICKXPLAIN was
born. The obtained results validated the efficiency of PARALLELQUICKXPLAIN

regarding traditional QUICKXPLAIN for the analysis of large-scale FM and configu-
rations.

PARALLELFASTDIAG is a speculative programming solution that permits
computation improvements of the FASTDIAG algorithm for diagnosis detection.
We applied our solution over FM configurations, and PARALLELFASTDIAG can
work on any system able to represent in reasoning solving approaches such as
SAT and CSP.

We recognized that getting a preferred minimal diagnosis permits getting the nec-
essary updates on the current configuration for obtaining a valid one. Even though we
found that FASTDIAG represents an efficient solution for detecting minimal preferred
diagnosis for using an efficient divide-and-conquer algorithmic approach, FASTDIAG

takes a long time to analyze large-scale FM and configurations. FASTDIAG cannot
use computing resources, such as multiple cores for parallel computing, for its se-
quential nature. Hence, we analyzed how to parallelize FASTDIAG to develop a more
efficient solution for diagnosis in large-scale configuration scenarios as our second
research goal. Like in the analysis of QUICKXPLAIN, our analysis found a costly
operation step that uses data from the previous executions in the FASTDIAG func-
tioning. We pre-calculate that operation by applying speculative computation to look
for improvements. Thus, PARALLELFASTDIAG was born. The obtained results val-
idated the efficiency of PARALLELFASTDIAG regarding traditional FASTDIAG for
the analysis of large-scale FM and configurations.

We appreciated the completion of product configuration as a diagnosis prob-
lem for the use of existing diagnosis solutions such as FASTDIAG. Then, we were
able to apply efficient computing solutions such as PARALLELFASTDIAG.

CHAPTER 8. CONCLUSIONES AND FUTURE WORK 78

We recognized that the product completion is a necessary task for assisting with
large-scale configurations. We found that reasoning tools commonly perform prod-
uct completion tasks using non-efficient computing approaches without guaranteeing
a completion using preferred features. This dissertation gave the fundamental steps
to appreciate product completion as a diagnosis task to apply diagnosis solutions
and analyze any improvement. Hence, the third goal of this thesis was to develop a
solution for product completion by diagnosis. Since FASTDIAG is an efficient algo-
rithm for the diagnosis, we planned to apply FASTDIAG for efficient and preferred
product completion tasks. The obtained results validate the efficiency of our product
completion by diagnosis approach regarding the traditional use of reasoning tools.

Table 8.1 shows the divisions in this thesis in which we target each research goal
with the contributions we have already published. Concerning our second research
goal, Table 8.1 lists a few papers that consider the problem of diagnosis using the
classical solution FASTDIAG. We are currently working on an article of PARAL-
LELFASTDIAG.

Research goal Thesis division Published contribution
Conflict detection Sec. 3.2 - Ch. 5 [25] [32] [147]

Diagnosis Sec. 3.3 - Ch. 6 [116] [32]
Product completion Sec. 3.4 - Ch. 7 [31]

Table 8.1: Links between research goals, chapters and publications.

By addressing the research goals of Table 8.1, we can now assert that apply-
ing speculative computing for improving the efficiency of solutions in the automated
analysis of variability intensive system models is entirely possible. We can also as-
sert that we can solve problems more efficiently by addressing them with a different
perspective for applying efficient solutions. Both approaches can then permit a cost
reduction and increment of efficiency in software engineering activities such as con-
figuration, testing, and evolution of large-scale variability models.

8.2 Future work

In this section we show the future work that arises from the contributions presented
in this dissertation. We divided it into two areas: first shows the future work derived
from the use of speculative solutions for variability analysis of large-scale models;
and second, regarding the use of diagnosis solutions to face other issues in variability
models.

CHAPTER 8. CONCLUSIONES AND FUTURE WORK 79

8.2.1 Speculative programming

Concerning speculative programming, we plan to develop a solution for a non-online
pre-compilation of consistency checks for a more efficient computation of conflict
detection, minimal preferred diagnosis, and product configuration. Then, each time
these solutions work on a pre-calculated consistency check, the response time cost
would be in the worst case the cost of search in the set of previously pre-calculated
consistency checks. Each time these solutions work on a new base consistency
checking, they would calculate and store it for future configurations. The response
time cost would be in the worst case the cost of search in the set of previously pre-
calculated consistency checks plus the consistency check cost. Because each consis-
tency check search plays a relevant role in the cost of this solution approach, we need
to adequately organize the searched data for efficiently search on it.

Regarding the extension of existing solutions by the use of speculative program-
ming, we plan to extend MERGEXPLAIN [148, 149] to evaluate and highlight the
potential improvements for computing multiple conflicts for diagnosis tasks. We
plan also to apply speculative computation to produce PARALLEL FLEXDIAG, an
extension of FLEXDIAG [100], to evaluate and highlight the potential improvements
for the computation of anytime diagnosis in large-scale variability models by the
combination of different multi-thread and granularity parameter values. Because
the third contribution of this thesis is the product completion by diagnosis, we plan
to apply PARALLELFASTDIAG on the product completion of large-scale configura-
tions scenarios to evaluate and highlight each potential computation improvements.
We also plan to adapt FASTDIAG and PARALLELFASTDIAG to work on large-scale
fragmented feature models for the product completion and analyzing the computing
efficiency of their results.

8.2.2 Using parallel diagnosis in other variability issues

Considering the work of Felfernig et al. [21] that describe the use of diagnosis so-
lutions for solving different AUTOMATED ANALYSIS OF FEATURE MODEL issues,
we will apply PARALLELFASTDIAG for other analysis operations and evaluate the
computing results regarding existing AUTOMATED ANALYSIS OF FEATURE MODEL

solutions. For example, we will compare the performance of PARALLELFASTDIAG

regarding one of our previous works for enumerating valid product configuration
(PAVIA [24]). Regarding the product discovery of large-scale feature models, we
will adapt PARALLELFASTDIAG for the product completion of fragmented feature
models [19] to analyze its differences regarding traditional PARALLELFASTDIAG.
Considering the obtention of anytime diagnosis as a variability issue, we will com-
pare the computing performance and precision of the results of applying FLEXDIAG

[100] and our PARALLELFASTDIAG solution in the diagnosis of large-scale feature
models and configurations. We expect to obtain results of anytime diagnosis more
efficiently using PARALLELFASTDIAG without tradeoffs between diagnosis quality
(e.g., minimality) and diagnostic search performance.

Part V

Appendix

80

Appendix A

Exploiting the enumeration of all
feature model configurations

A new perspective with distributed computing

Abstract

Feature models are widely used to encode the configurations of a software
product line in terms of mandatory, optional and exclusive features as well as
propositional constraints over the features. Numerous computationally expen-
sive procedures have been developed to model check, test, configure, debug, or
compute relevant information of feature models. In this paper we explore the
possible improvement of relying on the enumeration of all configurations when
performing automated analysis operations. The key idea is to pre-compile con-
figurations so that reasoning operations (queries and transformations) can then
be performed in polytime. We tackle the challenge of how to scale the existing
enumeration techniques. We show that the use of distributed computing tech-
niques might offer practical solutions to previously unsolvable problems and
opens new perspectives for the automated analysis of software product lines. †

†Part of this chapter is published in the proceedings of 20th International Systems and Software
Product Line Conference SPLC 2016 [24]. We have the agreement of all the authors to include the
corresponding text as part of this manuscript.

81

Appendix B

Functional testing of conflict
detection and diagnosis tools in
feature model configuration

Abstract

In configuration scenarios such as the product configuration of a FM, con-
flict detection and diagnosis operations are high-value tasks for helping cre-
ate consistent products. Conflict detection and diagnosis are about identify-
ing a set of (minimal) restrictions responsible for conflicts and those restric-
tions that would enable consistent configuration upon update. Ensuring the
quality of product configuration stimulates the development of new solutions.
Still, the lack of specific testing mechanisms is becoming a significant obsta-
cle that affects the quality and reliability of new solutions. In this paper, we
present FAMAPRODCONF TESTSUITE, a set of implementation-independent
test cases to validate the functionality of conflict detection and diagnosis so-
lutions in FM product configuration. FAMAPRODCONF TESTSUITE is an ef-
ficient and handy mechanism to help develop new solutions and detect faults
in order to solve the found issues and improve the quality of solutions. As an
effectiveness proof, we evaluated the test suite using existing solutions for the
conflict detection and diagnosis of product configuration: QUICKXPLAIN and
FASTDIAG. Obtained results validate our approach for testing conflict detec-
tion and diagnosis of FM product configuration solutions. †

†Part of this chapter is published in the proceedings of 22th International Workshop on Configura-
tion CONFWS 2020 [32]. We have the agreement of all the authors to include the corresponding text
as part of this manuscript.

82

Bibliography

[1] A. Felfernig, G. Friedrich, and D. Jannach. Conceptual
modeling for configuration of mass-customizable prod-
ucts. Artif. Intell. Eng., 15:165–176, 2001. 12

[2] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen.
Knowledge-based Configuration: From Research to Busi-
ness Cases. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1 edition, 2014. 12, 13, 26, 36, 64

[3] Ubuntu. 16.04.6 lts (xenial xerus). http://cl.
releases.ubuntu.com/16.04/, 2019. Accessed:
2019-02-01. 12

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature re-
view. Information Systems, 35(6):615–636, September
2010. 12, 14, 25, 26, 27, 28, 29, 33, 45, 59

[5] J. A. Galindo, F. Roos-Frantz, D. Benavides, A. Ruiz-
Cortés, and J. García-Galán. Automated analysis of di-
verse variability models with tool support. In XIX Jor-
nadas de Ingeniería del Software y Bases de Datos (JISBD
2014), pages 160–168, 01 2014. 12, 44, 45

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, Carnegie-Mellon Uni-

83

http://cl.releases.ubuntu.com/16.04/
http://cl.releases.ubuntu.com/16.04/

BIBLIOGRAPHY 84

versity Software Engineering Institute, November 1990.
12, 25

[7] S. Apel, D. Batory, C. Kstner, and G. Saake. Feature-
Oriented Software Product Lines: Concepts and Imple-
mentation. Springer Publishing Company, Incorporated,
2013. 13, 14

[8] D. Batory. Feature models, grammars, and propositional
formulas. In Proceedings of the 9th International Confer-
ence on Software Product Lines, SPLC’05, pages 7–20,
Berlin, Heidelberg, 2005. Springer-Verlag. 13, 26, 71

[9] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t.: Soft-
ware product lines online tools. In Proceedings of the
24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’09, page 761–762, New York, NY, USA,
2009. Association for Computing Machinery. 13

[10] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich,
F. Wielgorz, and S. Apel. Featureide: A tool framework
for feature-oriented software development. In 2009 IEEE
31st International Conference on Software Engineering,
pages 611–614. IEEE, 2009. 13, 71

[11] How to prevent and fix package dependency errors in
ubuntu. https://www.isa.us.es/fama/. Ac-
cessed: 2020-10-02. 13

[12] M. Acher, P. Collet, P. Lahire, and R. B. France. FAMIL-
IAR: A domain-specific language for large scale man-
agement of feature models. Sci. Comput. Program.,
78(6):657–681, 2013. 13, 50, 71

[13] M. Galster. Variability-intensive software systems: Prod-
uct lines and beyond. In Proceedings of the 13th Inter-

https://www.isa.us.es/fama/

BIBLIOGRAPHY 85

national Workshop on Variability Modelling of Software-
Intensive Systems, VAMOS ’19, New York, NY, USA,
2019. Association for Computing Machinery. 13

[14] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czar-
necki. The variability model of the linux kernel. In
D. Benavides, D. S. Batory, and P. Grünbacher, editors,
Fourth International Workshop on Variability Modelling
of Software-Intensive Systems, Linz, Austria, January 27-
29, 2010. Proceedings, volume 37 of ICB-Research Re-
port, pages 45–51. Universität Duisburg-Essen, 2010. 13,
15, 16

[15] V. Rothberg, N. Dintzner, A. Ziegler, and D. Lohmann.
Feature models in linux: From symbols to semantics. In
Proceedings of the Tenth International Workshop on Vari-
ability Modelling of Software-intensive Systems, VaMoS
’16, pages 65–72, New York, NY, USA, 2016. ACM. 13

[16] J. Galindo, D. Benavides, and S. Segura. Debian packages
repositories as software product line models. towards au-
tomated analysis. pages 29–34, 2010. 13, 14, 15, 16, 30,
31, 51

[17] J. A. Galindo, H. Turner, D. Benavides, and J. White. Test-
ing variability-intensive systems using automated analy-
sis: An application to android. Software Quality Journal,
24(2):365–405, June 2016. 13, 14, 15, 16

[18] A. B. Sánchez, S. Segura, J.A. Parejo, and A. Ruiz-Cortés.
Variability testing in the wild: the Drupal case study. Soft-
ware & Systems Modeling, pages 1–22, 2015. 13

[19] M. Lienhardt, F. Damiani, E. B. Johnsen, and J. Mauro.
Lazy product discovery in huge configuration spaces.
In Proceedings of the ACM/IEEE 42nd International

BIBLIOGRAPHY 86

Conference on Software Engineering, ICSE ’20, page
1509–1521, New York, NY, USA, 2020. Association for
Computing Machinery. 14, 79

[20] U. Junker. QuickXPlain: Preferred Explanations and Re-
laxations for Over-constrained Problems. In 19th national
conference on Artifical intelligence, pages 167–172, San
Jose, CA, 2004. AAAI Press. 14, 16, 35, 61

[21] A. Felfernig, D. Benavides, J. Galindo, and F. Reinfrank.
Towards anomaly explanation in feature models. In Pro-
ceedings of the 15th International Configuration Work-
shop, August 2013. 14, 15, 17, 50, 54, 61, 79

[22] A. Felfernig, M. Schubert, and C. Zehentner. An efficient
diagnosis algorithm for inconsistent constraint sets. Ar-
tif. Intell. Eng. Des. Anal. Manuf., 26(1):53–62, February
2012. 17, 38, 50, 54, 60, 64, 70

[23] E. Bodden, É. Tanter, and M. Inostroza. Join point inter-
faces for safe and flexible decoupling of aspects. ACM
Trans. Softw. Eng. Methodol., 23(1), February 2014. 18

[24] J. A. Galindo, M. Acher, J. M. Tirado, C. Vidal, B. Baudry,
and D. Benavides. Exploiting the enumeration of all fea-
ture model configurations: a new perspective with dis-
tributed computing. In Hong Mei, editor, Proceedings of
the 20th International Systems and Software Product Line
Conference, SPLC 2016, Beijing, China, September 16-
23, 2016, pages 74–78. ACM, 2016. 21, 79, 81

[25] C. Vidal-Silva, A. Felfernig, J. A. Galindo, M. Atas, and
D. Benavides. A parallelized variant of junker’s quickx-
plain algorithm. In Denis Helic, Gerhard Leitner, Martin
Stettinger, Alexander Felfernig, and Zbigniew W. Raś, ed-
itors, Foundations of Intelligent Systems, pages 457–468,

BIBLIOGRAPHY 87

Cham, 2020. Springer International Publishing. 21, 58,
74, 78

[26] C. Vidal-Silva, D. Benavides, J. A. Galindo, P. Leger,
R. Villarroel, and S. Valenzuela. JPI feature models - Ex-
ploring a JPI and FOP symbiosis for software modeling.
pages 1–6, 2015. 21

[27] C. Vidal, D. Benavides, P. Leger, J. A. Galindo, and
H. Fukuda. Mixing of join point interfaces and feature-
oriented programming for modular software product line.
In Junichi Suzuki, Tadashi Nakano, and Henry Hess, edi-
tors, BICT 2015, Proceedings of the 9th EAI International
Conference on Bio-inspired Information and Communi-
cations Technologies (formerly BIONETICS), New York
City, United States, December 3-5, 2015, pages 433–437.
ICST/ACM, 2015. 21

[28] C. Vidal, D. Benavides, J. A. Galindo, and P. Leger. Ex-
ploring the Synergies between Joing Point Interfaces and
Feature-Oriented Programming. In JISBD 2015, XX JOR-
NADAS DE INGENIERÍA DEL SOFTWARE Y BASES DE
DATOS, Santander, España, September, 2015, 2015. 21

[29] C. Vidal, D. Benavides, P. Leger, J. A. Galindo, and
H. Fukuda. Mixing of join point interfaces and feature-
oriented programming for modular software product
line. EAI Endorsed Trans. Scalable Information Systems,
3(10):e2, 2016. 21

[30] C. Vidal Silva. Exploring efficient analysis alternatives
on feature models. In Maurice H. ter Beek, Walter Caz-
zola, Oscar Díaz, Marcello La Rosa, Roberto E. Lopez-
Herrejon, Thomas Thüm, Javier Troya, Antonio Ruiz
Cortés, and David Benavides, editors, Proceedings of
the 21st International Systems and Software Product

BIBLIOGRAPHY 88

Line Conference, SPLC 2017, Volume B, Sevilla, Spain,
September 25-29, 2017, pages 150–155. ACM, 2017. 21

[31] C. Vidal, J. A. Galindo, J. Giráldez, and D. Benavides.
Automated completion of partial configurations as a diag-
nosis task. Using FastDiag to improve performance. In
ISMIS 2020, Industry Session, Graz University of Tech-
nology, Graz, Austria, September, 2020, 2020. 21, 78

[32] C. Vidal, J. A. Galindo, and D. Benavides. Functional
Testing of Conflict Detection and Diagnosis Tools in Fea-
ture Model Configuration: A Test Suite Design. In Con-
fWS 2020, 22th International Workshop on Configuration,
online event, September, 2020, 2020. 21, 78, 82

[33] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process: Improvement and Practice, 10:7–29,
01 2005. 24

[34] C. Thörn and K. Sandkuhl. Feature Modeling: Managing
Variability in Complex Systems, pages 129–162. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. 25

[35] R. Mazo, R. Lopez-Herrejon, C. Salinesi, D. Diaz, and
A. Egyed. Conformance checking with constraint logic
programming: The case of feature models. pages 456 –
465, 08 2011. 25, 51

[36] F. Zhou, J. Roger Jiao, X. J. Yang, and B. Lei. Augment-
ing feature model through customer preference mining by
hybrid sentiment analysis. Expert Systems with Applica-
tions, 89:306 – 317, 2017. 25

[37] M. Weckesser, M. Lochau, T. Schnabel, B. Richerzhagen,
and A. Schürr. Mind the gap! automated anomaly detec-
tion for potentially unbounded cardinality-based feature

BIBLIOGRAPHY 89

models. In Proceedings of the 19th International Confer-
ence on Fundamental Approaches to Software Engineer-
ing - Volume 9633, pages 158–175, New York, NY, USA,
2016. Springer-Verlag New York, Inc. 25, 52

[38] A. R. Santos and E. Santana de Almeida. Do #ifdef-based
variation points realize feature model constraints? SIG-
SOFT Softw. Eng. Notes, 40(6):1–5, November 2015. 25

[39] S. Segura, A. B. Sánchez, and A. Ruiz-Cortés. Auto-
mated variability analysis and testing of an e-commerce
site: An experience report. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE ’14, pages 139–150, New York,
NY, USA, 09/2014 2014. ACM, ACM. 25

[40] M. Nieke, J. Mauro, C. Seidl, T. Thüm, I. C. Yu, and
F. Franzke. Anomaly analyses for feature-model evolu-
tion. In Proceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts
and Experiences, GPCE 2018, pages 188–201, New York,
NY, USA, 2018. ACM. 25, 45, 52

[41] A. Khtira, A. Benlarabi, and B. Asri. Duplication de-
tection when evolving feature models of software product
lines. Information (Switzerland), 6:592–612, 10 2015. 26,
51

[42] D. M. Le, H. Lee, K. C. Kang, and L. Keun. Validating
consistency between a feature model and its implementa-
tion. In John Favaro and Maurizio Morisio, editors, Safe
and Secure Software Reuse, pages 1–16, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg. 26

[43] A. Gómez and I. Ramos. Automatic tool support for
cardinality-based feature modeling with model constraints

BIBLIOGRAPHY 90

for information systems development. In Information
Systems Development, Business Systems and Services:
Modeling and Development [Proceedings of ISD 2010,
Charles University in Prague, Czech Republic, August 25-
27, 2010], pages 271–284, 2010. 26, 28

[44] C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and
G. Botterweck. Consistency checking for the evolution
of cardinality-based feature models. In Proceedings of
the 18th International Software Product Line Conference
- Volume 1, SPLC ’14, pages 122–131, New York, NY,
USA, 2014. ACM. 26, 52

[45] A. S. Karataş and H. Oğuztüzün. Attribute-based variabil-
ity in feature models. Requir. Eng., 21(2):185–208, June
2016. 26, 29

[46] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer,
and K. Lauenroth. Quality-aware analysis in product line
engineering with the orthogonal variability model. Soft-
ware Quality Journal, 20(3):519–565, Sep 2012. 26, 29

[47] C. Hwan, P. Kim, and K. Czarnecki. Synchronizing
cardinality-based feature models and their specializations.
In Proceedings of the First European Conference on
Model Driven Architecture: Foundations and Applica-
tions, ECMDA-FA’05, pages 331–348, Berlin, Heidel-
berg, 2005. Springer-Verlag. 26

[48] C. Quinton, D. Romero, and L. Duchien. Cardinality-
based feature models with constraints: A pragmatic ap-
proach. In Proceedings of the 17th International Software
Product Line Conference, SPLC ’13, pages 162–166, New
York, NY, USA, 2013. ACM. 28

[49] T. Schnabel, M. Weckesser, R. Kluge, M. Lochau, and
A. Schürr. Cardygan: Tool support for cardinality-based

BIBLIOGRAPHY 91

feature models. In Proceedings of the Tenth International
Workshop on Variability Modelling of Software-intensive
Systems, VaMoS ’16, pages 33–40, New York, NY, USA,
2016. ACM. 28, 52

[50] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
reasoning on feature models. In Oscar Pastor and João
Falcão e Cunha, editors, Advanced Information Systems
Engineering, pages 491–503, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. 29

[51] J. A. Pereira, S. Krieter, J. Meinicke, R. Schröter,
G. Saake, and T. Leich. Featureide: Scalable product
configuration of variable systems. In Proceedings of the
15th International Conference on Software Reuse: Bridg-
ing with Social-Awareness - Volume 9679, ICSR 2016,
pages 397–401, New York, NY, USA, 2016. Springer-
Verlag New York, Inc. 30

[52] pure-systems - the leading provider of software for prod-
uct line and variant management tools | pure::variants.
https://www.pure-systems.com/products/
pure-variants-9.html. Accessed: 2020-07-02.
30

[53] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, Berlin, Heidelberg, 2005.
30

[54] F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortés. Fea-
ture model to orthogonal variability model transforma-
tions. a first step. In Actas del VI Taller sobre Desarrollo
de Software Dirigido por Modelos. Actas de los talleres
de las JISBD09, volume 3, pages 81–90, San Sebastián,
España, 09/2009 2009. 30

https://www.pure-systems.com/products/pure-variants-9.html
https://www.pure-systems.com/products/pure-variants-9.html

BIBLIOGRAPHY 92

[55] J. Galindo, F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés,
and J. García-Galán. Automated analysis of diverse vari-
ability models with tool support. In Proceedings of In
Jornadas de Ciencia e Ingeniería de Servicios (JCIS) Sist-
edes, 01 2014. 30

[56] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey,
Ø. Haugen, B. Møller-Pedersen, and G. K. Olsen. De-
veloping a software product line for train control: A
case study of cvl. In Proceedings of the 14th Interna-
tional Conference on Software Product Lines: Going Be-
yond, SPLC’10, page 106–120, Berlin, Heidelberg, 2010.
Springer-Verlag. 31

[57] M. Antkiewicz, K. Bąk, A. Murashkin, R. Olaechea,
J. H. (Jimmy) Liang, and K. Czarnecki. Clafer tools for
product line engineering. In Proceedings of the 17th Inter-
national Software Product Line Conference Co-Located
Workshops, SPLC ’13 Workshops, page 130–135, New
York, NY, USA, 2013. Association for Computing Ma-
chinery. 31

[58] S. Ibraheem and S. Ghoul. Software evolution: A features
variability modeling approach. Journal of Software Engi-
neering, 11:12–21, 2017. 41

[59] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,
and S. Pasupathy. An empirical study on configuration er-
rors in commercial and open source systems. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 159–172, 2011. 41

[60] Facebook. More details on today’s outage. https:
//m.facebook.com/nt/screen/?params=
%7B%22note_id%22%3A10158791436142200%

https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A10158791436142200%7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A10158791436142200%7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A10158791436142200%7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A10158791436142200%7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr

BIBLIOGRAPHY 93

7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr.
Accessed: 2021-26-01. 41

[61] L. A. Barroso and U. Hoelzle. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale
Machines. Morgan and Claypool Publishers, 1st edition,
2009. 41

[62] J. Zhanwen-Li, S. He, L. Zhu, X. Xu, M. Fu, L. Bass,
A. Liu, and A. B. Tran. Challenges to error diagnosis
in hadoop ecosystems. In Proceedings of the 27th Large
Installation System Administration Conference (LISA),
pages 145–154, 2013. 41

[63] H. Riener and G. Fey. Exact diagnosis using boolean satis-
fiability. In Proceedings of the 35th International Confer-
ence on Computer-Aided Design, ICCAD ’16, New York,
NY, USA, 2016. Association for Computing Machinery.
41

[64] A. Elfaki, L. Sim, P. Vijayaprasad, M. G. Md-Johar,
and M. Fadhil. Using a rule-based method for detect-
ing anomalies in software product line. Research Journal
of Applied Sciences, Engineering and Technology, 7:275–
281, 01 2014. 44, 50

[65] A. Durán, D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. Flame: A formal framework for the
automated analysis of software product lines validated
by automated specification testing. Softw. Syst. Model.,
16(4):1049–1082, October 2017. 44

[66] I. Mistrík, M. Galster, and B. R. Maxim, editors. Software
Engineering for Variability Intensive Systems - Founda-
tions and Applications. Auerbach Publications / Taylor &
Francis, 2019. 44

https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A10158791436142200%7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A10158791436142200%7D&path=%2Fnotes%2F%7Bnote_id%7D&_rdr

BIBLIOGRAPHY 94

[67] M. Kowal, S. Ananieva, and T. Thüm. Explaining anoma-
lies in feature models. SIGPLAN Not., 52(3):132–143,
October 2016. 44, 51

[68] F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortés. Au-
tomated analysis of orthogonal variability models using
constraint programming. pages 269–280, 01 2010. 44

[69] R. E. Lopez-Herrejon and A. Egyed. Towards fixing in-
consistencies in models with variability. In Proceedings of
the Sixth International Workshop on Variability Modeling
of Software-Intensive Systems, VaMoS ’12, pages 93–100,
New York, NY, USA, 2012. ACM. 44, 45, 51

[70] M. Pol’la, A. Buccella, and A. Cechich. Automated analy-
sis of variability models: The sevatax process. In O. Ger-
vasi, B. Murgante, S. Misra, E. Stankova, C. M. Torre,
A. M. Rocha, D. Taniar, B. O. Apduhan, E. Tarantino,
and Y. Ryu, editors, Computational Science and Its Ap-
plications – ICCSA 2018, pages 365–381, Cham, 2018.
Springer International Publishing. 45

[71] M. Pol’la, A. Buccella, and A. Cechich. Using scope sce-
narios to verify multiple variability models. In S. Misra,
O. Gervasi, B. Murgante, E. Stankova, V. Korkhov,
C. Torre, A. M. Rocha, D. Taniar, B. O. Apduhan, and
E. Tarantino, editors, Computational Science and Its Ap-
plications – ICCSA 2019, pages 383–399, Cham, 2019.
Springer International Publishing. 45

[72] D. Benavides, A. Felfernig, J. A. Galindo, and F. Rein-
frank. Automated analysis in feature modelling and prod-
uct configuration. In ICSR, pages 160–175, Pisa, Italy,
06/2013 2013. 45

[73] A. Nöhrer, A. Biere, and A. Egyed. Managing sat incon-
sistencies with humus. In Proceedings of the Sixth Inter-

BIBLIOGRAPHY 95

national Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12, pages 83–91, New York,
NY, USA, 2012. ACM. 45

[74] A. Nöhrer, A. Biere, and A. Egyed. A comparison of
strategies for tolerating inconsistencies during decision-
making. In Proceedings of the 16th International Software
Product Line Conference - Volume 1, SPLC ’12, pages 11–
20, New York, NY, USA, 2012. ACM. 45

[75] J. Guo, Y. Wang, P. Trinidad, and D. Benavides. Con-
sistency maintenance for evolving feature models. Expert
Syst. Appl., 39(5):4987–4998, 2012. 45, 51

[76] D. Hinterreiter, K. Feichtinger, L. Linsbauer, H. Prähofer,
and P. Grünbacher. Supporting feature model evolution
by lifting code-level dependencies: A research preview.
In Requirements Engineering: Foundation for Software
Quality - 25th International Working Conference, REFSQ
2019, Essen, Germany, March 18-21, 2019, Proceedings,
pages 169–175, 2019. 45, 51

[77] S. H. Choi. Verification tool for feature models and config-
urations using semantic web technologies. Journal of the
Korea society of IT services, 10:189–201, 09 2011. 45, 50

[78] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. Le-Traon. Towards automated testing and fixing of re-
engineered feature models. pages 1245–1248, 05 2013.
45, 51

[79] B. Kitchenham, O. Pearl-Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman. Systematic literature reviews in
software engineering - a systematic literature review. Inf.
Softw. Technol., 51(1):7–15, January 2009. 45

BIBLIOGRAPHY 96

[80] B. Napoleão, K. Romero-Felizardo, É. Ferreira de Souza,
and N. L. Vijaykumar. Practical similarities and differ-
ences between systematic literature reviews and system-
atic mappings: a tertiary study. pages 85–90, 2017. 45

[81] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Sys-
tematic mapping studies in software engineering. pages
68–77, 2008. 45, 46, 47

[82] A. Halim, R. Ahmad, Z. A. Muhamad-Noh, F. Hazwani,
and N. Mohd-Alwi. Systematic review for network sur-
vivability analysis in manets. Procedia - Social and Be-
havioral Sciences, 195:1872–1881, 07 2015. 45

[83] C. Aboud, C. Andrucioli de Mattos Pimenta, and M. No-
bre. The pico strategy for the research question construc-
tion and evidence search. Revista latino-americana de en-
fermagem, 15:508–11, 05 2007. 46

[84] Google. Google Scholar. https://scholar.
google.cl/, 2020. Accessed: 2020-02-02. 47

[85] Elsevier. Scopus. https://www.scopus.com/
search/form.uri?display=basic, 2020. Ac-
cessed: 2020-01-02. 47

[86] Clarivate Analytics. Web of Science. https://apps.
webofknowledge.com/, 2020. Accessed: 2020-01-
03. 47

[87] I. Achour, L. Jilani, and H. Ben-Ghezala. Towards an ex-
tended tool for analysis of extended feature models. pages
1–5, 06 2014. 50

[88] U. Afzal, T. Mahmood, I. Rauf, and Z. A. Shaikh. Mini-
mizing feature model inconsistencies in software product
lines. In 17th IEEE International Multi Topic Conference
2014, pages 137–142, Dec 2014. 50

https://scholar.google.cl/
https://scholar.google.cl/
https://www.scopus.com/search/form.uri?display=basic
https://www.scopus.com/search/form.uri?display=basic
https://apps.webofknowledge.com/
https://apps.webofknowledge.com/

BIBLIOGRAPHY 97

[89] S. Ananieva, M. Kowal, T. Thüm, and I. Schaefer. Implicit
constraints in partial feature models. In Proceedings of the
7th International Workshop on Feature-Oriented Software
Development, FOSD 2016, pages 18–27, New York, NY,
USA, 2016. ACM. 50, 56

[90] P. Arcaini, A. Gargantini, E. Riccobene, and P. Vavassori.
A novel use of equivalent mutants for static anomaly de-
tection in software artifacts. Information and Software
Technology, 81:52 – 64, 2017. 50

[91] P. Arcaini, A. Gargantini, and P. Vavassori. Generating
tests for detecting faults in feature models. In 2015 IEEE
8th International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 1–10, April 2015. 50

[92] P. Arcaini, A. Gargantini, and P. Vavassori. Automatic de-
tection and removal of conformance faults in feature mod-
els. In 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 102–
112, April 2016. 50

[93] M. Asadi, G. Gröner, B. Mohabbati, and D. Gaše-
vić. Goal-oriented modeling and verification of feature-
oriented product lines. Softw. Syst. Model., 15(1):257–
279, February 2016. 50

[94] M. Asadi, B. Mohabbati, G. Gröner, and D. Gasevic. De-
velopment and validation of customized process models.
Journal of Systems and Software, 96, 10 2014. 50

[95] J. Barreiros and A. Moreira. Flexible modeling and prod-
uct derivation in software product lines. Proceedings
of the International Conference on Software Engineer-
ing and Knowledge Engineering, SEKE, 2014:67–70, 01
2014. 50

BIBLIOGRAPHY 98

[96] M. Bhushan, S. Goel, and K. Kaur. Analyzing incon-
sistencies in software product lines using an ontological
rule-based approach. Journal of Systems and Software,
137:605 – 617, 2018. 50

[97] M. Bhushan, S. Goel, and A. Loura. Improving quality
of software product line by analyzing inconsistencies in
feature models using an ontological rule-based approach.
Expert Systems, 35, 11 2017. 50

[98] S. bin Abid. Resolving feature dependency implemen-
tations inconsistencies during product derivation. In
Proceedings of the 6th ECMFA Traceability Workshop,
ECMFA-TW ’10, pages 31–38, New York, NY, USA,
2010. ACM. 50

[99] P. Costa, F. Marinho, R. Andrade, and T. Oliveira. Fixture
- a tool for automatic inconsistencies detection in context-
aware spl. ICEIS 2015 - 17th International Conference on
Enterprise Information Systems, Proceedings, 2:114–125,
01 2015. 50

[100] A. Felfernig, R. Walter, and S. Reiterer. Flexdiag: Any-
time diagnosis for reconfiguration. September 2015. 50,
54, 59, 79

[101] A. Felfernig, R. Walter, J. A. Galindo, D. Benavides,
S. Polat Erdeniz, M. Atas, and S. Reiterer. Anytime di-
agnosis for reconfiguration. J. Intell. Inf. Syst., 51(1):161–
182, 2018. 50, 54, 59

[102] R. Gheyi, T. Massoni, and P. Borba. Automatically check-
ing feature model refactorings. J. UCS, 17(5):684–711,
2011. 51

BIBLIOGRAPHY 99

[103] M. Javed and M. Naeem. Automated inconsistency detec-
tion in feature models: A generative programming based
approach. Selforganizology, 3:59–74, 06 2016. 51

[104] A. Khtira, A. Benlarabi, and Bo. Asri. A tool support for
automatic detection of duplicate features during software
product lines evolution. IJCSI International Journal of
Computer Science Issues, 12:1–10, 07 2015. 51

[105] U. Lesta, I. Schaefer, and Winkelmann T. Detecting and
explaining conflicts in attributed feature models. In Pro-
ceedings 6th Workshop on Formal Methods and Analy-
sis in SPL Engineering, FMSPLE@ETAPS 2015, London,
UK, 11 April 2015., pages 31–43, 2015. 51

[106] L. Barachisio-Lisboa, V. Cardoso-Garcia, S. Romero
de Lemos Meira, and E. Santana de Almeida. A support
tool for domain analysis. In Fourth International Work-
shop on Variability Modelling of Software-Intensive Sys-
tems, Linz, Austria, January 27-29, 2010. Proceedings,
pages 175–178, 2010. 51

[107] L. Barachisio-Lisboa, V. Cardoso-Garcia, E. Santana-de
Almeida, and Silvio Romero-de Lemos Meira. Toolday:
A tool for domain analysis. Int. J. Softw. Tools Technol.
Transf., 13(4):337–353, August 2011. 51

[108] R. E. Lopez-Herrejon and A. Egyed. Searching the vari-
ability space to fix model inconsistencies: A preliminary
assessment. In Third International Symposium Search
Based Software Engineering SSBSE 2011 (2011). Pro-
ceedings, 2011. 51, 55

[109] F. G. Marinho, P. H. M. Maia, R. M. C. Andrade, V. M. P.
Vidal, P. A. S. Costa, and C. Werner. Safe adaptation
in context-aware feature models. In Proceedings of the

BIBLIOGRAPHY 100

4th International Workshop on Feature-Oriented Software
Development, FOSD ’12, pages 54–61, New York, NY,
USA, 2012. ACM. 51

[110] J. Mauro, M. Nieke, C. Seidl, and I. C. Yu. Anomaly de-
tection and explanation in context-aware software product
lines. In Proceedings of the 21st International Systems
and Software Product Line Conference - Volume B, SPLC
’17, pages 18–21, New York, NY, USA, 2017. ACM. 51

[111] S. Nakajima. Semi-automated diagnosis of foda feature
diagram. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 2191–2197, New
York, NY, USA, 2010. ACM. 52

[112] S. Nakajima. Non-clausal encoding of feature diagram for
automated diagnosis. In Proceedings of the 14th Interna-
tional Conference on Software Product Lines: Going Be-
yond, SPLC’10, pages 420–424, Berlin, Heidelberg, 2010.
Springer-Verlag. 52

[113] M. Noorian, A. Ensan, E. Bagheri, H. Boley, and Y. Bilet-
skiy. Feature model debugging based on description
logic reasoning. Proceedings: DMS 2011 - 17th Inter-
national Conference on Distributed Multimedia Systems,
pages 158–164, 01 2011. 52

[114] S. Ripon, K. Azad, S. J. Hossain, and M. Hassan. Model-
ing and analysis of product-line variants. In Proceedings
of the 16th International Software Product Line Confer-
ence - Volume 2, SPLC ’12, pages 26–31, New York, NY,
USA, 2012. ACM. 52

[115] S. Ripon, M. Piash, A. Hossain, and M. S. Uddin. Seman-
tic webbased analysis of product line variant model. Inter-
national Journal of Computer and Electrical Engineering,
pages 1–6, 01 2014. 52

BIBLIOGRAPHY 101

[116] C. Vidal-Silva. Reviewing diagnosis solutions for valid
product configurations in the automated analysis of fea-
ture models. International Journal of Advanced Computer
Science and Applications, 10(1), 2019. 52, 54, 78

[117] B. Wang, Z. Hu, Y. Xiong, H. Zhao, W. Zhang, and
H. Mei. Tolerating inconsistency in feature models. CEUR
Workshop Proceedings, 661, 01 2010. 52

[118] B. Wang, Y.-F. Xiong, Z.-J. Hu, H.-Y. Zhao, W. Zhang,
and H. Mei. Interactive inconsistency fixing in feature
modeling. Journal of Computer Science and Technology,
29(4):724–736, Jul 2014. 52

[119] J. White, D. Benavides, D. C. Schmidt, P. Trinidad,
B. Dougherty, and A. Ruiz-Cortes. Automated diag-
nosis of feature model configurations. J. Syst. Softw.,
83(7):1094–1107, July 2010. 52, 62

[120] G. Zhang, H. Ye, and Y. Lin. Modelling quality attributes
in feature models in software product line engineering. In
Proceedings of the 6th International Conference on Soft-
ware and Database Technologies - Volume 2: ICSOFT,,
pages 249–254. INSTICC, SciTePress, 2011. 52

[121] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005, 3520:491–503, 2005. 59, 62

[122] M. Stumptner. An Overview of Knowledge-based Config-
uration. Ai Communications, 10(2):111–125, 1997. 59

[123] A. Felfernig and R. Burke. Constraint-based Recom-
mender Systems: Technologies and Research Issues. In
ACM International Conference on Electronic Commerce
(ICEC’08), pages 17–26, Innsbruck, Austria, 2008. 59

BIBLIOGRAPHY 102

[124] F. Ricci, L Rokach, B. Shapira, and P. Kantor. Recom-
mender Systems Handbook. Springer, 2011. 59

[125] G. Friedrich, M. Stumptner, and F. Wotawa. Model-based
Diagnosis of Hardware Designs. Artificial Intelligence,
111(1–2):3–39, 1999. 59

[126] T. Schmitz and D. Jannach. An AI-based Interactive
Tool for Spreadsheet Debugging. In IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC’17), pages 333–334, Raleigh, NC, USA, 2017.
IEEE. 59

[127] J. M. Horcas, M. Pinto, and L. Fuentes. Variability mod-
els for generating efficient configurations of functional
quality attributes. Information and Software Technology,
95:147–164, 2018. 59

[128] R. Reiter. A theory of diagnosis from first principles. AI
Journal, 23(1):57––95, 1987. 60, 61

[129] L. Bordeaux, Y. Hamadi, and H. Samulowitz. Experi-
ments with Massively Parallel Constraint Solving. In 21st
International Joint Conference on Artifical Intelligence,
pages 443–448, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers. 60, 61

[130] J. Díaz, J. Pérez, and J. Garbajosa. Agile product-line ar-
chitecting in practice: A case study in smart grids. Infor-
mation and Software Technology, 56(7):727–748, 2014.
60

[131] I. Gent, I. Miguel, P. Nightingale, C. McCreesh, P. Prosser,
N. Nooore, and C. Unsworth. A Review of Literature on
Parallel Constraint Solving. Theory and Practice of Logic
Programming, 18(5–6):725–758, 2018. 60, 61

BIBLIOGRAPHY 103

[132] Y. Hamadi and L. Sais. Handbook of Parallel Constraint
Reasoning. Springer, 2018. 60, 61

[133] J. Marques-Silva, F. Heras, M. Janota, A. Previti, and
A. Belov. On Computing Minimal Correction Subsets.
In 23rd international Joint Conference on Artificial Intel-
ligence, pages 615–622, Beijing, China, 2013. 60, 61

[134] Á. J. Varela-Vaca, J. A. Galindo, B. Ramos-Gutiérrez,
M. T. Gómez-López, and D. Benavides. Process min-
ing to unleash variability management: discovering con-
figuration workflows using logs. In Proceedings of the
23rd International Systems and Software Product Line
Conference-Volume A, pages 265–276, 2019. 60

[135] F. W. Burton. Speculative computation, parallelism, and
functional programming. IEEE Transactions on Comput-
ers, C-34(12):1190–1193, Dec 1985. 60, 61, 64

[136] J. Galindo and D. Benavides. Towards a new reposi-
tory for feature model exchange. In C. Cetina, O. Díaz,
L. Duchien, M. Huchard, R. Rabiser, C. Salinesi, C. Seidl,
X. Tërnava, L. Teixeira, T. Thüm, and T. Zadi, editors,
Proceedings of the 23rd International Systems and Soft-
ware Product Line Conference, SPLC 2019, Volume B,
Paris, France, September 9-13, 2019, pages 85:1–85:4.
ACM, 2019. 60, 71

[137] D. Jannach, T. Schmitz, and K. Shchekotykhin. Paral-
lelized Hitting Set Computation for Model-Based Diag-
nosis. In 29th AAAI Conference on Artificial Intelligence,
pages 1503–1510, Austin, Texas, 2015. AAAI Press. 61

[138] R. Bakker and F. Dikker. Diagnosing and Solving Over-
determined Constraint Satisfaction Problems. In 13th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’93), pages 276–281, Chambéry, France, 1993. 61

BIBLIOGRAPHY 104

[139] J. de Kleer and B. Williams. Diagnosing Multiple Faults.
Artificial Intelligence, 32(1):97–130, 1987. 61

[140] F. Wotawa. A Variant of Reiter’s Hitting-Set Algorithm.
Information Processing Letters, 79(1):45–51, 2001. 61

[141] D. Jannach, T. Schmitz, and K. Shchekotykhin. Parallel
Model-Based Diagnosis on Multi-Core Computers. Jour-
nal of Artificial Intelligence Research, 55:835–887, 2016.
61

[142] J. Galindo, D. Benavides, P. Trinidad, A. Gutiérrez-
Fernández, and A. Ruiz-Cortés. Automated analysis of
feature models: Quo vadis? Computing, 101(5):387–433,
2019. 61

[143] E. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993. 62

[144] D. Le Berre and A. Parrain. The sat4j library, release 2.2.
Journal on Satisfiability, Boolean Modeling and Compu-
tation, 7(2-3):59–64, 2010. 71

[145] M. Alférez, M. Acher, J. A. Galindo, B. Baudry, and
D. Benavides. Modeling variability in the video domain:
Language and experience report. Software Quality Jour-
nal, 27(1):307–347, 2019. 71

[146] G. Doux, P. Albert, G. Barbier, J. Cabot, M. D. Del Fabro,
and S. U.-J. Lee. An mde-based approach for solving con-
figuration problems: An application to the eclipse plat-
form. In European Conference on Modelling Foundations
and Applications, pages 160–171. Springer, 2011. 71

[147] C. Vidal-Silva, A. Felfernig, J. A. Galindo, M. Atas, and
D. Benavides. Explanations for over-constrained prob-
lems with parallelized QUICKXPLAIN. In Denis Helic,

BIBLIOGRAPHY 105

Gerhard Leitner, Martin Stettinger, Alexander Felfernig,
and Zbigniew W. Raś, editors, Journal of Intelligent In-
formation Systems - Integrating Artificial Intelligence and
Database Technologies, pages –, Cham, 2021. Springer
International Publishing. 78

[148] K. Shchekotykhin, D. Jannach, and T. Schmitz.
MERGEXPLAIN: Fast Computation of Multiple Con-
flicts for Diagnosis. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, IJCAI’15,
pages 3221–3228. AAAI Press, 2015. 79

[149] K. Shchekotykhin, D. Jannach, and T. Schmitz. Parallel
Model-Based Diagnosis, pages 547–580. Springer Inter-
national Publishing, Cham, 2018. 79

	List of Figures
	List of Tables
	Acknowledgement
	Resumen
	Abstract
	Preface
	Introduction
	Research context
	Main issues to solve

	Contributions
	Summary of contributions
	Publications in chronological order
	Tools
	Research internships and collaborations

	Structure of this dissertation

	Background and Motivation
	Variability models
	Introduction
	Feature models
	Basic feature models
	Cardinality-based feature models
	Extended feature models

	Other variability modeling approaches
	Orthogonal Variability Model (OVM)
	Debian variability model
	CVL
	Clafer

	Summary

	Automated analysis of variability models
	Introduction
	Minimal Conflict Sets (MCS) detection
	QuickXPlain algorithm

	Minimal diagnosis detection
	FastDiag algorithm

	Product completion
	Summary

	Our contributions
	A review of current AAFM solutions for minimal conflict, diagnosis, and product completion
	Introduction
	Systematic Literature Review (SLR)
	Review process
	Definition of research questions
	Source material
	Inclusion criteria
	Results
	RQ1: What are the automated solutions for detecting conflicts in feature models from 2010 to 2019?
	RQ2: What are the automated solutions for diagnosis in feature models from 2010 to 2019?
	RQ3: What are the automated solutions for the completion of products in feature models from 2010 to 2019?

	Discussion
	Summary

	Parallel QuickXPlain: efficient conflict detection in AAFM
	Parallel FastDiag: efficient minimal diagnosis in AAFM
	Introduction
	Related work
	Calculating minimal diagnosis
	ParallelFastDiag solution proposal
	Analysis
	Complexity analysis
	Runtime analysis

	Summary

	Minimal completion of products as a diagnosis task in AAFM

	Final remarks
	Conclusiones and future work
	Conclusions
	Discussion and open challenges

	Future work
	Speculative programming
	Using parallel diagnosis in other variability issues

	Appendix
	Exploiting the enumeration of all feature model configurations
	Functional testing of conflict detection and diagnosis tools in feature model configuration
	Bibliography

