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Resumen

Esta tesis combina las disciplinas de Investigación Operativa y Estadística con el fin de desa-

rrollar nuevos métodos computacionales para extraer información de datos complejos. En este

estudio, datos complejos se refiere a conjuntos de datos con un número elevado de muestras y/o

variables, con diferentes tipos de variables, con estructuras de dependencia entre las variables,

recogidos de diferentes fuentes (heterogéneos), posiblemente con clases desbalanceadas, con

diferentes costes de clasificación incorrecta o caracterizados por valores extremos (datos de

cola pesada), entre otros.

La complejidad de los datos y las nuevas exigencias de los usuarios (modelos interpreta-

bles, modelos sensibles a costes de errores de predicción o modelos eficientes en tiempo de

ejecución) implica un reto desde la perspectiva científica. Las principales contribuciones de

esta tesis se engloban en tres marcos teóricos diferentes: Regresión, Clasificación e Inferencia

Bayesiana. Repecto al primero, consideramos modelos de regresión lineal, donde una varia-

ble respuesta continua se pronostica a partir de un conjunto de variables predictoras. Por un

lado, buscando soluciones interpretables en datos heterogéneos, proponemos una nueva versión

del Lasso en la que se controla el rendimiento del modelo en los grupos de interés. Por otro

lado, aplicamos técnicas de optimización matemática para proponer un modelo de regresión

lineal diseñado específicamente para conjuntos de datos con variables predictoras categóricas

y jerárquicas. En lo que se refiere a Clasificación, en esta tesis se ha explorado en profundidad

el clasificador Naïve Bayes. Este método se ha adaptado para obtener una solución sparse (es

decir, expreseada en términos de un subconjunto de variables predictoras). Además, el método

se ha modificado para tratar con datos en los que se debe tener en cuenta los diferentes costes de

clasificación incorrecta. En ambos problemas, se presentan nuevas estrategias para reducir los

tiempos de ejecución. Finalmente, la última contribución de esta tesis es relativa a la inferencia

Bayesiana. En particular, se considera un enfoque de estimación Bayesiano semiparamétrico

para estimar la distribución Elíptica, la cual generaliza la distribución normal multivariante

permitiendo colas más pesadas.

La estructura de esta tesis es la siguiente. El Capítulo 1 revisa los conceptos teóricos

necesarios para desarrollar los capítulos posteriores. En concreto, se revisan dos áreas de in-

vestigación principales: el aprendizaje automático (sparse y sensible a costes de errores de

predicción) y la estadística Bayesiana.
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En el Capítulo 2 se propone un método basado en el Lasso en el que se han añadido restric-

ciones cuadráticas para controlar los errores de predicción en individuos de interés. Este mo-

delo de regresión, sparse y con restricciones, se define mediante un problema de optimización

no lineal. El método resulta de especial interés cuando se trabaja con muestras heterogéneas

donde los datos provienen de diferentes fuentes, como resulta habitual en muchos contextos

biomédicos.

El Capítulo 3 estudia modelos de regresión para variables predictoras categóricas con es-

tructura jerárquica. El modelo es flexible en el sentido en que el usuario decide el nivel de

detalle en la información que el modelo debe utilizar, atendiendo a razones de privacidad y

confidencialidad. Para modelar el equilibrio entre el rendimiento del modelo y su complejidad,

se define un problema cuadrático convexo con variables enteras y restricciones lineales.

En el Capítulo 4, se introduce una versión sparse del clasificador Naïve Bayes, caracteri-

zada por las tres propiedades siguientes. Primero, la selección de variables se realiza teniendo

en cuenta la estructura de correlación de las variables predictoras. Segundo, se pueden usar

diferentes medidas de rendimiento al seleccionar los subconjuntos de variables. Finalmente,

el modelo permite incluir restricciones de rendimiento en los grupos de individuos de mayor

interés. Mediante el diseño de una búsqueda inteligente, el método consigue tiempos de ejecu-

ción competitivos.

El enfoque introducido en el Capítulo 2 también se explora en el Capítulo 5 con el fin

de mejorar la predicción del clasificador Naïve Bayes en las clases de mayor interés para el

usuario. A diferencia de la versión tradicional del clasificador basado en dos etapas (estimación

primero y clasificación después), la nueva metodología integra ambas a la vez. El método se

formula como un problema de optimización donde se maximiza la función de verosimilitud

con restricciones para las tasas de clasificación de los grupos de interés.

El Capítulo 6 aborda la estimación estadística desde la perspectiva Bayesiana de una clase

general de distribuciones de cola pesada, las distribuciones Elípticas. Esta familia de distribu-

ciones se han propuesto a nivel teórico en problemas asociados a datos extremos, típicos en

contextos financieros o en teoría de riesgo. El enfoque que adoptamos es semiparamétrico

basado en los procesos Dirichlet.

Finalmente, el Capítulo 7 cierra esta tesis con conclusiones generales y futuras líneas de

investigación.



Abstract

This PhD dissertation bridges the disciplines of Operations Research and Statistics to develop

novel computational methods for the extraction of knowledge from complex data. In this re-

search, complex data stands for datasets with many instances and/or variables, with different

types of variables, with dependence structures among the variables, collected from different

sources (heterogeneous), possibly with non-identical population class sizes, with different mis-

classification costs, or characterized by extreme instances (heavy-tailed data), among others.

Recently, the complexity of the raw data in addition to new requests posed by practitioners

(interpretable models, cost-sensitive models or models which are efficient in terms of running

times) entail a challenge from a scientific perspective. The main contributions of this PhD dis-

sertation are encompassed in three different research frameworks: Regression, Classification

and Bayesian inference. Concerning the first, we consider linear regression models, where a

continuous outcome variable is to be predicted by a set of features. On the one hand, seeking

for interpretable solutions in heterogeneous datasets, we propose a novel version of the Lasso

in which the performance of the method on groups of interest is controlled. On the other hand,

we use mathematical optimization tools to propose a sparse linear regression model (that is, a

model whose solution only depends on a subset of predictors) specifically designed for datasets

with categorical and hierarchical features. Regarding the task of Classification, in this PhD dis-

sertation we have explored in depth the Naïve Bayes classifier. This method has been adapted

to obtain a sparse solution and also, it has been modified to deal with cost-sensitive datasets.

For both problems, novel strategies for reducing high running times are presented. Finally, the

last contribution of this dissertation concerns Bayesian inference methods. In particular, in the

setting of heavy-tailed data, we consider a semi-parametric Bayesian approach to estimate the

Elliptical distribution.

The structure of this dissertation is as follows. Chapter 1 contains the theoretical back-

ground needed to develop the following chapters. In particular, two main research areas are

reviewed: sparse and cost-sensitive statistical learning and Bayesian Statistics.

Chapter 2 proposes a Lasso-based method in which quadratic performance constraints to

bound the prediction errors in the individuals of interest are added to Lasso-based objective

functions. This constrained sparse regression model is defined by a nonlinear optimization

problem. Specifically, it has a direct application in heterogeneous samples where data are
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collected from distinct sources, as it is standard in many biomedical contexts.

Chapter 3 studies linear regression models built on categorical predictor variables that have

a hierarchical structure. The model is flexible in the sense that the user decides the level of

detail in the information used to build it, having into account data privacy considerations. To

trade off the accuracy of the linear regression model and its complexity, a Mixed Integer Convex

Quadratic Problem with Linear Constraints is solved.

In Chapter 4, a sparse version of the Naïve Bayes classifier, which is characterized by the

following three properties, is proposed. On the one hand, the selection of the subset of variables

is done in terms of the correlation structure of the predictor variables. On the other hand, such

selection can be based on different performance measures. Additionally, performance con-

straints on groups of higher interest can be included. This smart search integrates the flexibility

in terms of performance for classification, yielding competitive running times.

The approach introduced in Chapter 2 is also explored in Chapter 5 for improving the per-

formance of the Naïve Bayes classifier in the classes of most interest to the user. Unlike the tra-

ditional version of the classifier, which is a two-step classifier (estimation first and classification

next), the novel approach integrates both stages. The method is formulated via an optimization

problem where the likelihood function is maximized with constraints on the classification rates

for the groups of interest.

When dealing with datasets of especial characteristics (for example, heavy tails in contexts

as Economics and Finance), Bayesian statistical techniques have shown their potential in the

literature. In Chapter 6, Elliptical distributions, which are generalizations of the multivariate

normal distribution to both longer tails and elliptical contours, are examined, and Bayesian

methods to perform semi-parametric inference for them are used.

Finally, Chapter 7 closes the thesis with general conclusions and future lines of research.
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4 Chapter 1. Introduction

The huge assorment of datasets describing timely and relevant real-world situations re-

quires revisiting and updating decision methods and combine them with data analysis tech-

niques, to yield Data-Driven Decision Making. Contemporary data are characterized by many

instances and/or variables, different types of variables (quantitative, categorical, ordinal, clus-

tered), dependence structures among the variables or extreme values (heavy-tailed data). Also,

datasets can be characterized by asymmetric conditions (non-identical population classes size,

different misclassification costs), where different errors may have different consequences (as

happens in the context of medical diagnosis). Complexities can also be caused by the hierar-

chical structure of the data when, for instance, national statistics need to work with the partition

of the country into regions, provinces, municipalities or neighbourhoods; or when a retailing

company aims to group their products to be able to predict at the aggregate level. Recently,

the complexity of the raw data in addition to new requests posed by practitioners (interpretable

models, fair models or models which are efficient in terms of running times or memory demand

for prediction) entail a challenge from a scientific and technological perspective.

The aim of this thesis is to propose novel computational methods for the extraction of

knowledge from the above-mentioned complex data. In fact, this thesis bridges the disciplines

of Operations Research and Statistics to lead to new approaches that outperform current me-

thods.

1.1 Sparse and cost-sensitive statistical learning

The challenge of interpreting information and learning from complex data is at the core of

the current Statistical Science. The aim of Statistical Learning theory is the estimation of a

function f(X) for predicting the response variable Y given the set of predictors X, a random

vector of dimension p. We refer to regression problem when the response Y is quantitative,

whereas the term classification is employed in the case of a categorical response.

1.1.1 Sparsity in regression and classification

Current datasets are usually characterized by a large number of features (that is, the dimension

of the feature space p is large). This fact may have negative consequences in terms of the com-

prehensibility of solutions and, thus, Statistics and Operations Research fields are continually

adapting to tackle this matter [Friedman et al., 2001; Hastie et al., 2015]. For example, a clear

interpretation of the solutions is of crucial importance for some specific medical or credit scor-

ing related problems, where the interest is to find the key variables that determine if a patient

is sick or healthy, or those for predicting a bank’s customer as potentially defaulting, see Hand

and Henley [1997]. The search for more interpretable and parsimonious solutions, common

in multivariate contexts such as regression [Cai et al., 2009; Lin et al., 2011; Benítez-Peña et

al., 2021], clustering [Maldonado et al., 2015], time series analysis [Carrizosa et al., 2017b]



1.1. Sparse and cost-sensitive statistical learning 5

or visualization [Carrizosa and Guerrero, 2014], has recently led to the development of sparse

multivariate techniques, see Hastie et al. [2015].

Excessive computational costs, redundant variables and noise are other drawbacks asso-

ciated with high-dimensional data. Besides the identification of significant predictors, which

provides a good interpretation of the model reducing the computational costs and noise, another

fundamental criterion for evaluating the model’s performance is the accuracy of prediction. It

could be said that looking for sparse models helps to obtain low prediction errors, since it

avoids overparametrized models and thus, overfitting [Carrizosa et al., 2016]. For those rea-

sons, sparsity is a desirable property that regression and classification models should satisfy.

Regarding parametric regression contexts, a solution is said to be sparse if only a subset

of coefficients are non-zero. In particular, in some parts of this dissertation, we will focus on

linear regression models, where the response variable is expressed as a linear combination of

the predictors. The conventional linear regression procedure to estimate the coefficients, the

Ordinary Least Squares (OLS), is known not to be sparse and, as a consequence, new penal-

ization techniques appeared in the literature, see Gui et al. [2017] and Li et al. [2020] for a

detailed overview. An example is the best-subset selection [Garside, 1965], which achieves

sparser solutions, but suffers from high variability and computational difficulties [Fan and Li,

2001]. In contrast, the ridge regression [Hoerl and Kennard, 1970], a continuous shrinkage

method that adds to the objective function an l2−norm penalty over the coefficients to be esti-

mated, achieves its better accuracy prediction through a bias-variance tradeoff. Nevertheless,

ridge regression is known not to be able to render a parsimonious solution. To overcome those

shortcomings, Tibshirani [1996] proposed the Lasso regularization technique, which includes

an l1-norm penalization term instead and, thus, achieves both estimation and selection of rele-

vant predictors simultaneously by construction. One of the advantages of the Lasso is that the

entire path of solutions can be found thanks to the LARS algorithm [Efron et al., 2004]. In

addition, it is well-known that, under some conditions, the Lasso enjoys good theoretical and

statistical properties [Donoho et al., 1995; Friedman et al., 2001; Bühlmann and Van-De Geer,

2011].

To visualize the effect of the penalty term in the Lasso formulation, consider the well-

known prostate database [Stamey et al., 1989], which consists of the measurements of 8

predictors and one response variable (clinical measures) on 97 men who were about to receive

a radical prostatectomy. If the goal is to minimize the overall mean squared error (MSE), the

parameter vector can be estimated by a fitting procedure as OLS. The results obtained under

the OLS are shown in the first two rows of Table 1.1, where 3/4 of the total set has been

used to fit the model (training set) and the remaining samples (testing set) to the assessment

of the generalization error of the resulting model. The overall MSE, as well as the number of

coefficients involved in the model, are presented. The third and fourth rows in Table 1.1 provide

the results obtained under the Lasso for the prostate dataset. In this case, in comparison

with OLS results, a sparser and therefore, a more interpretable solution has been obtained at
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Method Overall MSE Non-Zero Coefficients

OLS
Training set 0.344

8
Testing set 0.373

Lasso
Training set 0.365

5
Testing set 0.408

Table 1.1: Results obtained using prostate dataset

the expense of slightly worsening the MSE values.

Many different variants of the Lasso have been proposed. For example, in Zou [2006]

adaptive weights for penalizing different coefficients in the l1 penalty are included as a way

for fitting sparser models under more general conditions. Moreover, in the presence of highly

correlated predictor variables (as is usual in microarray studies) or when predictors are struc-

turally grouped (e.g. dummy variables), the Lasso sometimes does not perform well and, as

a consequence, the elastic net of Zou and Hastie [2005] and the group lasso [Yuan and Lin,

2006; Simon et al., 2011] were proposed. They combine l2 and l1 penalties to try to select (or

remove) the correlated or structured predictor variables together. See Hastie et al. [2015] for

an extensive review about the Lasso problem and generalizations.

In classification, sparsity is closely linked to the concepts of Variable Selection and Feature

Selection [George and McCulloch, 1993; Zou and Hastie, 2005; Lin et al., 2011; Carrizosa et

al., 2016], whose aim is to identify the relevant variables within a set of many predictors so that

classification accuracy (the percentage of class labels predicted correctly) is not reduced. First

works published on feature selection handled datasets of a few predictors [Blum and Langley,

1997], but the size of data got larger and a number of variable selection techniques were pro-

posed. There exist two main groups of methods that select features: filters [Guyon et al., 2006;

Saeys et al., 2007] and wrappers [Kohavi and John, 1997; Saeys et al., 2007]. Broadly speak-

ing, whereas the selection of features in the former group is based on the intrinsic properties of

the features in addition to the correlation with the target variable, the latter tries to find a subset

of features for training the model, adding or removing features from the subset according to

the results drawn from the model. For instance, the filter Correlation based Feature Selection

(CFS), see Hall [2000], is based on the assumption that a good subset of attributes should be

highly correlated with the response variable but, on the other hand, there should exhibit low

dependency among them. Other example can be the wrapper Boruta [Kursa and Rudnicki,

2010], which is in principle designed using a Random Forest strategy [Breiman, 2001], but can

be modified and adapted to any classifier. There also exists an alternative to the use of the fil-

ters and wrappers, which has been recently considered in the literature. These are the so-called

embedded methods, which embed the feature selection process into the classifier construction.

In particular, there are some specific examples of embedded methods proposed for achieving

sparse versions of the well-known Support Vector Machine (SVM) classifier [Cortes and Vap-

nik, 1995], see Aytug [2015], Maldonado et al. [2017], Ghaddar and Naoum-Sawaya [2018],
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Blanquero et al. [2019] and Benítez-Peña et al. [2019], whereas Blanquero et al. [2020] look

for interpretability for random forests. Concerning the Naïve Bayes (NB) classifier [Hand and

Yu, 2001], some works have addressed different strategies for variable reduction. For example,

McCallum and Nigam [1998] and Feng et al. [2015] base their feature selection approaches on

the univariate correlations between features and the class. In this sense, Tang et al. [2016b]

and Tang et al. [2016a] aim to rank the features according to their capacity for classification or

a specific feature selection criterion, respectively. See Chandrashekar and Sahin [2014] for a

survey of the differences among well-known filter, wrapper and embedded methods.

1.1.2 Cost-sensitive procedures

Most traditional classification approaches search for maximizing accuracy, and do not take into

account the differences between types of misclassification errors. However, in many real-world

problems, such as those mentioned previously (medical diagnosis, credit card fraud detection),

it is more important to achieve better classification rates for the individuals of interest (ill

people, defaulting customers), since the consequences of wrong predictions across the classes

may be very different.

Cost-sensitive learning methods [Elkan, 2001; Zadrozny and Elkan, 2001] take into con-

sideration different cost matrices that describe the costs for misclassification [Turney, 2000].

These approaches turn out to be very convenient for unbalanced datasets, where the minority

class may be the worst classified (and the most critical one). In the case of binary classification

(positive (1) and negative (0) classes), the cost matrix has the structure in Table 1.2. Whereas

c10 is the cost of a false positive (actual negative but predicted as positive), c01 is the cost of a

false negative. In contrast, c00 and c11 are associated with correct predictions. It seems natural

that the cost of labeling a new individual incorrectly should always be greater than the cost of

labeling it correctly.

actual negative actual positive
predict negative c00 c01

predict positive c10 c11

Table 1.2: Cost matrix for binary classification

In classification contexts, Y identifies the class. Then, the observed dataset is formed by

pairs (y,x) from an unknown joint distribution. Given the cost matrix, the classifier will assign

a new individual x to the class that has the minimum expected cost. Thus, if p(j | x) is the

probability of classifying x into class j, a new individual x will be assigned to class 1 if and

only if (iif)

p(0 | x)c10 + p(1 | x)c11 ≤ p(0 | x)c00 + p(1 | x)c01,
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or equivalently,

p(0 | x)(c10 − c00) ≤ p(1 | x)(c01 − c11).

As can be observed, the optimal decision is unchanged if a constant is added to each column

of the cost matrix, which implies a simpler matrix where c00 and c11 are equal to 0. Finally, as

p(0 | x) = 1− p(1 | x), the classifier will assign the positive class to the new individual iif

p(1 | x) ≥ c10

c10 + c01
. (1.1)

Likewise, this procedure can be extended when more than two classes are considered, where

more rows and columns are adding to the cost matrix.

The classification threshold in (1.1) can be used by those classifiers which produce prob-

ability estimates, thus becoming cost-sensitive. Otherwise, misclassification costs can be di-

rectly introduced into the classifier construction. See Bradford et al. [1998], Freitas et al.

[2007], Carrizosa et al. [2008], Sun et al. [2009], Datta and Das [2015] and Lee et al. [2017]

for more details and applications. As some examples, consider Datta and Das [2015], Carri-

zosa et al. [2008] and Lee et al. [2017], which focus on the SVM classifier. In Datta and Das

[2015] the decision boundary shift is combined with unequal misclassification penalties. On

the other hand, in Carrizosa et al. [2008] a biobjective problem, which simultaneous minimizes

the misclassification rates, is performed. In Lee et al. [2017], the authors propose a new weight

adjustment factor that is applied to a weighted SVM. In the context of decision trees, Freitas et

al. [2007]; Ling et al. [2004] introduce tree-building strategies which choose the splitting cri-

terion by minimizing the misclassification costs, whereas Bradford et al. [1998] performs the

pruning of a subtree following the cost information. Cost-sensitive versions of neural networks

for unbalanced data classification have also been studied in the literature [Cao et al., 2013;

Zhi-Hua Zhou and Xu-Ying Liu, 2006]. Other approaches can be found, for example in Peng

et al. [2014], where a new version of the so-called data gravitation-based classification model

is proposed.

Although the term cost-sensitive learning has been mainly exploited in classification con-

texts [He and Ma, 2013; Prati et al., 2015], it can also be extended to regression contexts,

where the response variable is quantitative but the whole sample is splitted into different groups

(or classes). In particular, one can think of a Lasso model whose objective function includes

weighted penalties over the MSE of each group (quadratic penalties). Those penalties would

play the role of the costs introduced in Table 1.2. In fact, new versions of cost-sensitive regres-

sion models have been recently proposed in the literature (see Ollier and Viallon [2017] and

reference therein).

Under the umbrella of cost sensitive learning, it is generally assumed that misclassification

costs are given and known. Unfortunately, fixing precise values for such misclassification costs

may be problematic in real-world applications. In addition, in this way only an indirect control

on misclassification rates is obtained. The application of mathematical optimization tools, the
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approach undertaken in this thesis, seems to be promising [Carrizosa and Romero Morales,

2013] and not fully explored: one overall criterion is to be optimized, while constraints are

introduced in the model to demand admissible values for the efficiency measures under consid-

eration.

1.2 The Bayesian Paradigm

Different disciplines, such as Statistics, are required to obtain theoretical results for the ef-

fectiveness of sparse and cost-sensitive statistical learning methods. Bayesian decision theory

[Berger, 2013], involves an assortment of inference techniques that can be used for estimating

probabilities of interest associated with the properties of learning algorithms. This section is

devoted to introduce the Statistical Learning through a Bayesian decision theory perspective.

1.2.1 Bayesian Statistical Learning

To select the best function f to predict the response Y in terms of the predictor variables X,

the loss function L(f(X), Y ) is used. To characterize the performance of f , the expected value

of L(f(X), Y ), which is called the risk, is calculated. Given the observed sample X = x, the

expression

R(f) = EX[EY |X(L(f(X), Y ) | X)],

is known as the posterior expected loss or risk. Then, the best function f is that that minimizes

the posterior expected loss. Such solution is known as the Bayes estimator under the loss

function L. In the case of quantitative Y , the most common choice for L is the squared error

loss, L(f(X), Y ) = (f(X) − Y )2, which results in the regression function f(X) = E(Y |
X = x). Otherwise, when dealing with categorical output Y , a different loss function for

penalizing prediction errors is needed.

If, instead of a regression problem, we are interested in a classification problem with K

possible classes in C, then a matrix L ∈ MK(R) is introduced. Whereas its diagonal will be

zero, extra-diagonal values, which represent the price paid for wrong predictions, will usually

be equal to one. Then, the risk is defined as

R(f) = EX

[
K∑
k=1

L[Ck, Ĉ(X)]p(Ck | X)

]
,

where Ck means the class k, k ∈ {1, . . . ,K}, and the estimate Ĉ assumes values in C. Under

the 0-1 loss function choice,

Ĉ(x) = argmax
c∈C

p(c | X = x),



10 Chapter 1. Introduction

or equivalently

Ĉ(x) = Ck if p(Ck | X = x) = max
c∈C

p(c | X = x).

This method, which classifies each instance x in the most probable class via the conditional

distribution, is known as the Bayes classifier.

The computation of p(Ck | x) may be cumbersome if the number of features p is large.

However, the use of the Bayes theorem eases the previous computation since

p(Ck | x) =
π(Ck)p(x | Ck)

p(x)
,

where π(Ck) is the prior distribution for the class, p(x | Ck) is the likelihood function of the

data and p(x) is the so-called evidence. Since the evidence is the same for all the classes, in

practice, the interest is in computing the numerator.

Among the assortment of current classification techniques, the NB classifier has played a

prominent role because of its simplicity, tractability and efficiency, see Hand and Yu [2001].

The method is based on the assumption of conditional independence of the features to the class,

p(x | Ck) = p(x1, . . . , xp | Ck) = p(x1 | Ck) . . . p(xp | Ck), (1.2)

which notably simplifies the computation of the class probability.

One of the advantages of the NB is that it usually estimates fewer parameters than other

renowned classifiers, so it is less prone to make overfitting [Domingos and Pazzani, 1997;

Hand and Yu, 2001]. As a consequence, a number of applications of the NB in real contexts

can be found, for example, in medicine [Wolfson et al., 2015], genetics [Minnier et al., 2015],

reliability [Turhan and Bener, 2009], risk [Minnier et al., 2015] or document analysis [Guan et

al., 2014], among others.

1.2.2 Bayesian Inference

As commented at the beginning of this section, Statistical Learning methods can be viewed

from a Bayesian paradigm. Furthemore, when dealing with datasets of especial characteristics

(for example, heavy tails in contexts as Economics and Finance), Bayesian statistical tech-

niques have shown their potential in the literature [Owen and Rabinovitch, 1983; Andrews et

al., 1993; Ramírez-Cobo et al., 2010; Fortunati et al., 2020].

The Bayesian inference scheme can be briefly described as follows. Let X be the random

variable whose distribution depends on the unknown parameter, θ ∈ Θ, to be estimated. Given

a sample x, the model or density function is denoted by f(x | θ), which, as a function of θ,

L(θ), is called the likelihood function. In the Bayesian paradigm, the parameter θ is treated as

a random variable, and thus is associated with a (prior) distribution function. Once the sam-

ple is observed, the likelihood function helps to update the prior distribution into the posterior

distribution, which is the final target of the inference process. Two main advantages of per-

forming Bayesian data analysis versus the classical (frequentist) framework should be pointed
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out. First, the available prior information about θ can be coherently incorporated into the sta-

tistical model, that is, experts can input prior knowledge in the process of modeling. Second,

given the observed data, the posterior distribution, encompasses a more extensive information

than that of a puntual estimation made in frequentist way.

Fundamentals

As commented before, the unknown parameter θ is considered a random variable with prior

distribution π(θ), which describes uncertainty related to this unknown parameter before data

are observed. In addition, in the case the prior distribution is specified up to other parameters,

they are called the hyperparameters.

Once the data have been observed (X = x) the posterior distribution for θ is denoted by

π(θ | x). Thanks to Bayes rule, π(θ | x) is calculated dividing the joint distribution by the

marginal distribution, m(x), that is,

π(θ | x) =
f(x | θ)π(θ)

m(x)
=

f(x | θ)π(θ)∫
Θ f(x | θ)π(θ)dθ

. (1.3)

If the posterior distribution remain in the same family as the prior distribution, we will say

that we have a conjugate structure. In fact, computationally speaking, this case is the most

convenient. However, since simple conjugate analysis has a limited modeling capability of

real-life data, to achieve a closed form for the posterior is not a rule. Therefore, sophisticated

techniques in the literature, such as Markov Chain Monte Carlo (MCMC) methods, are required

for Bayesian computation, see[Gelfand and Smith, 1990] and the following section for further

details.

Posterior simulation

The two main difficulties of Bayesian inference are the prior elicitation and the computation

of the posterior distribution (1.3). However, in practice, it does not have a closed form and,

therefore, advanced techniques are required. As commented previously, MCMC methods allow

for sampling from an unknown distribution. Robert and Casella [2013] gives the following

definition:

A Markov Chain Monte Carlo (MCMC) method for the simulation of a distribu-

tion f is any method producing an ergodic Markov chain (X(t)) whose stationary

distribution is f.

Therefore, these methods are based on the construction of a Markov chain, say θ(j), whose

stationary distribution is equal to the (posterior) distribution of interest.

One of the most popular MCMC algorithms is the Metropolis-Hastings algorithm. Assume

that the unknown parameter is indeed a multivariate parameter, θ = (θ1, . . . , θp). Therefore,
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the objective is to find the posterior distribution of θ. Given a proposal or conditional distribu-

tion q(θ̃ | θ(j)), which generates a candidate at iteration j + 1 based on the previous accepted

value θ(j), the candidate is accepted with certain probability. A summary of the Metropolis-

Hastings algorithm is described in Algorithm 1.

Algorithm 1: Metropolis-Hastings

1. Set initial values θ(0) = (θ
(0)
1 , . . . , θ

(0)
p ).

2. j = 1
3. Generate θ̃ ∼ q(θ | θ(j)).

4. Calculate ρ = ρ(θ(j), θ̃) = min

{
π(θ̃)q(θ(j) | θ̃)

π(θ(j))q(θ̃ | θ(j))
, 1

}
5. Set θ(j+1) =

{
θ̃ with probability ρ

θ(j) with probability 1− ρ
6. Increase j = j + 1 and return to 3.

This algorithm always accepts values with a higher likelihood ratio than the previous value.

Note that for a given target distribution π, the proposal q must satisfy that π is contained in

the union of supports of all conditional distributions q(. | θ). Necessary conditions on the

proposal distribution q, to ensure the convergence to the limiting distribution of the chain (π),

can be studied in depth in Chapter 6 of Robert and Casella [2013].

The Gibbs sampler [Gelfand, 2000], which is used for obtaining samples from a joint den-

sity function, is a special case of Metropolis-Hastings algorithm when the proposal distribution

q is fixed as the conditional distribution f(θi | θ−i), where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θp),

that are assumed to be known. Algorithm 2 describes how Gibbs sampling works.

Algorithm 2: Gibbs sampler

1. Set initial values θ(0) = (θ
(0)
1 , . . . , θ

(0)
p ).

2. j = 1

3. Generate θ(j+1)
1 ∼ θ1 | θ(j)

−1. Update θ(j).

4. Generate θ(j+1)
2 ∼ θ2 | θ(j)

−2. Update θ(j).

5.
...

6. Generate θ(j+1)
p ∼ θp | θ(j)

−p. Update θ(j).
7. j = j + 1. Go to 3.

Obviously, at each step j, ρ(θ
(j)
i ,θ

(j)
−i , θ̃) = 1, which implies that each update in the Gibbs

algorithm is accepted. Discussion about how to fix updating order can be found in Gilks et al.

[1994].

In order to solve complex problems, a mixture of different MCMC algorithms (hibrid me-

thods) are usually implemented. For instance, Müller [1991] proposes using Gibbs sampler



1.3. Contributions of this thesis 13

steps when the conditional distributions of the involved parameters provide for easy simulation

and Metropolis-Hasting sampler, otherwise.

The reader is referred to Insua et al. [2012], Gelman et al. [2013] and Robert and Casella

[2013] for a complete review of benchmark posterior simulation techniques. It should be noted

that, in recent years and due to the computing capacities, these simulation methods (although

established on the same basis) have been computationally enhanced yielding advanced models

such as Hamiltonian Monte Carlo, among others (see Barbu and Zhu [2020] for a complete

review).

Parametric, Non parametric and semi-parametric paradigms

A full Bayesian analysis of an experiment requires a precise choice of the prior distributions

for each of the parameters in the model. Parametric inference is based on known distributions

with unknown parameters which must be inferred (Normal, Gamma, Poisson, Beta, and so

forth). Nevertheless, when we deal with complex experiments, it becomes more complicated

to attribute the generated data to any well-known distribution. That is why nonparametric

inference is coming into play. Its main idea is to draw inference on an unknown distribution

function, leading to models on function spaces and dramatically changing the methodologies

used until then. The insertion of nonparametric distributions for some of the unspecified priors

in parametric models, whereas the rest are known distribution functions with possibly unknown

parameters, yields the semi-parametric inference, which is commonly used for survival analysis

[Lawless, 1982].

A plethora of nonparametric Bayes methodologies are proposed in the literature [Müller

and Quintana, 2004], but one of the most popular is the Dirichlet Process (DP) prior [Ferguson,

1973, 1974], which is also the first prior developed for spaces of distribution functions.

Definition 1. Let F be a specified distribution function and α a positive scalar parameter. For

k-dimensional θ | F i.i.d.∼ F , the DP prior on the distribution F , which is denoted by

F | α,η ∼ DP (αFη),

is a prior on the set of probability distributions on Rk, where Fη is a specified parametric

probability distribution.

1.3 Contributions of this thesis

This dissertation is devoted to design novel computational methods to deal with datasets of

today by means of two powerful tools such as Mathematical Optimization and Bayesian Data

Analysis. Whereas chapters 2 and 3 are devoted to regression problems, chapters 4 and 5 deal

with the Naïve Bayes classifier. Finally, Chapter 6 considers Bayesian inference for the general
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class of Elliptical distribution. In what follows we briefly introduce and motivate the problems

addressed.

Chapter 2 is based on the work Blanquero et al. [2021b]. The Lasso has become a bench-

mark data analysis procedure, and numerous variants have been proposed in the literature.

Although the Lasso formulations are stated so that overall prediction error is optimized, no full

control over the accuracy prediction on certain individuals of interest is allowed. In this chap-

ter we propose a novel version of the Lasso in which quadratic performance constraints are

added to Lasso-based objective functions, in such a way that threshold values are set to bound

the prediction errors in the different groups of interest (not necessarily disjoint). As a result,

a constrained sparse regression model is defined by a nonlinear optimization problem. This

cost-sensitive constrained Lasso has a direct application in heterogeneous samples where data

are collected from distinct sources, as it is standard in many biomedical contexts. Both theo-

retical properties and empirical studies concerning the new method are explored. In addition,

two illustrations of the method on biomedical and sociological contexts are considered.

Chapter 3 is based on the work Carrizosa et al. [2020]. In this chapter, we study linear re-

gression models built on categorical predictor variables that have a hierarchical structure, with

their categories arranged as a directed tree. While the categories in the leaf nodes give the high-

est granularity in the representation of these variables, the user may decide to go upstream the

tree and consolidate individuals at ancestor nodes, sharing the same coefficient. This reduced

model, with fewer coefficients to be estimated, is easier to interpret, and hopefully does not

damage the accuracy. We study the mathematical optimization problem that trades off the ac-

curacy of the reduced linear regression model and its complexity, measured as a cost function of

the level of granularity of the representation of the hierarchical categorical variables. We show

that finding non-dominated outcomes for this problem boils down to solving a Mixed Integer

Convex Quadratic Problem with Linear Constraints. We illustrate our approach in two real-

world datasets, as well as a synthetic one, where our methodology finds a much less complex

model with a very mild worsening of the accuracy.

The Naïve Bayes has proven to be a tractable and efficient method for classification in

multivariate analysis. However, features are usually correlated, a fact that violates the Naïve

Bayes’ assumption of conditional independence, and may deteriorate the method’s perfor-

mance. Moreover, datasets are often characterized by a large number of features, which may

complicate the interpretation of the results as well as slow down the method’s execution. In

Chapter 4 we propose a sparse version of the Naïve Bayes classifier that is characterized by

three properties. First, the sparsity is achieved taking into account the correlation structure of

the covariates. Second, different performance measures can be used to guide the selection of

features. Third, performance constraints on groups of higher interest can be included. Our

proposal leads to a smart search, which yields competitive running times, whereas the fle-

xibility in terms of performance measure for classification is integrated. Our findings show

that, when compared against well-referenced feature selection approaches, the proposed sparse
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Naïve Bayes obtains competitive results regarding accuracy, sparsity and running times for ba-

lanced datasets. In the case of datasets with unbalanced (or with different importance) classes,

a better compromise between classification rates for the different classes is achieved.

As commented before, the consequences of misclassifications may be rather different in

different classes, making it crucial to control misclassification rates in the most critical and, in

many real-world problems, minority cases, possibly at the expense of higher misclassification

rates in less problematic classes. One traditional approach to address this problem in NB classi-

fication consists of assigning misclassification costs to the different classes and applying the

Bayes rule, by optimizing a loss function. However, fixing precise values for such misclassifi-

cation costs may be problematic in real-world applications. In Chapter 5 we address the issue of

misclassification for the NB classifier. Instead of requesting precise values of misclassification

costs, threshold values are used for different performance measures. This is done by adding

constraints to the optimization problem underlying the estimation process. Our findings show

that, under a reasonable computational cost, indeed, the performance measures under consid-

eration achieve the desired levels yielding a user-friendly constrained classification procedure.

Elliptical distributions are generalizations of the multivariate normal distribution to both

longer tails and elliptical contours. Elliptically contoured distributions were introduced in

Schoenberg [1938]; Lord [1954] in order to preserve the symmetry of the normal distribu-

tions but to permit the incorporation of different tail behaviour. A particular sub-class of the

elliptical distributions, which includes many of the most well known models such as normal,

Student’s t, contaminated normal and slash distributions, are the normal/independent (NI) dis-

tributions introduced in Andrews and Mallows [1974]. In Chapter 6, we examine how we can

use Bayesian methods to perform semi-parametric inference for elliptical and NI distributions

using Dirichlet process mixture models.

Finally, in Chapter 7 some conclusions and open problems are briefly discussed.
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In this chapter a novel version of the Lasso, in which quadratic performance constraints are

added to Lasso-based objective functions, is proposed. Threshold values are set to bound the

prediction errors in the different groups of interest (not necessarily disjoint). As a result, a con-

strained sparse regression model is defined by a nonlinear optimization problem. Theoretical

properties as well as empirical studies concerning the new method are explored.

2.1 Introduction

Let (Y,X) be a random vector, where X = (X1, . . . , Xp) is the vector of p predictors and Y

identifies the continuous response variable. Given the observed response vector y = (y1, . . . , yn)′,

n > p, and the related observed predictors, xj = (x1j , . . . , xnj)
′, j = 1, . . . , p, the linear re-

gression model predicts y by

ŷ = β̂0 + β̂1x1 + . . .+ β̂pxp.

Consider again the well-known prostate database, which consists of the measurements

of p = 8 predictors and one response variable (clinical measures) on n = 97 men who were

about to receive a radical prostatectomy. Further, assume that the dataset is divided into two

groups: Group 1, corresponding to young individuals (aged less than 65) and Group 2, related

to the population older than 65. As commented in Chapter 1, if the goal is to minimize the

overall mean squared error (MSE), the parameter vector β = (β0, β1, . . . , βp) can be estimated

by the fitting procedure OLS, yielding β̂ols. The results obtained under the OLS are shown in

the first two rows of Table 2.1, with the training and testing sets as in Chapter 1. The overall

MSE, the prediction errors over the two groups as well as the number of coefficients involved

in the model are presented.

Method Overall MSE Group 1 MSE Group 2 MSE Non-Zero Coefficients

OLS
Training set 0.344 0.355 0.333

8
Testing set 0.373 0.380 0.367

Lasso
Training set 0.365 0.397 0.335

5
Testing set 0.408 0.414 0.403

CSCLasso
Training set 0.355 0.357 0.352

6
Testing set 0.393 0.399 0.388

Table 2.1: Results obtained using prostate dataset

Once the model is fitted, there are two fundamental criteria for evaluating its performance:

the accuracy of prediction and the identification of significant predictors, which provides a good

interpretation of the solution. It is well-known that β̂ols is not sparse, as can be observed from

Table 2.1 where the eight predictor variables have been used by the model. To overcome those

shortcomings, the Lasso regularization technique can be used. Given X = [1 | x1 | . . . | xp]
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the predictor matrix; then, the Lasso solution can be defined as

β̂Lasso(λ) = arg min
β

1

n
‖y −Xβ‖2 + λ‖(β1, . . . , βp)‖1 (2.1)

where λ ≥ 0 is a tuning parameter and ‖.‖1 is the l1 norm. To visualize the effect of the penalty

term in the Lasso formulation, consider the third and fourth rows in Table 2.1, which provide

the results obtained under the Lasso for the prostate dataset.

However, the Lasso presents some limitations; in particular, the literature related to the

Lasso has not undertaken the problem of fully controlling the accuracy prediction on certain

individuals of interest. In the previous prostate database, assume for instance that we are

interested in fitting a sparse regression model to the dataset where, apart from obtaining a

small overall mean squared error, also the prediction error for the young individuals should not

exceed a given threshold. In this work we propose a Lasso-based model that allows for such

aim, namely the cost-sensitive constrained Lasso, denoted from now on as CSCLasso. The

results obtained for the prostate database under the CSCLasso, whose definition and main

properties shall be discussed in Section 2.2 and 2.3, are shown in the last two rows of Table 2.1.

A threshold for the mean squared error over Group 1 is set equal to 0.357, which represents an

improvement of 10% over the prediction error of the Lasso (0.397). Note that in the training

set the MSE satisfies the imposed constraint, as expected. Also note that the improvement in

Group 1 is at the expense of slightly increasing the prediction error over Group 2. In terms of

sparsity, the CSCLasso model has needed an additional predictor variable comparing to Lasso

in order to comply with the constraint.

As it will be seen in Section 2.2, the novel approach is set up by adding convex quadratic

constraints to the Lasso formulation, and aims to control the performance measure on certain

groups of interest. Other approaches have considered constrained versions of the Lasso before,

see for example James et al. [2020], Gaines et al. [2018], Torres-Barrán et al. [2018], Hu et

al. [2015] and references therein. In such works, equality or/and inequality linear constraints

are considered for imposing prior knowledge and structure onto the coefficient estimates. In

our approach instead, quadratic convex constraints are formulated and thus, our approach and

results generalize those previously obtained in the literature.

Not only constrained versions of the Lasso can be found in the literature. Indeed, many

different variants have been proposed. In addition to those introduced in Chapter 1, e.g. the

elastic net or the group lasso, other extension is to consider

β̂Lasso(λ) = arg min
β

1

n
‖y −Xβ‖2 + λ‖Aβ‖1. (2.2)

instead of (2.1), where A is a fixed matrix (see Tibshirani and Taylor [2011]). If A = (0|Ip),

then the Lasso objective function is obtained; however, other forms of A different from the

identity can be found in the literature, see for example Ollier and Viallon [2017]. In fact,
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various choices of A in (2.2) define problems that are already well-known in the literature as

the fused lasso [Tibshirani et al., 2005].

This chapter is structured as follows. In Section 2.2, the cost-sensitive constrained Lasso

(CSCLasso) is introduced and some key issues are discussed. Section 2.3 considers theoretical

properties of the CSCLasso, as the existence and uniqueness of solution, limit behaviour (in

terms of the penalty parameter) and consistency. Section 2.4 presents a detailed numerical

analysis with both simulated and real datasets, and finally, some conclusions are provided in

Section 2.5. Technical proofs are relegated to Appendix A.

2.2 The cost-sensitive constrained Lasso: definition and key as-
pects

This section presents the cost-sensitive constrained Lasso, which, as will be seen, is defined

through an optimization problem with constraints related to prediction errors for individuals of

interest. In addition, some computational details, as well as different key aspects concerning

the tuning parameters of our proposal, are presented.

2.2.1 Definition

The proposed CSCLasso is a novel variant of the Lasso where we shall demand that the pre-

diction errors for the groups of interest are below certain threshold values,

min
β

1

n0
‖y0 −X0β‖2 + λ‖Aβ‖1

s.t.
1

n1
‖y1 −X1β‖2 − f1 ≤ 0,

...
1

nL
‖yL −XLβ‖2 − fL ≤ 0.

(2.3)

In the previous formulation, (y0,X0) is the set of observations used to build the sparse model

with overall minimum MSE, which can be the complete dataset (y,X ), or a subset of smaller

size. Additionally, let (yl,Xl), l = 1, . . . , L, define groups of interest (not necessarily dis-

joint), where the MSE predictions are to be controlled. Then, nl is the number of instances

related to group l. Finally, f = (f1, . . . , fL) contains the different threshold values for the

MSE on the different groups. The solution of optimization problem (2.3) will be denoted by

β̂CSCLasso(λ). From the formulation (2.3) it is natural to wonder whether running a Lasso on

just the groups of interest is more advantageous. However, if a single Lasso is run on the groups

of interest, dramatically bad predictions can be obtained when the resulting model is applied to

new observations outside those groups, which is not the case for our approach. The same issue

arises when a different Lasso model is built on each group of interest, but, in addition, new
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observations are not given with their group of origin. Contrary to what happens with our novel

approach (2.3), the L predictions obtained through the L different estimated Lasso models may

not be suitable to give a final prediction for such new samples.

The proposed method can be formulated as a Lasso with weighted quadratic penalties in

the objective function associated with the different groups, but finding real meaning to their

parameters (one per group) to be chosen is not an easy task (see Carrizosa and Romero Morales

[2001] and the references therein) and the full control over the accuracy prediction on certain

individuals of interest would disappear. However, the parameters f = (f1, . . . , fL) involved in

our model have a clear interpretation and, in addition, this formulation enables us to bound the

prediction errors in the different groups of interest.

As an example, in the illustration of the method in Section 2.1 related to the prostate

dataset, whereas the training set was used in the objective function with A = (0|I8), the

prediction error over the young population of the training set, (y1,X1), is controlled through a

performance constraint (f1 = 0.357). In a real application, once the L groups of interest are

selected by the user, threshold values f1, . . . , fL have to be fixed. Note that these thresholds

will depend directly on the dataset in question and the considered groups of interest. As a first

option, they could be fixed by the user according to her demand, but therefore unfeasibility

problems may appear when solving the CSCLasso problem (2.3). For that reason, in Section

2.2.3 two procedures for determining such threshold values so that (2.3) is feasible are given.

Next, some other aspects related to the formulation of the CSCLasso and its resolution will

be discussed.

2.2.2 Computational details

The CSCLasso problem as defined by (2.3) is a non-differentiable convex optimization problem

with quadratic and convex constraints. However, if we rewrite the non-differentiable term in

(2.3) as

Aβ = u+ − u−,

where u+ = (u+
1 , . . . , u

+
p ) and u− = (u−1 , . . . , u

−
p ) are new vectors of positive auxiliary vari-

ables, a differentiable version for the CSCLasso problem (2.3) is obtained in a straightforward

manner as
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min
β,u+,u−

1

n0
‖y0 −X0β‖2 + λ

p∑
j=1

u+
j + λ

p∑
j=1

u−j

s.t.
1

n1
‖y1 −X1β‖2 − f1 ≤ 0,

...
1

nL
‖yL −XLβ‖2 − fL ≤ 0,

Aβ = u+ − u−,

u+,u− ≥ 0.

This previous smooth formulation for the CSCLasso eases its resolution notably, since effi-

cient solvers for quadratically constrained programming problems, such as Gurobi [Gurobi Op-

timization, 2018], are available. In particular, the Gurobi R interface will be used in this work

to obtain all numerical results.

Another remark concerning the formulation of the CSCLasso is that, instead of using the

sum of squared deviations, least absolute deviations could have been considered. Then, (2.3)

would be reduced to a regression problem under linear inequality constraints, as those described

in James et al. [2020], Gaines et al. [2018] and Hu et al. [2015]. Nevertheless, to cope the non-

differentiability of the absolute value function, a huge number of constraints and new auxiliary

variables, which would depend on n, should have been added. Consequently, these constrained

approaches are likely to face severe numerical difficulties in practice for large datasets.

2.2.3 The choice of threshold values

As commented in Section 2.2.1, threshold values f1, . . . , fL could be fixed by the user. If the

user is too demanding, imposing very low MSE threshold values for (some of) the different

groups, the optimization problem may become unfeasible. Although a try-and-error procedure

may be used, it would be very helpful to have strategies yielding feasible solutions. Here we

propose two procedures for determining f1, . . . , fL in such a way that (2.3) is feasible.

First, we propose a choice of the threshold values so that they are close to the OLS results,

fl = (1 + τ)MSEl(β̂ols), l = 1, . . . , L, (2.4)

where MSEl(β) =
1

nl
‖yl − Xlβ‖2, l = 1, . . . , L and τ ≥ 0 is a small parameter whose

meaning is the percentage of worsening with respect to the OLS prediction error. For the

numerical example in Section 2.1, we could have imposed the threshold for the MSE over

Group 1 equal to 0.391, which is a 10% (τ = 0.1) more than MSE1(β̂ols) = 0.355. The

choice (2.4) deals with the heterogeneity coming from the variability of the different groups
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(MSEl is different across groups). Nevertheless, when heterogeneity related to the importance

of each group is also considered, the parameter τ can be replaced in (2.4) by τl, l = 1, . . . , L.

Next, we shall compute the minimum value of τ , τmin, so as to (2.3) is feasible. That is,

the minimum τ so that there exists β∗ satisfying

(
max
l

MSEl(β∗)

MSEl(β̂ols)

)
− 1 ≤ τ,

and, therefore, τmin will be given as

τmin =

(
max
l

MSEl(β∗)

MSEl(β̂ols)

)
− 1.

Such τmin can be found as the optimal value of the following linear problem with convex

and quadratic constraints

min
β,z

z

s.t. z ≥ MSEl(β)

MSEl(β̂ols)
− 1, ∀l = 1, . . . , L.

(2.5)

The feasible version of the CSCLasso optimization problem can be formulated as

min
β

1

n0
‖y0 −X0β‖2 + λ‖Aβ‖1

s.t.
1

n1
‖y1 −X1β‖2 − (1 + τ)MSE1(β̂ols) ≤ 0,

...
1

nL
‖yL −XLβ‖2 − (1 + τ)MSEL(β̂ols) ≤ 0,

(2.6)

where τ ≥ τmin.

Finally, note that if τ is big enough, then solving (2.6) is equivalent to solve the uncon-

strained problem. Indeed, it is possible to find the value of τ , τmax(λ), such that both the

constrained and unconstrained problems are equivalent

τmax(λ) = max
l∈{1,...,L}

MSEl(β̂Lasso(λ))

MSEl(β̂ols)
− 1. (2.7)

A second possible choice for the threshold values follows an analogous approach but, in-

stead of considering the results of the OLS, we shall consider the mean squared error of the
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Lasso, as in the numerical example introduced in Section 2.1. For each l = 1, . . . , L,

fl = (1− γ)MSEl(β̂Lasso(λ)), l = 1, . . . , L, (2.8)

where γ ≥ 0 is related to the desired percentage of improvement over the Lasso solution

(γ = 0.1 in the numerical example of Section 2.1). In this case, we will compute the maximum

value of γ, γmax, in such a way that (2.3) is feasible under (2.8), and the linear problem

associated with γmax is

max
β,z

z

s.t. 1− MSEl(β)

MSEl(β̂Lasso(λ))
≥ z, ∀l = 1, . . . , L.

(2.9)

Thus, another possible feasible version of the CSCLasso optimization problem can be formu-

lated as

min
β

1

n0
‖y0 −X0β‖2 + λ‖Aβ‖1

s.t.
1

n1
‖y1 −X1β‖2 − (1− γ)MSE1(β̂Lasso(λ)) ≤ 0,

...
1

nL
‖yL −XLβ‖2 − (1− γ)MSEL(β̂Lasso(λ)) ≤ 0,

(2.10)

where γ ≤ γmax.

Note that the two choices previously described for selecting the threshold values are not

unique. Indeed, instead of using the MSE, another statistical measure as the R-squared can be

considered. Further details about how they perform in numerical applications are described in

Sections 2.2.4 and 2.4.

2.2.4 The role of the tuning parameters

The CSCLasso, as defined by (2.6) or (2.10), is stated in terms of two tuning parameters, λ

and τ or λ and γ, respectively. The first one, λ, is related to the sparsity of the solution,

and the second one is linked to the user’s demanding level, since the degree of requirement

increases as τ → τmin (or γ → γmax). In this section we investigate how the solution of the

CSCLasso changes when λ and τ jointly vary (analogous results are obtained if λ and γ are

analyzed instead). With this purpose, consider again the experimental setting as in the example

of Section 2.1 related to prostate dataset with A = (0|Ip) (Lasso objective function), but

in this occasion assume that the prediction errors of both groups (the young and the elderly

people) shall be controlled.
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The interval of variation of the parameter λ is set to Iλ = [0, 30]. Moreover, according to

(2.5), the smallest value of τ such that the CSCLasso optimization problem (2.6) is feasible is

τmin = 0.055. On the other hand, following (2.7), τmax = max
λ∈[0,30]

τmax(λ) = 2.355, although

we will enlarge the interval of variation of τ to also visualize the unconstrained solution; such

interval will be finally set as Iτ = [τmin, τmax+ 2] = [0.055, 4.355]. Figure 2.1 represents, via

a heat map, the solution for β̂CSCLasso1 (λ) for the different values of (λ, τ) in a grid contained

in Iλ × Iτ .

Some conclusions can be drawn from the figure. Consider first the cases where τ and λ are

big enough. Since, in this case, τ ≥ τmax, then, as commented at the end of the previous sec-

tion, solving (2.6) is equivalent to solving the Lasso. Therefore, β̂CSCLasso(λ) = β̂Lasso(λ) =

0 will be the optimal solution, provided that λ is big enough. Analogously, if τ ≥ τmax but λ

is small, then β̂CSCLasso(λ) = β̂Lasso(λ), which will be equal to zero or not depending on the

importance of the variable. When τ is small, the constraints are demanding and, even for large

values of λ, it might happen that β̂CSCLasso1 (λ) 6= β̂Lasso1 (λ) = 0, as it is the case.

Figure 2.1: Heat map of β̂CSCLasso1 (λ) using prostate dataset

Figure B.1 (see Appendix B for further results) represents the analogous heat maps con-

cerning β̂CSCLasso2 (λ), . . . , β̂CSCLasso8 (λ). A similar discussion as with β̂CSCLasso1 (λ) is ap-

plicable to these figures. An interesting remark to be made concerns the importance of each

variable: while variable 1 is the only one selected for the Lasso, the CSCLasso returns a less

sparse solution in this case, since predictor variables 1, 2, 4 and 5 turn out to be significant.
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However, this is not the rule, since there are examples where the level of sparsity is higher for

the CSCLasso, as will be shown in Section 2.4.

2.3 Theoretical properties

In this section we discuss some theoretical results concerning the CSCLasso model. In Section

2.3.1, the existence of a unique optimal solution to Problem (2.3) is proven for a fixed value of

λ ≥ 0. Section 2.3.2 deals with the limit behavior of the solution when λ approaches infinity.

Finally, some consistency properties of the CSCLasso solution are derived in Section 2.3.3

from the Sample Average Approximation theory (see Shapiro et al. [2009]).

2.3.1 Existence and uniqueness of solution

For constrained versions of the Lasso in the literature, as in James et al. [2020], it is not possible

to obtain the path of solutions and therefore approximations are made with the use of numerical

algorithms. For the CSCLasso problem, a closed form solution of expression β̂CSCLasso(λ) is

not available. However, an implicit characterization of the CSCLasso solution (with only one

constraint) can be found as the following result states.

Proposition 1. Consider the CSCLasso problem with one constraint,

min
β

1

n0
‖y0 −X0β‖2 + λ‖Aβ‖1

s.t.
1

n1
‖y1 −X1β‖2 − (1 + τ)MSE1(β̂ols) ≤ 0, (2.11)

where A = (0|Ip) and assume that X0 and X1 are maximum rank matrices. Then

β̂CSCLasso(λ) =

(
1

n0
X ′0X0 +

1

n1
η(λ)X ′1X1

)−1( 1

n0
X ′0y0 +

1

n1
η(λ)X ′1y1

)
−1

2

(
1

n0
X ′0X0 +

1

n1
η(λ)X ′1X1

)−1

b(λ)

(2.12)

where η(λ) is the Lagrange multiplier of the constraint and the component s, s = 0, 1, . . . , p,

of the vector b(λ) is given by

bs(λ) =


λ, if β̂CSCLassos (λ) > 0,

−λ, if β̂CSCLassos (λ) < 0,

0 else.

From the previous proposition, it is clear that a closed form solution is hard to be obtained,

even in the simplest scenario.
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Nevertheless, given a fixed value of λ, the CSCLasso problem can be solved using quadratic

programming via any of the standard solvers available in the literature. As an example, Figure

2.2 depicts the path of solutions for the prostate example introduced in Section 2.1, for

an assortment of values of λ in a grid (see Section 2.3.2 for details). Each line represents a

component of β̂CSCLasso(λ), β̂CSCLassoj (λ) with j = 1, . . . , 8. It can be observed from the

figure that, contrary to what happens in the Lasso path of solutions (top panel of Figure 2.2),

the CSCLasso path of solutions is not piecewise linear (bottom panel of Figure 2.2). Such

non-linearity (due to the quadratic constraints) hinders the application of an iterative algorithm

to obtain the path of solutions as those given in papers James et al. [2020] and Gaines et al.

[2018].

Also note from Figure 2.3 that as a consequence of the performance constraints, the solution

is stabilized when λ increases, but does not shrink to 0, as with Lasso. This is detailed in

Section 2.3.2.

Even without having the expression of the general solution of (2.3), we next prove that,

under full rank assumptions, the solution is unique. First, in order to simplify the formula-

tion of (2.3), henceforth its feasible set will be denoted by B, which is convex and closed.

This is also true (and the results which follow remain valid) if, on top of the performance con-

straints, one adds linear constraints modeling other aspects of interest (for example, the sign of

a certain coefficient can be fixed to be positive or negative depending on the known relation be-

tween the corresponding predictors with the response variable). In the same vein, henceforth,

(y0,X0) = (y,X ) is used to minimize the overall MSE. In this way, the CSCLasso problem

(2.3) is rewritten as

min
β∈B

1

n
‖y −Xβ‖2 + λ‖Aβ‖1. (2.13)

The following result guarantees that the solution of problem (2.13) is unique.

Theorem 1. Consider Problem (2.13) where X is assumed to be a maximum rank matrix and

its feasible region B is a convex and closed set in Rp+1. Then, Problem (2.13) has a unique

optimal solution.

2.3.2 Asymptotic behaviour

One of the key points when dealing with Lasso-type problems is the choice of the regularization

parameter λ. In the case of the Lasso, such choice is straightforward since the entire path of

solutions is known to be piecewise linear, shrinking to 0. In particular, it is known that there

exists a value of λ, λ∗, such that the solution β̂Lasso(λ) = 0 is optimal for all values λ ≥ λ∗.
The following result provides explicitly the value of such λ∗.

Proposition 2. Consider the Lasso model (2.2). Define λ∗ as the optimal value of the linear
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Figure 2.2: Path of solutions under Lasso (top) and CSCLasso (bottom) for prostate dataset
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Figure 2.3: Path of solutions under Lasso (top) and CSCLasso (bottom) for prostate dataset
when λ increases
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programming problem

min
z,t

z

s.t.
2

n
X ′y = A′λt,

− z ≤ λts ≤ z, s = 0, 1, . . . , p.

Then, β̂Lasso(λ) = 0 for all λ ≥ λ∗. In particular, for A = (0|Ip),

λ∗ =

∥∥∥∥ 2

n
X ′y

∥∥∥∥
∞

Some works dealing with (linear) constrained versions of the Lasso (as Gaines et al. [2018]

and James et al. [2020]) have developed efficient algorithms to build the associated solutions

path. Consider now the general problem (2.13). As commented in Section 2.3.1, the expression

of β̂CSCLasso(λ) is not available in closed form and, consequently, the entire path cannot be

computed. In this case, when λ tends to +∞, the solution β̂CSCLasso(λ) stabilizes around

β̂CSCLasso(+∞) = arg min
β∈B

‖Aβ‖1. This idea is also used in Gaines et al. [2018] and James et

al. [2020], where, in order to find an initialization for the algorithms, the proposed constrained

problems are solved by only considering the penalty term in the objective function. Such a

limit solution is obtained by solving an optimization problem with a linear objective function

and convex quadratic constraints, namely

min
β,u+,u−

p∑
s=0

(u+
s + u−s )

s.t. β ∈ B

Aβ = u+ − u−

u+,u− ≥ 0.

A grid search is carried out in the general CSCLasso problem (2.13) to obtain suitable

values of λ. In order to fix the grid, we propose the following dynamic approach to find an

approximate maximum value of λ, λ∗ (see Algorithm 3).

Once the maximum value λ∗ is found, then the grid ranges from 0 to λ∗ with the desired

step. Note that the previous algorithm already provides an initial grid of the form (2−5, 2−4, . . . ,

20, . . . , λ∗).

2.3.3 Consistency properties in the CSCLasso

The purpose of this section is to prove some results related to the consistency of both the

solution and the objective value for CSCLasso problem (2.13). To do that, the theory of Sample

Average Approximation (SAA) [Shapiro et al., 2009] will be applied. Consider the following
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Algorithm 3: Dynamic approach for selecting λ∗ in the CSCLasso

1. Fix ε > 0 and c = (2−5). Fix i = 1 and compute β̂CSCLasso(c[i]).
2. Compute β̂CSCLasso(+∞) = arg min

β∈B
‖Aβ‖1.

3. While ‖β̂CSCLasso(c[i])− β̂CSCLasso(+∞)‖ > ε, repeat

a) i = i+ 1

b) c = (c, 2c[i− 1])

c) compute β̂CSCLasso(c[i])

4. λ∗ = c[i]

stochastic programming problem

min
β∈B

f(β) := E[F (β, (Y,X))], (2.14)

where B is a nonempty closed subset of Rp+1, (Y,X) is an absolutely continuous random

vector whose probability distribution P is supported on a set Ξ ⊂ Rp+1 and F : B × Ξ→ R.

In Shapiro et al. [2009], under some conditions, the true problem (2.14) can be estimated by

the SAA:

min
β∈B

f̂n(β) :=
1

n

n∑
i=1

F (β, (yi,xi)), (2.15)

where xi = (1, xi1, . . . , xip)
′, and {(yi,xi)}i=1,...,n is a realization of the n random vectors

{(Yi,Xi)}i=1,...,n, which are independent and identically distributed (i.i.d.) as the random

vector (Y,X). Note that the CSCLasso problem as in (2.13) takes the form of (2.15) as

min
β∈B

1

n

n∑
i=1

(yi − x
′
iβ)2 + λ‖Aβ‖1 (2.16)

and the true CSCLasso problem equivalent to (2.14) is

min
β∈B

E[(Y −X′β)2 + λ‖Aβ‖1]. (2.17)

Before proving the main result on the consistency of the CSCLasso, we first show the

uniqueness of the solution of such a problem.

Proposition 3. The optimal solution of the true CSCLasso problem (2.17) is unique.

Denote by νCSCLasso(λ) and βCSCLasso(λ), respectively, the optimal value and the op-

timal solution of problem (2.17). Analogously, let ν̂CSCLasso(λ) and β̂CSCLasso(λ) be the
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optimal value and the optimal solution, respectively, of the SAA CSCLasso problem (2.16).

The following result shows the consistency of the SAA values to the true values.

Theorem 2. Assume that E[‖X‖2] <∞, E[Y 2] <∞, E[‖YX‖] <∞. Then, ν̂CSCLasso(λ)

converges to νCSCLasso(λ) and β̂CSCLasso(λ) converges to βCSCLasso(λ) with probability

one (w.p. 1).

Finally, note that the theoretical results that have been studied in this work are also appli-

cable to other versions of constrained Lasso as long as the feasible set is convex and closed, as

is the case with the above-mentioned works James et al. [2020], Gaines et al. [2018] and Hu et

al. [2015].

2.4 Numerical experiments

In this section, the behaviour and performance of our approach is illustrated throughout an

extensive empirical study. In particular, using both simulated and real datasets, the aim of the

experiments shall be to improve the prediction errors of the Lasso in one or more groups of

interest. Or in other words, threshold values shall be fixed as in (2.10). Since our proposal

is a novel extension of the Lasso, we will also show the results under the Lasso, not only for

those groups that are controlled (for which obviously, the Lasso performs worse) but also for

the non-controlled groups. In this way the CSCLasso can be better inspected in comparison to

the Lasso. Other aspects as the overall MSE and the percentage of non-zero coefficients in the

regression model, among others, will be explored. Such measures will be estimated through

median values using a 5-fold cross validation approach. To this end, the dataset will be split at

each fold into three sets: the so-called training, validation and testing sets. The training set is

used to fit the model, the validation set is used to estimate prediction error for model selection

and the testing set is used for assessment of the generalization error of the final chosen model.

2.4.1 A simulation study

The generation of the synthetic datasets in this section follows that of Ollier and Viallon [2017],

where an overparameterized regression model is considered to cope with stratified data. A

number of groupsK = 20 is set and two different sample sizes per group are considered, nk =

{150, 500}, for k = 1, . . . ,K. The number of predictors p will be chosen from {20, 100, 500}.
The matrix of predictor values X is generated according to a multivariate normal distribution

with zero mean and covariance matrix Σ being a Toeplitz matrix with element (i, j) equal to

0.5|i−j|. Regarding the response vector, a set of 20 predictors are randomly selected (with

indexes included in a set P0), while the rest of predictors are noise (that is, βj = 0 for j /∈
P0). The coefficients of the significant 20 predictors are chosen as follows. First, consider 10

random predictors out of the 20 selected. For such predictors, if the group k > 6 then βj = 1

and, otherwise, βj = 1 +K
1
2 . For the other 10 predictors, βj = 1 if k ≤ 6 and βj = 1 +K

1
2
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otherwise. In this way, the predictors behave differently depending on the group. Finally, the

response vector for each group is generated according to the standard linear regression model

with normal error.

Once the synthetic dataset is built and its response and predictor variables have been stan-

dardized, the CSCLasso with A = (0|Ip) is run with constraints imposed over the first six

groups. The choice of λ will change at each fold. A grid in λ is built as in Section 2.3.2, and,

the value of λ which leads to the lower overall MSE in the validation set is selected. Table 2.2

shows the median prediction errors per group k (MSEk), k = 1, . . . , 6, obtained by the Lasso

(rows in grey color) and the corresponding values obtained under the CSCLasso for different

threshold values f .

nk = 150 nk = 300
p Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

20

MSEk(Lasso) 1.084 0.904 0.768 0.925 0.944 0.674 0.801 0.770 0.966 0.937 0.776 0.938
Improv. f 1.052 0.877 0.745 0.898 0.916 0.653 0.777 0.747 0.937 0.909 0.753 0.910

3% MSEk 0.933 0.722 0.695 0.859 0.822 0.574 0.752 0.689 0.810 0.859 0.744 0.870
Improv. f 1.030 0.859 0.730 0.879 0.897 0.640 0.761 0.732 0.918 0.890 0.737 0.891

5% MSEk 0.921 0.708 0.689 0.848 0.804 0.564 0.734 0.682 0.787 0.844 0.736 0.859
Improv. - - - - - - 0.745 0.717 0.899 0.871 0.722 0.873

7% 0.717 0.677 0.768 0.834 0.721 0.847
Improv. - - - - - - - - - - - -10%
Improv. - - - - - - - - - - - -15%
Improv. - - - - - - - - - - - -20%

100

MSEk(Lasso) 1.491 1.139 0.875 1.496 1.151 0.759 1.104 1.151 0.932 0.981 1.311 1.142
Improv. f 1.447 1.105 0.848 1.451 1.116 0.736 1.070 1.117 0.904 0.951 1.272 1.108

3% MSEk 1.234 0.948 0.781 1.322 0.945 0.708 1.044 1.145 0.911 0.963 1.306 1.139
Improv. f 1.417 1.082 0.831 1.421 1.093 0.721 1.048 1.094 0.885 0.932 1.245 1.085

5% MSEk 1.226 0.941 0.777 1.317 0.937 0.706 1.025 1.123 0.897 0.947 1.311 1.142
Improv. f 1.387 1.059 0.813 1.391 1.070 0.706 1.026 1.071 0.866 0.912 1.219 1.062

7% MSEk 1.219 0.933 0.773 1.311 0.929 0.704 1.005 1.111 0.883 0.934 1.309 1.141
Improv. f 1.342 1.025 0.787 1.346 1.035 0.683 0.993 1.036 0.838 0.883 1.180 1.028

10% MSEk 1.207 0.921 0.767 1.303 0.917 0.702 0.978 1.094 0.864 0.915 1.311 1.131
Improv. f 1.268 0.968 0.743 1.271 0.978 0.645 0.938 0.979 0.792 0.834 1.114 0.971

15% MSEk 1.128 0.903 0.765 1.250 0.919 0.695 0.936 1.061 0.833 0.882 1.274 1.087
Improv. f 1.193 0.911 0.700 1.196 0.920 0.607 0.883 0.921 0.745 0.785 1.049 0.914

20% MSEk 1.155 0.909 0.771 1.251 0.900 0.700 0.895 1.036 0.803 0.855 1.227 1.046

500

MSEk(Lasso) 1.306 1.133 1.318 1.261 1.246 1.473 1.151 1.204 1.171 1.148 1.278 1.068
Improv. f 1.267 1.099 1.279 1.223 1.208 1.429 1.116 1.168 1.136 1.114 1.240 1.035

3% MSEk 1.270 1.133 1.314 1.248 1.246 1.453 1.029 1.077 1.047 1.022 1.186 0.961
Improv. f 1.241 1.076 1.252 1.198 1.183 1.400 1.093 1.144 1.113 1.091 1.214 1.014

5% MSEk 1.257 1.133 1.308 1.245 1.245 1.437 1.025 1.060 1.032 1.004 1.165 0.945
Improv. f 1.215 1.053 1.226 1.173 1.158 1.370 1.070 1.119 1.089 1.068 1.189 0.993

7% MSEk 1.246 1.133 1.312 1.241 1.246 1.425 1.018 1.042 1.023 0.987 1.144 0.929
Improv. f 1.176 1.019 1.186 1.135 1.121 1.326 1.036 1.083 1.054 1.033 1.150 0.961

10% MSEk 1.231 1.132 1.313 1.230 1.246 1.401 1.005 1.016 1.006 0.961 1.114 0.905
Improv. f 1.110 0.963 1.120 1.072 1.059 1.252 0.978 1.023 0.995 0.976 1.086 0.907

15% MSEk 1.207 1.114 1.271 1.193 1.241 1.376 0.971 0.977 1.039 0.923 1.060 0.866
Improv. f 1.045 0.906 1.054 1.009 0.996 1.179 0.921 0.963 0.937 0.919 1.022 0.854

20% MSEk 1.184 1.081 1.266 1.150 1.230 1.354 0.952 0.972 0.995 0.908 1.057 0.857

Table 2.2: Median errors over testing sets for synthetic datasets

In particular, the values of f have been set as improvement percentages over the Lasso

values, where the improvement levels are 3%, 5%, 7%, 10%, 15% and 20% (γ equal to 0.03,

0.05, 0.07, 0.15 and 0.20, respectively). The results are obtained for different combinations
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(p, nk), where, as commented before, p is chosen from the set {20, 100, 500} and nk from

{150, 500}. For example, if nk = 150 and p = 20, the median of the mean squared error for

the Lasso in Group 1 was equal to 1.084. If the goal is to achieve an improvement of 3%, f

must be chosen equal to 1.052. The median of the mean squared errors for the CSCLasso is

equal to 0.933 in this case (results obtained on the testing sample). It is important to remark

that, for some levels of improvement, the CSCLasso problem is unfeasible due to the fact that

γmax for such datasets is smaller than the required γ, and, therefore, those cases are represented

as empty spaces in the table. It must be noted that γmax will also depend on each fold in the

cross-validation because it is associated with the partition of the data, since the MSEl in (2.9)

depends on such partition (l = 1, . . . , L). It is also worth mentioning that the constraints will

always be satisfied on the training set but not necessarily on the testing set, see, for example,

the case k = 3, nk = 150, p = 100 with improvement level equal to 15%. This phenomenon is

particularly common as p increases and nk decreases (see for example the values corresponding

to p = 500 and nk = 150 in Table 2.2).

We next investigate how the improvement in the prediction errors of the groups of interest

affects the prediction errors in the rest of the groups, the overall prediction error and the spar-

sity level. Figure 2.4 represents the percentage of non-zero (NZ) coefficients and the overall

prediction error for different sample sizes, different levels of improvement and for p = 100.

Lasso results are also included. For instance, when nk = 300 (black squares in Figure 2.4), the

NZ percentage for Lasso is 39.60 with an associated overall MSE of 0.734; whereas running

the CSCLasso demanding a 3% of improvement over the first six groups, we achieve a NZ

percentage of 38.61, and an overall MSE of 0.735. In general terms, it can be seen that the

sparsity of the solution decreases with the improvement level: smaller squares, which repre-

sent smaller imposed improvement percentages, are on the left of bigger squares (which are

associated with demanding percentage of improvement). Then, if the user is very demanding

in predicting a specific group, this implies, in the majority of the cases, a less sparse solution.

Notwhitstanding, when no level of improvement is imposed (Lasso problem), the solution can

be less sparse than in the CSCLasso, as in the case of nk = 300. This also occurs when

p = 500 and nk = 150 (see the bottom graphic of Figure B.4 in Appendix B). Furthermore,

the overall prediction error slightly worsens with the improvement level, due to the worsening

of the predictions in the uncontrolled groups.

Figure 2.5 represents the prediction errors over the groups that are not controlled as well

as the overall mean squared error, for different improvement levels, nk = 150 (top figure) and

nk = 300 (bottom) when p = 100. In the figure, Lasso values are also shown. From the

figure, it can be concluded that the Lasso performs better in the uncontrolled groups, since the

prediction errors worsen under our proposal. However, the overall mean squared error remains

almost constant (since the improved errors compensate the more deteriorated ones). Similar

conclusions can be drawn under the choices p = 20 and p = 500 (see Figures B.2 and B.3 in

Appendix B, respectively).
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Figure 2.4: Median overall MSE over the testing sets and NZ percentage under the choice
p = 100

Next, we test how the solution of the CSCLasso behaves with respect to other global per-

formance measures as the l2 distance, false positive and negative rates, which are defined not

in terms of prediction errors, but on the correct fitting of the generator process (see Yu and

Liu [2016]). In particular, the l2 distance is defined as ‖β̂ − β‖2, where β is the vector of

coefficients that generated the datasets (described at the beginning of this section), and β̂(λ)

are the estimators. In addition, the false positive rate (FPR) and false negative rate (FNR) are

calculated as follows:

FPR =
| j : βj = 0 & β̂j(λ) = 0 |

| j : βj = 0 |
,

FNR =
| j : βj 6= 0 & β̂j(λ) = 0 |

| j : βj 6= 0 |
,

where j = 1, . . . , p. The median of these three measures as well as the median of the overall

MSE (already shown in Figures 2.4-2.5 and Figures B.2, B.3 and B.4 in Appendix B), are

presented in Table 2.3. For the choices where p = 20, the FPR values are not given since all

the predictors have associated non-zero coefficients when the datasets were created. From this

table it can be deduced that similar or even better results, comparing with those of the Lasso,

are obtained in the majority of the cases across the four different measures.

A final remark concerning the computational cost of the CSCLasso when comparing with

Lasso is as follows. The median user time required to solve the problem with the largest dataset

considered in this study (nk = 300 and p = 500) is 0.85 seconds when the Lasso is run on

Intel(R) Core(TM) i7-7500U CPU at 2.70GHz 2.90GHz with 8.0 GB of RAM; whereas the

CSCLasso requires 6.60 seconds. Nevertheless, to better understand how the computation time

behaves depending on p value, a grid in this parameter has been inspected, while nk is set to
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Figure 2.5: Median MSEk over the testing sets for k = 7, . . . , 20 under p = 100 features and,
nk = 150 (top) and nk = 300 (bottom). Each subgraph represents one group and the Y-axis
shows the different percentages of improvement

300. Figure 2.6 depicts the logarithm of the user times in seconds obtained under Lasso and

CSCLasso models when nk = 300 and p changes. Then, under a reasonable computational

cost, the desired results are achieved. Further analyses regarding the computational times are

shown in the Appendix B (Figure B.5).
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nk = 150 nk = 300
p Overall MSE l2 distance FPR FNR Overall MSE l2 distance FPR FNR

20

Lasso 0.667 4.149 - 0.050 0.666 4.146 - 0.000
Improv. 3% 0.691 4.108 - 0.000 0.673 4.099 - 0.000
Improv. 5% 0.695 4.104 - 0.000 0.683 4.089 - 0.000
Improv. 7% - - - - 0.693 4.077 - 0.000
Improv. 10% - - - - - - - -
Improv. 15% - - - - - - - -
Improv. 20% - - - - - - - -

100

Lasso 0.732 2.931 0.275 0.250 0.734 2.729 0.250 0.150
Improv. 3% 0.740 2.857 0.388 0.100 0.735 2.721 0.163 0.150
Improv. 5% 0.741 2.855 0.375 0.100 0.734 2.721 0.163 0.100
Improv. 7% 0.742 2.853 0.400 0.100 0.734 2.718 0.163 0.100
Improv. 10% 0.745 2.849 0.400 0.100 0.732 2.704 0.275 0.100
Improv. 15% 0.751 2.844 0.425 0.100 0.735 2.678 0.288 0.050
Improv. 20% 0.759 2.835 0.463 0.100 0.738 2.655 0.288 0.100

500

Lasso 0.772 2.778 0.135 0.300 0.744 2.750 0.065 0.300
Improv. 3% 0.772 2.779 0.040 0.350 0.744 2.658 0.063 0.250
Improv. 5% 0.772 2.775 0.050 0.300 0.745 2.653 0.075 0.250
Improv. 7% 0.772 2.769 0.042 0.350 0.746 2.647 0.077 0.250
Improv. 10% 0.772 2.760 0.056 0.350 0.748 2.632 0.104 0.250
Improv. 15% 0.771 2.754 0.063 0.300 0.752 2.640 0.129 0.250
Improv. 20% 0.774 2.735 0.069 0.350 0.760 2.607 0.148 0.200

Table 2.3: Median performance measures over testing sets for synthetic datasets

Figure 2.6: A two-dimensional graph of the logarithm of the user times in seconds for nk = 300
as p increases
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2.4.2 Leukemia dataset: a gene expression dataset

The real stratified dataset described in Kouno et al. [2013] is explored here. The data con-

tain information related to myeloid monocytic leukemia cells undergoing differentiation to

macrophages. In particular, the dataset is formed by expression levels of 45 transcription fac-

tors (response and predictor variables) measured at 8 distinct times (groups) of the differen-

tiation process. As in Ollier and Viallon [2017], the aim is to predict the EGR2 transcription

factor in terms of the other p = 44 factors. The sample size per group is equal to 120. Similarly

as in Section 2.4.1, the Lasso was run and the overall prediction errors, individual prediction

errors per group and percentage of non-zero coefficients are recorded. The records in Group 1

yield the best MSE using Lasso model. Therefore, we may be interested in obtaining an even

better fitting for such data. The CSCLasso problem is solved with threshold values smaller

than the Lasso error, which turns out to be 0.370. Table 2.4 shows the obtained median results

for an assortment of improvement levels, namely, 5%, 7%, 10% and 15% or, equivalently, γ

is equal to 0.05, 0.05, 0.07 and 0.15, respectively. From that table, it can be seen how the

prediction error of interest (corresponding to Group 1) decreases with the improvement level,

as expected. Similarly as in Section 2.4.1, the overall mean squared error does not exhibit sig-

nificant changes, while the prediction errors in the uncontrolled groups do not exhibit the same

behaviour. Some of them slightly improve (Group 6), others slightly worsen (as the Group 5

and Group 8) and others remain constant (as Group 2). Finally, in regards to the sparsity of the

solution, for this dataset, less sparse solutions are obtained by CSCLasso in comparison with

the Lasso ones.

f1 Overall MSE MSE1 MSE2 MSE3 MSE4 MSE5 MSE6 MSE7 MSE8 NZ
Lasso - 0.620 0.370 0.417 0.902 0.496 0.480 0.535 0.496 0.685 53.33
Improv. 5% 0.352 0.623 0.357 0.417 0.918 0.500 0.555 0.512 0.497 0.719 73.33
Improv. 7% 0.344 0.626 0.348 0.418 0.915 0.504 0.565 0.514 0.497 0.722 66.67
Improv. 10% 0.333 0.630 0.335 0.418 0.911 0.510 0.574 0.513 0.498 0.728 66.67
Improv. 15% 0.315 0.636 0.331 0.415 0.903 0.523 0.591 0.512 0.502 0.737 73.33

Table 2.4: Median errors over testing set for gene expression dataset. Constraints imposed over
Group 1

2.4.3 Communities and Crime dataset

In this section, a real dataset from the UCI Machine Learning Repository [Lichman, 2013] will

be analyzed. In particular, the so-called Communities and Crime Unnormalized Data Set shall

be considered. The dataset is about communities within the United States and has already been

inspected in the literature (see Redmond and Baveja [2002]). This dataset combines crime

information from the FBI databases [U.S. Department, 1995] as well as socio-economic and

law enforcement data from U.S. Department [1992a] and U.S. Department [1992b], respec-

tively. The dataset is formed by p = 124 predictors, 23 of which present missing values,
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and n = 2215 instances, where the response variable measures the number of murders per

100K population. The predictor variables with missing values are not consider for the next

experiments. As such, we finally consider p = 101 predictors. Additionally, for each instance

(community), the region from which it comes is known. Thus, if we were interested in obtain-

ing a good prediction in a certain region, say Midwest, we could control these communities by

including a performance constraint. Table 2.5 shows the median errors over the testing set for

Group 1, formed by the communities of Midwest, and over the rest of communities (Group 2).

In terms of overall MSE and MSE over the two groups, similar conclusions as in Section 2.4.2

are drawn. Whereas different improvement levels are imposed, the MSE of interest (MSE1) is

getting smaller but the overall prediction error is almost not affected by the constraint. Lastly,

regarding the sparsity of the solution, an analogous behaviour as that observed in the case of

simulated data is obtained: the solution becomes less sparse with the improvement level.

f1 Overall MSE MSE1 MSE2 NZ
Lasso - 0.488 0.433 0.453 21.57
Improv. 5% 0.411 0.488 0.422 0.453 25.49
Improv. 7% 0.403 0.487 0.420 0.453 28.43
Improv. 10% 0.390 0.488 0.416 0.453 26.47
Improv. 15% 0.368 0.486 0.403 0.459 34.31

Table 2.5: Median errors over testing set for communities and crime dataset. Constraints im-
posed over Group 1

As previously commented, the groups of interest may overlap. As an illustration, assume

that the interest is in controlling the prediction error in communities of Midwest or communities

with a population density larger than or equal to the 75th percentile. Let Group 1 denote the

communities from Midwest, while Group 2 represents the communities where the density of

population is higher than the 75th percentile. For instance, if we aim to improve in a 7% the

errors obtained by the Lasso model (equal to 0.513 and 0.442), then the CSCLasso results

become 0.475 and 0.441, respectively.

2.5 Chapter summary

In this work a new version of the Lasso regression model that strives to control the performance

rates associated with individuals of interest is proposed. The method has a significant appli-

cation in the context of heterogeneous data, where it is common that certain sources are more

reliable than others, or simply the prediction on some groups of data are of higher interest, and

thus a better fit is sought for some data. In order to control the individuals of interest, perfor-

mance constraints are included in the regression model. This approach leads to a novel method

(CSCLasso) which is not reported in the literature previously, up to our knowledge. Theoretical

results concerning this novel methodology have been discussed and, in addition, the CSCLasso

has been tested on six synthetic datasets with different properties, on a well-referenced real
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stratified biomedical dataset and on a real social sciences dataset. The numerical section shows

that, with a low computational cost, the accuracy prediction errors for the groups of interest are

controlled. This is done at the expense of reducing sparsity (if the regularization parameter is

kept fixed) or the overall accuracy.
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In this chapter we study the mathematical optimization problem that trades off, in linear

regression models, accuracy and model complexity, in the presence of categorical variables

that have a hierarchical structure, with their categories arranged as a directed tree. In the

literature, this kind of data appears in different fields of research, such as nested spatial data

in Spatial Statistics [Gotway and Young, 2002], behavioral data in Retail Business Analytics

[Griva et al., 2018], and economic activity data in Official Statistics [European Commission,

2008; Katz-Gerro and López Sintas, 2019].

3.1 Introduction

Let J ′ be the set of continuous and dummy predictor variables, whereas J the set of hierar-

chical categorical predictor variables. Then, consider the random vector (Y,X′,X), where X′

denotes the vector of the predictor variables in J ′, X denotes the vector of categorical predictor

variables in J , and Y denotes the response variable. In the real-world dataset cancer-reg

[Rippner, 2017] used in the numerical section, with individuals from the United States of Amer-

ica (U.S.), geography is a categorical variable with a hierarchical structure. According to the

U.S. Department of Commerce Economics and Statistics Administration and the U.S. Census

Bureau, geography can be coded using the states (51 in total), which is the highest level of

granularity for which information is available in the dataset. This means that 51 coefficients

need to be estimated for this variable, where individuals in the same state share the same coef-

ficient in the linear regression model. The variable geography can alternatively be coded using

the subregions, such as East-South Central, Middle Atlantic and New England, where each

state belongs to exactly one of the 9 subregions. Consolidating individuals at the subregions,

sharing the same coefficient, yields a lower level of granularity for geography, where, instead

of 51, only 9 coefficients need to be estimated and interpreted. The individuals can be further

consolidated into 4 regions, namely West, South, Mid-West and North-East, where only 4 coef-

ficients would be associated to geography in the reduced linear regression model. Using these

regions, one has the least granular representation of geography. This work is devoted to trading

off accuracy of the linear regression model and its complexity, measured as a cost function of

the level of granularity used to represent each of the hierarchical categorical variables.

The categories of hierarchical categorical variable j ∈ J can be arranged as a directed tree

Tj , i.e., a directed graph with a root node, r(Tj), and a unique path from each node to r(Tj). In

addition, let V(Tj) denote the set of nodes in the tree and L(Tj) ⊂ V(Tj) the set of leaf nodes.

See Figure 3.1 for the tree associated with the categories of geography, where the leaf nodes

correspond to the states, going upstream we find the subregions and then the regions, which,

in turn, are directly connected with the root node. Let (yi,x
′
i,xi) be the vector associated with

individual i, with x′i = (x′ij′) and xi = (xijv), where xijv is equal to 1 if individual i belongs

to category v ∈ V(Tj) of variable j ∈ J . If we were to use the most granular representation of

the hierarchical categorical variables, we would need to use the categories associated with the
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leaf nodes l ∈ L(Tj), i.e.,

ŷi = β̂′0 +
∑
j′∈J ′

β̂′j′x
′
ij′ +

∑
j∈J

∑
l∈L(Tj)

β̂jlxijl, (3.1)

where β′0 is the independent term, β′j′ is the coefficient of variable j′ ∈ J ′, whereas βjl is

the coefficient of category l ∈ L(Tj) of hierarchical categorical variable j ∈ J . In the OLS

paradigm, the coefficients are obtained by minimizing the MSE. The corresponding OLS model

reads as follows

MSE∗((Tj)j∈J ) = min
β′0,(β

′
j′ )j′∈J ′ ,(βjl)l∈L(Tj),j∈J

1

n

n∑
i=1

(yi − β′0 −
∑
j′∈J ′

β′j′x
′
ij′ −

∑
j∈J

∑
l∈L(Tj)

βjlxijl)
2,

(3.2)

where n is the sample size. In the cancer-reg dataset, with the most granular representation

of geography, we have a MSE of 0.407 for the training sample. The question arises as to

whether that level of granularity is necessary, or whether we can merge categories at the bottom

of the tree into a broader category upstream in the tree. With this, we can eliminate the state

information for all the individuals of same subregion, respectively from the same region, and

report the subregion, respectively the region. We have done this for the states in the subregions

Middle Atlantic and New England, yielding the subtree in Figure 3.3 (a) of the tree in Figure 3.1.

All individuals in the descendants leaf nodes of Middle Atlantic are consolidated in its parent

node Middle Atlantic and, therefore, they share the same coefficient in the linear regression

model, and the same for New England node. With this representation, the MSE increases

from 0.407 to 0.408. This mild worsening in accuracy corresponds to an improvement in the

complexity of the linear regression model, with a reduction from 51 to 44 in the number of

coefficients to be estimated and interpreted for the geography variable.

Reducing the granularity of the representation of hierarchical categorical variables has sev-

eral advantages. First, and as illustrated above, it is a step towards enhancing the interpretability

of the linear regression model, where fewer coefficients need to be estimated and interpreted

[Carrizosa et al., 2017a]. Second, if the samples of individuals associated with categories are

homogeneous enough, a very granular representation would yield an overparametrized model.

Instead, we could merge these categories into a broader one upstream the tree, thus having

more observations to estimate fewer coefficients. The homogeneity together with the increase

in sample size ensure lower errors in the estimation of the coefficients of the broader categories

[LeBlanc and Tibshirani, 1998]. Third, and again if the samples of individuals associated

with categories are homogeneous enough, a very granular representation will yield higher data

gathering costs [Carrizosa et al., 2008; Turney, 1995], if, for instance, the surveying costs are

asymmetric. Indeed, we would need to ensure a large enough sample for each category in the

representation, even though the cost of surveying may be high for some of these categories. By

merging homogeneous categories into a broader one upstream the tree, we can sample from a
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larger subpopulation lowering these data gathering costs. Fourth, our methodology can identify

where j is an irrelevant predictor [Bertsimas et al., 2020; Blanquero et al., 2020; Carrizosa et

al., 2017b] by consolidating individuals at the root node r(Tj). Finally, the consolidation of

information is important when having data privacy considerations, [Li and Sarkar, 2009; Lu

et al., 2014], since it is well-known that more detailed information is linked to confidentiality

concerns [Baena et al., 2020].

The remainder of this chapter is structured as follows. In Section 3.2, we study the con-

strained problem, in which we minimize the accuracy of the reduced linear regression model,

measured by its MSE, subject to a complexity constraint, where a threshold is imposed on the

cost of granularity of the representation of the hierarchical categorical variables. This problem

is then formulated as a Mixed Integer Convex Quadratic Problem with Linear Constraints. Sec-

tion 3.3 illustrates our approach in two real-world datasets as well as in a synthetic one, where

the entire set of non-dominated outcomes to the problem is obtained solving the constrained

problem for the different values of the threshold. To end, some conclusions are provided in

Section 3.4.

3.2 The constrained problem

In this section, we first model the two objectives under consideration when building the reduced

linear regression model. We then provide a Mixed Integer Convex Quadratic formulation with

Linear Constraints for the constrained problem. We end the section with a discussion on the

values of the threshold parameter to find all possible non-dominated outcomes to our problem.

Consolidating the information of hierarchical categorical variables is equivalent to finding,

for each j ∈ J , a subtree Sj of Tj , with the same root as Tj , r(Sj) = r(Tj). The accuracy

of the reduced linear regression model, with individuals consolidated at the leaf nodes L(Sj),

will be measured by its MSE, while its complexity will be measured by

C((Sj)j∈J ) =
∑
j∈J

∑
l∈L(Sj)

cjl, (3.3)

where cjv ≥ 0 represents the cost associated to node v ∈ V(Tj).

With this, our problem reads as follows:

min
(Sj)j∈J

(MSE∗((Sj)j∈J ),C((Sj)j∈J )), (3.4)

where MSE∗((Sj)j∈J ) is defined as in (3.2) with L(Sj) replacing L(Tj). Note that Problem

(3.4) performs akin to the pruning of a regression tree [Sherali et al., 2009; Su et al., 2004]. In

our case, we have one tree per hierarchical categorical predictor in the dataset, and the pruning

of all these trees needs to be performed simultaneously to properly trade off the accuracy and

the complexity of the reduced linear regression model.
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Non-dominated outcomes to Problem (3.4) are obtained by solving the following con-

strained problem:
min

(Sj)j∈J
MSE∗((Sj)j∈J )

s.t. C((Sj)j∈J ) ≤ c,
(3.5)

where c is a threshold on the complexity of the model.

To formulate Problem (3.5) as a Mixed Integer Convex Quadratic Problem with Linear

Constraints, we note that finding a subtree Sj of Tj , with r(Sj) = r(Tj), is equivalent to finding

its leaf nodes. Therefore, we introduce binary decision variables z = (zjv), such that zjv = 1

if the node associated with category v of the hierarchical categorical variable j is selected as

leaf node of Sj , and zjv = 0 otherwise. If node v is selected, all individuals in its descendant

leaf nodes are consolidated at v, and these individuals will share the same coefficient in the

reduced linear regression model.

We need additional constraints to ensure that z is well defined. For this, we make use of the

structural properties of the unique path Pjl in Tj from its root to leaf node l ∈ L(Tj), j ∈ J .

It is easy to see that z is well defined if and only if there exists exactly one v such zjv = 1

for each path Pjl. With this,
∑

v∈V(Tj) zjvxijv represents the observed value for hierarchical

predictor variable j in individual i,
∑

v∈V(Tj) zjvxijvβjv is the contribution of j towards the

predicted response for individual i, and
∑

v∈V(Tj) cjvzjv is the contribution of j towards the

cost in (3.3).

Therefore, Problem (3.5) can be formulated as follows:

min
z,β′0,(β

′
j′ )j′∈J ′ ,(βjv)v∈V(Tj),j∈J

1

n

n∑
i=1

(yi − β′0 −
∑
j′∈J ′

x′ij′β
′
j′ −

∑
j∈J

∑
v∈V(Tj)

zjvxijvβjv)
2 (3.6)

s.t.
∑
v∈Pjl

zjv = 1, l ∈ L(Tj), j ∈ J , (3.7)

∑
j∈J

∑
v∈V(Tj)

cjvzjv ≤ c, (3.8)

zjv ∈ {0, 1}, ∀v ∈ V(Tj), j ∈ J , (3.9)

β′0, β
′
j′ , βjv ∈ R, ∀j′ ∈ J ′, ∀v ∈ V(Tj), j ∈ J . (3.10)

The objective function (3.6) is the MSE of linear models. The linear constraints (3.7)

model that only one node is selected per path, becoming thus a leaf node of the subtree sought.

Constraint (3.8) imposes the threshold c on the complexity of the reduced linear regression

model. Constraints (3.9) and (3.10) impose the range of the decision variables.

Since the objective function (3.6) has semi-continuous variables, zjvβjv, a smooth formu-
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lation can be obtained using big M constraints:

min
z,β′0,(β

′
j′ )j′∈J ′ ,(βjv)v∈V(Tj),j∈J

1

n

n∑
i=1

(yi − β′0 −
∑
j′∈J ′

x′ij′β
′
j′ −

∑
j∈J

∑
v∈V(Tj)

xijvβ̃jv)
2

s.t. (3.7)− (3.9),

−Mzjv ≤ β̃jv ≤Mzjv, ∀v ∈ V(Tj), j ∈ J ,

β′0, β
′
j′ , β̃jv ∈ R, ∀j′ ∈ J ′, ∀v ∈ V(Tj), j ∈ J .

(3.11)

This is the formulation that will be used in the numerical section. Note that we can sharpen

the value ofM by imposing an upper bound on the coefficients of the categories of hierarchical

variables. This can be seen as a regularization, thus preventing overfitting and allowing for

sparser models [Carrizosa et al., 2016]. Other types of regularization can be easily incorporated

into our model, such as those in Simon et al. [2011]; Yuan and Lin [2006].

We now discuss the choice of values for threshold c. It is easy to show that if cjv are integer

numbers, it is enough to consider integer values for c too. Moreover, it is easy to define lower

(cmin := |J |) and upper (cmax := C((Tj)j∈J )) bounds on c. By varying the threshold value c

among this finite set of values, we obtain the entire set of non-dominated outcomes to Problem

(3.4).

Non-dominated outcomes to Problem (3.4) can also be obtained by solving the alternative

constrained problem:
min

(Sj)j∈J
C((Sj)j∈J )

s.t. MSE∗((Sj)j∈J ) ≤ f,
(3.12)

where f is the threshold value on the MSE of the reduced linear regression model. The advan-

tage of constraining MSE∗((Sj)j∈J ) is to have full control on the accuracy of the model and

to allow the user to define meaningful values of f , [Blanquero et al., 2021b]. Therefore, this

option is recommended when the constrained problem is solved only for a few values of f . A

lower bound on f is

fmin := MSE∗((Tj)j∈J ), (3.13)

which is the MSE that we achieve for the highest level of granularity on all the hierarchical

categorical variables. An upper bound on f is found by removing all the variables j ∈ J . This

corresponds to

fmax := min
β′0,(β

′
j′ )j′∈J ′

1

n

n∑
i=1

(yi − β′0 −
∑
j′∈J ′

β′j′x
′
ij′)

2, (3.14)

where we consider the subtree with only the root node, i.e., Sj = {r(Tj)} ∀j ∈ J . In this

case, by varying the threshold value f in a grid of [fmin, fmax], we obtain a collection of

non-dominated outcomes to Problem (3.4).
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Figure 3.1: Tree representation of the variable geography in the cancer-reg dataset
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3.3 Numerical experiments

In this section, we illustrate our approach using two real-world datasets and a synthetic one.

Our aim is to depict the tradeoff between the accuracy of the reduced model and its complex-

ity, measured by the number of coefficients to be estimated for the hierarchical categorical

variables, which corresponds to cjv = 1 in (3.3). To solve Problem (3.11) for all possible

values of c ∈ {cmin, . . . , cmax}, we use Gurobi, where M is set to 1000. The experiments have

been run on Intel(R) Core(TM) i7-7500U CPU at 2.70 GHz 2.90 GHz with 8.0 GB of RAM.

3.3.1 Cancer trials dataset: a real-world dataset

Consider again the real-world dataset cancer-reg introduced in Section 3.1. This dataset

aims to look for relationships between the socioeconomic status in U.S. and the mean per

capita cancer mortality (response variable). It has a sample of size n = 3047 with 32 predic-

tor variables: one hierarchical predictor variable (|J | = 1) and 31 non-hierarchical predictor

variables (|J ′| = 31), where continuous predictors have been standardized. This database was

collected from the American Community Survey (census.gov), clinicaltrials.gov

and cancer.gov sources. As mentioned in Section 3.1, the only hierarchical categorical

variable is geography, see Figure 3.1, and contains information on the state linked to the indi-

viduals.

We solve Problem (3.11) for the 51 values of c in the set {1, . . . , 51}. Figure 3.2 reports

the pareto frontier for the MSE and the number of coefficients to be estimated in the reduced

model for the hierarchical categorical variable. Clearly, our methodology can find a much less

complex model with a very mild worsening of the accuracy, but it is ultimately the decision of

the user as to which reduced model to choose.

Figure 3.3 plots the selected subtree S∗1 associated with geography for three of the solutions

in Figure 3.2. In particular, Figure 3.3(a) is the representation associated with the model that
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achieves the minimum Akaike information criterion (AIC) metric [Akaike, 1998], whereas

Figure 3.3(c) the one with the minimum Bayesian information criterion (BIC) [Schwarz, 1978],

which are two measures for model selection that compute the tradeoff between the fit in the

training sample and the number of parameters involved.

Table 3.1 presents the coefficients of geography for four of the solutions in Figure 3.2,

namely the most complex model when all the leaf nodes in Figure 3.1 are considered, as well

as the three reduced models with less granular representation of geography in Figure 3.3. We

can see that when categories are merged into one upstream the tree, the single coefficient that

needs to be estimated for that broader category is within the range of the coefficients obtained

with the most granular representation.

Figure 3.2: Pareto frontier for MSE versus the number of coefficients to be estimated in the
reduced model for the hierarchical categorical variable geography in the cancer-reg dataset

3.3.2 Boston Housing dataset

The well-known housing dataset [Harrison and Rubinfeld, 1978] contains information con-

cerning the price of the houses in the area of Boston, which was collected from the U.S. Census

Service. See Table 3.2 for a description of its predictor variables, as well as the response. It

has a sample of size n = 506 with 13 predictor variables: 12 continuous, which have been dis-

cretized yielding 12 hierarchical predictor variables (|J | = 12), and 1 binary one (|J ′| = 1).

Figure 3.4 illustrates the discretization of CRIM, the first continuous variable. Similar ones

have been implemented for the other 11 continuous variables. First, we split the observations
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(a) S∗1 when MSE∗(S∗1 ) = 0.408 and c = 44
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(c) S∗1 when MSE∗(S∗1 ) = 0.427 and c = 14

Figure 3.3: Less granular representations for the geography variable in the cancer-reg
dataset
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of CRIM into two groups: those whose values are below (node M1,1) and above (node M1,2)

the median. Second, the quartiles are used to subdivide M1,1 (nodes Q1,1 and Q1,2) and M1,2

(nodes Q1,3 and Q1,4) into two nodes. This way we examine the thresholds of the continuous

predictor variables required to predict the response variable.

Figure 3.4: Tree associated with the variable CRIM in the housing dataset after being dis-
cretized

CRIM

M1,1

Q1,1 Q1,2

M1,2

Q1,3 Q1,4

When solving Problem (3.11) for the 37 values of c in the set {12, . . . , 48}, we obtain the

pareto frontier in Figure 3.5. The MSE of the model with the highest granularity for all hier-

archical variables is 23.06. When we start reducing the granularity the MSE remains approx-

imately the same. Actually, when c is reduced from 48 to 30, the accuracy is barely damaged

but the complexity of the linear regression model is dramatically improved.

Figures 3.6-3.7 show the subtrees S∗j for all j ∈ J for the solution in Figure 3.5 that

achieves the minimum AIC. In this solution, we can observe how variables INDUS, AGE and

RAD are eliminated from the linear regression model, as their root node is the only one selected

with a coefficient equal to zero. By contrast, we require the highest level of granularity for

PTRATIO, B and LSTAT. For DIS, the linear regression model only needs to know whether the

predictor variable is below the median. For the remaining predictor variables, leaf as well as

non-leaf nodes are selected.

3.3.3 The synthetic data

In this section we illustrate our approach on synthetic data. The data generating model is

yi =
∑
j∈J

∑
l∈L(Tj)

βS
jlxijl + εi, i = 1, . . . , n, (3.15)

where |J | = 2 and J ′ = ∅. The values of the coefficients βS
jl, l ∈ L(Tj), are given in Figure

3.8. Note that the first two leaf nodes of T1 have the same coefficient, and the same holds for

the other two leaf nodes. Therefore, the tree can be pruned to avoid unnecessary splits, yielding
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Figure 3.5: Pareto frontier for MSE versus the number of coefficients to be estimated in the
reduced model for the hierarchical categorical variables in the housing dataset

Figure 3.6: Less granular representations for the first six hierarchical categorical variables in
the housing dataset for the solution in Figure 3.5 with MSE∗((S∗j )j∈J ) = 23.37 and c = 32.
Note that this is the solution that achieves the minimum AIC
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Figure 3.7: Less granular representations for the last six hierarchical categorical variables in
the housing dataset for the solution in Figure 3.5 with MSE∗((S∗j )j∈J ) = 23.37 and c = 32.
Note that this is the solution that achieves the minimum AIC

DIS

M7,1 M7,2 RAD

TAX

M9,1

Q9,1 Q9,2

M9,2

PTRATIO

M10,1

Q10,1 Q10,2

M10,2

Q10,3 Q10,4

B

M11,1

Q11,1 Q11,2

M11,2

Q11,3 Q11,4

LSTAT

M12,1

Q12,1 Q12,2

M12,2

Q12,3 Q12,4

the subtree in Figure 3.9. The same holds for T2. The error is taken εi ∼ N(0, σ2) for different

values of σ2 given below. We have n = 3000 individuals, evenly distributed across the different

combinations of categories l1 ∈ L(T1) and l2 ∈ L(T2). The purpose of this section is twofold.

First, we illustrate how our approach is able to recover the pruned tree underlying our synthetic

data. Second, we carry out a study for assessment of the generalization error of the final chosen

model.

Let us consider σ2 = 0.04 and solve Problem (3.11) for the 10 values of c in the set

{2, . . . , 11}. Figure 3.10(a) shows the pareto frontier for the number of coefficients to be

estimated in the reduced model versus the MSE. For small values of MSE, the chosen nodes are

the 8 green leaf nodes in Figure 3.9, which implies that our methodology is able to successfully

detect the pruned tree underlying each hierarchical categorical variable in our data. Similar

conclusions can be drawn when σ2 = 0.16 (Figure 3.10(b)) and σ2 = 0.36 (Figure 3.10(c)).

To end the numerical section, we provide an estimation for the MSE and the complexity of

the reduced model using a 10-fold cross validation approach, showing that our procedure works

properly with the available individuals (training sample), but also for future individuals (testing

sample). For each fold, the training set is used to solve Problem (3.11) and get S∗j , j ∈ J . Once

the subtrees are found, and thus the reduced linear regression model, we calculate its MSE for

the training and testing sets, which are plotted in Figures 3.11(a)-3.11(c) for the different values

of σ2. As can be observed, the MSE values for the training sets (red lines) are only slightly
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Figure 3.8: Trees associated with the two hierarchical categorical variables in the synthetic
dataset together with βS

jl, l ∈ L(Tj)
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smaller than those for the testing sets (blue lines). Then, in view of results, we can conclude

that our methodology generalizes well.

3.4 Chapter summary

In this work a new methodology to deal with hierarchical categorical variables, i.e., categorical

variables that can be measured at different levels of granularity, has been developed. Through

a Mixed Integer Convex Quadratic Problem with Linear Constraints, we study the tradeoff

between accuracy and model complexity. Our proposal has been tested on both real-world

and synthetic datasets. The numerical section shows that much less granular representations

for the hierarchical categorical variables can be found at the expense of slightly damaging the

accuracy.
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Figure 3.9: Pruned tree and less granular representation of the two hierarchical categorical
variables in Figure 3.8 from the synthetic dataset
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Tree Figure 3.1 Optimal Tree Figure 3.3(a) Optimal Tree Figure 3.3(b) Optimal Tree Figure 3.3(c)
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Table 3.1: Coefficients associated with four different representations for geography variable in
the cancer-reg dataset
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Variable Name Description Type Discretized

Predictor

CRIM Crime rate by town Continuous Yes
ZN Proportion of residential land zoned for lots greater than 25.000 square feet Continuous Yes

INDUS Proportion of nonretail business acres per town Continuous Yes
NOX Nitrogen oxide concentrations Continuous Yes
RM Average number of rooms Continuous Yes
AGE Proportion of owner units built prior to 1940 Continuous Yes
DIS Weighted distances to five employment centres Continuous Yes

RAD Index of accessibility to radial highways Continuous Yes
TAX Full value property tax rate ($/$10.000) Continuous Yes

PTRATIO Pupil-teacher ratio by town school district Continuous Yes
B Black proportion of population Continuous Yes

LSTAT Proportion of population that is lower status Continuous Yes
CHAS 1 if tract bounds river; 0 otherwise Binary No

Response MEDV Median value of owner-occupied homes (in $1000’s) Continuous No

Table 3.2: The predictor and the response variables in the housing dataset
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Figure 3.10: Pareto frontier for MSE versus the number of coefficients to be estimated in the
reduced model for the synthetic dataset for different σ2 values

(a) σ2 = 0.04 (b) σ2 = 0.16

(c) σ2 = 0.36
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Figure 3.11: Average MSE (10-fold CV) versus the imposed threshold c when σ2 changes

(a) σ2 = 0.04 (b) σ2 = 0.16

(c) σ2 = 0.36
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In this chapter we propose an alternative sparse method for databases with dependent fea-

tures. In particular, we embed a variable reduction algorithm within the NB’s scheme to pro-

duce a sparse version of the classifier. Our aim is two-fold: on one hand, sparsity is pursued

in the sense that only a subset of predictive features is used by the classifier’s construction,

making the so-obtained classifier more interpretable, and, on the other hand, we have a flexible

framework to choose the accuracy measure to be optimized so that the classifier’s performance

does not worsen with respect to the classic NB. Our proposal leads to a smart search, which

yields competitive running times. Numerical results in both balanced and unbalanced datasets

show the competitive results our approach achieves when compared against well-referenced

feature selection approaches.

4.1 Introduction

Some works have addressed different strategies for variable reduction for the NB. In Zhang

et al. [2009], the use of the principal components technique and genetic algorithms to remove

irrelevant and redundant features are examined. The Evolutional Naïve Bayes [Jiang et al.,

2005] is a wrapper which also performs a genetic search to select a subset from the whole set,

although it is sensitive to many parameters, which is disadvantageous in practice. Other studies

which are also focused on hard variable selection approaches to reduce the number of redun-

dant predictors are Bermejo et al. [2014] and Mukherjee and Sharma [2012]. In this sense,

Langley and Sage [1994] define the selective Naïve Bayes (SNB) classifier, which is based on

a wrapper approach [Kohavi and John, 1997]. However, due to the complexity of the involved

search algorithm and its tendency to make overfitting, the SNB does not perform well on large

datasets [Boullé, 2007]. Therefore, a Bayesian approach - defined as SNB(MAP) - is consid-

ered in Boullé [2007] to improve the performance of the SNB so that a compromise between

the performance of the classifier and the sparsity is found. Another example can be found in

"ann" Ratanamahatana and Gunopulos [2003], which proposes a method that combines NB

and decision trees.

However, as pointed out by Boullé [2007], it is important to “exploit multivariate prepro-

cessing methods in order to circumvent the Naïve Bayes assumption”. In this chapter, we adopt

this scheme and propose a hard variable selection process which is motivated by the condi-

tional independence assumption of the NB. It is known that the NB is Bayes-optimal (that is, it

guarantees the minimum classification error), when the predictors are independent conditioned

to the class [Kuncheva, 2006]. On the other hand, it is also well documented in the literature

that conditional independence is a sufficient condition but not necessary to get the optimal NB

[Domingos and Pazzani, 1997; Hand and Yu, 2001; Hastie et al., 2001]. Even if the fact that

features are conditionally independent might not make a significant difference with respect to

the situation where features are correlated, such slight difference in the NB performance may

be crucial for some real contexts (cancer diagnosis, for example). The sparse version of the NB
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proposed in this work, which is suitable for dealing with correlated patterns in datasets, is ob-

tained by integrating a variable reduction method in such a way that only certain combinations

of features, chosen according to their degree of dependence, are considered. Other papers have

considered before correlations among the features as is the case of Hall [2000], Jiang et al.

[2019] and Rezaei et al. [2018]. The former is the filter CFS, which was introduced in Section

1.1.1 and is based on the assumption that a good subset of attributes should be highly corre-

lated with the response variable but there should exist few dependencies among them. This

hypothesis is also used in Jiang et al. [2019], where a correlation-based feature weighting filter

for NB is developed. In Rezaei et al. [2018], clustering is used to detect groups of correlated

features and select only a small number of attributes. In particular, the optimal number of clus-

ters stems from the mean silhouette score, which measures how similar a variable is to its own

cluster compared to other clusters.

Additionally, the novel strategy can be implemented using the most adequate performance

measure given the properties of the datastets. Minimizing the overall misclassification rate

is always an option, but, for example, if datasets are unbalanced, the AUC (area under the

ROC curve) may be preferred, since it is sensitive to class imbalance and, therefore, achieves a

better compromise among the correct classification rates for the different classes. Recent works

have considered different alternative performance measures, [Jiang et al., 2012, 2019; Zhang

et al., 2020]. For instance, the Randomly Selected Naïve Bayes [Jiang et al., 2012] considers

the classification accuracy (ACC), AUC or conditional log likelihood; whereas in Jiang et al.

[2019]; Zhang et al. [2020], two class-specific attribute weighted Naïve Bayes versions are

defined.

Not only our method establishes the sparsity in terms of the correlation among the covari-

ates and is flexible so that the most convenient classification measure can be used, but also it

is a cost-sensitive classifier. In particular, the inclusion of constraints on the proportions of

correctly classified instances of groups at risk may be convenient for having direct control over

their misclassification rates and obtaining adequate results for them [Benítez-Peña et al., 2019;

Blanquero et al., 2021a,b]. That is, whereas the global performance criterion is optimized, fur-

ther control can be added via performance constraints on the groups of interest in each case.

As it will be detailed, the sparse NB defined in this work is able to integrate such performance

constraints.

This chapter is organized as follows. In Section 4.2, a brief review of the NB is done,

the notation is introduced, and some performance measures typically used in classification are

reviewed. A numerical example motivating our approach for a sparse NB is presented next.

In Section 4.3, the proposed version of sparse NB is described. Section 4.4 illustrates the new

sparse classifier. Synthetic datasets as well as ten well documented real databases with different

properties will be thoroughly analyzed, considering different performance measures and/or

adding performance constraints in groups of interest. A complete discussion concerning the

performance results, sparsity and running times of the proposed methodology in comparison
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with benchmark approaches will be given. Finally, some conclusions to this work are described

in Section 4.5. Further information concerning the properties of the considered datasets and

the choice of the tuning parameters will be described at the Supplementary Material (Appendix

C).

4.2 Preliminaries

4.2.1 The Naïve Bayes classifier and performance measures

Consider a classification problem with a set of p features (X1, . . . , Xp) andK possible classes.

Given a new observation x = (x1, . . . , xp), the aim is to assign x to one of the K classes. As

introduced in Section 1.2.1, the key assumption of the NB is the independence of the features

conditioned to the class, which implies that

p(x|Ck) = p(x1, . . . , xp|Ck) = p(x1 | Ck) . . . p(xp | Ck) (4.1)

and therefore, the probabilities of interest p(Ck | x) are computed in a straightforward manner

as proportional to (4.1). Note that, in (4.1), a probability distribution for the features condi-

tioned to the class Xi | Ck needs to be chosen by the user and estimated by some statistical

method as, for example, a maximum likelihood criterion.

Several measures can be used to study a classifier’s performance, see for example Sokolova

and Lapalme [2009]. In real contexts, besides good overall classification rates, high classifica-

tion rates for specific classes may be sought. For this reason, throughout this work, we shall

consider the classic Recall of each class k (Recallk) for k = 1, . . . ,K, and also, the accuracy

(ACC) and the precision, which are defined as follows,

Recallk =
(True Class k) × 100

Number of individuals in class k
, (4.2)

ACC =
(
∑

k True Class k)× 100

Total number of individuals
, (4.3)

precisionk =
True Class k

(True Class k) + (False Class k)
, (4.4)

as well as the AUC.

4.2.2 The independence assumption: a numerical example

The effect of the independence assumption over the performance of the NB when correlated

features are analyzed, has been studied in the literature, see Domingos and Pazzani [1996,

1997]; Hand and Yu [2001]; Hastie et al. [2001]; Zhang [2004]. As commented in Section 4.1,

the conclusion is that, even though the independence assumption is not satisfied, the classifier’s

performance may not be considerably altered. However, using just a properly chosen subset of
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the variables may make the independence assumption less violated, and the accuracy improved

(on top of the fact that a model with less variables is more explainable).

In order to illustrate how the violation of the independence assumption may affect the per-

formance of the NB, consider the next numerical example. A sample of size 2000 of a random

vector (X1, X2, X3, X4) is simulated for two classes from a multivariate Normal distribution

in such a way that the random variables are independent conditioned to the classes except for

X1 and X2 which are correlated according to a Pearson coefficient of 0.95. A Gaussian NB

classifier (that is, Xi | Ck ∼ N
(
µi,k, σ

2
i,k

)
for i = 1, 2, 3, 4, k = 1, 2, where µi,k were

randomly selected in the interval [1,7]) was run using all possible subsets of features and the

results are shown in Table 4.1. The accuracy when all the variables are used is equal to 78.28,

a value that is improved if the set {X1, X3, X4} is considered (accuracy equal to 79.94).

Table 4.1: Performance rate for all possible combinations of features in a multivariate normal
simulated example.
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variables

ACC 68.08 68.51 68.55 69.01 68.38 74.99 75.08 74.86 75.25 75.68 73.58 73.85 79.94 79.84 78.28

Having illustrated that using just a subset of the features may improve accuracy, we face the

combinatorial problem of finding the adequate set of features to be used. The previous brute

force procedure, where all possible combinations of features are examined, turns out infeasible

in practice, especially for large databases. Instead, in this work we propose a variable reduc-

tion method in which only certain combinations of features are sampled and evaluated. Such

combinations, as will be seen in Section 4.3, shall be chosen by considering the dependencies

among the features.

4.3 A sparse Naïve Bayes

As commented in Section 4.2.2, considering all possible combinations of features to determine

the best one is hard from a computational point of view, especially for large datasets since a

total of 2p − 1 sets should be evaluated. The aim of this section is to describe an efficient

methodology to guide the search of the subset of features, by inspecting only some subsets

selected in terms of the dependence among features. As a result, a sparse, computationally

tractable NB is obtained.
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4.3.1 Description of the method

The variable reduction strategy proposed in this section is based on a clustering of features

made in terms of their dependencies. As commented in Section 4.2.1, the key assumption of

the Naïve Bayes is the independence of the features conditioned to the class. The novel method

presented in this work aims to preserve the independence assumption without damaging the

predictive power of the classic NB. In other words, our methodology helps to select variables

that are as independent as possible while provides good classification accuracy. To do that,

we consider a dependence measure between random variables X and Y , which increases with

the degree of dependence between the variables. First, consider for i, j ∈ {1, . . . , p} and

k = 1, . . . ,K, the dependence between feature Xi and feature Xj conditioned on class Ck.

In order to have a unique, summarized measure of dependence between Xi and Xj , let M
be the matrix whose elements (Mij) represent the maximum dependence among all classes,

between Xi and Xj . Note that such a choice represents the worst case scenario. A number of

dependence measures proposed in the literature can be selected: Pearson correlation coefficient,

Spearman’s rank-order correlation coefficient, Hoeffding D statistic (see Hoeffding [1948]),

the mutual information coefficient (MI) [Linfoot, 1957], the Maximal Information coefficient

(MIC) [Reshef et al., 2011] or the distance correlation coefficient [Székely et al., 2007], among

others. We tried using these different measures and similar results were obtained (see Section

4.4 and the Supplementary Material in Appendix C). Therefore, since the mutual information

measure enables us to work with both continuous and categorical variables and has been widely

used in the literature [Kinney et al., 2010; Sharpee et al., 2004], we will select this measure.

This coefficient quantifies the information about one variableX provided by a different variable

Y , and it is defined as

I(X,Y ) =

∫
Y

∫
X
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy,

in the case of continuous variables. In the categorical case, the previous formula can be rewrit-

ten in terms of sums. The previous dependence measure can be computed by the function

mutinformation from the infotheo package of the Statistical software environment

R [R Core Team, 2017]. An illustration of the matrix M for the real dataset Statlog (Aus-

tralian Credit Approval) (australian) from the UCI Machine Learning Repository [Lich-

man, 2013] is represented by Figure 4.1. The dataset concerns credit card applications, and

is formed by 14 variables and two classes (+/-). Moreover, to visualize the different correla-

tion patterns of the real-life datasets used throughout this work, at the end of Appendix C, the

associated matricesM using the MI measure are represented via heatmaps.

Next, with the aim of performing a cluster analysis in terms of the degree of association

among the features, a dissimilarity matrix H of dimension p × p is defined in terms of matrix
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Figure 4.1: Heatmap associated to matrixM (based on MI correlation) corresponding to the
australian dataset

M by the elements

Hij =
M∗ −Mij

M∗
, (4.5)

where

M∗ = max
i,j∈{1,...,p}

Mij .

Note that, under the previous definition, the elements of H are bounded below by zero, where

this value represents the maximum degree of dependence. Moreover, the upper-bound of the

elements of H is one, which represents the minimum degree of dependence. Therefore, the

higher the values of Hij are, the less dependence exists between Xi and Xj , according to the

selected dependence measure.

Note that, as described in the first section of Appendix C, the results obtained are rather

robust regarding the dependence measure. Once the dependence measure is set, the classifier’s

performance measure to be maximized in the embedded Variable Selection strategy can be

chosen, among the previously described measures in Section 4.2.1, according to the user’s

convenience and the properties of the dataset. Generally, the ACC is selected, but in some

cases, e.g. for unbalanced datasets or when there exist critical classes, our proposal replace

ACC with AUC, precision or a certain Recall. Thus, the novel method turns out specially

advisable for datasets where the classes are unbalanced and/or of different importance. The

selection of the dependence and the classifier’s performance measures is the first step of our

algorithm (see Algorithm 4).

Once we have chosen a dependence measure, and the elements of the matrix H are com-

puted, we perform a hierarchical cluster analysis of features according to the dissimilarity

matrixH (step 2 of the algorithm).
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In the obtained dendrogram, the vertical axis represents the degree of dissimilarity. The

higher the value of the height is, the less dependent the variables are, according to the depen-

dence measure. For example, the dendrogram corresponding to the australian dataset is

given by Figure 4.2. Such a dendrogram has been obtained using the routine hclust of the

Statistical software environment R. In this case, V5 and V6 are highly dependent, as well as V9

and V10. However, the rest of variables are almost independent, since they cluster at heights

between 0.9 and 1.

Figure 4.2: Cluster dendrogram (based on MI correlation) corresponding to the australian
dataset

Once the dendrogram is built, a (not necessarily regular) grid of a specified number C of

cuts along the height is fixed. The basic idea underlying the variable reduction strategy is to ex-

amine at each cut (or threshold) of the grid several combinations of features, in such a way that

only one feature is selected per cluster since all elements in a cluster are assumed to be strongly

dependent. As an example, consider Figure 4.2 and assume that one of the C cuts is c = 0.74

(horizontal line). Then, we consider that there are 12 clusters: 10 clusters formed by only

one feature and the clusters {V5, V6} and {V9, V10}. And, therefore, four independent combi-

nations would be selected at this threshold: (V1, V7, V11, V3, V13, V2,V5, V4, V14, V8, V12,V9),

(V1, V7, V11, V3, V13, V2,V5, V4, V14, V8, V12,V10), (V1, V7, V11, V3, V13, V2,V6, V4, V14, V8,

V12,V9) and (V1, V7, V11, V3, V13, V2,V6, V4, V14, V8, V12,V10). Note that the higher (lower)

the value of the cut, the more likely we are to choose independent (dependent) variables.

Although the previous strategy reduces the computational cost of the brute force approach,

it still may be costly for large datasets that originate a complex dendrogram with many combi-

nations per threshold. In addition, removing some of the features from the combinations may
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lead up to sparser and more accurate models, since it might happen that the (independent) vari-

ables selected in the combinations have a very low predictive power. In order to strive to avoid

such inconveniences, we propose a refinement of the strategy as follows. First, a maximum

number S of combinations per threshold is set (if the total number of possibilities for a given

threshold c, nc(c), does not exceed S, then all of them will be considered). In the previous

example, nc(0.74) = 4. We should point out that parameters C and S are used to alleviate the

computational burden, since, as commented before, C fixes the number of cuts along the height

in the dendrogram, and S the maximum number of combinations per threshold to be evaluated.

Therefore, the higher C and S are, the higher the computer time is. For this reason, we will fix

reasonable values for these parameters in Section 4.4.3. Second, for each cluster of variables

to be examined, a value q representing the probability of selecting this cluster for extracting

randomly a variable to be included in the combination is also set. If we fix q = 0.4, the pre-

vious four combinations become (V1, V7, V8, V13, V14), (V1, V4, V6, V8, V9, V12, V14), (V2, V8)

and (V4, V6, V10, V11), respectively. The parameter q is directly related to the sparsity degree:

the lower the value of q is, the less variables are inspected (the expected number variables to be

considered is equal to q × p). The choice of the values {C, S, q} will be discussed in Section

4.4.

Once the set of combinations of features to be evaluated is reduced, the NB would be

implemented and, its performance and feasibility on the constrains considered, evaluated for

each combination. This is summarized in step 3 of the Algorithm 4.

Finally, the feasible combination yielding the highest performance measure (accuracy,

AUC or whatever chosen measure) would be considered the best, taking also into account

the whole set of variables in this comparison (step 4). For australian, if no constraint is

imposed, the features selected by our model are (V1, V4, V6, V8, V9, V12, V14), which achieve

an ACC of 86.76, whereas the whole set of variables returns 85.29. According to the results,

it can be deduced that our model has kept the important features, using only a half of the total

set. However, in this dataset, the positive class (the load is granted) is the most risky. Then, if

we impose e.g. that Recall + > 92, the combination of features (V2, V8) would be the selected

one.

A summary concerning the strategy for the sparse NB is given by Algorithm 4.

4.4 Numerical Illustrations

In this section, the behaviour and performance of our approach is illustrated throughout an

extensive empirical study, using both simulated and real datasets. In the first case, a synthetic

data set is simulated in order to test how the performance and level of sparsity of the proposed

sparse NB changes with the level of dependence among the features. Second, ten real datasets

from the UCI Machine Learning Repository [Lichman, 2013], presenting different correlation

patterns, different degrees of unbalancedness and some of them combining both continuous
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Algorithm 4: Pseudo-code of the sparse NB

1. Select the dependence and the classifier’s performance measures.
2. Perform cluster analysis and build the dendrogram.
3. Variable reduction strategy: set specific values for the parameters {C, S, q} and initialize
F = ∅.

for c = 1, . . . , C do
for s = 1, . . . ,min{nc(c), S} do

(a) Obtain the s−th combination of features. For each cluster only one variable is
randomly selected with probability q, and none with probability 1− q.

(b) Construct the classifier for the s−th combination of features.
(c) Evaluate the selected classifier’s performance measure and if feasible, add it to F .

end
end
4. Variable Selection: select the combination of variables leading to the best performance,

among those in F .

and categorical variables, will be analyzed under the sparse NB described in Section 4.3. In

the experiments, the performance rates of the classifier shall be estimated according to an 10

runs 10−fold cross validation procedure. At each fold, the dataset is split into three sets,

the so-called training, validation and testing sets. A tenth of the dataset is used as testing

set, and the remaining nine tenths are for training set
(

2
3 ×

9
10

)
and validation set

(
1
3 ×

9
10

)
.

Steps 2, 3(a) and 3(b) of Algorithm 4 are implemented on the training set. The different

classifiers built in this way are compared according to their performance results (step 3(c))

on the validation set. The classifier (combination of features) with the highest performance

measure on the validation set is chosen, and its average performance rates on the testing set

are reported. Special emphasis will be made on the performance behavior and sparsity of the

solutions of the proposed method.

4.4.1 Parameters setting

The probability distribution for the features conditioned to the class Xi | Ck, for i = 1, . . . , p,

k = 1, . . . ,K, needs to be selected. It is well-known in the literature that the performance of

the NB classifier improves when features are categorized using any discretization method [Liu

et al., 2002; Boullé, 2004; Boullé, 2006]. Therefore, instead of imposing a specific probability

distribution (such as the Gaussian), we adopted the discretization method based on an entropy

criterion (see Dougherty et al. [1995]) and used the mdlp routine [Fayyad and Irani, 1993]

from the discretization package of R.

Now, we discuss the choice of the parameters {C, S, q} and the performance criterion.

Choice of the parameter C

The value of C, which represents the number of cuts in the vertical axis of the dendrogram,

is critical for a proper sampling. As a default value, we propose to select the points of the



4.4. Numerical Illustrations 73

grid where features are clustered. When the routine hclust of R is used to generate the

dendrogram (as in this work), one has C = p − 1, where p is the number of features. In

addition, hclust specifies where to make the cuts. However, a large value of C may slow

down the execution of the algorithm notably and, on the other hand, it may lead to overfitting.

For this reason, C will be defined as min{p − 1, 100}. As will be seen next, in Section 4.4.2,

such a choice yields a right balance between the performance and the computational time for

the considered datasets.

Choice of the parameter S

Regarding the value of S, which represents the maximum total of combinations for each cut,

we tested several possible values for this parameter (see Appendix C), and settled on the final

choice S = 25. Note that under the previous choices of C and S a total of max{25 × (p −
1), 25 × 100} combinations of features will be evaluated under the proposed sparse NB in

contrast to the total number of possible combinations, equal to 2p − 1.

Choice of the parameter q

Small values of q are associated with more sparsity (since fewer variables would be included

in the combinations to be examined). Therefore, q should be selected in such a way that it

provides a compromise between the classifier’s performance and the sparsity of the solution. In

particular, in Appendix C, different experiments to evaluate how the choice of this parameter

affects the results can be found. Here, the selection of this parameter has been addressed

according to the dependence matrixM, which is defined in Section 4.3. In particular, when

20% of the matrix elements are higher than 0.1 (that is, from moderate to strong dependence

cases), we fix q = 0.4 (which implies a sparser solution). Otherwise (few dependent features),

q = 0.6 will be set.

4.4.2 Simulation study

In this section we analyze how the performance of the sparse NB varies as dependence among

features increases. In particular, we simulate data following Witten et al. [2014] and according

to the model y = Xβ+εwith p ∈ {100, 200, 300, 400, 500}. The errors ε1, . . . , εn are iid from

a N(0, 2.52) distribution. The observations (rows of X ) are iid from a Np(0,Σ) distribution,

where Σ is a p× p block diagonal matrix, with elements as follows:

Σij =


1 if i = j,

ρ if i ≤ p
4 , j ≤

p
4 , i 6= j,

ρ if p4 + 1 ≤ i ≤ p, p4 + 1 ≤ j ≤ p, i 6= j,

0 otherwise
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We explored various values of ρ, ranging from 0.1 to 0.9. Furthermore, βi ∼ Unif[0.9, 1.1]

for 1 ≤ i ≤ bp4c and βi ∼ Unif[-1
3 − 0.1, −1

3 + 0.1] otherwise. In other words, there are two

sets of p
4 and 3p

4 correlated features, respectively, and all the features are associated with the

response. Finally, two classes are defined according to the sign of yn, n = 1, . . . , 2000.

The results in Table 4.2 have been obtained using the Mutual Information dependence mea-

sure (MI), S = 25 and values of q fixed as in Section 4.4.1. Moreover, the performance measure

considered for these simulated experiments is the accuracy, and its average performance rates

as in (4.3) on the testing set are reported in Table 4.2.

Table 4.2: Average accuracy and sparsity (10 runs 10-fold CV) for simulated datasets.

p Method
ρ = 0.1 ρ = 0.5 ρ = 0.7 ρ = 0.9

ACC Sparsity ACC Sparsity ACC Sparsity ACC Sparsity

100 Sparse NB 88.20 66 93.30 37 93.20 24 95.05 21.30
Classic NB 89.50 100 87.05 100 87.10 100 86.95 100

200 Sparse NB 90.10 113.5 93.40 52.50 95.70 30.50 96.55 20.10
Classic NB 90.10 200 87.30 200 87.65 200 86.80 200

300 Sparse NB 89.85 168.60 92.40 79.70 94.70 37.30 95.95 18.20
Classic NB 90.15 300 87.00 300 87.15 300 87.85 300

400 Sparse NB 91.90 216.30 91.45 94 92.35 46.80 93.65 17
Classic NB 89.65 400 87.25 400 87.25 400 87.50 400

500 Sparse NB 91.90 283.20 90.70 102.70 93.85 29.60 91.90 5.90
Classic NB 90.15 500 87.05 500 87.45 500 87.55 500

Some conclusions can be drawn. On the one hand, in terms of sparsity levels, the sparse

NB returns better results in the presence of moderate to strong dependence cases. For datasets

where the dependences among features are weak, ρ = 0.1, our sparse strategy is able to remove

around one third of the total number of variables whereas, in some cases, the ACC is slightly

reduced with regards to the classic NB. While ρ increases, our proposal is able to significantly

reduce the number of variables considered, achieving better ACC results than the classic NB,

as the curse of dependency is alleviated. On the other hand, Figure 4.3 reports the logarithm of

the average user times (in seconds) when the sparse NB is run on Intel(R) Core(TM) i7-7500U

CPU at 2.70GHz 2.90GHz with 8.0 GB of RAM. The X-axis shows the ρ values whereas

each line represents the number of variables of the dataset (p). Overall, for weak dependences

among features, the behaviour of runing time is monotonous respect to the number of variables,

but this changes when ρ increases.

4.4.3 Datasets and benchmark approaches

The so-called Breast Cancer Wisconsin (Diagnostic) Data Set, Wine Data Set, Mushroom,

Waveform Database Generator Data Set (version 2), ISOLET Data Set, Multiple Features Data

Set, SPECTF Heart Data Set, German Credit, Page Blocks Classification Data Set and Statlog

(Australian Credit Approval) shall be considered. They are described in Table 4.3, whose first

three colums report the dataset name, the number of instances and the class split. The number of



4.4. Numerical Illustrations 75

Figure 4.3: Scalability

continuous variables (L) and categorical variables (L′) are presented in the last two columns.

Three of the ten datasets, SPECTF, german and page blocks, are unbalanced datasets,

due to the very different sizes of the classes.

Table 4.3: Datasets description

Name Instances Class split in % L L’
breast cancer 569 63(Benign)/37(Malignant) 30 0

wine 178 33(Class 1)/40(Class 2)/27(Class 3) 13 0
mushroom 8124 51.8(edible)/48.2(poisonous) 0 22
waveform 5000 33.33(Class 0)/33.33(Class 1)/33.33(Class 2) 40 0
ISOLET 7797 26 equiprobable classes (0.04) 617 0

Multiple Features 2000 9 equiprobable classes (0.11) 649 0
SPECTF 267 79(Abnormal)/21(Normal) 44 0
german 1000 70(Class 1)/30(Class 2) 7 13

page blocks 5473 90(Negative)/10(Positive) 10 0
australian 690 55.5(Negative)/44.5(Positive) 6 8

We aim to compare the novel method with alternative, well-known strategies for feature

selection. In this study, we focus on techniques which perform hard variable selection and, in

consequence, feature weighting approaches as in Jiang et al. [2019] have not been considered

here. Specifically, we selected one filter and one wrapper that are well referenced in the litera-

ture and that can be easily adapted to the NB classifier to make a fair comparison. Our choice

was the filter CFS and the wrapper Boruta, both introduced in Section 1.1.1. These methods

are widely spread and can be computed by the routines cfs and Boruta, from R packages

FSelector and Boruta, respectively. In order to adapt the wrapper Boruta to the NB clas-

sifier, we have used the function filterVarImp in R package caret as the function that

returns the importance of the attributes, instead of the default getImpRfZ, which is based

on the Random Forest classifier. It is important to highlight that the time limit is not an input

parameter of the cfs and Boruta routines and therefore, differences in the computational
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costs were found (to be discussed later). Apart from the previous feature selection methods,

that can be applied to any classifier, there are works that specifically deal with variable reduc-

tion for the NB. In particular, Boullé [2007] proposes a straightforward Bayesian modern-style

approach, the MAP Approach for Variable Selection (noted SNB(MAP)), where the conditional

probabilities are formulated according to

p(Ck|x) ∝ π(Ck)

p∏
i=1

p(xi|Ck)ai , k = 1, . . . ,K. (4.6)

In Eq. (4.6), the values {ai}pi=1 are either 1 or 0, depending on whether or not feature i is

included in the model. Then, the posterior distribution of the different models (resulting from

different choices of {ai}pi=1) is evaluated using a shrinkage prior so that parsimoniuos models

are favoured. In the same paper, a search heuristic that performs a fast forward backward

selection is described and therefore, it has been implemented in this work to run the different

experiments. However, when the number of variables increases, note that the time required to

run this method is excessive. For that reason, a time limit of eight hours for the two biggest

considered real datasets (ISOLET and Multiple Features) was fixed. Finally, we have

also compared with the Lasso approach for classification (see Vincent and Hansen [2014]),

whose goal is precisely the same: obtain good classification performance while selecting few

features. The routine fit in R package msgl has been used.

Next, we will break the results down depending on the datasets are balanced or unbalanced.

As we will show below, if necessary and motivated by the properties of the dataset, our proposal

can be easily adapted in terms of the performance criterion to be optimized and the required

constraints on groups of interest. To make a fair comparison, we do not impose any additional

constraints and therefore only the performance criterion will change accordingly throughout

these sections. However, an illustrative example where constraints are imposed is also included

at the end of Section 4.4.5.

4.4.4 Results for balanced datasets

For comparison purposes, consider the same parameters setting than in Section 4.4.2, where

for waveform dataset, q is equal to 0.6 and, for the remaining balanced databases, q = 0.4.

We next analyze the performance and sparsity of the method, as well as the running times.

The average accuracy, number of variables in the selected combinations and the CPU time in

seconds for 1 fold-CV execution are shown by Figure 4.4. Moreover, a comparison between

the sparse NB with the above-mentioned feature selection methods is made. The results under

the classic NB, CFS, Boruta, SNB(MAP) and Lasso methods are also shown.

Several conclusions can be drawn at this point. Note that the performance rates under

the sparse NB are comparable to the classic NB using between a half and one third of the

variables, except for waveform. As commented before, the novel approach is intended to
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Figure 4.4: Average accuracy, sparsity and CPU time (10 runs 10-fold CV) for breast
cancer, wine, mushroom, waveform, ISOLET and Multiple Features datasets
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address databases with correlated patterns and, for this reason, the outperformance of the sparse

NB improves with the dependence among the features. Therefore, since the variables of the

waveform dataset are almost independent, it is expected that the novel sparse strategy does

not yield a significant enhancement in this sense, as Figure 4.4 shows.

With regards to the five feature selection methods considered in this study, the next conclu-

sions can be drawn from the figure. Whereas the proposed method achieves competitive ACC

and sparsity results, it performs in between the other methods in these two measures. Also, it

can be concluded that SNB(MAP) is computationally slower than the sparse NB. In addition,

Boruta and CFS are less computationally costly than the sparse NB, but when the number of

features increase, it turns out to be exceptionally low.

In summary, it can be deduced that, for balanced datasets with dependencies among the

features, the proposed sparse NB leads to a significant reduction in the number of features

while keeping the power prediction. Also, it can be concluded that in general, for this kind of

datasets, our method and the Lasso seem to achieve the best compromise between accuracy,

sparsity and running times.

4.4.5 Results for unbalanced datasets

In this section we deal with three unbalanced datasets. The SPECTF, german and page

blocks, which are unbalanced according to classes. It implies that the use of the ACC, defined

by (4.3), as the performance criterion may not be a sensible choice because of the difference

between the classes sizes. Therefore, for these cases, the area under the curve (AUC) as well

as the precision of the majority class (Class 1), calculated by (4.4), will be the measures to be

maximized. The former measure, precision1, leads to good Recall2, since will minimize the

False Class 1. In addition, the performance at each class, will be inspected via the so-called

Recall. We have considered the previous two performance measures when selecting the set of

variables via sparse NB, and the obtained results are shown in red and blue (respectively) in

Figure 4.5. Finally, q = 0.6 for german and page blocks, whereas is equal to 0.4 in the

case of SPECTF.

Again, the performance results, the sparsity results and the running times are reported in

Figure 4.5. For each dataset, two graphics are shown. The images on the left represent the

AUC versus the sparsity, while the Recall of the majority and minority classes (Recall1 and

Recall2, respectively) are drawn on the right side. Note that the Boruta results for SPECTF

database are not reported since this dataset does not satisfy the technical requirements of the

implementation of that method.

The performance rates under the sparse NB are comparable to the results obtained with

all the features, since the AUC (respectively, the precision) has been used as performance

criterion and the novel approach keeps at least the area under the curve (or precision) obtained

by the classic NB. The sparse NB is able to reduce to less than half the number of variables

in the case of SPECTF dataset; it removes one fourth of the variables of german dataset
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Figure 4.5: Average performance, sparsity and CPU time (10 runs 10-fold CV) for SPECTF,
german and page blocks datasets
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and one third in page blocks. Now, if we compare to CFS, Boruta, SNB(MAP) and the

Lasso, it can be observed how, although they tend to be sparser, they increase significantly the

misclassification rate on the minority class (Recall2), since, in general, they tend to increase

the correct classification for the majority class (Recall1) and to decrease the minority one. The

latest results assert the need to choose an appropriate performance measure according to the

properties of the dataset.

Therefore, with regards to the unbalanced databases, the sparse NB provides more balanced

Recall values, in the sense that the performance of the least frequent class is not so reduced.

Another illustration is given by Table 4.4, where the australian is considered. As com-

Table 4.4: Average performance and sparsity (10 runs 10-fold CV) for australian dataset
using the sparse NB with different performance measures to select the set of variables

Method Recall - Recall + ACC Sparsity
Classic NB 91.10 78.78 85.61 14

Sparse NB (ACC) 84.59 85.83 85.15 5.78
Sparse NB (ACC); Recall + > 85 84.14 86.48 85.19 5.53

Sparse NB (Recall +); Recall - > 60 79.93 92.35 85.46 1.4

mented before, in this case, the positive class (the load is granted) is the most risky. For these

cases, the sparse NB would be the most suitable choice, not only because the performance

criterion to be used can be easily adapted but also because while optimizing such criterion,

constraints on acceptable performance measures can be included. The second row of Table

4.4 shows the results for the sparse NB if the ACC is considered as performance criterion and

no additional constraints are imposed. However, the ACC can be optimized whereas a perfor-

mance constraint on the Recall of the positive class is considered (Recall + > 85), as can be

seen in the third row of Table 4.4. As a final example, we are interested in maximizing the

Recall + instead. Note that the improvement in the positive class will be at the expense of

reducing the Recall - and therefore admissible values for it have been imposed via a threshold

value to avoid worsening it, say Recall - > 60 (last row).

To sum up, for unbalanced datasets with dependent variables, the considered benchmark

methods tend to be sparser than our approach but at the cost of damaging unpredictably the

performance of the classifier and, in particular, the Recall of the least frequent class. In con-

trast, the novel method allows the user to set the performance measure that best suits it as

well as admissible values for specific performance measures, which turns out advantageous for

unbalanced datasets or for cases in which misclassification costs are strongly class-dependent.

4.5 Chapter summary

In this work, a new version of the NB classifier for dealing with datasets with correlated pat-

terns is proposed with the aim of improving the sparsity of the solution. In order to achieve

sparsity, a variable reduction technique is embedded into the classifier. Such a variable reduc-
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tion strategy is based on clustering the features in terms of their dependence degree, and it

selects combinations of features that, being as independent as possible, lead to a good perfor-

mance rate. The performance measure used in the algorithm can be given by the out-of-sample

accuracy, or more generally, an estimate of the expected misclassification cost, among oth-

ers. The proposed methodology has been tested on synthetic datasets and ten real datasets of

different sizes and properties. The numerical results show that not only sparse solutions are

attained, but also the performance rates are comparable or better than those achieved under the

classic version of the NB, where all features are taken into account for classifying. In addition,

when compared with benchmark approaches, the novel method turns out especially advisable

for datasets where the classes are unbalanced and/or of different importance. This fact stems

from the flexibility of our method in the selection of the performance measure and the ability

to include constraints on certain performance measures for feature selection, which does not

occur with the feature selection approaches proposed in the literature.



Chapter 5

Constrained Naïve Bayes with
application to unbalanced data
classification

82





84 Chapter 5. Constrained Naïve Bayes with application to unbalanced data classification

The approach introduced in Chapter 2, one overall criterion is optimized while constraints

to demand admissible values for the efficiency measures under consideration are introduced in

the model, is explored for improving the NB performance in the classes of most interest to the

user. It will be seen that unlike the traditional NB, which is a two-step classifier (estimation

first and classification next), the novel approach integrates both stages. In particular, maximum

likelihood estimates are replaced here by constrained maximum likelihood estimates, where

the constraints control the Recall values of the classes of interest.

5.1 Introduction

In this chapter we propose a novel way of controlling misclassification rates, that do not call

for using misclassification costs which may be hard to choose and are not usually given [Sun et

al., 2007, 2009]. In particular, a new version of the NB is obtained by modeling performance

contraints where the Recall (proportion of instances of a given class correctly classified) for

the classes of interest is forced to be lower-bounded by certain thresholds. In this way, the user

is allowed to assign different importance to the different classes according to her preferences.

For example, in the previously considered breast cancer dataset, it may be desiderable

to increase the Recall for the Malignant class, which is equal to 88.41. As it will be shown in

Section 5.3, for this case such rate can be increased up to 91.88. Other example where perfor-

mance constraints are useful is when fair classification is a requirement as a social criterion,

and then the sensitive groups should be protected to avoid the discrimination against race, or

other sensitive data [Romei and Ruggieri, 2014]. Acceptable values for the Recall of groups at

risk could be fixed via the proposed method in this work.

The problem of cost imbalance has been addressed in the literature from two different

perspectives: Data-Level techniques and Algorithm-Level approches, see Leevy et al. [2018].

Whereas the former include data sampling methods and feature selection, the latter encompass

cost-sensitive and hybrid/ensemble methods which adapt the base classifier to overcome the

imbalance. Particularly, our approach can be seen as a cost-sensitive method. Cost-sensitive

approaches have already been considered in the literature for well-known classifiers, such as

those introduced in Section 1.1.2. However, there is a lack of methodology that allows the user

to have full control on the different performance measures of interest at the same time, which

is the what we explore in this work.

This chapter is organized as follows. In Section 5.2 the notation is introduced and the

proposed version of constrained NB (CNB from now on) is described. Section 5.3 illustrates

the usefulness of our novel approach. Eight real databases with different sampling properties

are thoroughly analyzed, and a detailed discussion concerning the Recall values of the proposed

approach compared with the classic NB is given. Some conclusions are considered in Section

5.4.
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5.2 The constrained Naïve Bayes

In our approach, the estimation is performed by solving a constrained maximum likelihood

estimation problem, constraints being related with thresholds on the Recall values for different

classes. The aim of this section is to describe the associated optimization problem. As a result,

a computationally tractable classifier that allows the user to control its performance is obtained.

5.2.1 Preliminaries on NB classification: notation

Consider again the random vector (Y,X), where X = (X1, . . . , Xp) contains p features and Y

identifies the class label. Assume that we have a classification problem with K classes. Then,

for each class k ∈ {1, . . . ,K}, let πk denote the prior probability of the class, and assume that

Xj |(Y = k) has a probability density function fθjk(x), where θjk ∈ Θjk. For k = 1, . . . ,K,

define θk = (θ1k, . . . , θpk).

Let x = (x1, . . . , xp) be a new observation. The aim is to label it on one of the K classes.

Then, under the 0-1 loss function, Bayesian Decision Theory establishes that x is classified

in the most probable class according to the conditional distribution. The estimation of the

associated parameters may be cumbersome if the number of features p is large. However, the

use of the Bayes theorem, in addition to the assumption of independence (conditioned to the

class) ease the previous estimation process. As it is well known, the latter assumption implies

that the joint density function can be expressed as

f(x1, . . . , xp, k) = πkf(x1, . . . , xp | k)

= πkfθk(x)

= πk

p∏
j=1

fθjk(xj),

and thus the estimation process is reduced to estimate the parameters of each marginal distri-

bution. Then, the NB classifier performs by assigning x to class k satisfying

πk

p∏
j=1

fθjk(xj) ≥ πl
p∏
j=1

fθjl(xj) ∀l = 1, . . . ,K. (5.1)

Given a training sample of size n1, (k1,x1), . . . , (kn1 ,xn1), then θ = (θ1, . . . ,θK) is

estimated in NB via maximum likelihood [Hogg et al., 2005], and therefore computed as the

solution of the optimization problem:

max
θ

n1∑
i=1

log fθki (xi) (5.2)

Therefore, the classic NB can be seen as a two-step classifier, where the model parameter

is first estimated as θ̂ from a training sample, and then (5.1) is applied under θ = θ̂.
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5.2.2 A novel formulation with performance constraints

In order to calibrate the performance of a classifier, many measures have been defined in

the literature, see Sokolova and Lapalme [2009]. In particular, the so-called Recallk, for

k = 1, . . . ,K, is defined as the sample fraction of individuals in class k which are correctly

classified.

Given a validation sample of size n2, where n2 =
∑

k n2,k and n2,k is the size of class k in

such a validation sample, (k,x
(k)
1 ), . . . , (k,x

(k)
n2,k), then the Recall for class k can be expressed

as functions of θ̂,

Recallk(θ̂) =
1

n2,k

n2,k∑
i=1

Ck(θ̂, x
(k)
i ), k = 1, . . . ,K, (5.3)

where

Ck(θ̂, x
(k)
i ) =


1 if the individual x(k)

i is classified in class k

0 otherwise.

(5.4)

Unlike the classic NB, based on a two-step approach, the CNB proposed in this work

integrates the performance of the classifier (according to expression (5.3)) within the estimation

step. In particular, the pursued aim is to estimate θ as the solution of an optimization problem

where the objective function is given using a training sample of size n1 as in (5.2) and, to

prevent overfitting, constraints on (5.3) are imposed on an independent sample (validation set)

of size n2 =
∑K

k=1 n2,k,

max
θ

n1∑
i=1

log fθki (xi)

s.t.
1

n2,k

n2,k∑
i=1

Ck(θ, x
(k)
i ) ≥ αk, k = 1, . . . ,K

(CNB)

In the previous CNB optimization problem, αk ∈ (0, 1) is a threshold, a lower-bound value

close to 1, for k = 1, . . . ,K, which is fixed by the user according to her requirements about

the classification in the different classes. From the point of view of optimization, we assume

that the function fθki is smooth with respect to the parameter θki . Regarding the constraints,

they are not smooth and therefore, gradient methods cannot be applied in order to solve Pro-

blem (CNB). This fact makes the resolution of (CNB) to be slow, especially for large datasets.

However, a proxy version of (CNB) can be written in a more tractable way if the constraints

are reformulated in terms of smooth functions as

C̃k(θ,x
(k);λ) =

K∏
l=1,l 6=k

F (ykl(θ,x
(k));λ), (5.5)
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where F (y;λ) = 1
1+e−λy

is the sigmoid function and

ykl(θ,x) = πk

p∏
j=1

fθjk(xj)− πl
p∏
j=1

fθjl(xj). (5.6)

On the one hand, from the definition of the sigmoid function, it can be seen that limλ→∞ C̃k(θ,x
(k);λ) =

Ck(θ,x
(k)), since for large λ values F (ykl(θ,x

(k));λ) will only take the values 0 or 1 depend-

ing on the sign of ykl(θ,x(k)). Then, λ is a hyperparameter big enough so that C and C̃ are

as close as possible. On the other hand, the reason why we use the product function to de-

fine C̃ is explained below. Note that if any class l has associated a density much greater than

class k, then ykl will take a large negative value which makes F (ykl(θ,x
(k));λ) close to 0 and

therefore C̃k(θ, x(k);λ) will also be close to 0. From the previous discussion, a differentiable

version of the CNB problem is obtained as

max
θ

n1∑
i=1

log fθki (xi)

s.t.
1

n2,k

n2,k∑
i=1

C̃k(θ, x
(k)
i ) ≥ αk, k = 1, . . . ,K.

(SCNB)

The smooth formulation (SCNB) can be solved using efficient solvers for nonlinear constrained

programming (see, e.g. Birgin and Martínez [2008]). From now on, we refer to (SCNB) as our

optimization problem.

Two important remarks need to be made at this point. The first one regards the feasibility

of the (SCNB). In a real application, threshold values α1, . . . , αK have to be fixed. As a first

option, they could be fixed by the user according to her demand, but it might be the case that

(SCNB) is unfeasible. For that reason, we propose a procedure for determining the thresholds

in such a way that (SCNB) is always feasible. If we consider a dataset withK different classes,

let θ∗ be the model parameter associated with (5.2) and k0 be the critical class or the class

where the method performs the worst. Suppose that the aim is to improve the Recall for such

class k0, say

αk0 =
1

n2,k0

n2,k0∑
i=1

C̃k0(θ∗, x
(k0)
i ) + ∆,

with ∆ > 0. Then, in order to know the maximum threshold τ for the other classes k 6= k0, k ∈
{1, . . . ,K}, the next optimization problem can be solved:
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max
θ,τ

τ

s.t.
1

n2,k0

n2,k0∑
i=1

C̃k0(θ, x
(k0)
i ) ≥ 1

n2,k0

n2,k0∑
i=1

C̃k0(θ∗, x
(k0)
i ) + ∆

1

n2,k

n2,k∑
i=1

C̃k(θ, x
(k)
i ) ≥ τ, ∀k 6= k0.

This way we search the estimates θ such that in the relevant class k0 the Recall is improved

in at least ∆ with respect to the Recall in the traditional Bayes estimate and maximize the

minimum Recall in the remaining classes.

The second remark concerns the solutions of (SCNB), which are not maximum likelihood

estimates any more, but maximum constrained likelihood estimates instead. On the contrary,

the problem yields a solution with the highest sample likelihood fulfilling the constraints on

performance on the independent sample. Up to our knowledge, this is a breaking approach that

has never been considered in NB models.

5.3 Numerical results

In this section, eight data sets from the UCI Machine Learning Repository and KEEL open

source [Alcalá-Fdez et al., 2011, 2009] diverse, in both in the number of classes, sizes and

imbalance ratio shall be analyzed. The description of the datasets can be found in Section 5.3.1

and the numerical experiments and obtained results will be considered in Section 5.3.2 and

5.3.3, respectively.

5.3.1 Datasets

The datasets breast cancer, SPECTF, page-blocks, abalone, yeast, Satimage,

RCV1 and letter will be considered. From all the available versions of the datasets, we have

chosen those described in Table 5.1. The colums report the dataset name, the number of in-

stances and features and finally, the class split of the eight considered datasets (page-blocks,

abalone, yeast, Satimage and RCV1 are significantly more unbalanced than the other

three).

5.3.2 Design of experiments

Probability distributions setting and resolution of the optimization problem

As comented in Section 5.2.1, a probability model needs to be selected for the features con-

ditioned to the class. If the feature is continuous, in this chapter we will assume the normal
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Name Intances Features Class split (%)

breast cancer 569 30 (Benign, Malignant)
(63, 37)

SPECTF 267 44 (Abnormal, Normal)
(79, 21)

page-blocks 5473 10 (text, horiz. line, graphic, vert. line, picture)
(89.8, 6, 0.5, 1.6, 2.1)

abalone 4177 8 (1-5, 6-10, 11-15, 16-29)
(4.52, 28.39, 6.25, 60.83)

yeast 1484 8 (CYT, EXC, ME1, ME3, MIT, NUC, POX, VAC)
(32.42, 2.45, 3.08, 11.41, 17.09, 30.04, 1.40, 2.10)

Satimage 6435 36 (1, 2, 3, 4, 5, 7)
(23.82, 10.92, 21.10, 9.73, 10.99, 23.43)

RCV1 18758 21531 (C15, CCAT, E21, ECAT, GCAT, M11)
(23.70, 20.12, 5.73, 9.54, 22.43, 5.61)

letter 20000 16 From A to Z (26 classes)
Equally distributed

Table 5.1: Datasets description

distribution. From the point of view of the optimization, (SCNB) will be solved using solvers

for smooth optimization. In particular, auglag and mma functions from R package nloptr

will be used in this work to obtain all numerical results.

Estimation of the performance rates

The performance of the proposed classifier will be estimated using a classic 10 Monte-Carlo

cross validation, since in this chapter we deal with highly unbalanced datasets. The dataset

will be split into three sets, the so-called training set, validation set and testing set. One-third

of the dataset is used as testing set, and the remaining two-thirds for training set
(

2
3 ×

2
3

)
and

validation set
(

1
3 ×

2
3

)
. As explained in Section 5.2, the objective function will be optimized

on the training set while the constraints will be evaluated on the validation set. Once the SCNB

problem is solved, Recall values are estimated on the testing set. It must be highlighted that at

each run, the training sample is built in a stratified way so that the proportion of samples per

class is similar to the proportions depicted by Table 5.1. Finally, regarding the hyperparameter

λ, after an extensive simulation study considering a wide grid of values, the choice λ = 23 is

set in the experiments since it provides a good match between C and C̃ as in (5.4) and (5.5).

Pre-processing for large datasets

Problem SCNB turns out computationally costly for large datasets as the considered RCV1

dataset. As it is common in the literature (see Leevy et al. [2018] and references therein), we

suggest to pre-process such datasets in a way that irrelevant variables are removed in a first step

previous to the resolution of (SCNB). Specifically, in this work the importance of the predictor

variables composing RCV1 were measured using the R function information.gain from
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Figure 5.1: Boxplot of the importance of the variables for RCV1 dataset.

FSelector. Figure 5.1 shows the boxplot of the importance associated with the variables of

the RCV1 dataset. As it can be observed, most of them have an associated importance close to

0 and, then, only 392 of the total are going to be kept when solving (SCNB).

The choice of thresholds

In order to select the threshold values αk in Problem (SCNB), the classic NB classifier (5.2)

was first run. Table 5.2 shows the Recall estimates for each class. In particular, from Table 5.2

and in order to improve the rate of the classes where the classic NB performs the worst, the set

of thresholds to be tested in the numerical experiments shall be given by Table 5.3.

Note that, according to the previous values, not only better rates for the classes with the

worst associated Recall are imposed, but also, admissible values for the rest of classes are fixed.

5.3.3 Results

The estimated rates are reported in Tables 5.4-5.11. The first row shows the results for the

classic NB, when no thresholds are imposed. The first column shows the imposed thresholds

for the Recall of each class, whereas the column and thresholds in bold correspond to the class

where the classic method performs the worst. For example, in Table 5.5, it is required that the

Recall of Normal class is at least 80, while over the Abnormal class the threshold varies from

67 to 70. The remaining columns provide the average Recall values measured on the test set.
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Name Recall Classic NB

breast cancer
(Benign, Malignant)

(96.15, 88.41)

SPECTF
(Abnormal, Normal)

(65.40, 91.29)

page-blocks
(text, horiz. line, graphic, vert. line, picture)

(90.61, 68.06, 67.14, 94.14, 40.11)

abalone
(1-5, 6-10, 11-15, 16-29)

(92.58, 61.23, 22.09, 53.97)

yeast
(CYT, EXC, ME1, ME3, MIT, NUC, POX, VAC)

(2.37, 62.73, 73.57, 19.81, 54.13, 48.79, 53.33, 31.11)

Satimage
(1, 2, 3, 4, 5, 7)

(79.79, 89.59, 89.60, 66.70, 73.52, 74.21)

RCV1
(C15, CCAT, E21, ECAT, GCAT, M11)
(87.55, 5.53, 74.99, 23.16, 75.12, 88.14)

letter
From A to Z (26 classes)

First row in Table 5.11. The letter S is the worst classified.

Table 5.2: Average Recall of classic NB (10 Monte-Carlo cross validation)

breast cancer: 85 (Benign), 90/91.5/93/94.5 (Malignant)
SPECTF: 67/68.5/70 (Abnormal), 80 (Normal)
page-blocks: 80 (text), 58 (horiz. line), 57 (graphic), 84 (vert. line), 43/44.5 (picture)
abalone: 70 (1-5), 50 (6-10), 24/26/28/30 (11-15), 40 (16-29)
yeast: 5/10/15 (CYT), 50 (EXC), 60 (ME1), 10 (ME3), 40 (MIT), 30 (NUC), 40 (POX), 20 (VAC)
Satimage: 70 (1), 80 (2), 80 (3), 68/70 (4), 60 (5), 60 (7)
RCV1: 60 (C15), 6/7/8 (CCAT), 60 (E21), 10 (ECAT), 60 (GCAT), 60 (M11)
letter: 24.5/26/27.5 (S), Twenty-five percent less than the results of the classic NB (The rest of classes)

Table 5.3: Tested thresholds

As expected, the results under the constrained NB version differ from the results provided by

the classic NB. For example, for the breast cancer dataset, the Recall values under the

classic NB are 96.15 and 88.41, for Benign and Malignant class, respectively (Table 5.2). As

commented in Section 5.1, it may be of interest to increase the Recall of the Malignant class.

According to Table 5.4, if the minimum 94.50 is imposed for the Malignant class, the final

rates change from 88.41 to 91.88. It is important to highlight two different facts concerning

the previous results. First, note that a better rate for the Malignant class has been obtained,

but at the expense of slightly decreasing the rate of the Benign class. Second, note that even

though a rate equal to 94.50 was imposed, such value was not finally obtained, but a smaller

one (91.88). This is not surprising, since the constraints are imposed for one sample, and tested

on an independent set.

From the results shown in Table 5.4-5.11, it can be concluded that the proposed approach

allows the user to control the Recall values in such a way that the classes where the classic

method performs the worst can be improved, even switching to the classes where the best rates

are achieved (e.g., in breast cancer dataset) and changing thus the natural tendency of the

classifier. Note that among the possible non-dominated solutions shown for each dataset, the



92 Chapter 5. Constrained Naïve Bayes with application to unbalanced data classification

user could choose according to her interest and to what she is willing to lose in the less critical

classes.

Thresholds (Benign/Malignant) Recall Benign Recall Malignant
Classic NB 96.15 88.41
85.00/90.00 94.62 88.70
85.00/91.50 94.10 90.00
85.00/93.00 92.39 91.59
85.00/94.50 91.45 91.88

Table 5.4: Average Recall values of SCNB (10 Monte-Carlo cross validation) for breast
cancer

Thresholds (Abnormal/Normal) Recall Abnormal Recall Normal
Classic NB 65.40 91.29
67.00/80.00 67.09 88.72
68.50/80.00 67.37 88.08
70.00/80.00 69.63 87.08

Table 5.5: Average Recall values of SCNB (10 Monte-Carlo cross validation) for SPECTF

Thresholds (text/horiz. line/
graphic/vert. line/picture) Recall text Recall horiz. line Recall graphic Recall vert. line Recall picture

Classic NB 90.61 68.06 67.14 94.14 40.11
80.00/58.00/57.00/84.00/43.00 89.34 68.97 70.23 93.23 43.58
80.00/58.00/57.00/84.00/44.50 90.15 69.21 73.56 94.14 44.28

Table 5.6: Average Recall values of SCNB (10 Monte-Carlo cross validation) for
page-blocks

Thresholds (1-5/6-10/11-15/16-29) Recall 1-5 Recall 6-10 Recall 11-15 16-29
Classic NB 92.58 61.23 22.09 53.97

70.00/50.00/24.00/40.00 92.58 60.56 24.65 53.87
70.00/50.00/26.00/40.00 92.58 60.05 25.47 53.85
70.00/50.00/28.00/40.00 92.58 59.36 26.28 53.81
70.00/50.00/30.00/40.00 92.58 58.31 28.26 53.75

Table 5.7: Average Recall values of SCNB (10 Monte-Carlo cross validation) for abalone

Thresholds (CYT/EXC/ME1/ME3/
MIT/NUC/POX/VAC) CYT EXC ME1 ME3 MIT NUC POX VAC

Classic NB 2.37 62.73 73.57 19.81 54.13 48.79 53.33 31.11
5.00/50.00/60.00/10.00/40.00/30.00/40.00/20.00 3.88 61.82 74.29 24.34 56.75 47.45 53.33 35.56

10.00/50.00/60.00/10.00/40.00/30.00/40.00/20.00 6.18 58.18 75.00 24.91 56.50 47.52 55.00 35.56
15.00/50.00/60.00/10.00/40.00/30.00/40.00/20.00 14.87 58.18 75.71 28.68 58.63 39.36 53.33 33.33

Table 5.8: Average Recall values of SCNB (10 Monte-Carlo cross validation) for yeast
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Thresholds (1/2/3/4/5/7) Recall 1 Recall 2 Recall 3 Recall 4 Recall 5 Recall 7
Classic NB 79.79 89.59 89.60 66.70 73.52 74.21

70.00/80.00/80.00/68.00/60.00/60.00 79.47 89.59 90.67 68.35 72.12 73.64
70.00/80.00/80.00/70.00/60.00/60.00 79.63 89.68 91.25 68.55 71.56 70.22

Table 5.9: Average Recall values of SCNB (10 Monte-Carlo cross validation) for Satimage

Thresholds (C15/CCAT/
E21/ECAT/GCAT/M11) Recall C15 Recall CCAT Recall E21 Recall ECAT Recall GCAT Recall M11

Classic NB 87.55 5.53 74.99 23.16 75.12 88.14
60.00/6.00/60.00/10.00/60.00/60.00 87.46 7.85 76.27 23.83 76.57 88.59
60.00/7.00/60.00/10.00/60.00/60.00 87.56 7.94 76.27 23.89 76.59 88.64
60.00/8.00/60.00/10.00/60.00/60.00 87.20 9.14 75.68 26.02 77.50 88.69

Table 5.10: Average Recall values of SCNB (10 Monte-Carlo cross validation) for RCV1 using
392 variables of the total

Thresholds Recall A Recall B Recall C Recall D Recall E Recall F Recall G Recall H
Classic NB 88.46 65.71 76.67 64.85 36.98 67.81 48.90 30.50

24.50 88.46 65.71 76.67 65.00 36.83 67.81 48.91 30.50
26.00 88.46 65.24 76.67 65.45 36.98 67.81 48.91 30.50
27.50 88.46 64.13 76.50 64.85 37.14 67.50 48.59 30.83

Recall I Recall J Recall K Recall L Recall M Recall N Recall O Recall P
Classic NB 77.90 66.07 43.11 74.60 84.31 71.56 72.58 72.72

24.50 77.90 66.23 43.11 74.60 84.31 71.72 72.58 72.73
26.00 77.90 65.74 43.11 74.60 84.31 71.72 72.74 72.88
27.50 77.58 65.57 42.46 74.60 84.31 72.34 73.06 72.88

Recall Q Recall R Recall S Recall T Recall U Recall V Recall W Recall X
Classic NB 51.56 61.61 22.95 72.77 72.39 72.86 79.03 44.15

24.50 51.56 61.45 23.11 72.46 72.24 73.02 78.87 44.00
26.00 51.41 61.45 23.77 72.46 72.39 73.17 78.87 44.00
27.50 51.25 61.29 23.77 72.46 71.79 71.90 79.03 43.69

Recall Y Recall Z
Classic NB 34.15 58.17

24.50 34.00 57.83
26.00 33.85 58.17
27.50 34.00 60.17

Table 5.11: Average Recall values of SCNB (10 Monte-Carlo cross validation) for letter

Finally, to illustrate the computational cost of the optimization algorithm depending on

the number of instances and features, we simulated data following Witten et al. [2014] with

{500, 1000, 3000, 5000, 10000, 15000, 20000} instances and p ∈ {10, 50, 100, 300, 500, 700,

900, 1000}. Figures 5.2 and 5.3 report the logarithm of the user times (in seconds) when the

SCNB is run on Intel(R) Core(TM) i7-7500U CPU at 2.70 GHz 2.90 GHz with 8.0 GB of

RAM, and the number of evaluations for the algorithm auglag is 100. The X-axis of Figure

5.2 shows the number of instances whereas each line represents the number of variables of

the dataset (p). Figure 5.3 is the opposite. Overall, running time grows linearly respect to the

number of instances, but not so smooth when p increases.
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Figure 5.2: Scalability: X-axis represents the number of instances whereas each line the num-
ber of features.

Figure 5.3: Scalability: X-axis represents the number of features whereas each line the number
of instances.
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5.4 Chapter summary

In this work a new version of the NB classifier is proposed with the aim of controlling misclas-

sification rates in the different classes, avoiding the use of precise values of misclassification

costs, which may be hard to choose. In order to achieve this goal, performance constraints are

included into the optimization problem which estimates the involved parameters. The approach

results in a novel method (SCNB) not reported in the literature previously, up to our knowl-

edge. Unlike the classic NB, the (SCNB) integrates the performance rates in the parameters’

estimation step. In fact, this novel approach allows the user to impose thresholds to assure

the achievement in the measures of efficiency (in this case, the Recall values). The proposed

methodology has been tested on eight real datasets with different sampling properties. The

numerical results show that not only the classification rates of interest can be controlled, but

also for some cases the worst classified class turns out the best classified class under the novel

approach. This fact is of great interest in some medical, credit scoring or social contexts where

some classes are more critical than others.
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Although the normal distribution is a standard model for many phenomena in real life,

it does not permit the modeling of heavy or light tails. In multivariate statistical analysis,

elliptical (or elliptical-contoured) distributions, introduced in Schoenberg [1938]; Lord [1954],

have provided a wide alternative to the standard normal models in a number of contexts such as

Economics, Finance or Sociology (see for example Owen and Rabinovitch [1983]; Lindskog

et al. [2003]; Abdous et al. [2005]; Gupta et al. [2013]; Frahm et al. [2003]; Jara et al. [2008]).

In this chapter, we present an approach to semi-parametric inference for elliptical distributions

using Dirichlet processes mixture models. The approach is illustrated on simulated and real-life

datasets.

6.1 Introduction

Elliptical distributions, which constitute a generalization of the multivariate normal/independent

(NI) family [Rogers and Tukey, 1972; Andrews and Mallows, 1974; Lange and Sinsheimer,

1993], have been studied from long time ago. Many of their properties can be found in Kelker

[1970]; Cambanis et al. [1981]; Anderson and Fang [1982]; Dickey and Chen [1985]; Berkane

and Bentler [1987, 1990]; Fang et al. [1990]; Anderson [2003]. However, the first works de-

voted to elliptical distributions are even older, see Schoenberg [1938]; Lord [1954]. Generally

speaking, elliptical continuous distributions are those whose density functions are constant

over ellipsoids as it is the case of normal distributions. Indeed, an elliptical distribution is

an extension of the multivariate normal distribution in such a way that certain properties of

the normal model are maintained (as the symmetry) but, at the same time, distributions with

shorter or longer tails than those of the normal are also possible. Examples of elliptical (and

normal/independent) distributions are the normal, Student-t, slash, contaminated-normal, Pear-

son type VII, Laplace or spherical distributions, see Lange and Sinsheimer [1993]; Gómez et

al. [2007]; Gómez and Venegas [2008]; Berkane and Bentler [1987]; Anderson [1992]; Díaz-

García [2005]; Kelker [1970].

The definition of the elliptical distribution is as follows. If Y a k−dimensional random

vector, µ ∈ Rk and Σ represents a covariance matrix, then Y is distributed as an elliptical

(contoured) distribution if, for a given sample y, the joint density is

fY(y | µ,Σ, g) = c | Σ |−1/2 g
(
(y − µ)′Σ−1(y − µ)

)
, (6.1)

where g(·) (the density generator or kernel) is a non-negative function and c is a normalizing

constant, see Fortunati et al. [2020]. From the previous definition the model can be understood

as a semi-parametric model where g is the infinite-dimensional parameter.

Since the class of elliptical distributions have been known long ago, different estimation

strategies have already been considered in the literature. The first works focused on parametric

estimation approaches, see Fang and Anderson [1990]; Anderson [1992]. In Anderson et al.
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[1986], the maximum-likelihood estimators of the model parameters are obtained and in Kano

et al. [1993]; Berkane et al. [1994], a pseudo-maximum likelihood approach is considered. On

the other hand, the Bayesian perspective has also been explored for the estimation of elliptical

distributions, see for example Osiewalski and Steel [1993]; Fang and Li [1999]; Branco et

al. [2000]; Niekerk et al. [2015]. Finally, Maruyama and Seo [2003] undertakes a moments-

matching approach.

The semi-parametric estimation approach has also been explored. For example, Liebscher

[2005] used kernel density estimation to provide a classical, semi-parametric estimator. Also,

Fortunati et al. [2020] undertakes the estimation of the elliptical distribution in semi-parametric

fashion which results in a robust, efficient estimator. In this chapter we adopt the Bayesian

paradigm and propose a semi-parametric approach based on Dirichlet processes [Ferguson,

1973]. The stochastic representation of the elliptical distribution discussed in Section 6.2 will

play a key role for the inference approach.

The remainder of the chapter is structured as follows. In Section 6.2, we formally define

elliptical as well as NI distributions, and their main properties. Then, in Section 6.3 we il-

lustrate how semi-parametric, Bayesian inference can be carried out for both NI and elliptical

distributions. Our approach is illustrated in detail with simulated and a real dataset in Section

6.4. The chapter ends with some concluding remarks in Section 6.5.

6.2 Preliminaries on elliptical and NI distributions

According to Cambanis et al. [1981] the elliptical contoured distributions is defined as follows.

As previously, let Y denote a k−dimensional random vector, µ ∈ Rk and let Σ be some

k× k covariance matrix. If the characteristic function of Y−µ, φY−µ(t) is a function of the

quadratic form t′Σt, that is, if

φY−µ(t) = φ
(
t′Σt

)
,

then, Y follows an elliptical (contoured) distribution with location parameter µ, scale param-

eter Σ and scalar function φ. Note that when φ(u) = e−u/2, then the normal multivariate

distribution with parameters (µ,Σ) is recovered.

The elliptical distribution admits a stochastic representation as proven in Schoenberg [1938];

Cambanis et al. [1981]. This is an advantageous result which allows to simulate in straight-

forward way from the elliptical distribution and provides a natural scheme for designing the

estimation method (as will be detailed in Section 6.3). Prior to the stochastic representation,

let us introduce some concepts in relation to the uniform distribution on the unit sphere in Rk.

If Φk, k ≥ 1 is the class of all functions φ : [0,∞) → R such that φ(||t||2), t ∈ Rk, is a

characteristic function, then φ ∈ Φk if and only if

φ(s) =

∫ ∞
0

Ωk(r
2s)dF (r), s ≥ 0
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for some distribution function F on [0,∞), where Ωk(||t||2), t ∈ Rk, is the characteristic

function of a k−dimensional random vector Sk which is uniformly distributed on the unit

sphere in Rk.

Remark 1. If Sk is uniformly distributed on the unit sphere in Rk, then Sk = Z/|Z|, where

Z ∼ N(0, Ik) and |Z| =
√
Z2

1 + . . .+ Z2
k .

Theorem 3 (Schoenberg [1938]; Cambanis et al. [1981]). A k × 1 random vector Y follows

an elliptical distribution with parameters µ, Σ and φ if and only if:

Y
d
= µ+ASkU, (6.2)

where Sk is uniformly distributed on the (k-dimensional) hypersphere, U is a non-negative,

univariate random variable, independent of Sk and A is the unique, symmetric matrix, with

non-negative diagonal elements such that AA = Σ.

The derivation of the density function as in (6.1) from the stochastic representation (6.2)

can be found in Cambanis et al. [1981] (section 4).

For the purposes of this work, it is useful to introduce some reparametrizations of the

elliptical distribution. Suppose that we have an elliptical variable defined as in Theorem 3.

Then, we shall write:

Y
d
= µ+ASk

√
G where G = U2. (6.3)

Given the stochastic formulation in (6.3), it is clear that an elliptical variable is alternatively

defined by the location vector, µ, the scale matrix, Σ, and the distribution of the variable G,

say FG(·). Therefore, from now on we shall refer to an elliptical variable satisfying (6.3) as

Y ∼ EC(µ,Σ, FG). Note that we have

G = (Y − µ)′Σ−1(Y − µ). (6.4)

From Remark 1, we have that:

Y
d
= µ+AZ/

√
W, (6.5)

where W = |Z|2
G .

For the general elliptical distribution as in (6.5), W and Z are not necessarily independent.

However, if this assumption is made, following Andrews and Mallows [1974], then Y is said

to have a normal/independent (NI) distribution. A NI distribution is therefore defined by µ, Σ

and the distribution of W , say FW (·), so we shall write Y ∼ NI(µ,Σ, FW ) to represent a NI

variable satisfying (6.5).

In order to avoid identifiability problems is important to take into account that elliptical

distributions are identified, up to a scale factor. If we consider an elliptical variable Y, defined

as in (6.5), we can write A∗ = bA and W ∗ = b2W for any non-negative constant, b, and then
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we have an equivalent stochastic representation as:

Y
d
= µ+A∗Z/

√
W ∗.

Therefore, in order to ensure identifiability, throughout this work, we shall assume, for both

the elliptical and NI models, that the diagonal elements of Σ sum up to one, that is:

k∑
i=1

Σii = 1, (6.6)

where Σij is the (i, j)−th element of matrix Σ, for i, j = 1, . . . , k.

Concerning the first two moments of elliptical distributions, it is known that if E(U) <∞,

then E(Y) = µ. Also, if E(U2) <∞, then Σ is proportional to the covariance matrix,

E
[
(Y − µ)(Y − µ)′

]
= k−1E(U2)Σ.

Finally, it is interesting to mention that if two random vectors are jointly elliptically distributed,

then the conditional distribution of one given the other is elliptical.

6.3 Bayesian inference for NI and elliptical distributions

In order to implement Bayesian inference for either the NI or the general, elliptical models, we

first need to define prior distributions for the location vector, µ and the scale matrix Σ. Here,

we shall assume a normal prior distribution:

µ ∼ N(m,V)

where m = (m1, ...,mk)
′ is a constant vector and V is a k × k variance-covariance matrix. In

practice, we set m to be a zero vector and V = 1000Ik, where Ik is the k × k identity matrix,

in order to provide a proper but relatively uninformative prior.

In order to define a prior distribution for Σ, we need to recall the identifiability restriction

in (6.6). To do this, we shall first define:

Σ = diag(σ)Rdiag(σ),

where diag(σ) is a diagonal matrix with diagonal elements σi =
√

Σii for i = 1, ..., k and R
is a matrix with elements

Rij =
Σij√
ΣiiΣjj

=
Σij

σiσj
.

Now, we can define an implicit prior for Σ by setting prior distributions forσ2 = (σ2
1, ..., σ

2
k)
′ =
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(Σ11, ...,Σkk)
′ andR. Firstly, we assume that σ2 has a Dirichlet distribution

σ2 ∼ Dir(aσ),

where aσ = (aσ1, ..., aσk)
′. In practice, we set aσi = 1 for i = 1, ..., k.

ForR, we follow an approach of Zhang et al. [2006] and use a parameter extended inverse

Wishart distribution. Thus, we set

M = D
1
2RD

1
2

where D is a diagonal matrix. Then we assume thatM has an inverse Wishart prior distribu-

tion, that is

M∼ IW (k + 1, Ik).

Under this structure, it can be shown that the implicit prior for R is the marginal uniform

distribution of Barnard et al. [2000].

Finally, it is necessary to define prior distributions for the distributions, FW , in the case of

the NI model or FG, in the elliptical case. Instead of using a parametric model, here we shall

use Dirichlet process mixtures of gamma distributions as in Hanson [2006]. We outline the

prior set up and the posterior inference procedures for the NI and elliptical models respectively

in the following subsections.

6.3.1 Inference for the NI distribution

Assume that we observe a sample y1, . . . ,yn from a NI distribution with stochastic represen-

tation as in (6.5),

Y
d
= µ+AZ/

√
W,

where Z and W are independent. As W is non-negative, a natural approach, which we shall

take here, is to follow Hanson [2006] and modelW using a Dirichlet process mixture of gamma

distributions. Therefore, we assume that

W |λ, η ∼ Ga (λ, η)

λ, η|F ∼ F (6.7)

F ∼ DP (αF0),

where DP (·) represents a Dirichlet process with paramaters α > 0 and F0(·, ·) being a prior

mean distribution for F (·, ·).

Also following Hanson [2006], we shall assume that F0 is such that the associated density

function is a product of exponential distributions

f0(λ, η|aλ, aη) = aλe
−aλλaηe

−aηη for λ, η > 0, where aλ, aη > 0,
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and we shall place hyperprior distributions

α ∼ Ga(aα, bα)

aλ ∼ Ga(bλ, cλ)

aη ∼ Ga(bη, cη),

where aα, bα, bλ, cλ, bη, cη > 0. In the practical examples later, we set aα = bα = 2 and

bλ = cλ = bη = cη = 0.001. Under this model, we have that integrating out over W , the

implied distribution of Y is an infinite mixture of Student’s t distributions, all with location

parameter µ and scale parameter proportional to Σ.

Given this prior formulation and supposing that we observe a sample, y1, ...,yn, then in-

ference can be carried out using a Gibbs sampling scheme based on successively sampling the

conditional posterior distributions. The relevant formulae are given below.

Firstly, the conditional posterior distributions of µ,σ2,D,R are as follows:

µ|Σ,w,y ∼ N(m∗,V∗) where

m∗ = V∗
(
V−1m + nΣ−1wy

)
where wy =

1

n

n∑
i=1

wiyi

V∗ =
(
V−1 + nw̄Σ−1

)−1 where w̄ =
1

n

n∑
i=1

wi

f(σ2|µ,R,w,y) ∝
n∏
i=1

N

(
yi|µ,

1

wi
Σ

)
f(σ2)

f(R,D|µ,σ2,w,y) ∝
n∏
i=1

N

(
yi|µ,

1

wi
Σ

)
f(R,D)

where, throughout, Σ = diag(σ)Rdiag(σ), w = (w1, ..., wn)′, N(yi|µ, 1
wi

Σ) refers to a

multivariate normal density function with parameters µ and 1
wi

Σ evaluated at yi, whereas

f(σ2) and f(R,D) are the prior distributions. The conditional posterior of σ2 can be sampled

via a Metropolis-Hastings pass, using for example an adaptive logit sampler as in Director et

al. [2017]. In order to sample the distribution of D,R, we follow Fang and Li [1999] and use

a Wishart candidate for the composed matrixM = D
1
2RD

1
2 .

The conditional posterior distribution of Wi is directly evaluable as

Wi|µ,Σ,yi ∼ Ga
(
k

2
, (yi − µ)′Σ−1(yi − µ)

)
.

Now, the conditional posterior distributions of the Dirichlet process parameters follow from

Hanson [2006]. Firstly, we can generate values from the conditional posterior of λi, ηi given

λ−i,η−i, aλ, aη, wi where λ−i = (λ1, ..., λi−1, λi+1, ..., λn)′ and similarly for η. We have



104
Chapter 6. A Bayesian semi-parametric approach to normal/independent and elliptical

distributions

then that:

(λi, ηi) = (λj , ηj) with probability pj for j 6= i in 1, ..., n,

where pj ∝ Ga(wi|λj , ηj) and Ga(·|·, ·) is a gamma density function. With probability pi,

where

pi ∝ α
aλaη

wi(wi + aη)(aλ − logwi + log(wi + aη))2
,

it follows

λi ∼ Ga(2, aλ − logwi + log(wi + aη))

ηi|λi ∼ Ga(λi + 1, wi + aη).

Secondly, the hyperparameters are:

aλ|λ ∼ Ga

bλ +m∗, cλ +
m∗∑
j=1

λ∗j


aη|η ∼ Ga

bη +m∗, cη +
m∗∑
j=1

η∗j

 ,

where there are m∗ unique values, say {(λ∗1, η∗1), ..., (λ∗m∗ , η
∗
m∗)}.

Finally, values from the distribution of α can be generated following Escobar and West

[1995] by introducing a further latent variable, θ, such that:

θ|α, n ∼ Beta(α+ 1, n)

α|θ,m∗ ∼

{
Ga(aα +m∗, bα − log θ) with probability aα+m∗−1

aα+m∗−1+n(bα−log θ)

Ga(aα +m∗ − 1, bα − log θ) otherwise.

6.3.2 Inference for the elliptical distribution

Now assume that we observe a sample y1, . . . ,yn from (6.3). Then, we shall assume a Dirichlet

process mixture prior:

G|λ, η ∼ Ga (λ, η)

λ, η|F ∼ F

F ∼ DP (αF0),

where we shall use the same prior modeling for α, F0 as previously in (6.7).

In order to undertake inference, we first use (6.5), so that

Y
d
= µ+AZ/

√
W



6.3. Bayesian inference for NI and elliptical distributions 105

where W = |Z|2/G. In addition, note that X d
= |Z|2 ∼ χ2

k. Also, we have that:

f(wi|λi, ηi) =

∫ ∞
0

gifXi(wigi)fGi(gi|λi, ηi) dgi

=
1

Beta
(
k
2 , λi

) wi
2

k
2
−1ηλii

2
k
2

(
wi
2 + ηi

) k
2

+λi
. (6.8)

This implies that if we define Bi = Wi/(Wi + 2ηi), then:

Bi|λi, ηi ∼ Beta
(
k

2
, λi

)
.

Now, we have that the conditional distribution of Gi/xi is Gi|λi, ηi, xi ∼ Ga(λi, ηixi) so that,

conditional on Xi = xi, Wi has an inverse gamma distribution, that is

Wi|λi, ηi, xi ∼ Inv Gamma(λ, ηixi). (6.9)

Recalling that Zi ∼ N(0, Ik), we can calculate the posterior conditional distribution of Zi via

Bayes theorem by combining this with (6.9, 6.8) to give:

f(zi|wi, λi, ηi) =
(wi + 2ηi)

2N(zi | 0, Ik)Inv Gamma (wi | λi, ηixi)
2ηiBeta

(
bi | k2 , λi

) .

where bi = wi
wi+2ηi

, xi = |zi|2 and N(·|·, ·), Inv Gamma(·|·, ·) and Beta(·|·, ·) represent

the normal, inverse gamma and beta density functions respectively. Finally, we have that the

density of Yi is:

f(yi|µ,Σ, λi, ηi, wi) = w
k
2
i |Σ|

− 1
2 f(zi =

√
wiA−1(yi − µ))

As previously, given sample data y1,y2, ...,yn, then we can derive the relevant conditional

posterior distributions needed to set up a Gibbs sampler as follows. Firstly, the conditional

posterior distribution of µ is

f(µ|w,Σ,λ,η,y) ∝
n∏
i=1

f(yi|µ,Σ, λi, ηi, wi)N(µ|m,V).

Values of µ can be sampled using, for example a random walk sampler centred on the current

value of µ.
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In a similar way, we have:

f(σ2|µ,R,w,λ,η,y) ∝
n∏
i=1

f(yi|µ,Σ, λi, ηi, wi)f(σ2)

f(R,D|µ,σ2,w,λ,η,y) ∝
n∏
i=1

f(yi|µ,Σ, λi, ηi, wi)f(R,D)

where in these formulae, we recall that Σ = diag(σ)Rdiag(σ). In a similar way to the previous

section, we can sample values of σ2 using a Metropolis Hastings pass via an adaptive logit

sampler and we can sample from the distribution of R,D following the approach of Fang and

Li [1999].

The conditional posterior distribution ofWi has a much simpler form which can be sampled

directly. We have:

Wi|µ,Σ,λ,η,yi ∼ Ga
(
k

2
,
gi
2

)
where gi is calculated as in (6.4).

Finally, the distributions for the Dirichlet process parameters have the same form as for

the NI model, but replacing the values wi with gi for i = 1, ..., n, throughout and can thus be

sampled as previously.

6.4 Numerical illustrations

In this section we show how the proposed methodology for estimating the NI and elliptical

distribution performs on several simulated and real datasets. With respect to synthetic data,

we simulate data from both the NI and elliptical (but non-NI) models and apply the fitting

algorithms described in Section 6.3.

6.4.1 Simulated data from a NI distribution

In this example, we consider a sample of size n = 500 of a bi-dimensional NI distribution

(Student-t with 4 degrees of freedom) with parameters µ = (10, 1) and Σ =

(
0.6 0.4

0.4 0.4

)
.

The algorithms were run a total of 250000 iterations with a burnin period of 10000 iterations.

Figure 6.1 depicts the convergence of the algorithms by showing the evolution of the av-

erage parameters µ1 and Σ11. Figure 6.2 shows the fits to the histograms of both components

provided by the algorithm to fit an elliptical distribution (solid line) versus that to adjust a NI

distribution (dashed line). And, Figure 6.3 shows the contours plots of the fitted elliptical (left

panel) and NI (right panel) distributions.

Finally, Table 6.1 depicts the starting points for initializing the model parameters, 95%

credible intervals when an elliptical and NI distributions are used to fit the data, according to

the algorithms proposed in Section 6.3.
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Figure 6.1: Averaged µ1 (top) and Σ11 (bottom) from the total number of runs of MCMC for
the NI simulated dataset. Left panels: NI fit. Right panel: Elliptical fit.

6.4.2 Simulated data from an elliptical distribution

In this section we consider an elliptical distribution with G ∼ Weibull(5, 2). The sample size

n, and the parameters µ and Σ are defined as in Section 6.4.1. Figure 6.4 shows the scatterplot

of the data generated from the non-NI elliptical model. It can be observed that the elliptical

dataset has a doughnut form. Figure 6.5 reports the plots of the two components of Z (left

and right panel, respectively) versus the values of W . We can visualize how both variables, Z

and W , seem to be quadratically dependent. Thus, these data follow an elliptical but non-NI

distribution.
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Figure 6.2: Fit to the histogram of the simulated NI data (t4) by an elliptical distribution (solid
line) and a NI distribution (dashed line). Left panel: first component. Right panel: second
component.

Figure 6.3: Contour plots from fitted joint distributions for the simulated NI data (t4). Left
panel: Elliptical fit. Right panel: NI fit.

Having run a total of 250000 iterations and 10000 iterations for the burning period and

having reached the convergence of the algorithms, Figure 6.6 shows the fits to the empirical

distribution function of both components (black line) by the elliptical distribution (green line)

as well as the NI distribution (red line). It is clear that these data cannot be modeled well via a

NI distribution.
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Parameters
Elliptical Normal Independent

µ = (10, 1), Σ11 = 0.6, Σ12 = Σ22 = 0.4

µ(0) (9.6885677, 0.9422802) (9.6885677, 0.9422802)
Σ

(0)
11 0.5959394 0.5959394

Σ
(0)
22 0.4040606 0.4040606

Σ
(0)
12 0.4065146 0.4065146
Cµ1 [9.350291, 9.80222] [9.551228, 9.978516]
Cµ2 [0.7281338, 1.006025] [0.691019, 1.038496]
CΣ11 [0.5655454, 0.6021779] [0.5853332, 0.630645]
CΣ22 [0.3978221, 0.4344546] [0.369355, 0.4146668]
CΣ12 [0.382758, 0.4117022] [0.3943056, 0.4169515]

Table 6.1: Models comparison for the simulated NI (t4) dataset

Figure 6.4: Scatterplot of the non-NI, elliptical data

Table 6.2 is similar to Table 6.1, where the starting points for initializing the model param-

eters as well as 95% credible intervals for both, the elliptical and the NI fittings, are shown.

Whereas parameters µ and Σ are well estimated by both of them, from Figure 6.6 it seems that

the NI model is not able to recover the distribution FG.

6.4.3 Real dataset

In this section we illustrate the performance of the approach for fitting a real dataset in two

dimensions. The dataset used in this work is formed by the n = 2000 real parts of two channels

from a mountain top radar facility. They were collected from a multiple element array, multiple

coherent pulse instrumentation radar system which was designed to emulate a radar on an
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Figure 6.5: The X-axis shows the Z values (Left panel: First component. Right panel: Second
component) whereas the Y-axis the variable W for the simulated non-NI elliptical dataset

Parameters
Elliptical Normal Independent

µ = (10, 1), Σ11 = 0.6, Σ12 = Σ22 = 0.4

µ(0) (10.00289, 0.9613196) (10.00289, 0.9613196)
Σ

(0)
11 0.5649796 0.5649796

Σ
(0)
22 0.3749756 0.3749756

Σ
(0)
12 0.3796576 0.3796576
Cµ1 [9.989973, 10.01237] [9.942711, 10.05671]
Cµ2 [0.9933165, 1.01185] [0.9427575, 1.033973]
CΣ11 [0.589549, 0.6026773] [0.5805024, 0.6211319]
CΣ22 [0.3973227, 0.410451] [0.3788681, 0.4194976]
CΣ12 [0.396274, 0.4029067] [0.3975464, 0.4154377]

Table 6.2: Models comparison for the simulated elliptical (but non-NI) dataset

airborne moving platform. Data full description can be found at Titi and Marshall [1996] and

data can be downloaded from:

http://spib.linse.ufsc.br/radar.html

Both the elliptical, NI distributions were fitted to the data in addition to the multivariate

normal distribution. Figure 6.7 depicts the evolution of µ1 and Σ11 from the total number of

runs of MCMC, while Figure 6.8 shows the fitted histograms. From the histograms, it can

be deduced that the multivariate normal model is not able to fit this dataset, whereas both

approaches we present in this work are effectively modeling the data.

Finally, Table 6.3 is analogous to Tables 6.1 and 6.2 where, in addition, the results under

a fitted multivariate normal distribution are also shown. From the obtained estimates, it can
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Figure 6.6: Fit to the empirical distribution function of the simulated non-NI elliptical dataset
(black line) by the elliptical distribution (green line) and the NI distribution (red line). Left
panel: first component. Right panel: second component.

be seen that the covariance matrix is similarly fitted by all models, but discrepant values are

observed in regards the means vector. One possible reason for this behaviour is the fact that the

sample exhibits a high variability (variation coefficient around 50). Note also that the credible

intervals for µ1 and µ2 in the case of the elliptical model presents a lower amplitude than

the benchmark approaches. This is in relation with the random walk step to sample for the

posterior distribution. The algorithm obtains reasonable acceptance rates but the variance of

the proposal distribution is small.

Parameters Elliptical Normal Independent
Multivariate Normal

(R package)
µ(0) (11, -2.5) (11, -2.5) (11, -2.5)
Σ

(0)
11 0.4686852 0.4686852 0.4686852

Σ
(0)
22 0.5313148 0.5313148 0.5313148

Σ
(0)
12 -0.3048796 -0.3048796 -0.3048796
Cµ1 [-1.1797, 1.072641] [-19.55131, 15.06277] [-38.04486, 148.4927]
Cµ2 [-1.208301, 1.193307] [-16.33051, 19.88458] [-135.1396, 47.2029]
CΣ11 [0.4650191, 0.4908175] [0.4534358, 0.4899288] [0.4434851, 0.4926143]
CΣ22 [0.5091825, 0.5349809] [0.5100712, 0.5465642] [0.5043759, 0.5618458]
CΣ12 [-0.2733114, -0.2474081] [-0.2950202, -0.2678692] [-0.3266393, -0.2834512]

Table 6.3: Models comparison for the real Mountain Top Radar dataset
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6.5 Chapter summary

In this chapter we have shown how semi-parametric inference can be carried out for both ellip-

tical and NI distributions in a semi-parametric, Bayesian way, using Dirichlet process mixture

models. The ability of the proposed approach for estimating the NI and elliptical distribution

has been tested on simulated and real-life datasets.
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Figure 6.7: Evolution of µ1 (top) and Σ11 (bottom) from the total number of runs of MCMC
for the real dataset. Left panel: NI fit. Right panel: Elliptical fit.
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Figure 6.8: Fit to the histogram of the real dataset by an elliptical distribution (solid line), an NI
distribution (dashed line) and a multivariate normal (dotted line). Left panel: first component.
Right panel: second component.
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In this PhD dissertation, the disciplines of Operations Research and Statistics constitute

the common thread to propose novel solutions in real-life situations regarding with complex

datasets. The challenge of learning and interpreting information from complex data is at

the core of the current Statistical Science. New computational methods to deal with current

datasets, by means of the powerful tools Mathematical Optimization and Bayesian Data Anal-

ysis, have been presented through the chapters forming this dissertation.

In recent years, datasets have been usually characterized by a large number of features. This

fact may have negative consequences in terms of the comprehensibility of solutions and, thus,

the search for more interpretable solutions has recently led to the development of sparse multi-

variate techniques. Specifically, chapters 2 and 3 demonstrate different tradeoffs between spar-

sity and predictive performance of linear regression models, whereas Chapter 4 seeks sparse

Bayesian classification models.

Besides, when dealing with real-world applications where there exist groups at risk, it is

more important to improve performance rates for such groups. To this aim, in this thesis, we

apply mathematical optimization tools, which seem to be suitable. Then, in chapters 2 and

5 we propose two new constrained optimization models: one overall criterion is optimized,

while constraints on the efficiency measures under consideration for the individuals of interest

are introduced.

Additionally, when dealing with datasets with extreme instances (heavy-tailed data), Bayesian

statistical techniques have proven useful, as Chapter 6 also confirms.

The works presented in this PhD dissertation can be extended. Next, we discuss some open

problems.

• In Chapter 2 a novel version of the Lasso in which quadratic performance constraints

are added to Lasso-based objective functions is introduced. A possible extension for this

work could be to change the objective function. For example, for the sake of dealing

with strongly correlated predictors, it may be of interest to change the objective function

by that of the elastic net. Another non-straightforward extension could be to address

classification problems (via the logistic regression) instead of regression problems. In

this case, we would not address a quadratic formulation.

• A new methodology to deal with hierarchical categorical variables in linear regression

models has been studied in Chapter 3. A number of extensions to this work are the fol-

lowing. Firstly, when the number of categories is large, instead of solving Problem (3.11)

considering all the categories at once, a sequential pruning can be used instead. The main

idea is to consider subtrees in Tj and try to compress their categories solving Problem

(3.11) sequentially. Another option to deal with large number of categories is to cluster

them based on a dissimilarity, see Carrizosa et al. [2017a]; Cerda et al. [2018] and refer-

ences therein. Secondly, our methodology can be extended to generalized linear models

[Tibshirani, 1996], where, instead of predicting the response variable as in (3.1), a non-
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linear relationship between the response variable and the predictors is through a linkage

function. However, this extension makes the optimization problem highly nonlinear and

its resolution is very challenging.

• In Chapter 4 a novel feature selection methodology characterized by three main features

is presented. Namely, (1) sparsity is achieved taking into account the correlation among

the features, (2) different performance measures can be used to guide the selection of fea-

tures and (3) performance constraints on groups of interest can be included. It has been

explored in the case of the NB classifier due to its tractability and good performance, but

other classifiers could have also been tested instead.

• Chapter 5 is devoted to introduce a constrained version of the classic NB classifier with

the aim of improving classification rates in the different classes, avoiding the use of mis-

classification costs. Although distributional assumptions have been considered through-

out this chapter, a possible extension to this work is to consider non parametric estimation

for the density function for continuous attributes via kernel density estimation.

• Finally, elliptical distributions are examined in Chapter 6. In particular, semi-parametric

inference has been carried out for both elliptical and NI distributions, using Dirichlet

process mixture models. To continue this work we have to undertake model selection.

For model selection purposes, one possibility would be to try to calculate the marginal

likelihoods for the various models considered and then to use the Bayes factor to se-

lect an optimal model, following Basu and Chib [2003]. However, other simpler ap-

proaches which are appropriate for mixture models can also be explored [Spiegelhalter

et al., 2002]. Additionally, a more extensive computation study with applications in Fi-

nance, where heavy-tailed distributions are commonly used, is planned to be carried out.
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Proof of Proposition 1

Given λ ≥ 0, consider problem (2.11). If β = β+ − β− with β+ ≥ 0 and β− ≥ 0 and

λ = (0, λ, . . . , λ)′, a vector whose length is p + 1, then the differentiable version of that

problem turns out to be

min
β+,β−

1

n0
‖y0 −X0(β+ − β−)‖2 + λ′β+ + λ′β−

s.t.
1

n1
‖y1 −X1(β+ − β−)‖2 − (1 + τ)MSE1(β̂ols) ≤ 0,

β+ ≥ 0⇔ −β+ ≤ 0,

β− ≥ 0⇔ −β− ≤ 0.

From the Karush-Kuhn-Tucker conditions,

L(β+,β−,θ+,θ−, η) =
1

n0
‖y0−X0(β+−β−)‖2 +λ′β+ +λ′β−− (θ+)′β+− (θ−)′β−+

+η

(
1

n1
‖y1 −X1(β+ − β−)‖2 − (1 + τ)MSE1(β̂ols)

)

∂

∂β+
: − 2

n0
X ′0(y0 −X0(β+ − β−)) + λ− θ+ − 2

n1
ηX ′1(y1 −X1(β+ − β−)) = 0

∂

∂β−
:

2

n0
X ′0(y0 −X0(β+ − β−)) + λ− θ− +

2

n1
ηX ′1(y1 −X1(β+ − β−)) = 0

θ+,θ−, η ≥ 0

(θ+)′β+ = 0

(θ−)′β− = 0

η

(
1

n1
‖y1 −X1(β+ − β−)‖2 − (1 + τ)MSE1(β̂ols)

)
= 0

Thus,

• if β > 0 ⇒ β+ > 0,β− = 0 ⇒ θ+ = 0 ⇒ − 2

n0
X ′0(y0 − X0β) + λ − 2

n1
ηX ′1(y1 −

X1β) = 0

• if β < 0 ⇒ β+ = 0,β− > 0 ⇒ θ− = 0 ⇒ 2

n0
X ′0(y0 − X0β) + λ +

2

n1
ηX ′1(y1 −

X1β) = 0

Therefore,
2

n0
X ′0(y0 −X0β) +

2

n1
η(λ)X ′1(y1 −X1β) = b(λ), (A.1)
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where η(λ) is the Lagrange multiplier associated with the first constraint and b(λ) is a (p+1)-

dimensional vector whose s-th component, s = 0, 1, . . . , p, takes the following value

bs(λ) =


λ, if βs > 0,

−λ, if βs < 0,

0, else.

Then, since X0 and X1 are maximum rank matrices, one obtains from (A.1) the following

implicit expression for the solution β̂CSCLasso(λ) of Problem (2.11)

β̂CSCLasso(λ) =

(
1

n0
X ′0X0 +

1

n1
η(λ)X ′1X1

)−1( 1

n0
X ′0y0 +

1

n1
η(λ)X ′1y1

)
−1

2

(
1

n0
X ′0X0 +

1

n1
η(λ)X ′1X1

)−1

b(λ).

Proof of Theorem 1

Consider the function h : β 7→ 1

n
‖y−Xβ‖2 =

1

n
(y−Xβ)′(y−Xβ), whereX is a maximum

rank matrix by hypothesis. The matrix X is of maximum rank and therefore the Hessian matrix

Hh(β) =
2

n
X ′X is positive definite, from where we conclude that h(β) is strictly convex, and

hence, h(β) + λ‖Aβ‖1 is also a strictly convex function.

We next prove that h(β) is a coercive function. Since X ′X is positive definite, its eigenval-

ues are all positive. In particular, the smallest eigenvalue, say γr, will be nonzero. Moreover,

using the spectral decomposition of a symmetric matrix,

1

n
‖y −Xβ‖2 =

1

n
(y −Xβ)′(y −Xβ) =

1

n
β′X ′Xβ − 2

n
y′Xβ +

1

n
y′y =

=
1

n
β′Q′DQβ − 2

n
y′Xβ +

1

n
y′y ≥

≥ 1

n
β′Q′DQβ −

∣∣∣∣ 2ny′Xβ
∣∣∣∣+

1

n
y′y ≥ γr

n
‖Qβ‖2 −

∥∥∥∥ 2

n
y′X

∥∥∥∥ ‖β‖+
1

n
y′y =

=
γr
n
‖β‖2 −

∥∥∥∥ 2

n
y′X

∥∥∥∥ ‖β‖+
1

n
y′y,

where, in the second-to-last step, the Cauchy-Schwarz inequality has been used. As ‖β‖ →
+∞, then h(β)→ +∞ too, and thus h(β) is a coercive function.

Now we show that (2.13) has optimal solution. Let β∗ ∈ B. As h(β) is coercive, then

there exists R > 0 such that

1

n
‖y −Xβ‖2 >

1

n
‖y −Xβ∗‖2 + λ‖Aβ∗‖1,

for all β such that ‖β‖ > R. For that reason, the problem can be reduced to the feasible

compact region B ∩ {β : ‖β‖ ≤ R}, which implies that the optimal solution is reached.
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Finally, the uniqueness of the solution follows from the fact that h(β) + λ‖Aβ‖1 is strictly

convex.

Proof of Proposition 2

Let us consider the optimization problem (2.2) and let β̂Lasso(λ) denotes its optimal solution.

The necessary and sufficient optimality condition is:

∇ 1

n
‖y −X β̂Lasso(λ)‖2 + λ∂‖Aβ̂Lasso(λ)‖1 3 0. (A.2)

From the properties of subdifferential (see Theorem 23.9 of Rockafellar [1972]) it follows that

∂‖Aβ̂Lasso(λ)‖1 = A′∂‖.‖1|Aβ̂Lasso(λ)
,

which implies that (A.2) becomes

− 2

n
X ′(y −X β̂Lasso(λ)) + λA′∂‖.‖1|Aβ̂Lasso(λ)

3 0. (A.3)

Consequently, the necessary and sufficient condition (A.3) in β̂Lasso(λ) = 0 is

− 2

n
X ′y + λ{A′t : ‖t‖∞ ≤ 1} 3 0,

since ∂‖0‖1 is the unit ball of the ‖.‖∞. Equivalently,

2

n
X ′y ∈ {A′λt : ‖t‖∞ ≤ 1}.

Therefore, the solution of the problem

min
λ,t

λ

s.t.
2

n
X ′y = A′λt,

‖t‖∞ ≤ 1,

λ ≥ 0,

(A.4)

will provide the minimum λ from which β̂Lasso(λ) = 0 is the optimal solution. If q = λt,

then Problem (A.4) becomes
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min
λ,q

λ

s.t.
2

n
X ′y = A′q,

‖q‖∞ ≤ λ.

The constraint ‖q‖∞ is equivalent to |qs| ≤ λ, s = 0, 1, . . . , p and the result follows.

Proof of Proposition 3

The proof follows very closely that of Theorem 1. First of all, it shall be proven that h : β 7→
E[(Y − X′β)2] is coercive. It is strictly convex on β since its Hessian matrix, 2E[XX′], is

positive definite due to X is an absolutely continuous p-dimensional random variable:

u′E[XX′]u = E[u′XX′u] = E[(X′u)2] > 0,

since P (X′u = 0) = 0. Moreover, λ‖Aβ‖1 is a convex function on β and, therefore, E[(Y −
X′β)2 + λ‖Aβ‖1] is also a strictly convex function on β.

On the one hand, the eigenvalues of the Hessian matrix are all positive and, in particu-

lar, the smallest eigenvalue, say γr, will be non-zero. On the other hand, using the spectral

decomposition of a symmetric matrix,

E[(Y −X′β)2] = β′E[XX′]β− 2E[YX]β+E[Y 2] = β′Q′DQβ− 2E[YX]β+E[Y 2] ≥

≥ β′Q′DQβ− | 2E[YX]β | +E[Y 2] ≥ γr‖Qβ‖2 − ‖E[YX]‖‖β‖+ E[Y 2] =

= γr‖β‖2 − ‖E[YX]‖‖β‖+ E[Y 2],

where, in the second-to-last step, the Cauchy-Schwarz inequality was used. As ‖β‖ → +∞,

thenE[(Y −X′β)2]→ +∞, that is, the quadratic function h(β) = E[(Y −X′β)2] is coercive.

The next step in the proof is to transform the original true problem (2.17) into an equivalent

one with a feasible compact region B∗. Given β∗ ∈ B, since h(β) = E[(Y − X′β)2] is

coercive, there exists R such that

E[(Y −X′β)2] > E[(Y −X′β∗)2 + λ‖Aβ∗‖1],

for all β with ‖β‖ > R. For that reason, the problem (2.17) can be reduced to the feasible

compact regionB∗ = B∩{β : ‖β‖ ≤ R}, which implies that the optimal solution is reached.

Finally, the uniqueness of solution is a consequence of the strict convexity of the objective
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function.

Proof of Theorem 2

For the sake of simplicity, βCSCLasso(λ) and β̂CSCLasso(λ) will be denoted henceforth by β

and β̂, respectively. In addition, let us consider the nonempty compact set C = B ∩ {β :

‖β‖ ≤ R}, where R is chosen according to the proof of Theorem 2.3.1.

Theorem 2 is a direct consequence of Theorem 5.3 in Shapiro et al. [2009] under some

technical conditions, namely:

C1. The expected value function E[(Y −X′β)2 + λ‖Aβ‖1] is finite valued and continuous

on C.

C2.
1

n

∑n
i=1((yi − x

′
iβ)2 + λ‖Aβ‖1) converges to E[(Y − X′β)2 + λ‖Aβ‖1] w.p. 1, as

n→∞, uniformly in β ∈ C.

Let us denote F (β, (Y,X)) = (Y −X′β)2 + λ‖Aβ‖1. Then, the previous conditions C1

and C2 are consequences of Theorem 7.48 in Shapiro et al. [2009] provided that

A1. for any β ∈ C, the function F (·, (Y,X)) is continuous at β for almost every (Y,X),

A2. the function F (β, (Y,X)), with β ∈ C, is dominated by an integrable function,

A3. the sample is i.i.d.

Given (Y,X), the function (Y −X′β)2 + λ‖Aβ‖1 is continuous at β for any β ∈ C, and

therefore A1 is fulfilled. The sample is i.i.d. by hypothesis, and thus A3 holds too. Finally,

in order to prove A2, it is necessary to find a measurable function g(Y,X) > 0 such that

E[g(Y,X)] <∞ and, for every β ∈ C, | F (β, (Y,X)) |≤ g(Y,X) w.p. 1. Using the Cauchy-

Schwarz inequality, one has,

| F (β, (Y,X)) |=| (Y −Xβ)2 + λ‖Aβ‖1 |=

=| Y 2 − 2YX′β + β′XX′β + λ‖Aβ‖1 |≤

≤ Y 2 + (X′β)2 + 2 | YX′β | +λ‖Aβ‖1 =

= Y 2+ | X′β |2 +2 | YX′β | +λ‖Aβ‖1 ≤

≤ Y 2 + ‖X‖2‖β‖2 + 2‖YX‖‖β‖+ λ‖Aβ‖1.

Let M1 and M2 be given by

M1 = max
β∈C
‖β‖ M2 = max

β∈C
|Aβ|
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which are well defined due to the compactness of C. Therefore, g can be chosen as

g(Y,X) = Y 2 +M2
1 ‖X‖2 + 2M1‖YX‖+ λM2,

which is positive and, since E(‖X‖2) <∞, E(Y 2) <∞, E(‖YX‖) <∞, its expected value

is finite. In consequence, A2 holds and the proof is concluded.
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Figure B.1: Heat maps of β̂CSCLasso(λ) = (β̂CSCLasso1 (λ), . . . , β̂CSCLasso8 (λ)) using
prostate dataset
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Figure B.2: Median MSEk over the test sets for k = 7, . . . , 20 under p = 20 features and
the two nk options. Each subgraph represents one group and the Y-axis shows the different
percentages of improvement
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Figure B.3: Median MSEk over the test sets for k = 7, . . . , 20 under p = 500 features and
the two nk options. Each subgraph represents one group and the Y-axis shows the different
percentages of improvement
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Figure B.4: Median overall MSE over the test sets and NZ percentage under the choice p = 20
(top) and p = 500 (bottom)
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To fully understand how the computation time behaves depending on nk and p values, a grid

in both parameters have been inspected. Figure B.5 displays the logarithm of the user times in

seconds obtained under Lasso and CSCLasso models when nk and p change. The perspective

drawn in the top left figure shows that Lasso model (bottom surface) is solved faster and in a

smoother way. Besides, whereas smaller times are obtained for both methods when nk and p

are small, the biggest times are associated to nk = 300 and p = 500.

Figure B.5: Four perspectives of the logarithm of the user times in seconds for Lasso (bottom
surface in the four graphics) and CSCLasso (top surfaces) models across a grid in nk and p
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The choice of the tuning parameters

The purpose of this section is to perform different experiments for setting the tuning parame-

ters involved in our proposal. A number of dependence measures can be found in the literature

and the authors have tested some of them. First, for linear dependencies, the (squared) Pearson

correlation coefficient, whose evaluation is fast in practice, is the first option to examine. How-

ever, other type of relationships (nonlinear) may be present among the predictors, and there-

fore it also seems natural to consider alternative measures. Another possibility is the (squared)

Spearman’s rank-order correlation coefficient which is able to detect monotonic relationships

between two random variables. In addition, more sophisticated, non-linear dependence coeffi-

cients can be explored. HoeffdingD statistic allows to test the independence of two continuous

variables X and Y . This coefficient is calculated from a random sample and takes values from

−1/60 to 1/30. The Maximal Information coefficient (MIC), the distance correlation coeffi-

cient and the mutual information coefficient (MI) also measures nonlinear relationships among

random variables. The previous dependence measures, which can be computed by the routines

hoeffd (D statistic), mutinfo (MI), mine (MIC) and dcor (distance correlation), from

the R packages Hmisc, FNN, minerva, and energy, respectively, have been tested.

Next, we discuss the choice of the parameters {C, S, q}. The parameter C will be defined

as min{p−1, 100}, as commented in Section 4.4.1. Regarding the value of S, which represents

the maximum total of combinations for each cut, we tested three possible values, S = 10, S =

25 and S = 100. Finally, as regards the value of the probability q, it should be highlighted that

small values of q are associated with more sparsity. Here, we tested the values q = 0.4, q = 0.6

and q = 0.8.

The so-called Breast Cancer Wisconsin (Diagnostic) Data Set, Waveform Database Gen-

erator Data Set (version 2) and Wine Data Set shall be considered. They are described in

Table 4.3 of Chapter 4. For comparison purposes, the average accuracy (10-fold CV) has been

obtained for the above-mentioned number of dependence measures, and values of S and q.

The last row of Table C.1 shows the performance rates under the classic NB, that is, the rates

obtained when all the features are considered for constructing the NB classifier.

Several conclusions are obtained. First, note that for breast cancer the performance

rates under the sparse NB are slightly better than that of the classic NB. In addition, the sam-

pling strategy using a value of S = 10 seems to produce similar results as if S = 25 or S = 100

were chosen; therefore, for computational reasons the use of small values is the best choice.

Regarding the considered values for the probability q, not many significant differences can be

drawn between the three chosen values, from a performance viewpoint. However, as will be

seen, the choice of q is influential in the sparsity of the solution. In the case of waveform the

rates are, for all values of q and S, comparable to those obtained when all features are consid-

ered. In the case of wine the accuracy under the sparse NB is slightly worse than the results

obtained under the classic NB, although this fact is compensated by a better degree of sparsity
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Table C.1: Accuracy of the sparse NB (10-fold CV) for breast cancer, waveform and
wine datasets

breast cancer waveform wine
S Dependence measure q = 0.4 q = 0.6 q = 0.8 q = 0.4 q = 0.6 q = 0.8 q = 0.4 q = 0.6 q = 0.8
10 Pearson 94.62 94.87 95.04 80.14 80.06 81.42 94.50 92.14 95.71
10 Spearman 95.08 95.28 94.95 79.66 80.82 80.78 94.00 92.29 94.00
10 Hoeffding 93.85 94.16 94.71 80.22 80.66 81.06 93.79 93.86 92.86
10 MI 94.55 94.03 95.47 79.98 80.70 81.12 95.14 95.64 96.64
10 MIC 95.10 94.91 95.43 79.24 79.88 80.42 95.57 94.50 94.64
10 Distance Correlation 93.66 94.03 94.21 79.82 80.28 81.82 94.64 95.14 95.14
25 Pearson 94.36 94.73 95.12 80.44 80.06 81.24 93.43 95.14 93.29
25 Spearman 94.90 94.87 95.47 79.92 79.93 81.18 95.64 96.07 94.14
25 Hoeffding 94.74 93.50 94.73 79.90 79.66 80.70 94.07 93.36 93.36
25 MI 93.84 94.18 95.06 79.74 80.32 81.14 95.14 94.57 94.00
25 MIC 95.49 94.56 95.07 79.84 79.66 81.42 93.50 94.57 95.07
25 Distance Correlation 94.91 94.94 95.06 80.30 80.44 81.50 92.64 92.14 91.14
100 Pearson 95.06 94.52 94.05 80.12 80.48 80.68 95.14 91.71 93.43
100 Spearman 94.01 94.81 95.11 80.22 80.46 80.72 91.79 92.36 95.57
100 Hoeffding 96.34 95.61 95.96 80.38 80.98 81.66 93.36 90.00 92.14
100 MI 94.90 95.62 94.94 80.02 80.40 81.68 97.36 95.57 96.71
100 MIC 95.67 95.95 94.93 80.58 80.98 81.30 92.21 91.21 92.86
100 Distance Correlation 94.57 95.99 96.16 79.94 80.48 81.52 95.14 92.93 93.43

Classic NB 93.71 80.08 97.36

as will be shown by Table C.2.

It is interesting to note that despite the fact that the Pearson correlation coefficient is not able

to detect nonlinear dependencies, the choice of the dependence measure does not substantially

alter the performance results. A possible reason for this is that, in many cases, first-order linear

approximations according to the Taylor expansion are very close to the nonlinear function. In

order to look with more detail into this finding, the dendrograms of wine for the first fold in

the cross validation procedure have been included below. Even though the dendrograms are

different for the different measures, it can be seen how their structure is similar. The sampling

strategy is based on a thin grid which does not vary with the dependence measure, and therefore,

the resultant combinations per dendrogram do not differ notably. In other words, the results of

the sampling strategy will be similar despite the different shape of the dendrograms. In fact, the

selected variables across the different dependence measures tend to be the same, as is depicted

in Figure C.1, which illustrates the number of times that each variable has been selected in the

total of 10 best combinations (one combination per fold) under the choices S = 10 and q = 0.6.

The color intensity of the circles varies with the magnitude: the more intense the color is, the

higher the number of times such variable has been included in the best combinations.

We next analyze the sparsity results depending on the tuning parameters. The average

number of variables in the selected combinations is shown by Table C.2. In the table, the total

number of variables of the dataset is also shown. It can be deduced that the proposed sparse

NB leads to a significant reduction in the number of features, especially for breast cancer

since from the 30 variables characterizing the data, the algorithm selects around 4-7 variables

(on average) yielding the most predictive combination. As commented before, for wine the

algorithm halves the number of variables. The reduction in the case of waveform is not so
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Figure C.1: Variable selection process for breast cancer, waveform and wine, respec-
tively, under the choices of S = 10 and q = 0.6

important since features are almost independent.

The effect of q differs between the datasets. In the case of breast cancer, a value of

q = 0.4 produces, as expected, solutions slightly sparser than those obtained under q = 0.6

or q = 0.8. A choice of q = 0.6 also produces, for waveform, sparser solutions than under

q = 0.8. However, the results for q = 0.4 are not sparser than those for q = 0.6, a phenomenon

that can be explained as follows. The algorithm described in Section 4.3 computes the perfor-

mance of the classifiers constructed from different combinations of features and selects the

combination producing the best accuracy. In the case of waveform, q = 0.4 turns out a very

restrictive value since the performance obtained under the different sampled combinations of

features is worse than the performance of the combination formed by all features (correspond-

ing to the cut at height equal to zero in the dendrogram). In consequence, since in many folds

the selected combination contains all features, the average number of variables increases with

respect to the choice q = 0.6.
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Table C.2: Sparsity results (10-fold CV) for breast cancer, waveform and wine
datasets

breast cancer waveform wine
S Dependence measure q = 0.4 q = 0.6 q = 0.8 q = 0.4 q = 0.6 q = 0.8 q = 0.4 q = 0.6 q = 0.8
10 Pearson 6.00 5.96 5.68 37.28 27.4 30.24 7.48 6.24 6.60
10 Spearman 5.48 6.84 5.84 30.04 25.00 30.64 7.52 6.00 6.36
10 Hoeffding 6.52 6.20 6.08 33.08 26.20 30.08 6.64 5.80 6.68
10 MI 6.48 7.48 7.80 33.92 25.60 30.00 6.80 5.88 5.96
10 MIC 6.64 7.00 6.24 34.56 25.88 30.36 6.60 6.16 7.16
10 Distance Correlation 4.92 5.24 6.16 32.00 26.52 30.40 7.56 7.24 6.80
25 Pearson 4.96 5.76 5.32 33.08 26.32 30.88 7.32 6.08 6.00
25 Spearman 5.88 6.28 6.56 34.04 27.64 30.44 5.48 5.24 6.00
25 Hoeffding 5.52 5.40 5.36 32.72 25.28 29.40 6.28 6.36 6.20
25 MI 5.88 6.16 8.08 33.48 28.12 31.08 7.00 5.56 5.72
25 MIC 5.60 5.96 6.84 34.08 26.16 29.80 5.64 5.32 6.92
25 Distance Correlation 4.68 5.12 4.76 32.80 26.28 30.60 5.56 5.60 6.20
100 Pearson 4.60 4.60 4.84 32.84 24.04 30.80 6.08 5.04 4.88
100 Spearman 5.16 4.68 4.92 34.04 24.68 30.60 6.20 5.32 5.64
100 Hoeffding 5.40 5.40 4.84 34.76 27.56 31.40 6.04 5.40 5.28
100 MI 5.32 6.44 6.44 36.84 25.40 30.76 5.60 5.52 6.04
100 MIC 4.88 5.52 6.04 35.32 24.64 30.40 5.32 5.00 5.44
100 Distance Correlation 4.88 4.28 4.68 35.40 26.44 30.92 5.08 4.68 5.16

Classic NB 30.00 40.00 13.00
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Dendrograms of the Wine database for the first fold in the cross val-
idation procedure

(a) Pearson

(b) Spearman
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(c) Hoeffding

(d) MI
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(e) MIC

(f) Distance Correlation
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Heatmaps of the databases for the first fold in the cross validation
procedure using MI dependence measure

Figure C.2: Heatmaps

(a) breast cancer (b) wine

(c) mushroom (d) waveform



152 Appendix C. Supplementary Material

(e) SPECTF (f) german

(g) page blocks
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